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Conductor Temperature Estimation and Prediction
at Thermal Transient State in Dynamic Line Rating

Application
David L. Alvarez, Student Member, IEEE, F. Faria da Silva Member, IEEE, Enrique E. Mombello Senior

Member, IEEE, Claus Leth Bak Senior Member, IEEE, and Javier A. Rosero Member, IEEE,

Abstract—The traditional methodology for defining the ampac-
ity of overhead lines is based on conservative criteria regarding
the operating conditions of the line, leading to the so-called
static line rating. Although this procedure has been considered
satisfactory for decades, it is nowadays sensible to account for
more realistic line operating conditions when calculating its
dynamic ampacity. Dynamic line rating is a technology used
to improve the ampacity of overhead transmission lines based
on the assumption that ampacity is not a static value but a
function of weather and line’s operating conditions. In order
to apply this technology, it is necessary to monitor and predict
the temperature of the conductor over time by direct or indirect
measurements. This paper presents an algorithm to estimate and
predict the temperature in overhead line conductors using an
Extended Kalman Filter, with the aim of minimizing the mean
square error in the current and subsequent states (temperature)
of the conductor. The proposed algorithm assumes both actual
weather and current intensity flowing along the conductor as
control variables. The temperature of the conductor, mechanical
tension and sag of the catenary are used as measurements because
the common practice is to measure these values with dynamic
line rating hardware. The algorithm has been validated by both
simulations and measurements. The results of this study conclude
that it is possible to implement the algorithm into Dynamic
Line Rating systems, leading to a more accurate estimation and
prediction of temperature.

Index Terms—Dynamic Line Rating (DLR), Dynamic State
Estimation, Extended Kalman Filter (EKF), Overhead Line
(OHL)

I. INTRODUCTION

W ITH the constant increase in power consumption, an
upgrade and update of current assets are necessary for

control and operation of existing power networks. As a result
of the advances in renewable power generation, such as wind
and solar energy, there exists a constant growth in new power
plants. Therefore, bottlenecks are arising in transmission level,
mainly in overhead lines (OHLs), which are facing economic,
social, political and implementation time challenges. In order
to reduce both congestion and face these challenges, different
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techniques [1] can be used depending on the characteristics
of the line. Among these solutions is monitoring the line state
allowing the assessment of thermal limits and the application
of DRL [2], as long as the ampacity is limited by the sag
of the catenary. As the forerunner of DLR, OHL’s ampacity
by probabilistic methods was introduced using seasonal atmo-
spheric conditions [3]. Subsequently, the monitoring of OHL’s
thermal state was reached using information technologies.

Because of only one span in an OHL can limit the ampacity
and its behavior depends on the adjacent suspension spans,
this set of spans is assumed monitored for DLR. This set is
commonly known as the critical stringing section. However,
this section can change over time as a result of weather
variations. Consequently, different methodologies can be used
to identify critical stringing sections and to define DLR devices
location [4], [5].

In OHLs, two types of thermal limits are defined. The first
one is related to thermal equilibrium (steady state) and used for
planning and control. The second one is related to transient
state and given by a relationship between current intensity
and time; this limit is used for contingencies assessment
during operation. Using DLR, the data required to define
these two limits are historic reports of weather or low scale
atmospheric models based on local measurements [6] and
direct measurements in critical stringing sections whether of
sag length, mechanical tension, inclination, clearance, among
others [7].

The ampacity limit at steady state using DLR can estimate
with weather forecast [8]. On the other hand, to compute
dynamic limits (at thermal transient state) with DLR, it is
necessary to know on-line both the conductor temperature
and the atmospheric conditions. To this end, some techniques
are proposed, such as computing wind speed from direct
measurements [9] or including a weather station together with
the direct monitoring device [10]. However, given the nature of
the atmospheric conditions, which vary in space and time and
the uncertainty in the parameters of the OHL, an inaccuracy
is obtained in the ampacity when the temperature is used [11].

The variation in the atmospheric conditions along a string-
ing section can be modeled by the average conductor tem-
perature with an effective wind speed in order to avoid spot
temperature [12]. The impact of data uncertainty is addressed
in the literature. For instance, the uncertainties in input data
as well as in the parameters used in heat transfer models
are addressed by affine arithmetic in [13]. Similarly, robust
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corrective control measures considering the weather forecast
uncertainty is used in reference [14]. The impact of the
uncertainty in both the catenary parameters and temperature
in the calculation of the sag is analyzed in [15]. An enhanced
methodology is presented in [16] using on-line information of
a self-organized sensor network. This network uses tempera-
ture sensors and has the ability to predict, estimate and validate
information used for DLR. In this way, this paper presents a
state estimation algorithm for DLR at thermal transient state
which allows to estimate and predict the average conductor
temperature of stringing sections. The algorithm is based on
an Extended Kalman Filter (EKF), and it has the advantage
of using available DLR systems. To implement the EKF, it is
provided that the set of critical stringing sections are monitored
by DLR hardware and their atmospheric conditions are known.

The motivation to propose this algorithm is that currently
used methods to minimize errors in the estimation of tem-
perature in OHLs [17], [18], [19] are probably not the best
choice for on-line dynamic state estimation during thermal
transients. With the EKF, estimation and prediction of both
states and parameters of nonlinear dynamic systems is reached
[20]. Additionally, the uncertainties in the atmospheric con-
ditions, the current intensity and the direct measurements
are considered by the proposed EKF with the computing of
covariance propagation matrix and the Kalman gain. The state
variables of the proposed EKF are the average conductor
temperature, the average effective wind speed, the emissivity
and the solar absorptivity of conductor surface. The average
temperature was chosen because it is possible to estimate the
OHL ampacity with this value. The consideration of additional
parameters leads to improvements in temperature prediction,
since wind speed has the greatest impact on cooling [12],
and emissivity and absorptivity commonly present a high
uncertainty [21].

This paper is organized as follows: Section II provides a
brief introduction to heat transfer in OHL’s conductor and
to direct measurements used in DLR. Section III introduces
the algorithm developed. Section IV presents a case study
and experimental test carried out with the aim of evaluating
the performance of the algorithm. Finally, conclusions are
presented in section V.

II. BACKGROUND

Thermal behavior of OHLs is determined by heat transfer
as a result of heat gains and heat losses. This phenomenon
affects the thermal, electrical, and mechanical characteristics
of OHLs. Consequently, it is possible to estimate the thermal
state of the conductor by monitoring these physical changes.

A. Heat Transfer at Transient State
Heat transfer in OHL conductors is a well-known process

[22] and is described in standards and guides [21], [23]. The
main equation for this process is

dTS

dt
=
ikm

2R (TS) + qs − qc (TS)− qr (TS)

mCp
(1)

where TS is the temperature of the conductor at the surface,
ikm is the current intensity, R is the ac electrical resistance

per unit length, qs is the solar heating, qc is the convective
cooling, qr is the radiative cooling, m is the mass per unit
length and Cp is the specific heat capacity of the conductor.
Equation (1) can solve by numerical integration by using

∆TS =
ikm

2R (TS) + qs − qc (TS)− qr (TS)

mCp
∆t (2)

taking time intervals ∆t, provided that the initial temperature,
the thermal parameters of the conductor and the atmospheric
conditions along the integration time are known. The comput-
ing time to calculate temperature by this numerical method
is not a problem with modern computers, because under
contingencies or normal operation the thermal constant of the
conductors is higher (commonly 15 min) than the processing
time used to solve it (less than 1 s).

The maximum current intensity (|ikm|max) at conductor
reach the thermal equilibrium can compute using the maxi-
mum allowable conductor temperature (TSmax) as follow

|ikm|max =

√
qc (TSmax

) + qr (TSmax
)− qs

R (TSmax
)

(3)

Thus, OHL’s ampacity can be estimated using both static or
dynamic line ratings. For contingencies management, com-
monly the maximum current intensity vs time plot is computed
solving (1) until the conductor reach the maximum allowable
temperature for different values of ikm.

B. Direct Measurements for DLR

Although (1) correctly models the behavior of tempera-
ture in OHL’s conductors, there exist uncertainties in the
computing results because of inaccuracies in the inputs and
parameters. Thus, direct measurements for DLR are required
in critical stringing sections to enhance the accuracy. With
these measurements, the thermal state is measured discretely
by taking samples between 1 min and 10 min [12], allowing
a thermal monitoring. Direct measurements are classified by
CIGRE [7] into temperature, sag and mechanical tension.
From measurements of these variables, the temperature of the
conductor is computed using known relationships, such as the
state equation (temperature related to tension) and the catenary
equation (related tension with sag). Although the conductor
temperature can be directly monitored, the monitoring system
has errors produced whether by changes in the temperature
along the span, the influence of measurement devices over
the spot where the reading is taken, uncertainties in the
catenary parameters such as the mechanical tension reference,
conductor creep, among others. Finally, an error propagation
occurs in the prediction of temperature during a thermal
transient given the uncertainty of atmospheric conditions. For
instance, when the temperature in the conductor reaches the
steady state after a thermal transient, it is not affected by the
initial value of temperature, but only atmospheric conditions
and current intensity.

III. PROPOSED DYNAMIC STATE ESTIMATOR

A hybrid EKF algorithm is proposed in this paper since
the heat transfer phenomenon in conductors is continuous
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EKF˙̂x−k = f
(
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Figure 1. Proposed EKF model to estimate and predict thermal states on
OHL conductors

in time, and measurements for DLR are commonly taken at
discrete times. With this algorithm is aimed to estimate and
predict the temperature in OHL’s conductors by using both
direct measurements of DLR and the atmospheric conditions.
To implement an EKF is necessary to model the system
(ẋ = f (x, . . .)), predict future states

(
x̂−k
)

and update the cur-
rent states

(
x̂+
k

)
with new measurements (zk). The proposed

EKF for DLR is described by means of Fig. 1 as follows:

A. System modeling

Significant errors in the prediction of the temperature during
a thermal transient occur mainly because of inaccuracies in
the value of wind speed under forced cooling. Additionally,
the values of emissivity (εs) and solar absorptivity (αs) of
conductor surface can vary between 0.2 and 0.9 [21], de-
pending on the environmental conditions and time. Hence, this
paper proposes to consider (εs, αs), along with the effective
wind speed (|ϑ|) and the average conductor temperature as
state variables. By assuming that OHL’s thermal constant is
in a time interval of 5 - 15 min and based on CIGRE rec-
ommendations [12], |ϑ| can consider as the average effective
wind speed during this period and therefore assumed constant.
Likewise, εs and αs are assumed constant. Thus, the system
can be modeled by

ẋ =


f (x,u,w, t)

0
0
0


zk = h (xk,vk)

w (t) ∼ (0,Q)

vk ∼ (0,Rk)

(4)

where f is the function (1), x is the state vector, u is the vector
of control variables, t is the time and w are the errors in the
system. The state vector is x =

[
TS |ϑ| εs αs

]T
. The

control variables selected are |ikm|, the ambient temperature
(Ta), the wind attack angle (δ) and the solar radiation (S),
i.e., u =

[
|ikm| Ta δ S

]
. Finally, the state variables are

related to a set of measurements zk at time k by means of
measurement functions h (xk,vk), which have errors vk. The

errors vk and w are assumed to have a normal probability
distribution with mean zero and covariance Q and Rk.

B. Prediction of future states

To predict a future state, a system error w = 0 is assumed
and a state prediction

(
x̂−k
)

is carried out at time t by

˙̂x−k =


f
(
x̂+
k−1,u, 0, t

)
0
0
0


Ṗ−k = FP+

k−1 + P+
k−1F

T + LQLT

(5)

taking the estimation of the current states
(
x̂+
k−1
)
. ˙̂x−k is

computed by numerical integration (2). P is the covariance
of the estimation error, F is the Jacobian of the model with
respect to state variables (F = ∂f/∂x) calculated by

F =


df

dTS

df

dϑ

df

dεs

df

dαs
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣∣∣
x̂,u

(6)

and L is the Jacobian of the model with respect to control
variable errors (L = ∂f/∂w) computed using

L =


df

dwikm

df

dwTa

df

dwδ

df

dwS
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣∣∣
x̂,u

(7)

C. Update of current states

The system update is performed by

Kk = P−kH
T
k

(
HkP

−
kH

T
k + MkRkM

T
k

)−1
x̂+
k = x̂−k + Kk

(
zk − h

(
x̂−k
))

P+
k = (I−KkHk)P−k (I−KkHk)

T
+ KkMkRkM

T
kK

T
k

(8)

using the measurements recorded at time k, where K is the
Kalman gain, H is the Jacobian of the measurement functions
respect to state variables (H = ∂h/∂x) calculated with

H =

[
dh

dTS
0 0 0

]∣∣∣∣
x̂

(9)

and M is the Jacobian of the measurement functions respect
to measurement errors (M = ∂h/∂v) computed by

M =
dh (TS)

dv

∣∣∣∣∣
x̂

(10)

The expressions used for computing the partial derivatives
of matrices F,L,H,M can be found in [19]. Finally, the
proposed EKF for DLR estimation is shown in algorithm 1.
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Algorithm 1 Proposed algorithm for DLR Dynamic SE
1: procedure HYBRIDEKF(zk,uk,x̂+

k−1,P+
k−1,∆t,tk,Q,Rk)

2: x̂−k ← x̂+
k−1

3: P−k ← P+
k−1

4: for j ← ∆t to tk step ∆t do . Predict
5: ˙̂x−k ← f

(
x̂−k , u, 0,∆t

)
6: x̂−k ← x̂−k + ˙̂x−k
7: F← ∂f/∂x|x̂−k ,uk

8: L← ∂f/∂w|x̂−k ,uk

9: Ṗ−k ← FP−k + P−k F
T + LQLT

10: P−k ← P−k + Ṗ−k
11: end for
12: Hk ← ∂h/∂x|x̂−k
13: Mk ← ∂h/∂v|x̂−k
14: Kk ← P−kH

T
k

(
HkP

−
kH

T
k + MkRkM

T
k

)−1
15: x̂+

k ← x̂−k + Kk

(
zk − h

(
x̂−k
))

. Update
16: P+

k ← (I−KkHk)P−k (I−KkHk)
T

+
KkMkRkM

T
kK

T
k

17: return
(
x̂+
k ,P

+
k

)
18: end procedure

IV. ALGORITHM VALIDATION

In this section, both simulations and an experimental test
are performed to validate the effectiveness of the proposed
EKF. Algorithm 1 was implemented in Matlab R© with time
steps ∆t = 0.1 [s]. The EKF was evaluated in the estimation
of temperature for real time monitoring and in the prediction
of temperature for contingencies management as follows:

Temperature Estimation: each measurement sample was
processed using the Algorithm 1, where x̂+

k and P+
k are

updated, and used as inputs for the next estimation, as shown
in Fig. 1. Thus, the ability of the EKF to use the information
of previous measurements is used.

Temperature Prediction: it is performed to obtain the
predicted value of temperature at time k + ∆tC , where ∆tC
is the assumed duration of a contingency. Thus, a temperature
prediction is performed by means of (1) at time k+∆tC using
the estimated values at time k.

A. Simulation Results

To test the algorithm with simulations, the data for temper-
ature tracking calculation given in [21] was used, assuming a
span with a length of 300 [m], having a horizontal component
of conductor tension of 24.2 [kN] at 20 [◦C]. To simulate
the measurements and the control variables random errors
(vk,w) were added to the assumed Theor. values, as shown in
Fig. 1. Normal distributions of the error with mean zero and
a standard deviation (σzk) considered as the third part of the
accuracy were assumed; therefore, the variances are computed
as var (zk) = σzk

2. A typical accuracy of ±1.5 [K] [7] in
the measurements of conductor temperature was used. Hence,
if a maximum conductor operating temperature of 75 [◦C]
is used, a standard deviation of σTS

= 1.5/3 [K] in tem-
perature measurements is equivalent to σD = 5.5/3 [cm] in
measurements of sag and to σH = 100/3 [N] in measurements
of mechanical tension. Finally, simulations were run with a
∆tC = 15 min and direct measurements recorded at time
samples of tk = 1 min.

Table I
ATMOSPHERIC CONDITIONS TAKEN FROM CIGRE GUIDE [21]

Time [min] Ta [◦C] ϑ [m/s] δ [◦] S
[
W/m2

]
|ikm| [A]

t ≤ 0 24.0 1.9 55 0 802
0 < t ≤ 10 23.7 1.7 62 0 819
t > 10 23.5 0.8 37 0 856

Table II
CONDUCTORS USED FOR SIMULATIONS AND LABORATORY TEST

Drake 26/7 Linnet unit
Type ACSR 26/7 ACSR 26/7
Standard · · · ASTM B 232
A 486.6 198.38 mm2

d 28.1 18.31 mm
ms 0.5119 0.217 kg/m
ma 1.116 0.472 kg/m
R′25 ◦C 0.0727× 10−3 0.2095× 10−3 Ω/m
βs 1× 10−4 1× 10−4 1/K
βa 3.8× 10−4 3.8× 10−4 1/K
αs 0.8 0.5 1
εs 0.8 0.5 1
α 23× 10−6 23× 10−6 1/K
cs 20 ◦C 481 481 J/K kg
ca 20 ◦C 897 897 J/K kg
E 57000× 106 · · · N/m2

1) Thermal Transient System Description: a thermal tran-
sient with measurements of current intensity and atmospheric
conditions provided every 10 min is assumed, as shown in
Table I [21]. The conductor DRAKE ACSR (aluminum (a)
and steel (s)) was used to simulate the span. Its properties are
shown in Table II, where A is the cross-sectional area, d is
the conductor diameter, R′Tref

is the conductor AC resistance
at temperature Tref , β is the linear temperature resistance
coefficient and α is the coefficient of linear thermal elongation.

2) Temperature estimation and prediction: known exam-
ples were used to assess the performance of the algorithm
assuming direct measurements. For simulating direct measure-
ments, the theoretical temperature (TS-Theor.) during transient
state was computed with the values of Tables I-II by applying
numerical integration (2) to the heat transfer equation (1).
Equivalent values of sag and tension were computed using
the values of TS-Theor. and measurement functions [19].
Then, direct measurements were simulated with the Matlab R©

function randn, adding values of normal random errors with
mean zero and equivalent standard deviation to the sag, tension
and temperature. The simulated temperature measurement
zk=0 was selected to be the value of x̂+k=0, and for the
covariance the value P̂+

k=0 = σ2 was assumed. Since in
these simulations the aim is to analyze the performance of
the algorithm provided that direct measurements are available,
the values of atmospheric conditions except for the wind were
assumed without errors, that is w (t) = 0. For the forecast
average effective wind speed an uncertainty of ±0.5 [m/s]
was assumed (σ|ϑ| = 0.5/3 [m/s]).

To test the algorithm, two critical scenarios were modeled.
The first considering a wind speed with the temperature
lower limit |ϑk| = |ϑk|Theor. + 0.5 [m/s] and the second
one using a wind speed with the temperature upper limit
|ϑk| = |ϑk|Theor. − 0.5 [m/s]. Figure 2 shows the values of



0885-8977 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2018.2831080, IEEE
Transactions on Power Delivery

00:00 00:10 00:20 00:30 00:40 00:50

Time - [h:min]

40

45

50

55

60

65

70

Figure 2. Both theoretical and limits of temperature of the conductor during
transient state, computed with the scenarios: lower limit - |ϑk| = |ϑk|Theor. +
0.5 [m/s] and upper limit - |ϑk| = |ϑk|Theor. − 0.5 [m/s]
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Figure 3. Theoretical wind speed |ϑ| and estimated wind speed
∣∣∣ϑ̂∣∣∣ using

the proposed EKF for the assumed critical scenarios

temperature during the thermal transient of TS − Theor. and
the ones for the critical scenarios. The shaded area shows the
obtained uncertainty limits. To compute the root-mean-square
error (RMSe), for the lower limit was 4.02 [K], and for the
upper limit of 6.73 [K]. Finally, provided that the effective
wind is modeled discreetly in this example, both

∣∣∣ϑ̂k∣∣∣ = |ϑk|
and P̂k (2, 2) = σ|ϑ|

2 must be reset during the run of the
algorithm at each time k in which the wind changes.

a) Simulations assuming temperature measurements:
for simulation of direct temperature measurements, normal
random errors with mean zero and σ = 1.5/3 [K] were added
to the TS-Theor. Figure 3 shows wind speed estimated for both
critical cases. Figure 4 shows the values of TS-Theor., sim-
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Figure 4. Temperature of the conductor (TS -Theor.), simulations of mea-
surements of conductor temperature (TS Simulated), estimated temperatures(
T̂S

)
and maximum allowable current intensity

(
|ikm|max

)
at steady state

using the proposed algorithm during the thermal transient

ulations of measured temperature and estimated temperature
using the proposed algorithm with the two critical cases. The
error e is computed with respect to the TS-Theor. The RMSe
for the estimated temperature was 0.34 [K] taking the lower
limit, and 0.54 [K] taking the upper limit. The RMSe using
simulations of direct temperature measurements was 0.6 [K].
Additionally, Fig. 4 shows the maximum allowable current
intensity at steady state for a temperature of 75 [◦C]. The
current intensity was computed with (3) using the conditions
of instant k for each scenario. Figure 5 shows predicted values
both of temperature and of maximum current allowable during
a contingency, obtained a RMSe for the lower limit of 1.6 [K],
and 2.2 [K] for the upper limit.

b) Simulations assuming tension measurements: for sim-
ulating tension measurements, errors were added as done in
the previous simulation using an accuracy of 100 [N]. Figure 6
shows the simulations of measured tension (H), TS-Theor.,
and the estimated temperature with the proposed algorithm.
The RMSe of both estimated and predicted temperature for
the lower limit were 0.18 [K] and 1.5 [K], and for the upper
limit were 0.22 [K] and 2 [K] respectively.

c) Simulations assuming sag measurements: as in the
case of tension measurements, Fig. 7 shows the performance
of the algorithm when sag measurements are available. The
RMSe of both estimated and predicted temperature for the
lower and the upper limits were 0.28 [K] and 1.5 [K], and
0.29 [K] and 1.5 [K] respectively.

Finally, 1000 simulations for each one of the three direct
measurements were performed. To simulate a more realistic
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Figure 5. Temperature of the conductor (TS -Theor.), and predictions 15
min before of temperature and maximum allowable current intensity during a
contingency computed with the proposed algorithm, simulating measurements
of conductor temperature
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Figure 6. Simulation of mechanical tension (H), and estimated temperature(
T̂S

)
using the proposed algorithm simulating measurements of tension on

the conductor

case, errors were added on control variables, since these are
commonly measured or assumed. Thus, normal random errors
with mean zero were added to current intensity (|ikm|) with
σ = 5/3 [A], to ambient temperature (Ta) with σ = 1/3 [K],
and to wind attack angle (δ) with σ = 12.5/3 [◦]. These
standard deviations were taken from [19]. Table III shows
the average RMSe and the average computing time to run
Algorithm 1. As result, the proposed algorithm showed stabil-
ity, convergence and speed, and it reached a smaller error in
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Figure 7. Simulation of sag length (D), and estimated temperature
(
T̂S

)
using the proposed algorithm simulating measurements of sag on the catenary

Table III
COMPARISON PERFORMANCE BETWEEN THE THREE KINDS OF DIRECT

MEASUREMENTS FOR 1000 RANDOM CASES

Measurement Avg. RMSe [K] Avg. Time [s]

Temperature 0.303 0.0593
Tension 0.253 0.0598
Sag 0.328 0.0602

temperature values than in the case of using only records of
direct measurements.

Although the standard deviation for δ was taken using typ-
ical anemometers accuracy, this value is unrealistic, because
of wind turbulence along the stringing section. However, to
estimate the average effective wind speed instead of spot
values, the effect of wind turbulence is considered [12].

B. Experimental Results

A laboratory setup was designed to evaluate the algorithm.
The setup consisted of controllably injecting a current inten-
sity through the OHL conductor Linnet and measuring its
temperature. The properties of the conductor are shown in
Table II. To carry out the validation, an ambient temperature
of Ta = 19 [◦C], and the planned current intensity (|ikm|)
and the wind (|ϑ|) shown in Fig. 8 were assumed as forecast
values throughout the test. An auto-transformer and a fan were
used to control both |ikm| and |ϑ|. As in the simulations,
the two critical cases in the estimation and prediction of the
temperature were used. Additionally, a value of emissivity
εs = 0.9 was used as initial parameter for the lower limit
and a value of emissivity εs = 0.2 for the upper limit. Thus,
three different cases were analyzed: case 1 using the assumed
planned and forecasted values, case 2 using the upper limits,
and case 3 using the lower limits.

1) Test setup: considering the laboratory atmospheric con-
ditions, the conductor under test theoretically reaches 75 [◦C]
with an |ikm| of almost 500 [A]. Taking the limitations of the
short circuit current of the laboratory into account, a special
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Figure 8. Current intensity planned (|ikm|) and forecasted wind speed (|ϑ|)
used in the test
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Figure 9. Circuit diagram of the experimental test

three-winding three-phase distribution transformer (HV-LV-
LV) with open ends was used to reach this current, as shown
in Fig. 9. The setup used is shown in Fig. 10. To reduce the
influence of loop impedance the leads were located almost
perpendicular to the conductor and the transformer was about
1 [m] away.

2) Test Results: the setup was initially energized with
300 [A], and when the conductor reached the thermal steady
state, the planned conditions (Fig. 8) were controlled and the
variables |ikm|, TS and Ta were measured and recorded every
30 [s] with an accuracy of ±5 [A] and ±1.5 [K]. Measure-
ments are shown in Fig. 11. Since the test was carried out
indoors, the solar radiation was assumed to be S = 0.

Figure 10. Experimental test setup
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Figure 11. Measurements of current intensity (|ikm|), temperature of the
conductor (TS) and ambient temperature (Ta) recorded every 30 [s]
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Figure 12. Comparison of temperature measured and computed with planned
and forecasted conditions, upper limit and lower limit

Figure 12 shows the values of temperature computed using
(2) for the three cases and the temperature measured. The Root
mean square residuals (RMSε) obtained were RMSε = 2.4 [K]
for case 1, RMSε = 5.7 [K] case 2 and RMSε = 5.5 [K] for
case 3.

3) Estimation of average Temperature: The values esti-
mated both of effective wind speed and emissivity of the
conductor using the proposed EKF in each case are shown
in Fig. 13. The estimated average conductor temperature
for the case with the highest RMSε (case 2) is shown in
Fig. 14. A RMSε = 1.5 [K] was obtained with this estimated
temperature.

4) Prediction of Temperature: Taking the case 2, the tem-
perature predicted 15 min before is shown in Fig. 15. In this
temperature prediction, a RMSε = 2.5 [K] was obtained.
Additionally, Fig. 15 shows the maximum current intensity
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Figure 13. Estimated effective wind speed
(∣∣∣ϑ̂∣∣∣) and emissivity (ε̂s) for

each case
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Figure 14. Comparison of estimated averaged temperature and measured tem-
perature, and comparison of residual of estimated and computed temperature
in each case

allowable until the conductor reaches 75 [◦C]. This current
intensity was predicted 15 min before.

V. CONCLUSIONS

This paper presents an algorithm to estimate and predict
thermal transient states in OHL conductors and addresses its
implementation. This algorithm uses an EKF based on the heat
transfer equation, using atmospheric conditions, current inten-
sity, conductor parameters and direct measurements as inputs.
The uncertainty in these values was considered. To simulate
and test the EKF, the algorithm estimated and predicted values
of average conductor temperature, with processing times lower
than the time spent between measurement samples, showing
computational efficiency and stability. The algorithm can be
directly implemented on current DLR systems in a fast and
cost-effective way.
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Figure 15. Comparison between the average temperature predicted 15 min
before and temperature measured, comparison between residual of predicted
average temperature and temperature computed in each case, and maximum
current intensity allowable until the conductor reaches 75 [◦C]

Average effective wind speed, emissivity and solar absorp-
tivity were chosen as parameters to be estimated, due to
the impact of their uncertainty on heat transfer. Effective
wind speed was assumed constant during a typical time of
contingency. Nevertheless, models of wind behavior for long
time emergency could be included in future studies.

The algorithm assessment showed a reduction in the RMEe
and RMSε when thermal estimation and prediction are carried
out by the proposed EKF, allowing to increase the reliability
in the thermal monitoring of OHLs. For instance, despite
using the most critical case, the RMSe obtained using the
algorithm to estimate and predict the average conductor tem-
perature was less than the RMSe obtained in all cases, both
the simulations and the experiment. The algorithm validation
was performed using low wind speeds which is considered
a critical scenario. In the cases of higher wind speeds and
low current intensities where the conductor temperature is
close to the ambient temperature, a field test validation is
necessary. Finally, further analysis should be carried out using
data validation techniques.
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