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Preface

This thesis unifies the research carried out during my years as an Industrial
PhD student at the Department of Mathematical Sciences, Aalborg Univer-
sity, and Neas Energy. My studies have been funded jointly by Neas Energy
and Innovation Fund Denmark through the Industrial PhD program.

The thesis consists of a collection of research papers written in the period
from February 2015 to January 2018. Each paper is self-contained, with a
separate bibliography. While the overall theme of the thesis is modeling in
electricity markets, particular focus is on wind power and the price coupling
of day-ahead electricity markets. Empirical analyses on actual market data
constitute a significant part of each paper, and the developed models are
applied for purposes such as the pricing of financial instruments, hedging
and risk management.

There are a number of people that have influenced and helped shape
this thesis, and who I wish to acknowledge. First and foremost, I wish to
thank my university supervisor Esben Høg, company supervisor Jesper Jung
and company co-supervisor Thomas Aalund Fredholm for their continued
support and excellent guidance over the years. A special thanks to Esben
for establishing the contact to Neas Energy and for encouraging me to take
on this project, and to Jesper and Thomas for allowing me the opportunity
to pursue the PhD degree. Without your help and support, I would not be
where I am today.

Thanks are also extended to my colleagues at Neas Energy and the De-
partment of Mathematical Sciences, Aalborg University, for providing an in-
spiring work environment and for all the help and assistance in various mat-
ters. Christian Sønderup, Jakob Vive Munk and my colleagues in Quantita-
tive Analytics, Sebastian Christensen and Rune Elgaard Mikkelsen, deserve
special recognition for their valuable comments, feedback on my papers, and
all the conversations that served as a great source of inspiration. Further,
thanks to my fellow PhD students for all the fun hours spent together dur-
ing PhD courses, coffee and lunch breaks, and in particular Rune Hjorth
Nielsen for all the interesting discussions on the German electricity market,
and Thomas Hvolby for our collaboration and friendship. Fellow industrial
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PhD student, friend and co-author Troels Sønderby Christensen deserves a
special thanks for the great work and effort he put in our two joint papers.

From August to December 2016, I had the privilege of visiting Fred Espen
Benth at the Department of Mathematics, Oslo University. I am truly grateful
for this opportunity, and I wish to thank Fred for our collaboration and for
being an excellent host. Moreover, I thank Fred for his continued support and
the many stimulating conversations during as well as after my stay in Oslo.
To everyone I had the pleasure of meeting at the Department of Mathematics,
Oslo University, thank you for your hospitality.

Last but definitely not least, a special thank you is reserved for my mom
Carmen and my boyfriend Søren for their tremendous patience, uncondi-
tional love and support.

Anca Pircalabu
Aalborg University, January 2, 2018
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Summary

This thesis consists of an introductory section and six self-contained papers
on different electricity-related topics. Particular focus is on the volumetric
risk associated with wind power generation, how wind power interacts with
the market, and the price coupling of electricity markets.

Papers I and II study the problem of joint price and volumetric risk in the
context of energy trading companies entering into long-term commitments
with wind power generators, where the fluctuating wind power production
is bought at a pre-determined fixed price. Multiple aspects concerning this
type of commitment are studied, such as determining its fair value, quanti-
fying its risk, and identifying a suitable hedging strategy. To address these
issues, a model for the joint behavior of prices and wind power production is
established and fitted to the Danish power market primarily. The performed
empirical investigations not only highlight the importance of capturing the
negative dependence between day-ahead electricity prices and wind power
production for many applications, but also allow for quantifying its effect.
As far as hedging is concerned, an implementable strategy that outperforms
the industry standard is proposed.

Paper III deals with the structural change in the joint behavior of spot
electricity prices that came with the price coupling of European electricity
markets. In addition to proposing a model that accounts for this change, we
focus on capturing the non-linear dependence between price pairs. One par-
ticularly interesting finding is that the probability of simultaneous extreme
events in price coupled areas is, in many cases, high. Through practically
relevant applications such as the pricing of financial transmission rights and
the forecasting of tail risk, we illustrate the benefits of our proposed model.

Papers IV, V and VI are all centered around a particular weather deriva-
tive that has only recently been introduced to the market. With the focus
on green growth that many European countries have experienced, a financial
instrument that can mitigate the volume risk associated with the generation
of wind electricity has long been missing; as a result, German-based wind
power futures were launched, with plans of extending the concept to other
markets. While Paper IV studies the pricing of such instruments and answers
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Summary

questions related to the risk premium in this newly established market, Pa-
pers V and VI relate to the detailed study of the actual benefits of wind power
futures for the buyer and seller group, respectively.
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Resumé
(Danish Summary)

Denne afhandling består af en introduktion og seks selvstændige artik-
ler omhandlende forskellige energirelaterede emner. Der er særligt fokus
på volumenrisiko i vindkraftproduktion, hvordan vindkraft interagerer med
markedet, og priskoblingen mellem europæiske elmarkeder.

Artikel I og II omhandler pris- og volumenrisiko i forbindelse med en-
ergivirksomheder, der indgår langsigtede aftaler med vindkraftproducenter,
hvor den varierende vindkraftproduktion købes til en forudbestemt fast pris.
Flere aspekter vedrørende en sådan type aftale undersøges, såsom beregn-
ing af dens fair værdi, kvantificering af dens risiko, samt fastlæggelse af
hedging strategier. For at løse disse problemer etableres en simultan model
for elpriser og vindkraftproduktion, som primært anvendes på det danske
marked. Dernæst fremhæves det via empiriske undersøgelser at den nega-
tive afhængighed mellem elpriser og vindkraftproduktion er vigtig at fange.
Hvad angår hedging er der foreslået en implementerbar strategi, der overgår
industristandarden.

Artikel III omhandler den strukturelle ændring der er opstået som følge
af indføreselen af en simultan prisformation i de europæiske elmarkeder. Vi
foreslår en model der inkluderer denne ændring, og som fokuserer på at
indfange den ikke-lineære afhængighed mellem prispar. Et særligt interes-
sant resultat er, at sandsynligheden for samtidige ekstreme begivenheder i
priskoblede områder i mange tilfælde er høj. Via praktiske anvendelser som
prisfastsættlese af finansielle transmissionsrettigheder og forecasting af ha-
lerisiko, illustrerer vi fordelene ved den foreslåede model.

Artikel IV, V og VI er alle centreret omkring et bestemt vejrderivat, som
for nylig er blevet introduceret på børsen. Med det store fokus på grøn vækst
som mange europæiske lande har oplevet, har der længe manglet et finansielt
instrument, der kan nedsætte volumenrisikoen forbundet med vindkraft-
produktion. Som følge heraf blev tyskbaserede wind power futures lanceret,
med planer om at udvide konceptet til andre markeder. Mens Artikel IV
behandler prisfastsættelsen af sådanne instrumenter og besvarer spørgsmål
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Resumé

vedrørende risikopræmien i dette nyoprettede marked, undersøger Artikel V
og VI de faktiske fordele ved wind power futures for henholdsvis køber- og
sælgergruppen.
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Introduction

This section provides a brief introduction to each of the six papers included
in this thesis, together with the motivation behind each paper. Why and
how the papers are linked to each other is commented on, and wherever
applicable, remarks on the latest related research are included.

1 Joint price and volumetric risk in wind power
trading

Owing to the rapid rise of wind power that many countries have experienced
over the past decades, the interaction between wind power generation and
the market has become important in a wide range of applications and for
different types of market players. The first problem studied in this thesis
is concerned with the joint price and volumetric risk in wind power trad-
ing. The perspective considered is that of energy trading companies entering
into long-term commitments that involve buying the fluctuating wind power
generation at a fixed price.

Unlike typical commodities like e.g. oil, metals, and gas, electricity can-
not be stored directly and is consumed instantaneously and continuously. As
a results, the link between electricity prices and the underlying price drivers
can be very strong. One situation where this link is clearly reflected relates to
the mechanism of day-ahead electricity price formation. In deregulated elec-
tricity markets, day-ahead prices are set by matching supply and demand,
where supply curves are constructed according to the merit order principle.
This price-setting mechanism prioritizes the cheap renewable sources, and
implies that a large share of wind power in the electrical grid will pull the
clearing price downwards. Similarly, a small share of wind power generation
will set an upward pressure on the clearing price. For energy trading com-
panies with the above-named fixed price obligations, the relation between
day-ahead electricity prices and wind power production is paramount for
all applications that involve pricing, hedging and risk management. The first
two papers in this thesis are concerned with different aspects of this problem.
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Paper I, coauthored with Thomas Hvolby, Jesper Jung and Esben Høg,
proposes a model for the joint behavior of day-ahead electricity prices and
wind power generation, and provides a detailed study of the dependence
between the two in Denmark. Since Denmark is a top wind power produc-
ing country, conducting such analysis on the Danish power market was an
obvious choice. To model the joint behavior of prices and wind power pro-
duction, the flexible copula models are employed, allowing us to separate the
treatment of marginals from that of the dependence structure. The flexibility
of this modeling approach is reflected in the fact that we can easily capture
stylized facts of the individual time series, such as seasonality, serial depen-
dence and non-normality; concurrently, an in-depth study of the dependence
structure is facilitated. The appropriateness of the proposed copula model
is assessed through statistical testing, and Monte Carlo simulations enable
us to address many practical concerns related to pricing and risk quantifi-
cation. In particular, we show how the negative dependence between prices
and wind power generation affects the profit distribution of energy trading
companies with long-term commitments that involve buying the fluctuating
wind power production at a fixed price. Moreover, we quantify the price
of correlation risk that must be accounted for when pricing such long-term
commitments.

Aside from the aspects related to pricing and risk quantification addressed
in Paper I, a major concern relates to how energy trading companies can
hedge their exposure to joint price and volumetric risk. While Paper I men-
tions this aspect, the considered hedging portfolio is simplistic in that it con-
sists of a single product, namely the standard power forward contract.

Paper II, coauthored with Jesper Jung, extends the work carried out in
the first paper by studying the hedging of joint price and volumetric risk in
much more detail. Given that the aforementioned fixed-price-for-fluctuating-
volume contracts give rise to a non-linear payoff, a hedging portfolio would
ideally include options. However, not only is the range of available derivative
products that can be used to address such risks very limited in the Danish
power market, we are also faced with illiquidity, even with respect to stan-
dard power forwards. Owing to the efforts made to achieve increased mar-
ket integration across electricity markets in Europe, the Danish day-ahead
electricity prices are strongly related to the prices in the much more liquid
German market. In Paper II, we extend the copula model in Paper I by in-
cluding the German electricity price as a third variable in the model. This
enables us to study the potential benefit from employ German financial in-
struments to hedge the Danish joint price and volumetric risk. Hence, also
from a modeling perspective, Paper II extends the work in Paper I.

In Paper II, the instruments included in the hedging portfolio are stan-
dard power forwards on the Danish and German prices, wind power futures,
financial transmission rights, and put options. Wind power futures are a

4



1. Joint price and volumetric risk in wind power trading

recent financial instrument, and can be used to mitigate the volumetric risk
associated with wind power production. Financial transmission rights belong
to the class of real options, and give the right to transfer electricity across the
border. In more technical terms, they are zero strike spread options writ-
ten on the spot price differential in two interconnected electricity markets.
The put options we include in the hedging portfolio are also real options:
Specifically, they relate to combined heat and power plants equipped with
electric boilers, which can benefit from converting electricity to heat when-
ever the day-ahead electricity price is low enough. The study of the hedging
effectiveness of the proposed instruments is facilitated by Monte Carlo simu-
lations from the proposed three-dimensional copula model. We find that our
proposed hedge contributes with significant additional risk-reducing bene-
fits compared to the market standard, which entails having solely forwards
in the hedging portfolio.

While the hedging application in Paper II was to some extent motivated
by Oum et al. (2006), Oum and Oren (2010) and Coulon et al. (2013), the
hedging of joint price and volumetric risk has attracted much attention re-
cently, and more related studies have become available. Since these studies
present perspectives and applications that are (or can become) very relevant
in the context of Paper II, they should be mentioned here. Considering the
topic on a more general level are the studies of Brik and Roncoroni (2016),
Roncoroni and Brik (2017) and Lange (2017), where interesting alternative
strategies are proposed. The studies of Ernstsen et al. (2017) and Tegnér et al.
(2017) consider the hedging of price and volumetric risk on the buyer side,
i.e., distribution companies that cover the fluctuating electricity demand of
customers at a fixed price. Empirical analyses are performed on the Danish
power market, where optimal hedging strategies implied by different risk
measures are compared. Since many of the ideas are directly applicable to
the problem in Paper II, it would be interesting to investigate whether the
conclusions in Ernstsen et al. (2017) and Tegnér et al. (2017) are transferable
to the seller side of price and volumetric risk in wind power trading.

In the hedging exercise of Paper II, two of the employed hedging instru-
ments stood out, namely the financial transmission rights and the wind power
futures. The special features and the many unexplored aspects regarding
these instruments called for a separate in-depth treatment, which motivated
greatly the subsequent work in this thesis. In the following two sections, we
elaborate on how these instruments are included in our studies.

5



2 Financial transmission rights and the price cou-
pling of European electricity markets

Financial transmission rights have long been a topic of interest in the energy-
related literature. Recently however, a structural reorganization of many elec-
tricity markets in Europe has affected all pricing and decision-making that
relies on the joint behavior of day-ahead electricity prices. This structural
change relates to the price coupling of areas in order to achieve increased
integration. Under price coupling, the supply and demand curves of indi-
vidual areas are considered simultaneously, according to the overall merit
order and the available transmission capacity. As a result, the joint behavior
of day-ahead electricity prices exhibits a particular pattern compared to other
economical or financial data: If the available transmission capacity between
two countries is not fully utilized (non-congestion) for a given hour of the
day, exact price convergence is achieved; otherwise, we could keep on trans-
ferring electricity from the cheap to the expensive area until the difference
in prices is eliminated. Prices will thus only start deviating from each other
once the available transmission capacity is fully utilized (congestion).

In Paper III, coauthored with Fred Espen Benth, we consider the problem
underlying the pricing of financial transmission rights under price coupling:
The modeling of pairs of electricity prices in interconnected areas. Since
the price coupling of most electricity markets dates only a few years back,
models for the joint behavior of spot prices that include the implications of
this change are very scarce [some examples are Füss et al. (2017) and Kiesel
and Kustermann (2016)]. Inspired by ideas in Haldrup and Nielsen (2006)
and Haldrup et al. (2010), we propose a regime-switching AR–GARCH cop-
ula model for pairs of day-ahead electricity prices. Since equality of prices
implies non-congestion, and non-equality of prices implies congestion, the
regimes are easily identifiable, and most importantly, they are observable.
While the AR–GARCH filter describes the conditional serial dependence and
heteroscedasticity, the copula in included to model the non-linear depen-
dence in the state of non-equal prices.

In a study of various European price pairs, we find the congestion state to
have significant tail dependence. As applications of the proposed model we
consider the pricing of financial transmission rights (in more detail compared
to Paper II) and the out-of-sample forecasting of tail quantiles. We high-
light through comparison studies the importance of capturing effects such as
heavy tails, asymmetric dependence and tail dependence. The study in Pa-
per III differs from the rest in that it does not concern wind power; instead,
it focuses on the relation between pairs of day-ahead prices in interconnected
markets, and the challenges that followed the launch of certain initiatives to
further market integration.

6



3. Wind power futures and hedging weather risk

3 Wind power futures and hedging weather risk

The last three papers in this thesis are concerned with the recently introduced
German wind power futures. As a result of the installed wind power capacity
growing in many electricity markets, so has the demand for financial instru-
ments that can address directly the volume risk associated with wind power
generation. To meet this demand, wind power futures were recently intro-
duced in Germany, with plans of later extending to e.g. Denmark and the
UK. Clearly, the wind power producer’s profit is directly affected by how the
wind blows; and since he wishes to lower his exposure to low wind scenar-
ios, which (with everything else being equal) lower his profit, he is a natural
seller of wind power futures. The conventional generator, who would have
his competitiveness on the day-ahead market weakened by a large share of
cheap renewable generation in the grid, is on the other hand a natural buyer
of wind power futures. While the literature on weather derivatives generally
speaking is rich [Davis (2001), Cao and Wei (2004), Campbell and Diebold
(2005), Brody et al. (2002), Benth and Benth (2011) and Gersema and Woza-
bal (2017) to name a few], work specifically directed at wind derivatives is
very limited, and our analyses are among the first attempts to study the new
market for German wind power futures.

Paper IV, coauthored with Fred Espen Benth, addresses the pricing of
wind power futures. Unlike the other studies in this thesis, time series mod-
els and copulas are not employed here. Instead, we propose describing the
German wind power production index, which is the underlying of the wind
power futures, as a product of two components: The first component is a
deterministic function that takes into account the seasonal pattern clearly
present in the historical wind index data; the second component consists
of the exponential of an Ornstein-Uhlenbeck that is driven by an appropri-
ate Lévy process. We discuss the properties of the model, estimation of the
model parameters, and derive a closed-form pricing formula for wind power
futures while also dealing with measure change. To strengthen further the
advantages of the model, we also include an outline concerning the pricing
of European options written on wind power futures contracts, which can be
achieved through Fourier analysis. The model is then applied to German
data, where the objective is to investigate the sign and magnitude of the mar-
ket price of risk in this newly established market. Our empirical analysis
reveals a negative risk premium, translating to the fact that wind power pro-
ducers are willing to sell wind power futures at a discounted price. This
finding motivated the two subsequent studies, which represent a pursue to
investigate further the benefits of wind power futures for the buyer and the
seller groups.

In Paper V, coauthored with Troels Sønderby Christensen and Esben Høg,
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we return to the joint modeling of wind power generation and prices as in
Papers I and II. This time however, we bring into focus the conventional
generator. By considering the clean spark spread as a measure of the conven-
tional generator’s profitability, Paper V studies the benefits of wind power
futures for gas-fired power plants that operate in the day-ahead electricity
market during peak hours. First, a detailed study of the dependence be-
tween the clean spark spread and the wind power generation is carried out
using copulas. Second, the hedging effectiveness of wind power futures is
illustrated through a simplified version of the hedging decision that conven-
tional generators are faced with every day. Third, we highlight the effects
of asymmetric dependence, tail dependence, and seasonal dependence on
the optimal hedge quantities and the conventional producer’s hedged profit
distribution.

Paper VI, coauthored with Troels Sønderby Christensen, is very similar
to Paper V in terms of both modeling approach and application. In contrast
however, we consider here the seller rather than the buyer side, and illus-
trate through simple analyses the spatial hedging benefits of wind power
futures for wind power generators with different geographical locations in
Germany. Although the analysis in Paper VI only differs in terms of con-
text, it complements and completes the wind power futures theme. Also,
this study highlights that while geographical conditions are unimportant for
conventional generators, they can have a substantial impact for wind power
generators, as far as the benefits of wind power futures are concerned.
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1. Introduction

ABSTRACT

This paper examines the dependence between wind power production
and electricity prices and discusses its implications for the pricing and
the risk distributions associated with contracts that are exposed to joint
price and volumetric risk. We propose a copula model for the joint
behavior of prices and wind power production, which is estimated to
data from the Danish power market. We find that the marginal be-
havior of the individual variables is best described by ARMA–GARCH
models with non-Gaussian error distributions, and the preferred cop-
ula model is a time-varying Gaussian copula. As an application of our
joint model, we consider the case of an energy trading company en-
tering into longer-term agreements with wind power producers, where
the fluctuating future wind power production is bought at a predeter-
mined fixed price. We find that assuming independence between prices
and wind power production leads to an underestimation of risk, as the
profit distribution becomes left-skewed when the negative dependence
that we find in the data is accounted for. By performing a simple static
hedge in the forward market, we show that the risk can be significantly
reduced. Furthermore, an out-of-sample study shows that the choice
of copula influences the price of correlation risk, and that time-varying
copulas are superior to the constant ones when comparing actual prof-
its generated with different models.

1 Introduction

Since the European electricity market reforms in the late 1990’s, the electricity
markets have undergone considerable structural changes. Liberalization has
led to extremely volatile electricity prices, and the prioritization of renewable
energy sources in order to reduce CO2 emissions has introduced further chal-
lenges in terms of financial risk management. One particular challenge that
we study in this paper is related to the production uncertainty associated
with wind power generation. Wind power is highly non-dispatchable and
therefore fundamentally different from the more traditional thermal power
sources in the sense that the production cannot be planned and controlled to
the same extent. The dependency on weather variations (wind speed and air
density among others) makes the exact future production of a wind turbine
or wind-farm very hard to predict. Thus, in addition to facing price volatility,
wind power generators are exposed to production uncertainty, often referred
to as volumetric risk.

The joint exposure to price and volumetric risk can be further amplified
by a high penetration ratio of wind power in the grid. This is due to the
mechanism of day-ahead price formation, which is based on finding the equi-
librium between supply and demand bids made to the exchange, where the
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supply curve is built according to merit order stack1. Because wind power
has a very low marginal cost, a high production for a given hour will, other
things being equal, pull the market clearing price downwards. Similarly, if
wind power production is low for a given hour, demand will have to be
met by either import or turning on more costly generating plants. The latter
(and possibly the former) will, again other things being equal, pull the prices
upward. This leads to prices and wind power production being negatively
correlated, which depending on the strength of this correlation, enhances the
joint price and volumetric risk significantly. Empirical evidence regarding
this relation between spot electricity prices and wind power production has
been demonstrated in the literature, e.g. Jónnson et al. (2010) for the Dan-
ish power market, Gelabert et al. (2011) for Spain, and Elberg and Hagspiel
(2015) and Paraschiv et al. (2014) for Germany.

In practice, it is usually energy trading companies that act on the ex-
change on behalf of the producers. Due to increasing wind power produc-
tion in some power markets, some trading companies offer, in addition to
the management of production, a predetermined fixed price in exchange for
the fluctuating production. Companies offering such insurances against price
movements will naturally attempt to cover their exposure, and a typical so-
lution that will eliminate some of the risk is to sell energy on the forward
market corresponding to the expected wind power production. The remain-
ing exposure will inevitably cause the energy trading companies to purchase
energy on the spot market when being short, and dispose of excess energy on
the spot market when expecting less than the realized production. Further-
more, the negative relationship between prices and wind power production
adds an additional correlation risk: If being short, chances are that the miss-
ing energy will have to be bought at a higher price; similarly, if having to dis-
pose of excess electricity, chances are that this will be sold at times of a lower
price. As a result, the negative dependence between price and production
introduces a “double” risk that is not straight forward to address or diminish
without having a well-specified model for the dependence structure.

The problem of joint price and volumetric risk stems back some decades,
and was first discussed in McKinnon (1967) in relation to the classical farmer’s
problem – who faces both price and production uncertainty at the time of har-
vest. In McKinnon (1967), the author considered futures as hedging instru-
ments, and presented an explicit formula for the optimal position in futures
contracts (from a minimum-variance perspective); this formula pointed out
that the correlation between the two sources of uncertainty is an essential
feature of the problem. Later, the work of Moschini and Lapan (1995) in-
cluded options in the hedging portfolio due to the non-linearity of profit.

1Supply bids from different power stations are ranked according to their production costs,
and the market clearing price corresponds to the highest bid needed to match demand.
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More recently, energy related work on the subject became available, and
some interesting discussions on the hedging of volumetric risk associated
with consumers’ load (demand-side risk) were presented in Oum and Oren
(2009, 2010) and Coulon et al. (2013). In Oum and Oren (2009, 2010), the
authors assumed bivariate lognormality for electricity prices and consumers’
demand of electricity with a constant correlation, and focused on hedging
strategies that 1) maximize the expected utility of the hedged profit and 2)
maximize the expected profit subject to a Value-at-Risk constraint. In Coulon
et al. (2013), the authors propose a structural model that captures the com-
plex dependence structure of electricity price and load dynamics as a base
for hedging. While many of the ideas in the existing literature regarding
the hedging of volumetric risk can be used in our application, there are some
major distinctions between supply-side volumetric risk (associated with wind
power production) and demand-side volumetric risk (consumers’ load) that
pose some challenges when having to specify a joint model for day-ahead
electricity prices and wind power production.

One issue of concern when considering a joint model for electricity prices
and wind power production is that the price dynamics are very different from
the production dynamics, causing us to expect the benchmark bivariate (log)
normality assumption to be too restrictive;2 in fact, the two variables might
have univariate marginal distributions from different families, making it very
challenging to decide upon a suitable bivariate density. The assumption of
constant correlation might also prove too restrictive, and many studies have
shown evidence of time-varying dependence between economic time series,
see e.g. Avdulaj and Barunikl (2015), Salvatierra and Patton (2013), Dias and
Embrechts (2004), Patton (2006), and Wen et al. (2012). Thus, before address-
ing issues such as the valuation of correlation risk in the context of fixed price
obligations with fluctuating wind power production or the hedging of portfo-
lios containing such obligations, a large part of this paper is concerned with
developing a joint model that correctly characterizes the marginal behavior
of electricity prices and wind power production and also their dependence
structure. For this purpose, we propose the use of copula models.

Copulas are flexible tools that can be used to completely describe the
dependence structure between random variables while allowing for arbi-
trary marginal distributions. They were introduced in the literature by Sklar
(1959), and have found various applications in economics and finance over
the past decades: See Cherubini and Luciano (2002) for the use of copulas
in pricing different types of bivariate options, Embrechts et al. (1999) for an
application to risk management, and Patton (2013) for a thorough review
on copula-based models, including methods for estimation, inference and

2Alone the fact that electricity prices can go negative rules out the lognormality assumption
in some marketplaces.
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model-selection. Applications of copula models in energy markets are less
common, but some examples are Alexander (2004), Benth and Kettler (2011),
Elberg and Hagspiel (2015), and González-Pedraz et al. (2015).

Specifically, we offer two contributions: Firstly, we propose a flexible joint
model that relaxes the assumption of bivariate normality and that accounts
for the time variation we observe in the dependence structure. Our empiri-
cal study is based on data from the Danish power market; nonetheless, we
expect our results to be generally applicable in all liberalized energy markets
with a high penetration of wind power in the grid. By performing statistical
tests and Monte Carlo simulation studies, we demonstrate that our proposed
empirical model captures the joint distribution accurately, and also its time-
varying behavior.

Secondly, we provide applications of our model that are of interest to e.g.
an energy trading company managing a large share of wind turbines. We
estimate the risk distribution and the price of correlation risk associated with
a specific contract exposed to joint price and volumetric risk, i.e. a contract
implying that an energy trading company offers wind power producers an in-
surance against price movements, by purchasing their fluctuating production
at a predetermined fixed price. We show that the negative relation between
prices and wind power production plays an important role both in relation
to the pricing and the risk distribution of such contracts. We find that the
price of correlation risk amounts to a significant percentage of the price of
a regular fixed price agreement with no volumetric risk (a standard forward
contract). Also, the risk distribution becomes left-skewed under the assump-
tion of negative dependence compared to the case of independence. Lastly,
we compare the out-of-sample performance of competing models, and show
that time-varying copula models outperform the constant copula models.

This paper is organized as follows: Section 2 briefly introduces the notion
of copula and the methodology used in building a joint model for electricity
prices and wind power production. In Section 3, we apply the theory to data
from the Danish power market. In Section 4, we present a simulation study
and investigate how different wind scenarios affect the conditional distribu-
tion of spot electricity prices. Section 5 presents an application to pricing and
risk management, and in Section 6 we conclude.

2 Modeling dependence with copula models

Formally, a d-dimensional copula is a distribution function C(u1, . . . , ud) de-
fined on the unit cube [0, 1]d with uniform margins. Since our application is
a bivariate one, we shall consider the case where d = 2, however copula the-
ory holds for the general multivariate case. The central result when working
with copula models is Sklar’s theorem, which shows how to decompose a
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joint distribution function into its univariate marginal distribution functions
and a copula.

In our application, we wish to condition on the information generated
by past observations of our variables, denoted by Ft−1. Thus, we shall
consider an extension to Sklar’s theorem proposed in Patton (2006), which
holds for conditional joint distributions. The theorem states that if we let
F( · | Ft−1) be the bivariate conditional distribution function of the random
vector Yt ≡ (Y1,t, Y2,t)

′, with conditional marginal distribution functions
F1( · | Ft−1) and F2( · | Ft−1), then there exists a two dimensional conditional
copula C( · | Ft−1), such that

F((y1, y2) | Ft−1) = C(F1(y1 | Ft−1), F2(y2 | Ft−1) | Ft−1). (1)

Furthermore, if the marginal distribution functions are continuous, the cop-
ula is unique. The converse also holds, such that given two conditional
marginal distributions, we can use the conditional copula to link the vari-
ables to form a conditional joint distribution with the specified margins. It is
especially this second part of the theorem that is useful here, since it allows
us to isolate the description of the dependence structure from the marginal
behavior of the individual variables.

Moreover, let us define the probability integral transform variables

Ui,t ≡ Fi(Yi,t | Ft−1), for i = 1, 2, (2)

and let Ut ≡ (U1,t, U2,t)
′. Then Ui,t ∼ Unif(0, 1), and note furthermore that

the conditional copula in Eq. (1) is simply the conditional distribution of
Ut | Ft−1:

Ut | Ft−1 ∼ C( · | Ft−1). (3)

In this paper, we consider different copulas from the elliptical and archi-
medean families, which are commonly used in the financial literature. For
a detailed treatment of these copulas and their properties, we refer to the
reference books by Joe (1997) and Nelsen (1999).

2.1 Marginal models

As a first step when working with copulas, we need to find proper marginal
distribution models. Here, we restrict our attention to marginal models of
the ARMA–GARCH type to model the conditional mean and the condi-
tional variance of the individual variables.3 For example, an ARMA(p, q)–

3A variety of other parametric specifications can be considered for the conditional mean, such
as ARMAX models, long memory models, linear and nonlinear regression models, etc. The same
holds for the conditional variance where, among others, different extensions to the ARCH model
can be considered; see Bollerslev (2008) for a long list of such models.
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GARCH(1, 1) model for the margins can be written as

Yi,t =
p

∑
j=1

φi,jYi,t−j +
q

∑
k=1

θi,kεi,t−k + εi,t, (4)

εi,t = σi,tηi,t, (5)

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1, (6)

for i = 1, 2, where ωi, αi, βi follow the restrictions posed in e.g. Nelson and
Cao (1992), and αi + βi < 1. Furthermore,

ηi,t | F
(i)
t−1 ∼ Fi(0, 1), for i = 1, 2 and all t. (7)

For the marginal distributions we consider the case where Fi does not vary
with time and has a parametric form. Also, we relax the normality assump-
tion, allowing for more general distributions. The ARMA–GARCH models
function as filters that produce innovation processes η1,t and η2,t that are se-
rially independent; it is the conditional distributions of η1,t and η2,t that are
then coupled using the conditional copula.

One note of caution has to be made regarding the conditioning set Ft−1
emphasizing that this set is generated by (Yt−1, Yt−2, . . . ). In our specification
for the marginal models however, we do not condition on Ft−1, but only a
subset F (i)

t−1 ⊂ Ft−1. When using such models, the copula is, according to
Fermanian and Wegkamp (2012), a true copula if and only if

Yi,t | Ft−1
d
= Yi,t | F

(i)
t−1, (8)

for i = 1, 2 and all t. If the equality in Eq. (8) is not satisfied, then the joint
conditional distribution of Yt | Ft−1 does not have the specified conditional
marginal distributions. To study if the equality in Eq. (8) holds, we test for
cross-equation effects by including lags of one variable in the conditional
mean equation of the other variable and vice versa, and perform a standard
Wald test for the joint significance of the added explanatory variables, as
proposed in Patton (2013).

2.2 Estimation procedure for the joint model

To estimate the joint model, we perform maximum likelihood estimation. The
joint conditional density is obtained by differentiating the joint conditional
distribution function in Eq. (1). Thus, the log-likelihood function takes the
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form

logL =
T

∑
t=1

log f ((y1,t, y2,t) | Ft−1; Θ) =
T

∑
t=1

log f1(y1,t | Ft−1; Θ1) (9)

+
T

∑
t=1

log f2(y2,t | Ft−1; Θ2)

+
T

∑
t=1

log c((u1,t, u2,t) | Ft−1; γ),

where f1 and f2 are the conditional marginal densities, c is the conditional
copula density defined as

c((u1,t, u2,t) | Ft−1) =
∂2

∂u1∂u2
C((u1,t, u2,t) | Ft−1), (10)

and

ui,t = Fi(yi,t | Ft−1; Θi), for i = 1, 2. (11)

In Eq. (9), Θ denotes the set of parameters for the entire model, and Θ1, Θ2
and γ denote the parameters for the two marginal models and the copula, re-
spectively, and have no common elements. For simplicity, we assume that the
copula is completely described by one single parameter γ. We perform multi-
stage maximum likelihood estimation, where we consider the two marginal
models and the copula model separately. For details on the validity of this
procedure, consult Patton (2013).

2.3 Time-varying copula models

Since the dependency between electricity prices and wind power produc-
tion might change through time, extending copula models to allow for time-
varying dependence is relevant. Before specifying a parametric model for the
copula dependence parameter, it is useful to investigate what type of time
variation (if any) we can detect in the data. Here, we employ two tests pro-
posed in Patton (2013): One that tests for the presence of a break in the rank
correlation by performing the classical “sup” test, and another that tests for
the presence of autocorrelation in a measure of dependence. For a compre-
hensive description of the two tests the reader is referred to Patton (2013).

The Generalized Autoregressive Score model

To model time-varying dependence, we employ the Generalized Autoregressive
Score (GAS) model of Creal et al. (2013). In order to ease the presentation,
we consider the case where the copula has one dependence parameter. For
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the GAS(1,1) model, a possible updating equation for the transformed copula
dependence parameter gt+1 is:

gt+1 = ω + αgt + βI−
1
2

t st, (12)

where

gt = h(γt),

st =
∂

∂γ
log c((u1,t, u2,t); γt),

It = Et−1

[
s2

t

]
.

In Eq. (12), st denotes the score of the copula log-likelihood and It is the
Fisher information. Moreover, γt denotes the time-varying copula depen-
dence parameter, which is usually constrained to lie in a particular range; see
Table 9 in B for details regarding the range of different copula dependence
parameters. For estimation purposes, we apply a transformation h( · ) to γt,
to obtain gt which takes values on the entire real axis. We note that the updat-
ing mechanism given in Eq. (12) is one of many possible specifications: The
GAS model can be extended to include e.g. more lags or exogenous variables.
Moreover, the scaling quantity I−1/2

t is simply one convenient choice. GAS
models can be generalized to allow for asymmetries or long memory, and to
include regime-switching, however such extensions are not considered in the
present work.

The parameter estimates from the GAS model can be obtained by max-
imum likelihood estimation, as proposed by Creal et al. (2013). The only
challenge can be finding a closed-form expression for the Fisher informa-
tion, and thus deriving the updating mechanism in Eq. (12). To overcome
this issue, the Fisher information is evaluated numerically for most copula
specifications by performing the following steps:

1. Given a copula specification, construct a grid of values for the depen-
dence parameter, [γ(1) < γ(2) < · · · < γ(n)].

2. For each dependence parameter in the grid,

(a) perform a large number of simulations from the chosen copula
model,

(b) evaluate the score function at each simulation,

(c) compute the Fisher information, by taking the mean over the eval-
uated scores squared.

3. Finally, use linear interpolation to get the Fisher information at inter-
mediate points.
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2.4 Quantile dependence

As a preliminary study before specifying copula models, one can examine
the dependence in the data by considering quantile dependence. For the case
of negatively dependent variables, the quantile dependence is defined as:

λq =

{
P(U1,t ≤ q |U2,t ≥ 1− q), 0 < q ≤ 1/2,
P(U1,t > q |U2,t < 1− q), 1/2 < q < 1.

(13)

By computing quantile dependence coefficients at different quantiles q, we
obtain a richer description of the dependence structure. This can help nar-
row down the set of possible parametric copulas to a collection of mod-
els that are able to capture some of the characteristics we observe in the
data. To obtain standard errors for the quantile dependence coefficients, we
use boostrapping; specifically, we follow the procedure proposed in Patton
(2013), which is based on the stationary block-bootstrap of Politis and Ro-
mano (1994), where the optimal block-length is chosen according to Politis
and White (2004) and Politis et al. (2009).4

2.5 Selection of copula models

To test for whether or not a copula is well specified, we perform two widely
used goodness-of-fit tests (GoF): The Kolmogorov-Smirnov (KS) and the
Cramer von-Mises (CvM) tests. Under the null that the conditional copula
is well specified, we should find that the empirical copula provides a good
nonparametric estimate of the null conditional copula. Suppose we have the
random sample {ut} = {(u1,t, u2,t)}T

t=1 from Ut. Then the test statistics can
be written as

KS(C) = max
t

∣∣C(ut; γ̂)− Ĉ(ut)
∣∣, (14)

CvM(C) =
T

∑
t=1

{
C(ut; γ̂)− Ĉ(ut)

}2 , (15)

where C(ut; γ̂) is an estimator of the null conditional copula. Moreover, Ĉ
denotes the empirical copula defined as

Ĉ(z) ≡ 1
T + 1

T

∑
t=1

1{u1,t ≤ z1, u2,t ≤ z2}, (16)

where 1 denotes the indicator function and z = (z1, z2) ∈ [0, 1]2. The KS
and CvM tests described above work solely for the testing of constant copula

4The same bootstrapping procedure can be used to perform inference on other measures of
dependence, e.g. linear correlation, rank correlation.
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models. A slight modification will however allow for the additional testing
of time-varying copulas: The KS and CvM tests based on the Rosenblatt
transform. In our case, the transformation is simply

V1,t = U1,t (17)

V2,t = C2|1,t(U2,t|U1,t; γ̂t), (18)

where C2|1,t denotes the conditional copula of the random variable U2,t |U1,t.
Applying the Rosenblatt transform to the data will yield iid and Unif(0, 1)
variables, and hence we can compare the empirical copula of a random sam-
ple {vt} = {(v1,t, v2,t)}T

t=1 from Vt, against the independence copula, defined
as

Cindep(vt; γ̂t) ≡
2

∏
i=1

vi,t. (19)

A simulation-based approach is used to obtain p-values for the GoF tests
described above, since the test statistics in Eqs. (14) and (15) depend on esti-
mated parameters. This approach is described in detail in Berg (2009), Genest
et al. (2009) and Patton (2013), and will not be elaborated on here.

Another very important issue when dealing with copulas is choosing the
best copula model among competing models. Here, we consider pairwise
comparisons, where we follow Rivers and Vuong (2002) for most in-sample
(IS) model comparisons and Diks et al. (2010) for out-of-sample (OOS) model
comparisons. The IS comparison test can be performed when the models are
non-nested; for the case where the models are nested, a likelihood ratio test
can usually be used. The OOS model comparison test works for both nested
and non-nested models. Also, both tests can be applied regardless of whether
the copula is constant or time-varying.

For the IS case, the idea is to compare two models using their joint log-
likelihood, and test the null

H0 : E
[

L(1) − L(2)
]
= 0, (20)

against

H1 : E
[

L(1) − L(2)
]
> 0 and H2 : E

[
L(1) − L(2)

]
< 0, (21)

where the superscripts (1) and (2) denote two competing models. The case of
comparing joint log-likelihoods reduces in our case to comparing copula log-
likelihoods, c.f. Eq. (9), since we use the same marginal distribution models.
Hence, L(i) = log c(i)(u; γ(i)) or L(i) = log c(i)(u; γ

(i)
t ), i = 1, 2, depending

on whether the copula is constant or time-varying. Rivers and Vuong (2002)
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show that under the null,

√
T
(

L̄(1) − L̄(2)
)

√
σ̂2

d−→ N(0, 1) (22)

where

L̄(i) =
1
T

T

∑
t=1

log c(i)
(

ût; γ̂
(i)
t

)
, for i = 1, 2. (23)

As an estimator for the asymptotic variance of
√

T
(

L̄(1) − L̄(2)
)

we use the
Newey-West heteroskedasticity and autocovariance consistent (HAC) estima-
tor.

For OOS comparisons, we consider a fixed estimation window, where the
model is estimated using the data from [1, T]. We then evaluate the condi-
tional predictive ability of two competing copulas on the OOS period, i.e.
on R observations, where R = T∗ − T, T∗ > T. The test for comparing
the predictive ability of competing copula models conditional on the esti-
mated parameters proposed by Diks et al. (2010) is in fact a special case of
the more general framework presented in Giacomini and White (2006). The
null hypothesis for the OOS case is the same as for the IS case, and a test
statistic based on the difference between the sample averages of the copula
log-likelihoods can again be used, and is shown by Giacomini and White
(2006) to be asymptotically N(0, 1) under the null. As an estimator for the
asymptotic variance, we use the HAC estimator.

3 Empirical results

A joint model for electricity prices and wind power production is interesting
to consider in an area with a high penetration ratio of wind power in the
grid. Here, we analyze data from Denmark, which has long been among the
top wind power producing countries. According to Energinet.dk, the Danish
Transmission System Operator, more than a third of the Danish power con-
sumption was covered by wind power in 2013, and in December that year,
57.4% of the consumption came from wind turbines. In 2014, wind turbines
produced on average what corresponds to over 39% of the Danish power con-
sumption. Also, in January 2014, 61.7% of the consumption was covered by
wind power.

Specifically, we base our analysis on data from one of the two Danish
price areas, DK1 (Western Denmark), and a sample period that spans from
1 January 2006 to 31 December 2014. The first time series, Fig. 1(a), consists
of total daily wind power production in DK1 relative to the total installed
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capacity, and is obtained by performing the normalization

Total daily wind power production (MWh)
Installed capacity (MW) · H (24)

for each day in the sample, where H denotes the total number of hours in the
day. We note that we work in UTC time, so H = 24 always. The second time
series, Fig. 1(b), represents the daily average of spot electricity prices.5,6

0.00

0.25

0.50

0.75

2006 2008 2010 2012 2014

Time

W
in

d
 p

o
w

e
r 

p
ro

d
u

c
ti
o

n

(a) Daily wind power production measured
relative to the total installed capacity.
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(b) Daily spot electricity prices

Fig. 1: Historical daily observations for the DK1 price area in the period 1 January 2006 to 31
December 2014.

Before proceeding to the estimation of a joint model for prices and wind
power production, two comments are in order. First, since the production
series is bounded, with a lower bound at 0 and an upper bound at 1, we
perform a logistic transformation in order to obtain data that can take values
on the entire real line. Second, we split our data into an in-sample (IS) period
spanning from 1 January 2006 to 31 December 2012, and an out-of-sample
(OOS) spanning from 1 January 2013 to 31 December 2014. Estimation of
marginal models and copulas is performed on the IS data.

3.1 Marginal specifications for spot electricity prices and wind
power production

Prior to modeling the dependence structure of electricity prices and wind
power production, we filter out the stylized facts affecting the marginal be-
havior of the individual variables. As a first step, we demean and correct

5The data is publicly available on Energinet.dk and on the web page of Nord Pool’s Elspot
market, nordpoolspot.com. Elspot is a day-ahead physical delivery market for electricity currently
operating in the Nordic and Baltic region.

6We note that one observation has been truncated in the price data, corresponding to the
date 7 June 13, since this is assessed to be an outlier. On this date, the hourly price reached
Nord Pool’s cap price due to a combination of low wind, reduced import possibilities caused by
planned maintenance on both transmission cables and central power stations.
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3. Empirical results

for deterministic seasonality by performing a regression on a constant and
dummy variables. Specifically, we have used the dummy variable month-of-
year to correct the (transformed) wind power production series for seasonal-
ity. For the price series both day-of-week and month-of-year dummy variables
were used as regressors. To model the conditional mean and variance of the
variables, we consider ARMA–GARCH models with different specifications
for the error distribution. We consider ARMA models up to order (7,7), and
GARCH models up to order (2,2). Based on the Bayesian Information Crite-
rion, we find that the optimal model for the wind power production series is
an ARMA(1,3)–GARCH(1,1), and use a skewed generalized error distribution
for the standardized residuals. For the day-ahead electricity prices, we find
the optimal model to be an ARMA(3,1)–GARCH(1,1), and use a skewed t dis-
tribution for the standardized residuals. Table 1 summarizes the estimation
results, and Fig. 10 in Appendix A displays the autocorrelation functions,
histograms and quantile plots for the standardized residuals resulting from
the fitted models. A visual inspection of Fig. 10 shows that almost no auto-
correlation is left in the standardized residuals. The specified distributions
provide a reasonable fit, however we observe some deviations in the tails of
both distributions.

Daily wind power production Daily spot electricity prices
ARMA(1,3) – GARCH(1,1) ARMA(3,1) – GARCH(1,1)

Conditional mean

φ̂1 0.8725 (0.0510) 1.4579 (0.0065)
φ̂2 - -0.5525 (0.0176)
φ̂3 - 0.0897 (0.0261)
θ̂1 -0.3578 (0.0550) -0.8365 (0.0128)
θ̂2 -0.2733 (0.0363) -
θ̂3 -0.0610 (0.0264) -

Conditional variance
ω̂ 0.0803 (0.1269) 2.4433 (0.7388)
α̂ 0.0251 (0.0199) 0.1657 (0.0312)
β̂ 0.9022 (0.1333) 0.7832 (0.0410)

Skewed general error dist./Skewed t dist.
Shape ν̂ 2.1348 (0.0967) 4.9967 (0.4711)
Skewness ξ̂ 0.8024 (0.0269) 0.9583 (0.0222)

Goodness-of-fit tests
KS (p-val.) 0.6293 0.7097
CvM (p-val.) 0.5882 0.5996

Table 1: The first panels display parameter estimates together with their std. errors in parenthe-
sis. The last panel displays the results of GoF tests.

We complement these findings with GoF tests, where we consider the KS
and CvM tests. The resulting p-values are given in Table 1 and indicate that
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there is not sufficient evidence as to reject the null that the distributional as-
sumptions are well-specified.7 We note that finding suitable marginal models
is of great concern when working with copula models, since the copula takes
as input iid Unif(0, 1) variables that result from applying the probability inte-
gral transform to the standardized residuals. A violation of the assumptions
will thus automatically lead to a misspecified copula model.

Because we condition with different information sets when specifying the
marginal models, we need to investigate whether or not lagged values of
wind power production help explain electricity prices and vice versa. To do
this, we consider the specified models for the conditional mean with added
explanatory variables consisting of seven lagged values of the “other” series,
and test for the significance of cross-sectional effects by performing a Wald
test. For the wind power production, we consider an ARMAX(1,3,7) model,
and for the electricity prices, we consider an ARMAX(3,1,7) model. The tests
yield a p-value of 0.25 for the wind power production model, and 0.09 for
the electricity price model, thus suggesting no cross-equation effects at a 5%
significance level.8

3.2 Symmetric vs. asymmetric dependence

Having decided upon the marginal models for price and wind power produc-
tion, the remaining of this section focuses on the modeling of the dependence
structure. First, we apply the probability integral transform to the standard-
ized residuals resulting from the marginal models to obtain approximately
uniformly distributed variables. To perform this transformation, we use the
estimated parametric models for the distribution functions F, i.e. the esti-
mated skewed generalized error distribution and skewed t distribution, see
Table 1. We obtain

ÛW,t = Fskew ged(η̂W,t, ν̂W , ξ̂W) (25)

ÛS,t = Fskew t(η̂S,t, ν̂S, ξ̂S), (26)

where ÛW,t and ÛS,t denote the resulting uniforms corresponding to the
wind power production time series and the spot price time series, respec-
tively. Standardized residuals are denoted by η̂, and estimated distribution
parameters are denoted by ξ̂ (skew parameter) and ν̂ (shape parameter).

As an introductory investigation of the dependence structure, we com-
pute some measures of dependence for ÛW and ÛS. Table 2 displays the

7We perform simulation-based GoF tests, that take the parameter estimation errors from the
ARMA–GARCH models into account. Specifically, we test for whether or not the probability
integral transforms implied by the estimated conditional densities are iid Unif(0, 1). The p-
values for the tests are based on 999 simulations.

8We have tried testing for cross-sectional effects with different other specifications, and none
of the results indicate cross-equation effects at a 5% significance level.
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3. Empirical results

estimated coefficients for Spearman’s ρ, Kendall’s τ and linear correlation,
implying (not surprisingly) that prices and wind power production are neg-
atively correlated. Based on Eq. (13) we also compute quantile dependence
measures, and the results, displayed in Fig. 2, show evidence for a symmetric
dependence structure. When considering the farther right and left portions
of Fig. 2(a), the results reveal a slightly larger probability of observing low
prices given that the production is high than the opposite. However, accord-
ing to Fig. 2(b), this difference is not statistically significant.

Spearman’s ρ Kendall’s τ Linear correlation

Estimate −0.5024 −0.3478 −0.5030
95% CI (−0.5716,−0.4332) (−0.3987,−0.2969) (−0.5714,−0.4347)

Table 2: Estimated dependence measures with 95% confidence intervals based on the block-
bootstrap procedure described in Section 2.4 and M = 999 bootstrap samples.
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Fig. 2: Fig. 2(a) displays estimated quantile dependence for quantile q ∈ [0.025, 0.975] and a
size step of 0.025, along with a 95% confidence interval based on the block-bootstrap procedure
described in Section 2.4 and M = 999 bootstrap samples. The y-axis provides the probability
of ÛW lying below (above) its q quantile given that ÛS lies above (below) its 1− q quantile for
q ≤ 1/2 (q > 1/2). Fig. 2(b) shows the difference in corresponding left and right quantile
dependence illustrated in Fig. 2(a) with a corresponding 95% confidence interval.

3.3 Constant copula models

Although we anticipate time-variation in the dependence structure, we con-
sider six constant copula models, to have as benchmarks for later compar-
isons. A brief overview of these copula models is provided in Appendix B.
The estimation results for the proposed constant copulas are given in Table 3,
together with GoF test results. Among the constant copulas we consider, it is
only the Gaussian and Student t that allow for negative dependence. To deal
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with this issue, we have performed suitable rotations of our data when esti-
mating the Clayton, Gumbel, Joe-Frank and Symmetrized Joe-Clayton (SJC)
copulas. Furthermore, the Gaussian and the Student t copulas are symmet-
ric, the Clayton and Gumbel are asymmetric, and the combinations Joe-Frank
and SJC allow for more flexible dependence structures and nest the case of
symmetric dependence.

Copula Parameter (s.e.) logL GoF tests p-val.
estimates

Kolmogorov-Smirnov Cramer-von Mises
KS(C) KS(R) CvM(C) CvM(R)

Gaussian ρ̂ -0.4923 (0.0134) 355.07 0.4545 0.6096 0.6747 0.4044
Student t ρ̂ -0.4967 (0.0147) 357.15 0.4134 0.7427 0.7227 0.5435

ν̂−1 0.0318 (0.0170)
Clayton θ̂ 0.7024 (0.0339) 288.94 0.0020 0.0060 0.0000 0.0020
Gumbel θ̂ 1.4455 (0.0220) 331.14 0.0450 0.0681 0.0390 0.0661

Joe-Frank θ̂ 8.8682 (4.4760) 368.77 0.7778 0.9359 0.7017 0.8278
δ̂ 0.3431 (0.1125)

SJC τ̂U 0.3355 (0.0368) 320.18 0.0070 0.0150 0.0230 0.0290
τ̂L 0.2012 (0.0408)

Table 3: Estimation and GoF test results for constant copula models. The p-values less than
0.05 are given in italics, highlighting that the dependence structure is not well-represented by
the proposed copula model. The superscript (C) refers to the tests performed on the empirical
copula of the standardized residuals and the superscript (R) refers to the tests performed on
the empirical copula of the Rosenblatt transforms. The GoF tests are simulation based (999
bootstraps) and take parameter estimation errors into account.

The GoF results in Table 3 support our earlier findings in Section 3.2. The
Gaussian and Student t copulas are, according to all tests, a good specifica-
tion. Clayton is rejected by all tests, while Gumbel is only partly rejected. For
the combination copulas, the test results are more surprising: The Joe-Frank
specification is accepted by all tests, while the SJC specification is rejected
by all tests. We attempt to understand these results by plotting the quantile
dependence we observe in our data together with the quantile dependence
implied by some of the fitted copulas in Fig. 3.

We observe that the quantile dependence implied by the Gaussian copula
provides a reasonable fit to our data. So does the Joe-Frank copula, by pro-
viding a fit that generates almost no asymmetry. The Gumbel copula on the
other hand is too asymmetric, producing large deviations as we approach one
of the tails. Lastly, the SJC, although implying less asymmetry than Gumbel,
assigns too much probability to extreme events compared to what we observe
in the data, and thus produces large deviations as we approach both tails.9

9 We have omitted the quantile dependence implied by the Student t and Clayton copulas
in Fig. 3 for clarity reasons. The Student t copula implies quantile dependence coefficients
that are almost indistinguishable from the Gaussian ones, which is due to the very high value
we estimate for the degree of freedom of this copula. The Clayton copula implies even more
asymmetry than Gumbel in the far right side of the quantile plot.
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Fig. 3: Quantile dependence implied by some of the fitted constant copula models in Table 3.

3.4 Time-varying copula models

To confirm our suspicion that the dependence of spot electricity prices and
wind power production is time-varying, we perform the two tests briefly
described in Section 2.3. The results are given in Table 4, showing no evidence
of a one-time break in the dependence structure, but strong evidence for the
presence of autocorrelation in the rank correlations.

One-time break Time-varying dep. of autoreg. type

AR(1) AR(5) AR(7)

p-value 0.7898 0.0020 0.0110 0.0000

Table 4: Test results for time-varying dependence. To test for the presence of a one-time break
in the rank correlation we use the “sup” test, and test the null of no one-time break. To test
for the presence of time-varying dependence of autoregressive type we consider the regression
ÛW,tÛS,t = µ + ∑

p
i=1 φiÛW,t−iÛS,t−i + εt, for p = 1, 5, 7; the null of a constant copula cannot be

rejected if we find that φi = 0, for i = 1, . . . , p. For all tests, p-values are obtained by bootstrap
testing (based on 999 bootstraps, where bootstrap samples are obtained by randomly drawing
rows, with replacement, from (ÛW , ÛS)

′).

In light of these findings, we consider three copula models where the
transformed dependence parameter denoted by g evolves according to a
GAS(1,1) model, see Eq. (12). The transformations applied to the copula
dependence parameters, estimation and GoF test results are all displayed in
Table 5. For the Gaussian copula, a closed form expression for the Fisher
information can be derived (see e.g. Schepsmeier and Stöber (2014)). For
the Gumbel and the Joe-Frank copulas, the Fisher information is computed
numerically by performing the steps in Section 2.3. The Joe-Frank copula has
two dependence parameters, and we consider the case where one parameter
evolves according to the GAS specification, while the other is kept constant.
It should however be mentioned that letting both parameters vary through
time provides very little improvement. Regarding the parameter estimates,
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α is high in all models, implying a very persistent time-varying correlation
process. Also, the intercept parameter ω is not significant in any model. As
far as the GoF test results are concerned, the Joe-Frank and Gaussian GAS
models are accepted at a 5% level, while the Gumbel GAS model is only
partially accepted.

Transf. h Parameter estimates (s.e.) logL GoF tests p-val.

ω̂ α̂ β̂ δ̂ KS(R) CvM(R)

Gaussian log
(

1+ρ
1−ρ

)
-0.0196 0.9820 0.0390 - 373.90 0.5354 0.4646
(0.0268) (0.0246) (0.0159)

Gumbel log(θ − 1) -0.0272 0.9672 0.0420 - 342.90 0.0404 0.0707
(0.1527) (0.1849) (0.0334)

Joe-Frank log(θ − 1) 0.0314 0.9860 0.0403 0.2944 388.77 0.7959 0.8571
(0.0509) (0.0208) (0.0127) (0.0894)

Table 5: Estimation and GoF results for time-varying copulas. Due to the high computational
time, the GoF tests and standard errors are based on 99 bootstraps. The superscript (R) indicates
that the GoF tests are based on the Rosenblatt transform.

To visualize and compare the fits of the proposed GAS models, we plot the
conditional rank correlation implied by the fitted time-varying copula models
in Fig. 4(a). The numbers are obtained by mapping the copula parameter(s)
to a rank correlation coefficient10. In Figs. 4(b)-(d) we plot actual 60-day
rolling rank correlations of the data (ÛW , ÛS)

′ together with the in-sample fit
of the proposed time-varying models. To perform the same comparison for
the out-of-sample period, we obtain the approx. uniforms (ÛOOS

W , ÛOOS
S )′ by

first applying the estimated function for removing seasonality and then the
ARMA–GARCH filters, without re-estimating any parameters, to the out-of-
sample wind power production data and the out-of-sample spot electricity
price data. The 60-day rolling rank correlations of (ÛOOS

W , ÛOOS
S )′ are then

computed and compared to one-step-ahead forecasts from the time-varying
copulas. Due to the elevated computational cost of using a rolling estimation
window to produce forecasts, we restrict ourselves to considering a fixed
estimation window corresponding to the in-sample period, but enlarge the
conditioning set as information becomes available.

One first and surprising remark regarding Fig. 4 is related to the data
itself and implicitly the fits produced by the GAS models, namely that the
correlation is generally stronger during winter than during summer. There

10Specifically, we follow the procedure described in Patton (2013): (1) construct a grid of copula
parameters, (2) perform 100,000 simulations from the copula model at each point in the grid, (3)
compute the rank correlation of the simulations, and finally (4) use linear interpolation to obtain
the correlation at intermediate points. We also mention that the functions mapping the copula
parameters to rank correlation are smooth.
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are many factors that can help explain this finding since price formation is a
complex process that is not only influenced by supply and demand (which
in turn have strong seasonal components), but also transmission capacity. To
provide a few facts that can help explain our findings, we mention that the
wind power production relative to the consumption in the DK1 price area
has been higher for winter periods than summer periods, during the sample
period we consider in this paper. Also, we can expect that situations with
little wind during summer do not always push the prices upwards. This is
(aside from consumption being lower during summer) due to the fact that
DK1 is well connected with cables to Norway, Sweden and Germany, which
are all heavy producers of renewable energy, and hence electricity could be
imported at a lower price compared to the cost of having to turn on the more
costly power stations in DK1.
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(b) Gaussian copula
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(c) Gumbel copula
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Fig. 4: Fits and forecasts produced with the three time-varying copulas from Table 5.

Considering now the fits implied by the proposed time-varying copulas,
Fig. 4 reveals that the Gaussian GAS implies most variation in the correla-
tion and is able to capture periods with weaker dependence the best. The
Gumbel GAS specification is the one that least captures the variation that we
observe in the data. The Joe-Frank GAS specification is superior at reaching
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the stronger correlations, but does not produce correlations that are weaker
than around −0.3. The plots clearly help establish that the Gumbel GAS
specification is the inferior choice. However, it is difficult to choose the better
copula when considering the Gaussian GAS against the Joe-Frank GAS.

From fitting not only time-varying copulas but also constant ones, we
have so far obtained many different models that are actually well-specified
according to the GoF tests. To help choose among all the considered copulas,
we perform the pairwise comparison tests described in Section 2.5.11 The
results are summarized in Table 6. We find that The Joe-Frank GAS specifi-
cation outperforms all other specifications in-sample, however its superiority
over the Gaussian GAS specification is not statistically significant. When con-
sidering the out-of-sample results, the situation reverses, with the Gaussian
GAS specification performing the best, but not significantly better than the
Joe-Frank GAS. Since the Gaussian GAS is the smaller model, we will choose
this specification as our preferred one, and continue our investigations using
this model to describe the dependence between wind power production and
spot electricity prices.

4 A simulation study

Performing simulations from a copula model is straightforward. The basic
steps are (1) at time t, generate the pair (UW,t, US,t) from the Gaussian copula
with dependence parameter ρt, (2) perform the inverse of the transformations
given in Eqs. (25) and (26) to obtain standardized residuals (ηW,t, ηS,t), (3)
insert the standardized residuals in the marginal models from before (see
Table 1) to obtain a deseasonalized pair (ỸS,t, ỸW,t), (4) use the estimated
seasonal function to obtain a pair (YS,t, YW,t) of spot electricity price and
wind power production, (5) compute ρt+1 using the Gaussian GAS update
equation and (6) repeat steps (1)–(5). Using this procedure one day at a time,
we can construct spot electricity price series and wind power production
series; and by repeating the process many times, an empirical distribution is
produced. Such an empirical distribution is shown in Fig. 5.

Fig. 5 illustrates the simulated conditional joint distribution for December
2013 obtained by simulating 10,000 random paths for a one-month horizon.
Note that although we have chosen a Gaussian copula model for the de-
pendence structure, the marginal distributions were chosen to be a skewed
generalized error distribution and a skewed t distribution for the wind power
production and spot electricity prices, respectively. Therefore, the resulting
joint distribution is not bivariate normal; as illustrated in Fig. 5, the simulated
distribution exhibits asymmetry and heavy tails.

11The in-sample pairwise comparison between the Gaussian and the Student t copula is based
on a simple t-test, since these models are nested.
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Fig. 5: Simulated joint distribution for the daily spot electricity prices and the wind power
production in December 2013. The results are based on 10,000 simulations (for each day of
December) and a Gaussian GAS model for the dependence structure.

Next, we use our model to study how different wind scenarios affect the
distribution of prices. To this end, we perform one-month ahead simulations
for all OOS months, i.e. a total of 24 months. Due to the elevated computa-
tional cost, we do not re-estimate the parameters of our joint model; we do
however enlarge the conditioning set one month at the time. In Figs. 6(a)–(b),
we display simulated empirical price distributions conditional on different
levels of low/high wind scenarios. The simulations are grouped into winter
(Dec., Jan., Feb.) and summer (Jun., Jul., Aug.) months. To define what a
low/high wind scenario is during winter, we have considered the 20% and
80% quantiles of our actual OOS wind power production data during the
specified winter months; the same procedure was followed for the summer
months.

For both the winter and the summer period, we observe that the different
wind scenarios shift the simulated price distributions. Moreover, the simu-
lated distributions are left-skewed for the high wind scenarios (the skewness
parameter is −1.98 for the winter months and −1.03 for the summer months),
implying that extreme low prices are more likely than extreme high prices.
For the low wind scenarios, the estimated distributions are right-skewed (the
skewness is 0.64 and 1.06 for the winter and summer months respectively),
thus implying the opposite compared to the high wind cases. We also notice
that the low/high wind scenarios push the price distributions further apart
for the winter months than the summer months, which we have confirmed
by measuring the Kullback-Leibler distance between distributions. This can
be explained by the fact that during summer periods, the dependence be-
tween electricity prices and wind power production is weaker than during
winter periods, as earlier illustrated in Fig. 4. All these features are present
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Fig. 6: Distributions for the daily spot electricity prices during winter and summer months,
for the out-of-sample period 1 January 2013 to 31 December 2014, under the assumption of high
and low wind power production. The simulated predictive distributions are based on 10,000 one-
month-ahead simulations, using a Gassian GAS model for the dependence structure. Fig. 6(c)
and Fig. 6(d) are based on 37 observations. To define the percentage corresponding to high/low
wind scenarios during winter and summer, we used the 0.20 and 0.80 quantiles of the actual
out-of-sample wind power production data.

when performing the same calculations on the actual data, which we show
in Figs. 6(c)–(d), confirming that our empirical model captures the dynamics
between daily spot electricity prices and wind power production.

5 Application to pricing and risk management

In the following we present applications of the proposed joint model for
spot electricity prices and wind power production. We start by consider an
energy trading company that enters into agreements with wind power pro-
ducers, where a predetermined fixed price R is paid for the fluctuating wind
power production. Since the production will first become known through
the delivery period of the agreements, these products imply a volumetric
risk. Furthermore, we assume that the trading company sells the production
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it receives from the wind power producers on the day-ahead market, at a
spot price we denote by S. Hence, the company will also be exposed to price
risk. In the remaining of this section, we will refer to such agreements as
fixed price for fluctuating wind power production agreements. With such a
formulation, we can express the profit of the trading company as

T2

∑
t=T1

Qt(St − R), (27)

where time is measured in days, Qt is the wind power production at time
period t, St is the daily spot electricity price valid at t, and R is a fixed price
set at the inception of the contract, which we denote t0. Furthermore, the
contract length spans from T1 to T2, where t0 < T1 ≤ T2. We note that to
participate in the day-ahead electricity auction market, buy or sell bids have
to be made to the exchange one day before delivery takes place. By working
with the payoff in Eq. (27), we implicitly assume that the quantity we bid one
day before equals the actual wind power production, i.e.

Qt = Et−1 [Qt] , (28)

where Et−1 [Qt] denotes the expectation at time t − 1 for the production at
time t. Thus, we assume no balancing risk.

What differentiates the product described above with payoff given in
Eq. (27) from a standard forward contract is the production uncertainty asso-
ciated with the former, and hence the presence of an additional risk due to
the correlation between S and Q. If we express the price R in terms of the
forward price F, Eq. (27) becomes

T2

∑
t=T1

Qt(St − (F− c)), (29)

where F ≡ F(t0, T1, T2) denotes the forward price at time t0, for the delivery
period from T1 to T2 and c ≡ c(t0, T1, T2) denotes the compensation that is to
be subtracted from the forward price due to the negative correlation between
prices and volume. So c can be thought of as the price of correlation risk. The
fair value of c can be obtained by the usual practice of setting the discounted
conditional expectation of the payoff given in Eq. (29) equal to zero.12 To ease
the presentation, we will assume a risk-free rate of zero, thus obtaining:

E
Q
t0

[
T2

∑
t=T1

Qt(St − (F− c))

]
= 0, (30)

12Risk preferences could easily be included by e.g. introducing a simple volumetric risk aver-
sion rule like in Kolos and Mardanov (2008).
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c = F−
E

Q
t0

[
T2

∑
t=T1

QtSt

]

E
Q
t0

[
T2

∑
t=T1

Qt

] . (31)

With our framework, an estimate for c can easily be obtained by performing
Monte Carlo simulations from the proposed copula model. However, this
estimate will reflect the price of correlation risk under the physical or objec-
tive measure P, since the model is fitted to historical spot electricity price
and wind power production data. According to Eqs. (30) and (31), the ex-
pectations must be taken under a pricing measure Q, that will reflect the risk
premium charged by, in our context, the energy trading company offering
the “insurance” to the wind power producer. Following Benth et al. (2008),
the pricing measure Q is equivalent to P, but needs not be an equivalent mar-
tingale measure due to the non-storability of our underlying “assets”. Since
neither electricity nor wind can be stored, they are not tradable assets in
the classical sense. This implies that the spot–forward relation, for example,
cannot be derived based on a buy-and-hold hedging argument. Instead, the
usual practice is to simply define the forward price as the conditional expec-
tation of the spot electricity price under the risk-neutral probability measure
Q, thereby turning the discounted spot price into a martingale (see Benth
and Meyer-Brandis (2009) and Benth and S̆altytė Benth (2012)). Indeed, by
defining

F(t0, T1, T2) = E
Q
t0

[
1

T2 − T1 + 1

T2

∑
t=T1

St

]
, (32)

for the case of electricity, one can compute the implied market price of risk by
considering the difference between quoted forward prices in the market and
forward prices obtained by simulation with our model under P.13 In theory,
the same could be done to estimate the risk premium associated with wind,
however forwards with wind index as underlying are not currently traded in
most European energy markets – and if they are, they are highly illiquid.

The fact that our setting is a bivariate one complicates the question of
measure change even further, since aside from the marginal behavior of spot
electricity price and wind power production under Q, implied information
regarding the market price of dependency risk must also be provided. A
parametrization of this is not straightforward; in fact, the discussion can be-
come quite extensive in the context of copulas and incomplete markets. Such
a discussion is outside the scope of this paper, and we refer instead to Cheru-
bini et al. (2004) for more details. Moreover, even if a theoretical procedure to

13For further discussions and empirical studies regarding pricing in electricity markets we
refer to Benth et al. (2013), Burger et al. (2004), Kolos and Ronn (2008), and Lucia and Schwartz
(2000).
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calibrate the market price of dependency risk were to be established, the lack
of exchange-traded instruments written on spot times wind would impede
applying this in practice.

In light of the above discussion, we turn to the rational expectation hy-
pothesis, which is a valid choice and a common assumption in this context
(see e.g. Benth and Kettler (2011), Coulon et al. (2013), and Oum and Oren
(2010)). This implies that we set P = Q, i.e. set the market price of risk to
zero. Since we suspect a measure change to yield different prices, but not to
alter the overall conclusions in our following empirical analysis, we find this
assumption to be a reasonable one.

According to the payoff in Eqs. (27) or (29), it is clear by now that we
are dealing with two sources of risk simultaneously: one is related to price
uncertainty, and the other is related to production uncertainty; and since the
market is incomplete, a perfect hedge cannot be performed. However, the
price risk can be hedged. Here, we construct a simple hedging portfolio by
taking a short position in a quantity H∗ of standard forward power contracts.
We assume that the hedge is static and performed at time t0. The payoff of
the hedge for the entire delivery period is given by

H∗
(

E
Q
t0

[
1

T2 − T1 + 1

T2

∑
t=T1

St

]
− 1

T2 − T1 + 1

T2

∑
t=T1

St

)
, (33)

or in a compact form

H∗(F− S), (34)

where F denotes the same forward price as in Eq. (29), and S denotes the
average day-ahead electricity price for the same delivery period. To obtain
H∗, we fix c to its value obtained from Eq. (31) and follow the standard
procedure of minimizing the variance of the portfolio payoff:

min
H∗
Vart0

[
T2

∑
t=T1

Q̃t(St − (F− c)) + H∗(F− S)

]
. (35)

In Eq. (35), Q̃t = 24 · Qt · Λ, with Λ being the total installed capacity un-
der the agreement that pays out a predetermined fixed price in return for
the fluctuation wind power production. Since Qt corresponds to daily wind
power production relative to the total installed capacity in the entire DK1
price area, we need to transform this number to daily wind power produc-
tion measured in MWh corresponding to the total installed capacity that the
energy trading company actually has under agreement. By performing this
transformation, we imply that our joint model is a good representation on
a smaller scale. This is a realistic assumption as long as the energy trading
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company manages a portfolio of diversified wind turbines in terms of type
and location. Solving for H∗ in Eq. (35) yields

H∗ =

Covt0

[
S,

T2

∑
t=T1

Q̃tSt

]
− (F− c)Covt0

[
S,

T2

∑
t=T1

Q̃t

]
Vart0

[
S
] . (36)

It is clear that by hedging a quantity that is equal to H∗, we are protected
on average and not against worst case scenarios, such as the combination of
extremely low prices / high wind power production, which is a probable
outcome in the DK1 price area. We could remedy the situation to a large
extent by adding options to our portfolio, however this is outside the scope
of the present paper. Work related to the optimal hedging of volumetric risk
associated with wind power production is, to the best of our knowledge, not
yet available. However, energy related discussions regarding the hedging of
volumetric risk associated with consumers’ load are presented in e.g. Oum
and Oren (2009) and Oum et al. (2006), where many of the ideas can be
transferred to our application. Nonetheless, our simple hedge is actually
realistic since the market for options is very illiquid in DK1.

5.1 Example 1

Having developed a joint model for day-ahead electricity prices and wind
power production, we can perform Monte Carlo simulations and use Eq. (31)
to find the fair fixed price/compensation of a contract with any given specifi-
cations. Assume that we stand on the last trading day of November 2013, de-
noted t0, and wish to find the fixed price for a front month contract, namely a
December 2013 contract. Given all information available up to and including
the valuation date t0, we perform 10,000 simulations for price and quantity
from our proposed joint model, where for each simulation we keep a path
of length 31 (since we work with daily data) corresponding to the number
of days in December. We note that we work with a fixed estimation window
corresponding to the IS period, but enlarge the filtration, conditioning on the
information up to and including the valuation date t0. The contract speci-
fications and results are summarized in Table 7, and we see that due to the
negative correlation between prices and production, the compensation c that
is to be subtracted from the forward price equals 3.24 EUR/MWh.

In addition to calculating the fixed price of a contract with fluctuating
wind power production, we can extract information from the performed sim-
ulations that can be useful in a risk management context. We assume that
agreements corresponding to an installed capacity of 500 MW are entered
into on the last trading day of November 2013, with delivery December 2013.
The price of a standard forward contract is fixed to its estimated value of

41



Paper I.

C
on

tr
ac

t
in

fo
rm

at
io

n

Ti
m

e
of

va
lu

at
io

n
t 0

29
/1

1/
20

13
C

on
tr

ac
t

le
ng

th
T 1

to
T 2

01
/1

2/
20

13
to

31
/1

2/
20

13

Pr
ic

in
g

re
su

lt
s

Si
m

ul
at

ed
fo

rw
ar

d
pr

ic
e

F
≡

F(
t 0

,T
1,

T 2
)

35
.2

6
EU

R
/M

W
h

Pr
ic

e
of

co
rr

el
at

io
n

ri
sk

c
≡

c(
t 0

,T
1,

T 2
)

cf
.E

q.
(3

1)
3.

24
EU

R
/M

W
h

Fi
xe

d
pr

ic
e

fo
r

flu
ct

ua
ti

ng
R
≡

R
(t

0,
T 1

,T
2)

32
.0

2
EU

R
/M

W
h

w
in

d
po

w
er

pr
od

uc
ti

on

R
is

k
m

an
ag

em
en

t
re

su
lt

s
(5

00
M

W
in

st
al

le
d

ca
pa

ci
ty

un
de

r
ag

re
em

en
t)

5
%

V
aR

w
it

ho
ut

pr
ic

e
he

dg
e

Se
e

Fi
g.

7
1,

09
9,

24
8

EU
R

5
%

V
aR

w
it

h
pr

ic
e

he
dg

e
Se

e
Fi

g.
7

46
5,

48
5

EU
R

Ta
bl

e
7:

Si
m

ul
at

io
n

re
su

lt
s

fo
r

a
D

ec
em

be
r

20
13

co
nt

ra
ct

,
w

it
h

va
lu

at
io

n
da

te
29

N
ov

em
be

r
20

13
,

i.e
.

on
e

bu
si

ne
ss

da
y

be
fo

re
st

ar
t

de
liv

er
y

of
th

e
co

nt
ra

ct
.T

he
re

su
lt

s
ar

e
ba

se
d

on
10

,0
00

si
m

ul
at

io
ns

an
d

us
in

g
a

G
as

si
an

G
A

S
m

od
el

fo
r

th
e

de
pe

nd
en

ce
st

ru
ct

ur
e.

42



5. Application to pricing and risk management

35.26 EUR/MWh, and the price of an agreement with a fluctuating wind
power production is set to 32.02 EUR/MWh cf. Table 7. Given these speci-
fications, we estimate the distribution of the portfolio payoff (see Fig. 7) and
calculate the 5% Value-at-Risk (see Table 7) in two cases: One where the port-
folio includes a price hedge, and one without a price hedge. When covering
our price exposure in the forward market by assuming a short position cor-
responding to a quantity of H∗ forwards, we observe that the variance of the
profit distribution reduces significantly. In this example, the 5% Value-at-Risk
is reduced from approximately EUR 1.1 million to EUR 0.5 million. It is also
important to notice that the profit distribution is in both cases asymmetric,
with a heavy-tail to the left, translating to the fact that expected losses are
greater than expected gains.

5% VaR

5% VaR

0.0

0.1

0.2

-40 -20 0 20

Profit (100 TEUR)

D
e

n
s
it
y

With hedge

Without hedge

Fig. 7: Profit distributions for a December 2013 contract. The results are based on 10,000 sim-
ulations of price and quantity, using a Gaussian GAS model for the dependence structure. The
forward price is fixed to 35.26 EUR/MWh, the compensation is fixed to 3.24 EUR/MWh and the
total installed capacity of the portfolio equals 500 MW. The variance minimizing hedge quantity
H∗ is obtained by performing the calculation in Eq. (36).

Revisiting the issue of pricing and considering the profit distributions in
Fig. 7, alternative approaches to that of performing a measure change can
be applied. An example can be to consider an a priori given 5% Value-at-
Risk level that is acceptable, and solve for the correlation risk premium that
satisfies this level.

To stress the effect of correlation on the profit distribution, we perform
additional simulations, where all but the copula model remains unchanged.
Specifically, we assume the independence copula and thus a zero compen-
sation, instead of the Gaussian GAS model which we have established re-
flects the reality to a much greater extent. Fig. 8(a) illustrates the estimated
profit distributions of the portfolio (with no hedge), and shows that the neg-
ative correlation implies a distribution that is more asymmetric. If prices
and production were independent, we estimate a 5% Value-at-Risk of EUR
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0.93 million corresponding to a reduction of approximately 15% compared to
the 5% Value-at-Risk of EUR 1.1 million we obtain with the Gaussian GAS
copula. Assuming independence would thus lead to an underestimation of
risk. We also display the average spot electricity price for the period of the
contract as a function of the estimated profit in Fig. 8(b). Under indepen-
dence, we observe that the payoff becomes linear, and hence forwards would
suffice as hedging instruments. Under negative dependence, the payoff be-
comes non-linear, emphasizing the need for options in the hedging portfolio.
Furthermore, we observe that a larger profit (smaller loss) can be obtained
if prices and production are independent as we move away from the mean
average price of 35.26 EUR/MWh. This is also supported by Fig. 8(a), where
we observe that the negative correlation implies that a smaller probability is
assigned to large profits, and a higher probability is assigned to large losses.
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(a) Profit distributions for a portfolio of fixed
price December 2013 contracts under differ-
ent assumptions for the dependence struc-
ture.
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(b) Estimated payoffs for a portfolio of fixed
price December 2013 contracts, as a function
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Fig. 8: Illustration of the importance of correlation in the analysis of profit. The results are based
on 10,000 Monte Carlo simulations with a Gaussian GAS copula (c is fixed to 3.24 EUR/MWh)
and the independence copula (c is fixed to 0 EUR/MWh), respectively. The total installed capac-
ity of the portfolio is set to 500 MW, and the same marginal models for prices and wind power
production are used.

5.2 Example 2

In Section 3.4, we have established that some of the fitted time-varying copula
models are superior to the constant ones, see e.g. Table 6. Here, we wish to
investigate if this also holds when comparing the actual profits or losses gen-
erated with different copula models. For this, we consider the OOS period
corresponding to the years 2013 and 2014. We assume the following trading
strategy: On the last trading day of each month (Dec. 2012 - Nov. 2014),
we enter into front month agreements with wind power generators, where
a fixed price is paid for the fluctuating wind power production. The total
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installed capacity of each monthly portfolio is fixed to 500 MW. We perform
10,000 simulations from joint models with the different copula specifications
that we wish to compare against each other (marginal models are kept un-
changed), and estimate compensations c and hedge quantities H∗ for each
month at a time using Eqs. (31) and (36). For each monthly portfolio, we then
calculate the realized profit using the actual daily electricity prices, actual
daily wind power production14 and actual forward prices.

For clarity, let us consider a concrete example: We stand on the last trad-
ing day of December 2012, and wish to enter into fixed price agreements
with fluctuating wind power production for the January 2013 month. To en-
ter the contract, we first estimate the fixed price that we are willing to pay for
the production that we will receive during January. Since we also perform a
hedge in the forward market, we estimate the quantity of forwards we are to
short. In this example, we will use a constant Clayton copula to describe the
dependence between prices and wind power production, and hence we ob-
tain an estimated compensation denoted by ĉClayton

t0,Jan and an estimated hedge

quantity Ĥ∗,Clayton
t0,Jan . On the last trading day of December 2012, we can ob-

serve the actual forward price FObs
t0

, and thus the fixed price we offer the
wind power producers is

R̂Clayton
t0,Jan = FObs

t0
− ĉClayton

t0,Jan . (37)

By the end of January 2013, we will also have observed the actual daily spot
electricity prices SObs and the actual daily wind power production QObs for
the DK1 price area. With this information, we can now approximate the
actual profit resulting from the trades we have performed:

Actual profitJan =
T2

∑
t=T1

Q̃Obs
t (SObs

t − R̂Clayton
t0,Jan )︸ ︷︷ ︸

Agreement payoff

+ Ĥ∗,Clayton
t0,Jan (FObs

t0
− SObs

)︸ ︷︷ ︸
Hedge payoff

(38)

where t0 = 31/12/2012, T1 = 01/01/2013, T2 = 31/01/2013 and Q̃Obs is the
approximation

Q̃Obs
t = QObs

t · 24 (h) · 500 (MW). (39)

The results obtained by performing the above calculations for all OOS months
with different copula specifications are presented in Table 8. The numbers

14The actual daily wind power production is given in % for the entire price area, but only a
subset of the existing wind turbines in DK1 is part of our portfolio. Therefore, we note that the
realized profit we calculate is an approximation; We obtain the actual production of the wind
turbines under agreement by multiplying the actual daily wind power production for the entire
price area with the assumed installed capacity of the portfolio of 500 MW and 24 hours.
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show that the joint model with a Gaussian GAS copula provides the highest
(lowest) monthly profit (loss) in 15 out of the 24 months, corresponding to
62.50%. Considering the second column block of Table 8, we see that it is
indeed the Gaussian GAS and the Joe-Frank GAS that yield the lowest losses
in average, which supports the results we obtained in Section 3.4. Hence,
allowing for time variation in a suitable copula model is beneficial. The
constant Clayton specification performs the poorest, generating the largest
average loss. This is again in accordance with earlier findings, where we
have established that the constant Clayton specification is not suitable for the
dependence of prices and wind power production, and also least suitable
among the copula models we consider in Table 8. The time-varying Gaus-
sian and Joe-Frank copulas outperform the other copulas since they are able
to capture the increasingly negative correlation we observe towards the last
years of our sample (see Fig. 4); and thus, they are able to generate larger
compensations. For instance, the constant Gaussian copula yields an average
compensation for the OOS period of 2.69 EUR/MWh, while the Gaussian
GAS copula yields a value of 2.98 EUR/MWh.

Highest profit (lowest loss) Realized average profit for
per month for the OOS period the OOS period (EUR/MWh)

Constant Time-varying (GAS) Constant Time-varying (GAS)

Gaussian 4.16% 62.50% -0.9144 -0.6103
Gumbel 16.67% 0.00% -0.8693 -0.7961
Joe-Frank 0.00% 16.67% -1.0294 -0.6666
Clayton 0.00% - -1.1465 -

Table 8: OOS model comparisons based on realized monthly profit/loss. In the first column
block, we calculate how often each copula model yields the lowest monthly loss or the high-
est monthly profit. The second column block presents the realized average profit/loss (in
EUR/MWh) for selected copula models, obtained by dividing the total realized cash-flow for
the period by the total realized wind power production. All results are based on the same
trading strategy and 10,000 simulations.

Lastly, we illustrate in Fig. 9 the evolution of actual forward prices and
also the evolution of compensations estimated with our proposed joint model
for electricity prices and wind power production, i.e. the one with the Gaus-
sian GAS copula specification for the dependence structure.

Overall, compensations amount to an increasing percentage of the for-
ward price during the period of our study. Clearly, this is mainly due to the
decreasing tendency in forward prices, but also due to the slight increase in
compensations if we consider the IS and OOS average compensations. The
slight increase in compensations can be justified by the increasing installed
capacity of wind power that Denmark has experienced over the past years
- and hence the stronger dependence between wind power production and
electricity prices. This also explains the decrease in forward prices, but only
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to a small extent; the major contributing factor here has been the decreasing
raw material prices. The reduction in forward price due to the correlation
risk amounts to an average of 7%, and can reach as high as 11%. A similar
conclusion is reached by Elberg and Hagspiel (2015), where the authors study
the market value of wind power at different locations in Germany, and show
that this value is reduced compared to the average spot price as a result of
increasing wind power penetration.
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Fig. 9: Evolution of actual forward prices and estimated compensations.

6 Conclusion

This work concentrates on the dependency between daily spot electricity
prices and wind power production, and its role regarding the pricing and
the risk distributions associated with contracts exposed to both price and
volumetric risk. The analysis is carried out on data from the Danish power
market, which is characterized by a high penetration of wind power in the
system. We propose a copula approach since we wish to concentrate on
the dependence in more detail. We employ marginal models of the ARMA–
GARCH type and parametric error distributions for each individual variable,
and then link the innovations through various constant and time-varying
copulas. Based on statistical tests concerning copula selection, we choose a
time-varying Gaussian copula as our preferred specification for the depen-
dence structure. By performing Monte Carlo simulation studies, we are able
to visualize the joint empirical distribution implied by our model, and see
how this deviates from the Gaussian benchmark. Also, we study the distri-
bution of prices conditional on different levels of wind power penetration,
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and show that prices decrease (increase), on average, at times of high (low)
levels of wind power production; the shape of the conditional distribution
of prices is also affected by the different levels of wind power production.
These findings confirm what previous studies concerned with the impact of
wind power – or predicted wind power penetration – on electricity prices
have shown (e.g. Gelabert et al. (2011), Jónnson et al. (2010)).

We apply the developed empirical model in the context of an energy trad-
ing company offering wind power producers a predetermined fixed price for
their fluctuating wind power production. We find that the correlation risk
premium that the energy trading company should charge when entering such
agreements is significant, amounting to 7% of the price of a standard forward
power contract on average. Furthermore, our results indicate that the choice
of copula impacts the price of correlation risk: An out-of-sample study based
on comparing realized profits generated by different copulas shows that in-
troducing time-variation in the copula model is beneficial. When considering
the profit distribution, we find that under independence, the risk is underes-
timated. Additionally, we show that a simple hedge in the forward market
can reduce e.g. the 5% Value-at-Risk of the profit distribution significantly.
However, due to the non-linearity of profit, options should be included in the
hedging portfolio in order to reduce the risk even further; this could be an
interesting subject for further research.

Finally, although our empirical study concentrates on the Danish power
market, the mechanism of spot price formation in e.g. other European elec-
tricity markets is also based on matching supply and demand. Further, wind
power production has a very low marginal cost, ensuring that it will always
be represented in the merit order stack. Due to the physical conditions upon
which the day-ahead electricity markets are based, we believe that the pro-
posed modeling framework is relevant and can be applied to other electricity
markets that, like Denmark, rely heavily on wind power production. Such
extensions are left for future research.
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Fig. 10: Diagnostics for marginal models for spot electricity price and wind power production.
Figs. 10(a) - 10(c) display the autocorrelation function, histogram and quantile plot for the stan-
dardized residuals resulting from the marginal model for wind power production. Correspond-
ingly, Figs. 10(d) - 10(f) display the same diagnostics for the standardized residuals resulting
from the marginal model for spot electricity prices.
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B Properties of selected copula models

Elliptical copulas

A bivariate elliptical copula is defined as

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)), (40)

where u1, u2 ∈ [0, 1]. The elliptical copulas we consider in this paper are the
Gaussian copula and the Student t copula. In the case of the Gaussian copula,
F corresponds to the bivariate standard normal cdf, and F−1

1 and F−1
2 denote

the inverse of the univariate standard normal cdf. In the case of the Student t
copula, F corresponds to the bivariate Student t cdf, and F−1

1 and F−1
2 denote

the inverse of the univariate Student t cdf.

Archimedian copulas

A bivariate Archimedian copula is defined as

C(u1, u2) = φ−1(φ(u1) + φ(u2)), (41)

where u1, u2 ∈ [0, 1] and φ : [0, 1] → [0, ∞) is a generator function satisfying
that φ−1 is monotone on [0, ∞). The Archimedian copulas we consider in this
paper are Clayton and Gumbel, and also the combinations Joe-Frank and a
symmetrized version of Joe-Clayton.

Properties of selected copulas are collected in Table 9.

Generator Parameter Sym. Neg. dep. Tail dependence
function range

Elliptical family

Gaussian - ρ ∈ (−1, 1) Yes Yes 0

Student t - ρ ∈ (−1, 1) Yes Yes 2tν+1

(
−
√

ν + 1
√

1−ρ
1+ρ

)
- ν > 2

Archimedian family

Clayton 1
θ (u

−θ − 1) θ > 0 No No (2−
1
θ , 0)

Gumbel (− log u)θ θ ≥ 1 No No (0, 2− 2
1
θ )

Joe-Clayton (1− (1− u)θ)−δ − 1 θ ≥ 1 No No (2−
1
δ , 2− 2

1
θ )

δ > 0

Joe-Frank − log
(

1−(1−δu)θ

1−(1−δ)θ

)
θ ≥ 1 No No (0, 0)

δ ∈ (0, 1]

Table 9: Overview over the properties of selected copulas. Copula features and notation coincide
with the R-package CDVine. t denotes the univariate Student t pd f with ν + 1 degrees of
freedom. We note that we consider the symmetrized Joe-Clayton copula proposed in Patton
(2006), which is an even more flexible version of the Joe-Clayton copula, since is allows for both
symmetry and asymmetry. See Patton (2006) for details regarding this copula.
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1. Introduction

ABSTRACT

When energy trading companies enter into long-term agreements with
wind power producers, where a fixed price is paid for the fluctuating
production, they are facing a joint price and volumetric risk. Since
the payoff of such agreements is non-linear, a hedging portfolio would
ideally consist of not only forwards, but also a basket of e.g. call and
put options. Illiquidity and an almost non-existent market for options
challenge however the optimal hedging of joint price and volumetric
risk in many market places. Here, we consider the case of the Danish
power market, and exploit its strong positive correlation with the much
more liquid German market to construct a proxy hedge. We propose
a three-dimensional mixed vine copula to model the evolution of the
Danish and German spot electricity prices and the Danish wind power
production. We construct a realistic hedging portfolio by identifying
various instruments available in the market, such as real options in
the form of the right to transfer electricity across the border and the
right to convert electricity to heat. Using the proposed vine copula to
determine optimal hedging decisions, we show that significant benefits
are to be drawn by extending the hedging portfolio with the proposed
instruments.

1 Introduction

In recent years, the share of wind power production has increased signifi-
cantly in many market places. As a consequence, considering in more detail
the joint price and volumetric risk associated with wind power trading has
become highly relevant. Not only are both spot electricity prices and wind
power production notoriously volatile and unpredictable, but the mechanism
of spot price formation implies a negative relation between the two that adds
another dimension to the problem. Since spot prices are set by matching sup-
ply and demand curves, with supply curves prioritizing the cheapest gener-
ation sources (hereby wind turbines), the negative relation intensifies with a
growing share of wind power production in the electrical grid. Wind power
producers can rarely manage such involved risk, which would require con-
structing and rebalancing hedging portfolios through trading different suit-
able derivative instruments on the exchange, and they often seek to transfer
their risk to another party. Alternatively in some market places, the price
risk of wind power producers might automatically be removed (or partially
removed) by support mechanisms initiated to promote the growth in renew-
able generation.

In this paper, we consider the problem of hedging joint price and volumet-
ric risk in the context of an energy trading company entering into longer-term
financial agreements with wind power producers, where a pre-determined
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fixed price is paid for the fluctuating wind power production. Such financial
agreements are becoming common in e.g. Denmark, Sweden, and the UK,
which all rely to some extent on wind power generation.

The problem of joint price and volumetric risk was first addressed by
McKinnon (1967) in relation to the classical farmer’s problem, and has since
been studied in different contexts. In the case of the energy markets, the main
focus has been directed towards the joint price and volumetric risk associated
with the customers’ electricity demand. Some of the first to address many
aspects of this problem, including hedging, were Oum et al. (2006) and Oum
and Oren (2009, 2010). However, as acknowledged by Oum and Oren (2010),
their proposed hedge had limited application in practice, as they allowed
for trading in calls and puts written on the spot electricity price with a full
spectrum of strikes, which was not possible at the time - and neither is it now.
Later, the work of Coulon et al. (2013) focused on constructing a structural
model for hedging the same type of risk, and used hedging instruments that
are more available.

Our problem differentiates itself from the existing literature in different
aspects. First, we consider volumetric risk on the supply rather than the de-
mand side, which raises different modeling challenges. Second, we choose
to analyze data from the Danish power market, since Denmark is among
the top wind power countries in the world. This comes however at the cost
of considering a market place that is characterized as rather illiquid, and
where in addition the availability of options is limited. Nonetheless, this is
the situation in the majority of European power markets. Since the hedg-
ing possibilities are naturally limited, we extend the modeling framework to
a three-dimensional case, where we exploit the strong positive relation be-
tween the Danish and the German spot electricity prices to enlarge the set of
available hedging instruments.

To model the joint behavior of electricity prices in Denmark and Germany
and wind power production in Denmark, we consider a vine copula, which
is essentially a construction formed using pairs of bivariate copulas. J. (1997)
was the first to propose such a construction, and more general settings were
later proposed by Bedford and Cooke (2001, 2002), who introduced the reg-
ular vines with the subclasses known as D-vines and canonical (C)-vines.
Vine copula models allow for very flexible multivariate distributions, which
motivates our model choice.

Copula models have found various applications in economics, finance and
risk management. The literature is extensive for the bivariate case, with some
examples being Cherubini and Luciano (2002) who consider bivariate option
pricing, Patton (2006) who provides an application to exchange rates, Benth
and Kettler (2011) who consider the spark spread, Avdulaj and Barunikl
(2015) who investigate oil-stock diversification, and Elberg and Hagspiel
(2015) who study spatial dependencies of wind power and interrelations
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with the spot price in Germany. Copulas are also a popular choice when
it comes to higher dimensional problems, and the range of applications is
again broad: Grothe and Schnieders (2011) investigate the optimal allocation
of wind farms, Gatfaoui (2016) links the gas, oil and stock markets through
trivariate copulas, Brechmann and Czado (2013) consider vines in the con-
text of financial risk management, and Reboredo and Ugolini (2015) model
systemic sovereign debt risk using vine copulas.

We offer two main contributions in this paper: First, we construct a flex-
ible empirical model that captures the marginal behavior of the individual
variables accurately, as well as the dependency structure between the vari-
ables. Second, we identify instruments that can be used in practice to hedge
the multiplicative price and volumetric risk, and study their hedging benefits.
Based on empirical examples, we find that the variance of the revenue dis-
tribution can be significantly reduced by including these instruments, com-
pared to the common strategy of using solely power forwards in a hedging
portfolio. Furthermore, we employ different alternative models to facilitate
hedging decisions, with the purpose of highlighting the effects of heavy tails
in the margins, tail dependence and time variation in the dependence struc-
ture.

The paper is structured as follows: In section 2 we present the data. Sec-
tion 3 introduces the modeling framework and presents empirical results. In
Section 4, we study hedging applications and compare different vine copula
specifications against each other. Finally we conclude in Section 5.

2 Data

Our empirical study relies on data from the Danish and the German power
market for the period 01 January 2012 to 12 December 2016, corresponding to
1808 daily observations. Since the Danish power market is divided into two
price areas, namely Western Denmark (DK1) and Eastern Denmark (DK2),
where the share of wind power is significantly higher in DK1, we restrict our
attention to this area. Hence, the first data input consists of the daily spot
electricity price in DK1. Next, we consider the DK1 wind power production
as a percentage of the installed capacity (wind power production index) on
a daily basis, and the last data input consists of the daily spot electricity
price in Germany (DE). The three time series are illustrated in Figs. 1(a) -
1(c). Regarding the price data, we have truncated a few extreme observations
as they are considered outliers. Specifically, 4 extreme observations were
truncated in the DK1 price series, and 6 extreme observations were truncated
in the case of DE.

In Figs. 1(d) - 1(f), the data are plotted against each other pairwise. The
first plot reveals a strong positive relation between the two prices, substan-
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tiating the idea of a proxy hedge, that is using instruments from the much
more liquid DE market to hedge price and volume risk in DK1. The two re-
maining plots show a negative relation between wind power production and
prices in the two areas we consider. As mentioned previously, this relation
is expected due to the mechanism of price formation, and implies an addi-
tional correlation risk when dealing with a simultaneous exposure to spot
electricity price and wind power production.
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Fig. 1: Historical data

3 A vine copula model for spot electricity prices
and wind power production

Let us denote by xt = (x1,t, x2,t, x3,t) for t = 1, . . . , T, the three-dimensional
time series consisting of the spot electricity price in DK1, the spot electricity
price in DE and the wind power production in DK1. We are interested in
modeling the joint (conditional) distribution of xt using a vine copula ap-
proach. In the following, we elaborate on this approach in the context of
model construction and estimation. Since our problem is three-dimensional,
we will concentrate on such a case.
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3.1 Decomposing a trivariate distribution function using pair-
copulas

In a joint distribution function, information regarding both the marginal
behavior of each random variable and the dependence structure between
the random variables is generally embedded. The copula is introduced as
a tool to isolate the study of the dependence structure from that of the
marginal behavior of the individual variables. A copula is a multivariate
distribution function C defined on the unit cube, with standard uniform
margins. The central result when working with copulas, Sklar’s Theorem
(Sklar (1959)), shows how the marginal distributions and the copula are con-
nected to the joint distribution. For the three-dimensional case, the theorem
states that if we let F be the joint distribution function of the random vector
X = (X1, X2, X3) with marginal distribution functions F1, F2, F3, then there
exists a three-dimensional copula C such that

F(x1, x2, x3) = C{F1(x1), F2(x2), F3(x3)}. (1)

If the marginals are continuous, then the copula is unique and defined through

C(u1, u2, u3) = F{F−1
1 (u1), F−1

2 (u2), F−1
3 (u3)}, (2)

where ui are standard uniform variables and F−1
i are the ordinary inverses

of the marginal distribution functions, for i = 1, 2, 3. Increasing further the
practical applicability of this representation is the fact that the converse of
Sklar’s Theorem holds: If we start with a copula C and margins F1, F2, F3,
then F defined in equation (1) is a joint distribution function with margins
F1, F2, F3. This allows us to construct multivariate distributions in a flexible
way, using arbitrary margins and copulas as building blocks.

Next, we turn our attention to density functions. Assuming densities
exist, the joint probability density function f corresponding to the joint dis-
tribution F defined in equation (1) is given by

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c{F1(x1), F2(x2), F3(x3)}, (3)

where fi denote the marginal density functions, for i = 1, 2, 3, and c denotes
a trivariate copula density.

Using that a joint density function f (x1, x2, x3) can be factorized as e.g.

f (x1, x2, x3) = f1(x1) · f2 | 1(x2 | x1) · f3 | 2,1(x3 | x2, x1), (4)

and the fact that each conditional density in equation (4) can be written as
the appropriate pair-copula multiplied by a (conditional) marginal density,
an iterative decomposition can be used to obtain the expression for the three-
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dimensional vine structure:

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) (5)

· c12{F1(x1), F2(x2)} · c13{F1(x1), F3(x3)}
· c23 | 1{F2 | 1(x2 | x1), F3 | 1(x3 | x1)}.

For more details on the recursive conditioning used to obtain equation (5)
and more general constructions, see Aas et al. (2009) and Czado et al. (2012).
We note here that the decomposition given in equation (5) is not unique since
different orderings of the variables are possible, but will elaborate on the
procedure used to select the vine copula model in Section 3.2. Furthermore,
the marginal conditional distributions F2 | 1(x2 | x1) and F3 | 1(x3 | x1) entering
the decomposition in equation (5) are often referred to as h−functions, and
are defined as

h(ui | uj; Θ) = F(xi | xj) =
∂C{F(xi), F(xj); Θ}

∂F(xj)
, (6)

where ui = F(xi) and uj = F(xj) are standard uniform, and C is a parametric
bivariate copula with parameters Θ.

Keeping in mind the decomposition given in equation (5), we describe
below the two-step procedure we follow to model the joint behavior of prices
in DK1, prices in DE and wind power production in DK1.

In the first step, we consider each time series individually to filter out sea-
sonality and serial time dependence. To correct each series for deterministic
seasonality, we consider appropriate seasonal functions which we fit by sim-
ple linear regression. Then, we fit ARMA-GARCH type models to the desea-
sonalized data in order to filter out the serial dependence in the conditional
mean and the conditional variance. To allow for more flexibility, we relax the
usual Gaussian assumption for the standardized innovation processes.

In the second step, we consider a vine copula model for the approximately
i.i.d. standardized innovations obtained in the first step. That is, we model
the dependency of processed data, after seasonality and marginal time de-
pendencies have been removed. Specifically, the type of vine we consider is
the so-called mixed C-vine. The C refers to the graphical representation of
a sequence of trees where each tree has a central node, and the term mixed
refers to having no restrictions on the copula family chosen for each individ-
ual pair.

3.2 Inference for the three-dimensional model

When considering full inference in the context of a vine copula, three is-
sues must be addressed: 1) the selection of a specific decomposition, 2) the
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selection of bivariate copula families in the vine - given that an estimation
procedure is in place, and 3) estimation of the full model.

Regarding the selection of a specific decomposition, we follow the proce-
dure in Czado et al. (2012) and order variables according to their importance.
To achieve this, we compute Kendall’s τ for all possible pairings of the vari-
ables. Then, the variable most related to all other variables is set to be the
central node of the first tree, and so forth.

Selection of the bivariate copulas in the vine is based on the Akaike infor-
mation criterion (AIC), which is a commonly used criterion in this context,
see e.g. Czado et al. (2012) and Elberg and Hagspiel (2015). The goodness-
of-fit (GoF) of the chosen copulas is verified by performing the Cramér-von
Misses (CvM) test, see Genest et al. (2009) and Berg (2009) for a review and
power study of many GoF tests available for copulas.

Estimation of the model is based on the numerical maximization of the
log-likelihood. In the three-dimensional case, the log-likelihood for the full
model is given by

logL =
T

∑
t=1

log f (y1,t, y2,t, y3,t | Ft−1; Θ) (7)

=
3

∑
i=1

T

∑
t=1

log fi(yi,t | Ft−1; Θi) +
T

∑
t=1

log c(u1,t, u2,t, u3,t | Ft−1; Θc),

where Θ = (Θ1, Θ2, Θ3, Θc) denotes the parameters for the full model, and
Ft−1 is the filtration. Furthermore, the trivariate copula log-likelihood in
Eq. (7) is decomposed as

T

∑
t=1

log c(u1,t, u2,t, u3,t | Ft−1; Θc) =
T

∑
t=1

log c12(u1,t, u2,t | Ft−1; Θc
1) (8)

+
T

∑
t=1

log c13(u1,t, u3,t | Ft−1; Θc
2)

+
T

∑
t=1

log c23 | 1{h(u2,t | u1,t; Θc
1), h(u3,t | u1,t; Θc

2) | Ft−1; Θc
3},

where Θc = (Θc
1, Θc

2, Θc
3) denotes the parameters for the entire copula vine.

As in most applications, we consider here a stepwise procedure, where the
three marginal models are estimated independently of the copula. Estima-
tion of the copula vine is additionally split up into two steps, as in Aas et al.
(2009). First, we consider a sequential procedure where the parameters of
each bivariate copula in the vine are estimated. Second, a joint maximiza-
tion of the full copula log-likelihood is performed, using as start values the
parameters obtained in the sequential estimation.
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3.3 Empirical results

Marginal models

We start our empirical study by considering the individual behavior of our
three variables. In the case of the wind power production time series, we are
dealing with data that is bounded between 0 and 1, cf. Fig. 1(c). A standard
time series model such as the ARMA model is clearly not suitable for this
data, since nothing in the model ensures that we remain within the natu-
ral bounds when performing simulations. Therefore, we perform the logit
transformation defined as Λ(x) = ln(x/(1− x)) to the wind data in order to
obtain a time series that takes values on the entire real line. Regarding the
price data, the log transformation usually used in the literature when mod-
eling electricity spot price data is unfeasible here, since we observe negative
prices in both the DK1 and the DE price areas. As a result, we work with the
raw electricity prices.

To model the seasonal component of the wind power production in DK1,
we consider the function

f Wind
t = a + c1 sin(2πt/365) + c2 cos(2πt/365), (9)

where a is a constant, and c1 and c2 denote the coefficients for a yearly cycle.
To model the seasonal component of the electricity prices in DK1 and DE, we
consider the slightly more involved function

f Price
t = a + bt + c1 sin(2πt/365) + c2 cos(2πt/365)

+ d1 sin(4πt/365) + d2 cos(4πt/365) +
6

∑
j=1

wjW
j
t , (10)

where a again denotes a constant, b is the trend coefficient, c1, c2, d1 and d2
represent coefficients for the yearly and half-yearly cycles, respectively, and
lastly wj for j = 1, . . . , 6 are coefficients corresponding to the day-of-week
dummies denoted W j. Parameter estimates obtained by fitting the proposed
seasonal functions to the data are displayed in Table 1.

Next, we fit ARMA(p, q), ARMA(p, q) – GARCH(1,1) and ARMA(p, q) –
GJR(1,1) models to the deseasonalized data, where we let p = 0, . . . , 5 and
q = 0, . . . , 5. Also, we relax the normality assumption for the residuals, and
allow for the more flexible skew t distribution instead, as in Patton (2013).
The order of the ARMA model and the type of variance model are chosen
based on the Bayesian information criterion (BIC). In Table 2, the specifica-
tions for the marginal models and the corresponding parameter estimates are
displayed.

We also report p-values resulting from performing the Ljung-Box (LB)
Q-test of serial independence on the standardized residuals, which we de-
note r, and the squared standardized residuals, r2. The LB Q-tests all show
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Electricity price DK1 Electricity price DE Logit wind DK1

â 40.980 (0.640) 45.347 (0.597) -1.110 (0.028)
b̂ -0.010 (0.000) -0.010 (0.000) -
ĉ1 -2.184 (0.287) -3.195 (0.268) 0.068 (0.039)
ĉ2 0.814 (0.286) 2.133 (0.267) 0.489 (0.039)
d̂1 -0.571 (0.285) 0.222 (0.266) -
d̂2 -1.400 (0.286) -1.173 (0.267) -
ŵ1 1.025 (0.754) 2.098 (0.704) -
ŵ2 1.350 (0.754) 1.869 (0.704) -
ŵ3 0.955 (0.754) 1.572 (0.704) -
ŵ4 -0.266 (0.754) 0.437 (0.704) -
ŵ5 -4.535 (0.754) -6.373 (0.704) -
ŵ6 -7.364 (0.754) -13.219 (0.704) -

Table 1: OLS estimates for the parameters of the seasonal functions, with naive standard errors
in parenthesis. Reference day-of-week is Monday.

strong evidence of no serial dependence left in the standardized residuals.
Lastly, we report the p-values resulting from simulation-based Kolmogorov-
Smirnov (KS) and Cramér-von Mises (CvM) goodness-of-fit tests. The tests
are based on 999 bootstraps, and we examine the adequacy of two distribu-
tions for the standardized residuals, namely the normal distribution and the
skew t (or skew normal) distribution.1 The results show that the skew t (or
skew normal) specification is suitable in all marginal models, whereas the
normal distribution is rejected at a 5% significance level. Having verified the
adequacy of the three proposed marginal models, we proceed to modeling
the dependence structure with copulas.

Copula models

By applying the probability integral transform to the standardized residuals
resulting from the marginal models, we obtain the approximately standard
uniforms UDK1, UDE, and UW , which are the input variables in our copula.
The variable UDK1 refers to the price in DK1, UDE refers to the price in DE,
and lastly UW refers to the wind power production in DK1. In Fig. 2, we plot
the empirical copula densities for the three possible pairings of our variables.

Since we find the variable with most influence (following the decomposi-
tion procedure in Czado et al. (2012)) to be the electricity price in DK1, we let
this variable be the central node of the first tree. The pair-copula decomposi-
tion we obtain is illustrated in Fig. 3. We note that a C-vine coincides with a

1For the wind data, the skew t distribution converges towards the skew normal distribution
since we obtain an estimate for the degrees of freedom above 300. Therefore, we replace the
skew t with the skew normal distribution in this case.
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D-vine in the three-dimensional case; hence, the C in C-vine is solely used to
allude to the decomposition method.
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Fig. 2: Empirical copula densities obtained by applying the probability integral transform to the
standardized residuals resulting from the marginal models for DK1 prices, DE prices and wind
power production in DK1, respectively.

DK1

DK1,W

DK1,DE

DK1,DE DK1,WDE,W|DK1

Tree 1: Tree 2:

DE

W

Fig. 3: Proposed C-vine structure for the electricity price in DK1, the electricity price in DE, and
the wind power production in DK1.

According to Fig. 3, we must specify two bivariate copulas for the un-
conditional dependence between the pair UDK1, UDE and the pair UDK1, UW .
Subsequently, we must specify one bivariate copula for the conditional de-
pendence of UDE, UW given UDK1. This is done in a recursive manner: First,
we select the most suitable copulas for the pairs in the first tree, and then
conditional on this selection, we move on to selecting a copula family that
characterizes the conditional dependence in the second tree. For all pairs in
the C-vine, we fit nine different bivariate copulas, and base selection on the
AIC. The results are illustrated in Table 3, showing that the Student t copula
is preferred for the dependence between prices in DK1 and DE, and that the
Gaussian copula is preferred for the dependence between wind power pro-
duction in DK1 and price in DK1. Given this selection and the associated
estimated copula parameters, we apply the h-functions, cf. Eq. (6), to obtain
the variables UDE|DK1 and UW|DK1. We then fit the nine different copulas
to this pair and find that given prices in DK1, wind power production in
DK1 and prices in DE are likely to be independent, and hence we choose the
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independence copula for this pair.
We note that since only the Gaussian and the Student t copulas allow for

negative dependence, a rotation was performed in order to fit the remaining
seven copulas to the pair UDK1, UW in Table 3. Specifically, we fit these
copulas to the pair UDK1, 1−UW instead of the pair UDK1, UW . Regarding the
standard errors for the estimates of the copula parameters stated in Table 3,
these are simulation-based and take into account the estimation error coming
from the ARMA–GARCH models, as in Patton (2013).

To test for the GoF of the selected copula families, we perform the CvM
test, which is based on a comparison with the empirical copula. We obtain p-
values of 0.584, 0.157 and 0.348 for the Student t copula, the Gaussian copula,
and the independence copula, respectively, meaning that we cannot reject the
null that the copula family is well-specified in neither one of the three cases.
Having the independence copula describe the conditional dependence in the
second tree simplifies our problem somewhat, since a joint estimation would
yield the same results as the sequential estimation we have performed, and
is therefore redundant.

Since the dimension of our problem is so small, one naturally wonders
why not just use a trivariate copula instead of what might seem like an intri-
cate decomposition of the problem. Also, is mixing different copula families
really necessary? To provide some evidence for the benefit of the proposed
mixed C-vine, we consider three other copula specifications: First, we con-
sider the most standard case, i.e. fitting a trivariate Gaussian copula to our
data. Second, we fit a trivariate Student t copula, and third, we fit a C-vine
consisting of three Student t bivariate copulas, that is no mixing is allowed.
The results are given in Table 4, and show that the mixed C-vine is the pre-
ferred copula model based on the AIC and the BIC.

Although the Student t C-vine has a slightly larger log-likelihood, the
number of parameters in this model doubles compared to our proposed
mixed C-vine. Also, estimation of this model is more involved, since a simul-
taneous estimation of the full copula log-likelihood is required. The trivariate
Student t copula is less appropriate because it has only one degree of free-
dom. This is especially a drawback in our situation, where the dependency
between the two prices exhibits significant tail dependence, whereas the de-
pendence between each price and the wind power production exhibits no tail
dependence, and thus pulling the one common degree of freedom in oppo-
site directions. Consequently, although the difference in log-likelihoods be-
tween the proposed mixed C-vine and the trivariate Student t copula model
is not striking, the latter would produce misleading tail dependence estimates
which is especially problematic from a risk management perspective. Finally,
the poorer fit of the trivariate Gaussian copula is due to similar arguments as
in the case of the trivariate Student t, since the Gaussian copula has no tail
dependence.
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3. A vine copula model for spot electricity prices and wind power production

To sum up, our proposed mixed C-vine allows for a lot of flexibility while
only having three parameters, which coincides with the smallest alternative
model. Furthermore, the model is easily estimated since a sequential proce-
dure suffices.

Time-varying copula models

So far in our analysis, we have assumed that the dependence is static. How-
ever, since this is rarely the case in practice, a natural extension is to investi-
gate whether or not time variation should be introduced in the copula model.
Having established that the mixed C-vine copula is our preferred model cf.
Table 4, we will restrict our attention to this model, and thus to introducing
time variation in the Student t and Gaussian copulas, which are the selected
specifications for the the unconditional dependence of the pair UDK1, UDE
and the pair UDK1, UW , respectively.

Our approach to capturing time-varying dependence is through the Gen-
eralized Autoregressive Score (GAS) model of Creal et al. (2013). As the name
suggests, the GAS model allows the time-varying copula parameter to evolve
as a function of lagged values of the copula parameter and lagged values of
the (scaled) score function of the copula log-likelihood. Assuming a copula
with parameter ρ, the GAS specification we consider is:

ht+1 = ω + αht + βst I−1/2
t , (11)

where

ht = g(ρt), (12)

st =
∂

∂ρ
log c((u1,t, u2,t); ρt), (13)

It = Et−1[s2
t ]. (14)

In Eqs. (11)–(14), ht denotes the transformed copula parameter obtained by
applying the tranformation g(·) to the copula parameter ρt, st denotes the
score of the copula log-likelihood, and It is the Fisher information. For ap-
plications of the GAS model in the context of copulas, and also details on
estimation and comparison with alternative models such as the ARMA-type
processes employed in Patton (2006), we refer to e.g. Creal et al. (2013), Patton
(2013), Avdulaj and Barunikl (2015) and Pircalabu et al. (2017).

Given our choice of a Student t and a Gaussian copula as elements of
the vine, we model the correlation parameter of each of the two copulas
according to the GAS equation. The degrees of freedom parameter of the
Student t copula is kept constant. Further, since correlation is restricted to lie
in the interval (−1, 1), we let ht = log(ρt + 1)− log(1− ρt) to ensure this.
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The estimated parameters for the GAS models are reported in Table 5,
pointing to evidence of time-varying dependence in both models. To provide
a visual indication of how the correlations change with the time, we plot in
Fig. 4 the dynamics of the correlation parameter estimates implied by the two
GAS models.

Tree 1 Tree 2
Student t GAS Gaussian GAS Independence

cDK1,DE cDK1,W cDE,W|DK1
Param. s.e. Param. s.e. Param. s.e.

ω̂ 0.057 (0.027) -0.696 (0.301) - -
α̂ 0.967 (0.016) 0.545 (0.196) - -
β̂ 0.120 (0.026) 0.142 (0.044) - -
ν̂ 6.711 (2.274) - - - -

log Ltv
c 612.67 485.04 -

AIC -1,217.34 -964.08 -

Table 5: Estimation results for time-varying copulas in the mixed C-vine, where the linear
correlations evolve according to the GAS specification. Standard errors are simulation-based.
The maximized value of the copula log-likelihood is denoted log Ltv

c .
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Fig. 4: Linear correlation implied by the constant copula models and the GAS models.

Having introduced time-varying copulas in the first tree of the vine, we
note that this can affect the choice of copula in the second tree. To check that
the independence copula remains a good specification for the conditional de-
pendence in the second tree, we compute new variables UDE|DK1 and UW|DK1
based on the h-functions that now take as input the time-varying copula pa-
rameters ρt implied by the fitted GAS models. Performing the CvM test
on the new conditional pair, we obtain a p-value of 0.239, confirming the
goodness-of-fit of the independence copula. Basing the model selection on
values of the AIC, both time-varying models yield lower values than the cor-
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4. Hedging joint price and volumetric risk

responding constant models, implying that the time-varying mixed C-vine
copula model is preferred to the constant one. Hence, we will keep this time-
varying model as our preferred specification and use it in the next section as
a simulation tool based on which hedging decisions are made.

4 Hedging joint price and volumetric risk

In this section, we address the hedging of joint price and volumetric risk
in the context of an energy trading company entering into longer-term con-
tracts with wind power producers, where the future production is bought
at a pre-determined fixed price; we shall refer to such contracts as fixed-for-
fluctuating agreements.

First, let us introduce some notation and simplifying assumptions. We
will assume that at time t0, a hypothetical energy trading company enters
into fixed-for-fluctuating agreements in DK1, corresponding to an installed
capacity of c MW. The company offers a common fixed price S f ixed

t0
per MWh

to all wind power producers, and we consider a delivery period from T1 to T2.
Furthermore, we will assume that the total wind power production in DK1
is perfectly correlated to the total production associated with the agreements
entered into by the company. Since we model the total daily wind power pro-
duction in DK1 relative to the total installed capacity, which we denote QDK1

t ,
we simply multiply QDK1

t by 24c to get the total daily production measured
in MWh that the company has under management. Under these conditions,
the total revenue R f of the energy trading company over the period [T1, T2]
can be expressed as

R f = 24c
T2

∑
t=T1

QDK1
t (SDK1

t − S f ixed
t0

), for t0 < T1 < T2. (15)

where SDK1
t denotes the average spot electricity price in DK1 at day t, and

we assume that all days have 24 hours. Moreover, according to Eq. (15), we
assume that the delivered wind power production is sold on the day-ahead
market, and ignore possible balancing costs.

To construct a hedging portfolio, we first need to identify the available
financial instruments in the market. Since we are attempting to hedge joint
price and volumetric risk in the DK1 market, the selection of hedging instru-
ments to choose from is small, and in addition, the market place is charac-
terized as being rather illiquid. To overcome these limitations, we include
hedging instruments with reference to the DE spot electricity price, and use
them to construct a proxy hedge. This extension is believed to be advanta-
geous due to the strong positive correlation between the spot electricity prices
in DK1 and DE, which we have demonstrated earlier.
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Here, we shall concentrate on a static hedge that is performed by the
energy trading company at time t0, i.e. the same time as entering the fixed-
for-fluctuating agreements. Due to market incompleteness, we are clearly not
attempting to replicate the payoff of fixed-for-fluctuating agreements exactly,
and thus to attain a perfect hedge.

The hedging instruments we allow are as follows:

1. Power forwards and futures

Power forwards and futures are the most widely used hedging instru-
ments in electricity markets. Depending on the market place, they can
have different characteristics, e.g. physical versus financial settlement,
delivery during the base, peak or off-peak hours, and delivery periods
corresponding to a year, season, quarter, month, etc. Here, we will al-
low trading these types of contracts with reference to both the DE and
the DK1 spot electricity price. Also, we will assume a deterministic
interest rate, thus equating forwards and futures. When referring to
such contracts on the DE market, we will denote them DE futures, and
when referring to them in DK1, we will use the term DK1 forwards.
DE futures are among the most liquid contracts traded on the Euro-
pean Energy Exchange (EEX). Trading in DK1 forwards is somewhat
more cumbersome, since two positions must be entered into: a futures
contract on the Nordic spot system price and an electricity price area
differential (EPAD), which is a forward contract with reference to the
difference between the DK1 area price and the Nordic system price.

For a contracted quantity of 1 MW, a long position in a DE futures
contract yields the following revenue, denoted by RF,DE:

RF,DE = 24
T2

∑
t=T1

SDE
t − FDE

t0
, for t0 < T1 < T2, (16)

where FDE
t0

denotes the DE futures price at time t0, with delivery pe-
riod from T1 to T2, and SDE

t denotes the average DE spot electricity
price at day t. Since we work on a daily basis, we implicitly assume
base load delivery, and the contracted quantity of 1 MW entails deliv-
ering 24 MWh at each day t ∈ [T1, T2]. To obtain the revenue associated
with a DK1 forward contract, which we denote RF,DK1, DE is simply
replaced by DK1 in Eq. (16), with the obvious changes in the interpre-
tation of variables.

2. Wind index futures
Wind index futures are at the present time the only standardized ex-
change-traded instruments with the underlying being the actual wind
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4. Hedging joint price and volumetric risk

index. For a contracted quantity of 1 lot, their revenue denoted by RWIF

can be expressed as

RWIF = 24(T2 − T1 + 1)(IActual − ILocked
t0

) · 100 EUR, for t0 < T1 < T2, (17)

where IActual denotes the actual average wind index for the contracted
period, which is obtained by dividing the total actual wind power pro-
duction by the total available capacity and the number of hours in the
delivery period, i.e. 0 ≤ IActual ≤ 1. Furthermore, ILocked

t0
is the locked-

in level set at time t0. This level can be thought of as the market’s
expectation of the future average wind index corresponding to the de-
livery period.2

Wind index futures were launched late 2015 by NASDAQ OMX Com-
modities Europe and late 2016 by EEX. They can currently be traded on
the German wind power index, and according to EEX (2014), the next
step is to expand this product to the Danish and the UK market. Since
we model the wind power production in DK1, we will allow for the
inclusion of DK1 wind index futures in our hedging portfolio based on
this outlook.

3. Financial transmission rights (spread options)
A financial transmission right (FTR) is an option written on the hourly
spot electricity price difference in two price areas that are intercon-
nected. It gives the holder the right to “transfer” electricity from e.g.
DK1 to DE (or vice versa) whenever the price difference SDE

h − SDK1
h

(or SDK1
h − SDE

h ) is positive for hour h. In reality, no physical deliv-
ery of electricity is made and only the price spread, if positive, is paid
out to the holder of the option; hence the name FTR. Since we work
with aggregated data on a daily basis, we shall consider the daily price
spread instead of the hourly price spreads. If we denote by PDK1→DE

the payoff associated with the right to transfer electricity from DK1 to
DE each day t in the delivery period from T1 to T2, we have a sum of
daily spread options represented by the payoff

PDK1→DE = 24
T2

∑
t=T1

(
SDE

t − SDK1
t

)+
, for t0 < T1 < T2,

where we assume a contracted quantity of 1 MW. The revenue resulting
from a 1 MW long position in such daily spread options is

RDK1→DE = PDK1→DE −VDK1→DE
t0

, (18)

2We note that our product description of wind index futures is based on NASDAQ OMX
(2015) and EEX (2014).
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where VDK1→DE
t0

denotes the sum of fair option values at time t0.
Similarly, RDE→DK1 is obtained by considering the opposite spot price
spread.

4. Electric boilers (out-of-the-money put options)
In DK1, there are a number of combined heat and power (CHP) plants
equipped with electric boilers. These plants can typically produce heat
in one of three ways: 1) by the use of gas boilers, 2) by the use of
electric boilers, where electricity is converted to heat, and 3) by using
gas as an input to produce electricity, with heat being a by-product. We
do not go into details with the optimization problem that CHP plants
face every day in order to minimize their customers’ heat expenses. We
note however that when profitable, say when the price of electricity is
at most K, plant owners will use electricity to produce heat. So, if we
could sell a fixed amount of electricity to CHP plants at the price K
each time the daily spot goes below K, we would be entering a string
of daily put options. Such products can in fact be traded OTC in DK1,
at a strike K which is usually significantly below the average electricity
spot price in DK1, translating into the fact that the daily puts are out-
of-the-money (OTM). The benefit of such instruments is clear, as they
reduce the risk associated with high wind and low price scenarios by
providing a price floor. Nonetheless, they are mostly available/useful
during winter periods.3 For a contracted quantity of 1 MW, their payoff
PPut is given by

PPut = 24
T2

∑
t=T1

(
K− SDK1

t

)+
, for t0 < T1 < T2,

where the strike K is kept constant throughout the delivery period.
Like in the case of FTRs, we consider here a sum of daily options. The
revenue associated with a 1 MW long position is given by

RPut = PPut −VPut
t0

, (19)

where VPut
t0

denotes the sum of fair option values at time t0.

For a portfolio consisting of fixed-for-fluctuating agreements as well as all
hedging instruments described above, the associated total revenue for the
delivery period from T1 to T2 can be expressed as

RTotal = R f +
N

∑
n=1

θnR(n), (20)

3Due to lower demand for heat during summer, CHP plants have a lower capacity. Moreover,
high wind / low price scenarios are less likely.
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where the R(n)’s represent the revenues corresponding to each of the hedg-
ing instruments (Eqs. (16) - (19)), and the θn’s denote the corresponding
contracted quantities. Specifically, N = 6 in Eq. (20), with the following
correspondence: DK1 forwards (n = 1), DE futures (n = 2), wind index fu-
tures (n = 3), FTRs in the direction DE→DK1 (n = 4), FTRs in the direction
DK1→DE (n = 5), and lastly OTM puts (n = 6).

To find the fair value of the financial contracts in the portfolio at t0, we
assume a zero interest rate, and let the risk neutral measure equal the phys-
ical measure, i.e. Q = P, as in Coulon et al. (2013). With these simplifying
assumptions, all contracts in the portfolio can be priced by performing sim-
ulations from our proposed C-vine copula model. Specifically, the fair value
of S f ixed

t0
can be computed by the usual practice of setting the risk neutral

expectation of the revenue R f given in Eq. (15) equal to zero, which yields

S f ixed
t0

=

E
Q
t0

[
T2

∑
t=T1

QDK1
t SDK1

t

]

E
Q
t0

[
T2

∑
t=T1

QDK1
t

] . (21)

The same approach is used to obtain forward and futures prices, which we
assume are unbiased estimators of the future spot electricity prices. The
expected wind index needed to obtain the locked in level in wind index fu-
tures is obtained by averaging across simulated paths of future wind power
production corresponding to the delivery period. Lastly, fair option values
are obtained by computing the risk neutral expectations of simulated pay-
offs. The assumption of Q = P is of course unrealistic, but we do not go
into details here and refer instead to Burger et al. (2004), Benth et al. (2008),
and Kolos and Ronn (2008) for comprehensive discussions on the matter. It
simplifies nonetheless our analysis a great deal, since the mean of the total
revenue distribution is zero per construction, and is unaffected by varying
hedge quantities. As a result, we are left with the variance aspect of the
problem. To obtain the optimal static hedge, we consider the traditional
variance-minimizing criterion

min
θ
Vart0

[
R f +

N

∑
n=1

θnR(n)

]
(22)

s.t. θn ≥ 0, n = 4, . . . , 6, (23)

where short-selling constraints are introduced regarding the options. This
restriction is added due to practical reasons, since the hedger, i.e. the energy
trading company, does not own the DK1–DE interconnector. Moreover, we
assume that the hedger does not own CHP plants.
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4.1 Hedging results

In order to exemplify the benefits of the proposed hedging instruments,
we consider an energy trading company entering into monthly fixed-for-
fluctuating agreements at t0 = 12 Dec 2016, which corresponds to the last
date in our sample. As delivery we consider the out-of-sample period from
T1 = 1 Jan 2017 to T2 = 31 Jan 2017. Hedging is also performed at t0,
and all hedging instruments have the same delivery period as the fixed-for-
fluctuating agreements. We let the installed capacity c = 500 MW and the
daily strike of the OTM put options K = 12 EUR/MWh.

Before considering the minimization problem stated in Eqs. (22) – (23),
we study the individual effectiveness of the proposed hedging instruments.
First, we compute the fair value of the fixed-for-fluctuating agreements and
all the hedging instruments at t0, based on 100,000 simulations from the time-
varying mixed C-vine copula model.4 Then, we compute revenues for each
simulated path, where we vary the hedge quantities θn for each instrument,
n = 1, . . . , N. The results are displayed in Fig. 5, where we consider as mea-
sures of risk the standard deviation of the revenue distributions in Fig. 5(a)
and the 5% Value-at-Risk (VaR) of the revenue distributions in Fig. 5(b).
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Fig. 5: Isolated effect of different hedging strategies.

Not surprisingly, we observe a large variation in the hedging benefits of
the proposed instruments. The DK1 forwards are the most effective, as they
secure the revenue associated with a significant part of the production in
advance. Then, only the remaining production - the difference between the
actual and the hedged volume - will be exposed to spot price risk. The DE
futures are less effective at reducing risk, which is expected since they are
settled against the DE and not the DK1 spot prices. Somehow in contrast to

4Sampling from a copula vine is based on a recursive procedure and using the inverse of the
h-functions, cf. Eq. 6. We refer to Aas et al. (2009) for a detailed description of the procedure.
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DK1 forwards, the wind index futures fix a revenue associated with the dif-
ference between actual and expected production. Hence, this fixed revenue is
associated with a much smaller volume than in the case of the DK1 forwards,
which explains the inferiority of wind index futures at reducing risk.

When considering the options, we observe that the OTM puts are rather
effective, owing to the fact that they provide a floor to the DK1 spot prices,
thus reducing the risk related to a low price / high volume scenario. Lastly,
the FTRs in the direction DK1 to DE are also effective, and are preferable to
the opposite direction. The difference in hedging benefits between the FTRs
relates mostly to the short selling constraint.

Next, we turn our attention to the optimal static hedge when allowing
trading in all instruments simultaneously. In this context, we note that the
classical parity argument (see Carmona and Durrleman (2003)) implies that
an FTR in one particular direction can be written as a linear combination of
an FTR in the opposite direction, a DK1 forward and a DE futures. Conse-
quently, allowing trading in all these four instruments would result in the
variance minimization problem in Eqs. (22) – (23) having many possible op-
timal solutions. To avoid this, we remove the FTRs in the direction DK1→DE
from the hedging portfolio, and present below one of many optimal solu-
tions.

In Fig. 6(a) we plot three different simulated revenue distributions for
comparison purposes. The blue dashed line displays the simulated monthly
revenue distribution associated with the fixed-for-fluctuating agreements be-
fore performing a hedge. The black solid line represents the distribution
after performing an optimal hedge using DK1 forwards only, and lastly the
red dashed-dotted line corresponds to the distribution after performing an
optimal hedge based on all proposed hedging instruments simultaneously.
Fig. 6(b) provides a zoom of the left tails of the simulated distributions, and
Fig. 6(c) specifies the optimal hedging strategy associated with the latter rev-
enue distribution, and is obtained by solving Eqs. (22) – (23).

Figs. 6(a) and 6(b) clearly show that significant benefits are to be drawn
by using all proposed hedging instruments. In Table 6, we provide the re-
duction in the variance and the 5% VaR of the monthly revenue distribution
achieved by 1) using DK1 forwards as opposed to no hedge, and 2) using all
instruments as opposed to using only DK1 forwards in the hedging portfolio.
In both cases, significant reductions are attained. However, when examining
the isolated effect of each hedging instrument in combination with the DK1
forwards, we see that it is mostly the OTM puts that reduce risk additionally.

Our results so far indicate that DK1 forwards and OTM puts are the most
powerful, and that including additional instruments to the hedging portfolio
does not contribute substantially to the variance reduction of the revenue
distribution. Since neither of these two instruments depends on the DE price,
the benefit of including this variable in our copula vine seems minimal. To
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4. Hedging joint price and volumetric risk

highlight the importance of hedging instruments written on the DE price, we
regard the optimal hedge quantity of DK1 forwards, which is approx. -190
MW cf. Fig. 6(c). As mentioned earlier, the DK1 market place is characterized
by illiquidity, and so being able to enter a short position corresponding to
e.g. -190 MW DK1 forwards at t0 would imply a significant cost due to the
rather large difference between the bid price and the mid-point of the bid-ask
spread. We consider therefore including such a cost in our revenue equation,
and in consequence minimize the total revenue variance and the expected
cost of the replicating portfolio subject to an arbitrage free constraint and the
same short-selling constraints as before, i.e.

min
S f ixed

t0
,θ

{
Vart0

[
R f +

N

∑
n=1

θnR(n) − 24ξ |θn=1|
]
+Et0

[
N

∑
n=1

θnR(n) + 24ξ |θn=1|
]}

(24)

s.t. Et0

[
R f +

N

∑
n=1

θnR(n) − 24ξ |θn=1|
]
= 0 (25)

θn ≥ 0, n = 4, . . . , 6, (26)

where ξ denotes the cost in EUR/MWh associated with a position of θn=1
MW in DK1 forwards. We fix ξ = 1 EUR/MWh, which is a realistic choice
considering recent numbers for volumes traded and bid-ask spreads associ-
ated with DK1 forwards, and solve the constrained minimization problem
posed in Eqs. (24) – (26). We include FTRs in both directions here, since the
indifference implied by the parity argument from before no longer holds.
The solution is displayed in Fig. 6(d), and not surprisingly, the hedging strat-
egy shifts towards less DK1 forwards. Still, a significant amount of DK1
forwards is required, which is due to the inability to short FTRs in the di-
rection DE→DK1. The same degree of variance reduction is obtained with
this alternative hedging strategy; we note however that in order to satisfy the
no-arbitrage constraint and thus keep the expected revenue at zero, the price
S f ixed

t0
is re-estimated, with the solution yielding a lower price than under the

assumption of a frictionless market.

4.2 An example highlighting the benefits of wind index fu-
tures

Since the examples in section 4.1 have to a limited extent brought out the
usefulness of the wind index futures, one might think of them as inferior
products compared to all other proposed hedging instruments. Although
this is true in the case where a simultaneous hedge is performed at t0, when
also entering into fixed-for-fluctuating agreements, there are other scenarios
that can better highlight their benefits. Let us consider the following example:
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(d) Optimal hedging strategy when including
costs associated with trading in DK1 forwards

Fig. 6: Hedging results under different assumptions. The hedging instruments are numbered as
1) DK1 forwards, 2) DE futures, 3) Wind index futures, 4) FTRs DE→ DK1, 5) FTRs DK1→ DE,
and 6) OTM put.

• At some time t∗ before t0 = 12 Dec 2016, an energy trading company
enters into fixed-for-fluctuating agreements with wind power produc-
ers.

• Delivery period for the agreements is the same as before, i.e. T1 = 1 Jan
2017 and T2 = 31 Jan 2017, and the installed capacity c remains fixed to
500 MW. We again here assume perfect correlation between the wind
power production that the company buys and the total wind power
production in the price area.

• Also at time t∗, the company performs a hedge corresponding to a
short position in DK1 forwards, where the contracted volume equals
the company’s expectation of the total future production for January
2017. We assume that the expected wind index is 0.38, and thus the
hedge quantity equals −0.38 · 500 MW.
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4. Hedging joint price and volumetric risk

• We fix S f ixed
t∗ = 33 EUR/MWh and FDK1

t∗ = 37 EUR/MWh.

• As time goes by and we reach t0, the price level has dropped. This is
indeed reflected in our simulations, where we estimate lower values for
S f ixed and FDK1 at t0.

• At t0, the trading company wishes to rebalance their hedging portfo-
lio, and they consider whether to use additional DK1 forwards and/or
wind index futures.

By performing similar calculations as in the previous examples, we obtain
the standard deviations of revenue distributions under different rebalancing
strategies consisting of trading in DK1 forwards and wind index futures, re-
spectively. The results are summarized in Fig. 7(a), showing that wind index
futures are more effective than DK1 forwards. This can be explained by con-
sidering e.g. a high wind / low price scenario, which causes the realized
production to exceed the company’s expectation. The excess production will
have to be sold on the day-ahead market, and since prices have fallen substan-
tially since t∗, the spot price will be below the fixed price that the company
promised to pay wind power producers. In this situation, a long position
in wind index futures will yield a premium corresponding to precisely the
excess production, independent of the current price level cf. Eq. (17).

We complement these results with Figs. 7(b) and 7(c), where we illustrate
the revenue distribution and a zoom of the left tail before the hedge (blue
dashed line), after an optimal hedge in DK1 forwards at t∗ (black solid line),
and after rebalancing with DK1 forwards and wind index futures at t0 (red
dashed-doted line). As expected, the revenue distribution is shrunk after the
extra hedge, compared to the revenue distribution obtained after the initial
hedge in DK1 forwards. According to Table 7, the benefit is measured to
be a reduction in the variance of the revenue distribution of approx. 29%.
When considering the isolated effects, Table 7 reveals that an extra hedge
based on wind index futures alone achieves almost the same risk reduction.
So given wind index futures in the extra hedge, adding DK1 forwards yields
a minimal benefit in this example.

Isolated effect Combined effect
Wind index futures DK1 forwards

Reduction in variance of revenue dist. 28.28% 7.80% 28.92%
Reduction in 5% VaR of revenue dist. 22.25% 8.67% 22.31%

Table 7: Effects of rebalancing the hedging portfolio due to decreasing prices.
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Fig. 7: Illustrating the usefulness of wind index futures.

4.3 Comparison with alternative models

So far in our hedging analysis, we have concentrated on applications where
the copula model remains fixed to our preferred specification, which is the
time-varying mixed C-vine copula model. In this section, we wish to compare
this model against “suboptimal” alternatives, and highlight the importance
of capturing characteristics such as heavy tails in the marginal distributions,
tail dependence, and time variation in the copula. To this end, we consider
four models, which in the interest of clarity are stated in Table 8.

Model 1 Model 2 Model 3 Model 4
Marginal distributions Normal Skew t (skew n.) Skew t (skew n.) Skew t (skew n.)
Copula model Trivar. Gaussian Trivar. Gaussian Mixed C-vine TV mixed C-vine
Heavy tails (margins) × X X X
Tail dependence × × X X
TV dependence × × × X

Table 8: Alternative models for comparison study, and their characteristics. TV is short for
time-varying.
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Given the same contractual specifications as in section 4.1, we perform
out-of-sample simulations from all four models in Table 8. Then, we solve
for the optimal hedging strategy when 1) allowing for only DK1 forwards in
the hedging portfolio, and 2) allowing for all proposed hedging instruments
in the hedging portfolio. Finally, we compute reductions in the variance
and 5% VaR of the revenue distributions obtained when hedging with all
proposed hedging instruments as opposed to using only DK1 forwards. Also,
we compute the values in EUR corresponding to the 5% VaR and the 5%
Expected Shortfall (ES) of the revenue distributions obtained by including
all hedging instruments. To avoid the effect of simulation errors, the same
random seed is used for simulations from the four models. The results are
given in Table 9.

Let us start by considering the first two rows of Table 9 and discuss the
differences in the reductions. When regarding the difference between Model
1 and 2, we see that the introduction of heavy tails implies an increase in the
hedging benefits by yielding higher values for the reduction in variance and
5% VaR. The introduction of tail dependence between the DK1 and DE prices
(i.e. the difference between Model 2 and 3) lowers the hedging benefits, which
is expected since tail dependence lowers the benefits of the FTRs in the sense
that a positive probability of extreme prices occurring simultaneously lowers
the overall potential payout. Lastly, the introduction of time-varying depen-
dence (i.e. the difference between Model 3 and 4) lowers further the hedging
benefits. While tail dependence is in this case always expected to entail lower
hedging benefits, the effects of time-varying vs. static dependence can go
both ways, depending on the difference between the levels of dependence
implied by the two models. In our example, the lower hedging benefits pro-
duced with Model 4 are caused by the stronger dependence between the DK1
and DE prices implied by the GAS model. This stronger dependence weak-
ens once again the usefulness of the FTRs, thereby contributing negatively to
the overall benefits.

Moving on to the last two rows of Table 9, we notice that the values of
the 5% VaR and 5% ES increase when considering the models in decreasing
order: Our preferred model (Model 4) implies most risk, followed by Model
3 and so forth.

Since the prices of the fixed-for-fluctuating agreements and all hedging
instruments have already been computed to perform our hedging exercise
above, we also quantify in Table 10 the effects of the different models from a
pricing perspective. Cf. Table 10, the introduction of heavy tails in the mar-
gins (measured by ∆1) has a mixed but noteworthy effect on most instrument
prices. The largest absolute impact is on the price of the out-of-the-money
puts, which is not surprising, since out-of-the-money options are much more
affected by tail behavior than at-the-money or in-the-money options.

Regarding ∆2 and ∆3, most interesting to consider are the FTRs and the
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Initial hedging portfolio
DK1 forwards only

Model 1 Model 2 Model 3 Model 4
Reduction in variance of revenue dist. 40.49% 49.25% 48.12% 46.72%
Reduction in 5% VaR of revenue dist. 29.03% 33.15% 32.70% 31.88%
Value of the 5% VaR (EUR) -321,440 -326,840 -328,410 -334,890
Value of the 5% ES (EUR) -440,690 -462,200 -465,720 -476,940

Table 9: Combined effects of adding the other proposed instruments to a hedging portfolio
initially consisting of DK1 forwards. The results are obtained with four different models. The
values in EUR of the 5% VaR and 5% ES correspond to the revenue distributions obtained by
hedging with all proposed instruments.

fixed-for-fluctuating agreements. This is because their payoffs depend on
two underlyings, and hence the choice of copula can influence the prices
of these instruments to a large extent, as opposed to all other instruments.
For the FTRs, the introduction of tail dependence, followed by time-varying
dependence, have both a negative and significant effect on prices. The overall
reduction in prices from Model 1 to Model 4 reaches around 11% for the
direction DE→DK1, and around 9% for the direction DK1→DE. For the fixed-
for-fluctuating agreements, the fact that ∆2 is zero is not surprising, since tail
dependence is introduced only between the DK1 and DE prices, and not the
DK1 price and wind power production. As a result, the transition from a
trivariate Gaussian to a mixed C-vine copula model has no implications for
the price of this instrument. ∆3 being zero for S f ixed can be explained by
the fact that the mean value of the time-varying dependence implied by the
GAS model for the DK1 price and wind power production is very close to
the dependence implied by the static model.

Estimated prices
Pricing date (t0): 12 December 2016
Delivery period: January 2017

Model 1 Model 2 Model 3 Model 4 ∆1 ∆2 ∆3
S f ixed 23.661 23.736 23.736 23.732 0.32% 0.00% 0.00%
FDK1 26.322 26.324 26.324 26.324 0.00% 0.00% 0.00%
FDE 26.931 26.935 26.936 26.937 0.00% 0.00% 0.00%
ILocked 0.378 0.382 0.382 0.382 1.06% 0.00% 0.00%
VDE→DK1 2.919 2.859 2.775 2.585 -2.06% -2.94% -6.85%
VDK1→DE 3.529 3.471 3.386 3.198 -1.64% -2.45% -5.88%
VPut 0.519 0.548 0.548 0.548 5.59% 0.00% 0.00%

Table 10: Prices computed with different models. All prices are given in EUR/MWh with the
exception of ILocked, which represents an index. ∆1, ∆2 and ∆3 refer to the relative differences
between Models 1 and 2, Models 2 and 3, and Models 3 and 4, respectively, and are highlighted
if different from zero.

As a last remark, we investigate the effects of using “suboptimal” mod-
els for hedging. Specifically, we let pricing and hedging decisions be based
on one of Model 1, 2, or 3, while afterward assuming that the real prices
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and wind power production evolve according to Model 4. That is, based on
the prices and the hedging strategies obtained earlier with the more naive
models, we construct revenue distributions where the simulated paths of our
three variables come from our preferred model. Then, we ask the following
question: By how much do we under- or overestimate risk?

The results are given in Table 11, and we report the 5% VaR, the 5% ES
and the expected value of the revenue distribution in two cases: (a) using the
same model to compute instrument prices and an optimal hedging strategy,
and also to construct a revenue distribution (as in Table 9); (b) using Models
1–3 to compute instrument prices and an optimal hedging strategy, while
constructing the revenue distribution by using simulations from Model 4.
The columns denoted ∆ state the relative differences between results obtained
in (a) and (b), showing that basing decisions on the “wrong” model leads to
an underestimation of risk in all three cases. Furthermore, we note that the
expected value of the revenue distribution is no longer zero in the case of
columns (b). If we based pricing and hedging decisions on Model 1, the
expected revenue would actually be positive, implying a gain on average.
Despite the suboptimal hedging strategy and the overestimated FTR prices,
which all push the revenue distribution to the left, the decisive factor that
ends up shifting the revenue distribution to the right is the price of fixed-for-
fluctuating agreements, which is too low under Model 1. If we based pricing
and hedging decisions on Model 2 or 3, we would expect a loss on average.
This is due to the hedging strategy implied by Model 2 and 3, respectively,
which pulls the revenue distribution to the left. Adding to this effect are the
FTR prices, which continue to be overestimated in both Model 2 and 3.

Model 1 Model 2
(a) (b) ∆ (a) (b) ∆

5% VaR -321,440 -325,150 -1.14% -326,840 -351,040 -6.89%
5% ES -440,690 -458,890 -3.97% -462,200 -494,050 -6.45%
Mean 0 586 - 0 -14,508 -

Model 3
(a) (b) ∆

5% VaR -328,410 -345,910 -5.06%
5% ES -465,720 -488,200 -4.60%
Mean 0 -10,221 -

Table 11: Values in EUR of the mean, 5% VaR and 5% ES of revenue distributions obtained
under different assumptions: (a) pricing and hedging decisions are performed with a suboptimal
model while the simulated data used to construct revenue distributions also evolves according to
the suboptimal model, and (b) pricing and hedging decisions are performed with a suboptimal
model while the simulated data used to construct revenue distributions evolves according to
Model 4, the time-varying mixed C-vine copula.
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5 Conclusion

In this paper we have considered the joint price and volumetric risk in wind
power trading, and proposed a flexible model that has practical applicabil-
ity and can be used to determine optimal hedging decisions. The problem
has been addressed from an energy company’s perspective, who pays wind
power producers a fixed price in return for their fluctuating wind power pro-
duction. Our study concentrates on the joint price and volumetric risk in
Denmark, a market place characterized by illiquidity and a restricted range
of available hedging instruments. As a consequence, we have extended the
modeling framework to include the German spot electricity price, thereby ex-
ploiting the strong positive relation between the two price series to increase
the hedging possibilities.

We have proposed and fitted a three-dimensional time-varying mixed
C-vine copula model to our variables of interest, capturing rather well the
marginal behavior of each variable and also the dependence between the
variables. Based on simulations from the proposed model, we have shown
through different examples that significant benefits are to be drawn from in-
cluding other than the standard and usually employed power forwards in a
hedging portfolio. We find that derivative instruments associated with the
right to convert electricity to heat are especially effective at reducing risk.
Moreover, instruments with reference to the German spot electricity price
are especially beneficial when accounting for illiquidity on the Danish power
market, in the sense that they contribute to lowering the cost of the hedg-
ing portfolio. Lastly, wind index futures have risk reducing benefits when
rebalancing the hedging portfolio under certain market conditions.

To highlight the importance of capturing heavy tails in the marginal dis-
tributions, tail dependence and time variation in the copula model - all char-
acteristics that are captured by the proposed empirical model - similar cal-
culations were performed with alternative and more naive models. We find
that the inability to capture these characteristics leads to an underestimation
of risk. Also, some instrument prices are affected to a large extent.

Power markets can differ greatly from region to region, and our frame-
work is tailored to the case of Denmark. Depending on the availability of
hedging instruments in other power markets, one might wish to include ad-
ditional variables to the model. In e.g. Coulon et al. (2013), the authors
propose gas-fired plants to hedge joint price and volumetric risk associated
with load-serving obligations. We acknowledge that gas-fired (or coal-fired)
plants could potentially be beneficial in our application as well. In this con-
nection, the evolution of gas (or coal) prices would have to be taken into ac-
count. What is particularly useful about our model framework is that other
variables can easily be incorporated in the vine copula, and hence different
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1. Introduction

ABSTRACT

The recent price coupling of many European electricity markets has
triggered a fundamental change in the interaction of day-ahead prices,
challenging additionally the modeling of the joint behavior of prices in
interconnected markets. In this paper we propose a regime-switching
AR–GARCH copula to model pairs of day-ahead electricity prices in
coupled European markets. While capturing key stylized facts em-
pirically substantiated in the literature, this model easily allows us to
1) deviate from the assumption of normal margins and 2) include a
more detailed description of the dependence between prices. We base
our empirical study on four pairs of prices, namely Germany–France,
Germany–Netherlands, Netherlands–Belgium and Germany–Western
Denmark. We find that the marginal dynamics are better described
by the flexible skew t distribution than the benchmark normal distribu-
tion. Also, we find significant evidence of tail dependence in all pairs
of interconnected areas we consider. As a first application of the pro-
posed model, we consider the pricing of financial transmission rights,
and highlight how the choice of marginal distributions and copula im-
pacts prices. As a second application we consider the forecasting of tail
quantiles, and evaluate the out-of-sample performance of competing
models.

1 Introduction

Since the many projects launched over the past decade to achieve increased
market integration across day-ahead electricity markets in Europe, the day-
ahead electricity price convergence between market areas has increased sig-
nificantly, adding to the complexity of modeling the joint behavior of day-
ahead electricity prices.

The first significant step towards market integration in Europe was taken
with the introduction of the Nord Pool market, which is the main platform
for trading power in most Nordic and Baltic countries. At Nord Pool, the
bidding areas are price coupled, meaning that the transmission capacity is
auctioned as an implicit part of the day-ahead auction of electrical energy.
This achieves - as opposed to the explicit auctioning, where the transmission
capacity auction and the day-ahead auction of electrical energy are separate
actions - the efficient utilization of interconnectors and results in smaller price
differences between the bidding areas. Since Nord Pool’s creation in the mid
90’s, many countries have joined and Nord Pool comprises today Norway,
Sweden, Denmark, Finland, Estonia, Latvia and Lithuania. For the sake of
completion, we also mention that Nord Pool has taken sole ownership of the
UK market as of 2014.

Although Nord Pool has a long-standing history of price coupling, such
initiatives are more recent for other European countries. In 2006, the so-
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called Tri-Lateral Market Coupling (TLC) project comprising France, Belgium
and the Netherlands was initiated. Later in 2010, the price coupling of Cen-
tral West Europe (CWE) was achieved, integrating Germany, France, Austria,
Belgium, the Netherlands and Luxembourg. In 2014, a crucial milestone was
reached with the price coupling of the North Western European (NWE) re-
gion, covering the CWE region, the UK, the Nordic and Baltic countries -
and as of 2016, the price coupling region has grown to include 19 European
countries. Also, a new algorithm regarding how cross-border capacities are
included in the day-ahead price calculation was introduced on 20 May 2015 in
the CWE region, with the transition from the Available Transmission Capac-
ity (ATC) methodology to the more efficient Flow-Based (FB) methodology.

For the joint modeling of day-ahead electricity prices in two intercon-
nected areas, price coupling has induced a fundamental change that cannot
be ignored. In the case of the CWE region for example, the transition from
explicit to implicit auctioning of transmission capacity has meant that equal
prices in two adjacent markets are very often observed now. As already
accentuated in the existing literature (see e.g. Füss et al. (2017)), this has
generally resulted in the non-feasibility of previously proposed models. For
one, the pricing of spread options such as the financial transmission rights
cannot be achieved using spread option formulas á la Margrabe. Also in risk
management applications, the classical reduced-form models are no longer
suitable for modeling the joint behavior of prices. To exemplify some events
and their influence on the day-ahead electricity prices, we plot in Fig. 1 the
evolution of the German–French price spread at hour 8, for the period 1 Jan-
uary 2009 to 25 September 2016. According to Fig. 1, the most visible change
in the spread dynamics was caused by the price coupling of Germany and
France in 2010, leading to a large amount of exact price convergence in the
following period.

Aug-09 May-12 Feb-15
Date

-50

0

50

D
E

-F
R

 (
E

U
R

/M
W

h)

11 Mar 2011
Fukushima nuclear disaster
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Price coupling of NWE
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Switch from ATC to FB

9 Nov 2010
Price coupling of CWE

Fig. 1: Day-ahead electricity price spread for Germany–France (DE-FR) at hour 8, from 1 January
2009 to 25 September 2016.
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In this paper, we propose a regime-switching AR–GARCH copula model
for the joint behavior of pairs of day-ahead prices in coupled electricity mar-
kets, inspired by ideas from Haldrup and Nielsen (2006) and Haldrup et al.
(2010). The regime-switching part is essential for distinguishing the case of
identical prices from the case of non-identical prices. The AR–GARCH func-
tions as a filter to remove the serial dependence in the conditional means
and conditional variances. The use of copula models facilitates the analy-
sis in the sense that marginal models for day-ahead prices are treated sep-
arately from the dependence structure. Furthermore, copulas allow for the
easy transition to more realistic distributional assumptions for the residuals,
and also allow for the inclusion of a more detailed description of the depen-
dence structure when the prices do not coincide. Our empirical study con-
centrates on four coupled markets: Germany–France, Germany–Netherlands,
Netherlands–Belgium and Germany–Western Denmark.

The proposed model has a wide range of applications in the context of
derivatives pricing, hedging and risk management. Here, we consider two
applications: The pricing of financial transmission rights, and the out-of-
sample forecasting of tail quantiles. In both applications, we study how the
results are impacted by the choice of marginal distributions and the choice of
copula. Furthermore in the forecasting exercise, we demonstrate the useful-
ness of the proposed modeling framework by comparing the forecast perfor-
mance of copula-based models against a simple alternative that is not copula-
based.

The existing literature on bivariate or multivariate models for day-ahead
prices in coupled electricity markets is scarce. Due to the aforementioned in-
creasing complexity in the joint price dynamics, some authors employ funda-
mental models, with examples being Kiesel and Kustermann (2016) and Füss
et al. (2017). Kiesel and Kustermann (2016) propose a fundamental model in
the spirit of Carmona et al. (2013), and derive closed-form pricing formulas
for futures and plain vanilla options under market coupling. Moreover, they
provide an empirical application using data from the German and French
markets. In Füss et al. (2017), the authors also employ a fundamental model,
and consider the pricing of futures and transmission rights under different
allocation schemes. Aside from providing closed-form pricing formulas, sen-
sitivity analyses are also carried out.

However appealing fundamental models are when it comes to their adapt-
ability to changes in the market structure - which indeed happen quite often
- they can be extremely data-heavy and thus both theoretically and empiri-
cally challenging, as also acknowledged by Kiesel and Kustermann (2016). In
the empirical analysis of Kiesel and Kustermann (2016) regarding Germany–
France, the data input amounts to many different time series: Day-ahead
electricity price data, coal, gas and oil data to obtain a proxy for the marginal
fuel, residual expected demand data for both countries (which is in turn
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obtained by subtracting renewable electricity generation from the expected
demand), and also data on installed transmission capacities. Our proposed
model on the other hand, which belongs to the class of reduced-form mod-
els, is not nearly as data intensive, while still being able to comply with the
institutional framework.

Examples on applications of time series models in the context of price
coupled electricity markets are Haldrup and Nielsen (2006), where a regime-
switching multiplicative SARFIMA model is proposed for the modeling of
price spreads in the Nord Pool area, and Haldrup et al. (2010), where a vector
autoregressive model with long memory and regime switches is proposed
and applied again to Nord Pool data.

In the context of copula models and their applications in energy markets,
copulas have been gaining more interest recently. Some examples are Börger
et al. (2009), who use copulas in the context of cross-commodity risk man-
agement, Benth and Kettler (2011), who employ copulas to model the spark
spread, Avdulaj and Barunikl (2015), who use dynamic copulas to investi-
gate oil-stock diversification, and Grothe and Schnieders (2011) and Elberg
and Hagspiel (2015), who consider copulas in the context of wind power in
Germany.

The remaining of this paper is organized as follows: Section 2 describes
the data that our analysis is based on. Section 3 introduces the regime-
switching AR–GARCH copula model. In Section 4 the proposed model is
fitted to the data. Sections 5 and 6 present two empirical applications of the
model. Section 5 concludes.

2 Data

Our empirical study relies on day-ahead electricity price data from four price
coupled markets: Germany–France (DE–FR), Germany–Netherlands (DE–
NL), Netherlands–Belgium (NL–BE), and Germany–Western Denmark (DE–
DK1). After careful considerations, we choose to fix the sample window to
the period 1 May 2011 to 20 May 2015. Since areas of CWE are mostly rep-
resented in our analysis, and we wish to analyze the period following price
coupling, a natural starting point for the sample is 10 November 2010, which
marks the first day of price coupling in the CWE region1. Shortly after how-
ever, the Fukushima nuclear disaster followed, leading to a sudden change in
German policy, with the closure of nuclear power plants and the significant
focus on the development of renewable generation sources. To exclude the
immediate perturbation caused by the Fukushima accident, we thus let the
start of our sample be 1 May 2011. Regarding the end point, we choose the

1We note that price coupling in CWE was launched 9 November 2010, for delivery day 10
November 2010.
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date marking the switch to the FB methodology. According to EPEX (2015),
the FB coupling algorithm allows for more sophisticated grid modeling to op-
timize the flows on interconnectors in comparison to the ATC methodology.
Effects of the change regarding how flows are included in the calculation of
day-ahead prices are not evident from just looking at time series plots of the
data. However, we do suspect some implications on the joint price dynamics,
and let the sample end at this date as a result. We will get back to this issue
later in the paper.

Having fixed the sample window to the period 1 May 2011 - 20 May
2015, we avoid the most significant structural changes in the institutional
framework for the pairs belonging to the CWE region. Careful attention
is however needed in the case of the DE–DK1 pair, where price coupling
was first introduced on 4 February 2014. Before then, Western Denmark was
volume coupled to Germany, using explicit auctioning. This is not necessarily
as worrying as the case of price coupling in the CWE region, since exact
price convergence between Germany and Western Denmark was achieved
frequently also before their price coupling. Nevertheless, we shall treat the
pair DE–DK1 with special consideration before applying the same modeling
framework to all pairs of prices. Although the pair DE–DK1 complicates our
analysis somewhat, its inclusion is motivated by having one of Nord Pool’s
bidding areas represented in our analysis, and also by having a pair where
the in-feed of renewable energy is very significant in both markets.

We consider hourly price data separately for each hour of the day - so
for all four pairs, we will have 24 hourly time series, consisting of 1,481
observations each. Fig. 2 shows time series plots of the four pairs of spreads
at four different hours of the day, and Table 1 provides summary statistics
in order to get a better sense of the data. To avoid distortions, few extreme
prices have been truncated: Specifically, prices below -50 EUR/MWh were
set to -50, and prices above 150 EUR/MWh were set to 150.2

The spreads show a rather different behavior across pairs and also across
the hours of the day. For DE–FR, we observe a changing seasonal pattern
during (or near) off-peak. During summer off-peak, Germany usually im-
ports electricity from France due to low renewables generation in Germany
(less wind during summer periods, and very little solar during off-peak) and
excess nuclear production in France due to the lower demand. During winter
peak and off-peak, France usually imports from Germany due to increased
demand and higher production in Germany caused by increased renewables

2For most hourly price time series no truncation is necessary, since prices below -50 or above
150 never occur. The maximum number of observations below -50 that are truncated in one
single hourly price series is 7, and corresponds to an hourly price series for DE. The maximum
number of observations above 150 that are truncated in one single hourly price series is 6, and
corresponds to an hourly price series for FR. The truncation rule is mostly introduced to deal
with cases like e.g. the extreme spikes we observe in DK1 on 7 June 2013, where prices reached
approx. 2,000 EUR/MWh for five consecutive morning hours.
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Fig. 2: Historical hourly spreads between the pairs DE & FR, DE & NL, NL & BE and DE & DK1
at four different hours of the day.

generation.
In the case of the DE–NL pair, the German price is almost always below

the Dutch price, signaling Netherlands to be a significant importer of German
power. This relation can be explained by the electricity generation mix in the
Netherlands, which relies heavily on more expensive natural gas.

For NL–BE we see that the Dutch price is more often observed to be
above the Belgian price, which again is due to the more expensive generation
sources in the Netherlands compared to Belgium. However, both countries
are mainly importers, and their day-ahead electricity prices are heavily in-
fluenced by conditions in Germany and France. A seasonal pattern is also
observed here, but is not as persistent as in the case of DE–FR. According to
TenneT (2013), this is because higher demand for electrical heating in France
during winter is somehow reflected in the Belgian price, which in such situ-
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ations would typically increase above the level of Dutch prices.
Regarding the DE–DK1 pair, prices in Western Denmark are usually be-

low Germany. Renewable power is significant in both countries - DK1 has a
lot of wind and DE has both wind and solar - however Denmark is connected
to both Sweden and Norway, from where it can import cheap hydropower.
A generation deficit typically takes place during summer periods in DK1
due to less wind. Depending on transmission capacity limitations, weather
conditions, etc., imports come from Germany, Sweden and/or Norway.

Spread = 0 Spread > 0 Spread < 0 Mean Std. dev. Lin. corr. Lin. corr.
(Spread 6= 0)

Germany and France (DE - FR)
Hour 2 51.11% 14.32% 34.57% -3.41 11.53 0.53 0.39
Hour 8 57.60% 15.67% 26.73% -1.78 10.27 0.85 0.70
Hour 14 49.90% 4.25% 45.85% -5.28 10.22 0.80 0.68
Hour 20 49.29% 20.05% 30.66% -1.96 10.86 0.70 0.55

Germany and Netherlands (DE - NL)
Hour 2 35.11% 0.14% 64.75% -7.96 10.38 0.48 0.43
Hour 8 58.41% 1.08% 40.51% -4.69 8.29 0.88 0.81
Hour 14 34.77% 0.00% 65.23% -10.79 11.90 0.67 0.55
Hour 20 50.17% 0.54% 49.29% -6.96 9.90 0.63 0.49

Netherlands and Belgium (NL - BE)
Hour 2 65.83% 21.00% 13.17% 1.50 7.71 0.72 0.57
Hour 8 71.10% 17.89% 11.01% 1.17 7.59 0.90 0.79
Hour 14 69.82% 21.54% 8.64% 2.75 9.60 0.75 0.58
Hour 20 66.51% 21.81% 11.68% 1.92 9.33 0.70 0.36

Germany and Western Denmark (DE - DK1)
Hour 2 36.60% 35.72% 27.68% 0.09 7.90 0.76 0.57
Hour 8 30.11% 55.10% 14.79% 4.75 10.99 0.79 0.68
Hour 14 28.83% 46.58% 24.58% 1.47 10.11 0.78 0.70
Hour 20 23.63% 71.51% 4.86% 7.76 9.24 0.71 0.69

Table 1: Summary statistics for the spread between day-ahead electricity prices for four selected
periods. The hour denoted “Hour 2” represents the hour starting at 2 and ending at 3, and
the same holds for all other hours. Furthermore, the time zone is CET. The sample covers the
period 1-May-2011 to 20-May-2015, a total of 1,481 observations in each of the four time series
per spread we consider here. All spreads are measured in EUR/MWh.

Considering in more detail the summary statistics presented in Table 1,
we see that exact price convergence or equivalently a price spread of zero
occurs very often for all pairs and hours of the day. Moreover, the exact price
coupling percentage can vary quite a lot depending on the hour of the day,
and so can the mean and the standard deviation. We also observe a strong
positive relation between the prices conditional on the spread being nonzero.
This is of course expected due to the limited transmission capacity which
impedes exact price convergence at all times - note that only a utilization
of the available interconnector capacity below 100% would allow exact price
convergence.

In Fig. 3, we consider in more detail the behavior of exact price con-
vergence across the hours of the day. For the CWE, there is generally less
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exact price convergence during the night hours, and also during midday. For
DE–DK1, the situation is somewhat reversed, with more coupling during
off-peak.
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Fig. 3: Percentages of absolute price convergence grouped by hour of the day.

The shape of the plots for the CWE areas, especially the plot for DE–
NL, where the shape is most pronounced, reminds us of the “two hump”
behavior of German day-ahead prices. Typically, the German price is low
during the night because of lower demand and high wind in-feed (especially
during winter). Prices are also lowered during midday, due to the high solar
in-feed, which peaks at noon. Why the shape of German prices during the
day is reflected in the absolute coupling percentage can, to a high extent, be
explained by the mix of generation assets across markets.

Let us consider the example of DE–NL. The shape of the Dutch price
during the peak hours is rather flat compared to Germany, and the level
of prices is higher due to the more expensive marginal cost of natural gas-
fired power plants, which play a major role in the daily fuel mix. A smaller
price difference between DE–NL is thus more likely to occur during morning
and evening, when the German prices reach their highest level. This implies
that the remaining gap that needs to be closed in order to obtain exact price
convergence is smaller during these periods, and more likely to be achieved
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with less than a 100% utilization of the available transmission capacity.
In the case of DE–DK1, the increased exact price convergence during off-

peak can be explained by the combination of lower demand and high in-feed
of wind generation in both countries, which leads to smaller price differences
during off-peak.

3 Model specification

To model the evolution of prices in two interconnected markets, we propose
a regime-switching AR–GARCH copula model for each hour of the day sep-
arately. We allow for two regimes, which are in fact observable and can be
categorized as 1) identical and 2) non-identical prices. Making this distinction
is of uttermost importance since it allows us to replicate periods of spreads
equaling zero (see Fig. 2 and Table 1).3

Our modeling procedure can be divided into three steps: In a first step, we
deal with the seasonality aspect. For all price areas we consider in this paper,
that is BE, DK1, DE, FR and NL, the mechanism of day-ahead price formation
is based on matching supply and demand curves on an hourly basis. Hence,
the strong seasonal variation that characterizes both the demand and the
supply is reflected in the behavior of the electricity prices. To correct the
data for seasonality, suitable seasonal functions are applied to each pair of
prices, for each hour of the day. The seasonal functions are such that the
identical/non-identical price patterns are preserved in the deseasonalized
prices.

In a second step, regime-switching AR–GARCH filters are applied to each
pair of deseasonalized prices. Again in this case, the resulting residuals will
maintain the same pattern of identical and non-identical prices that we ob-
serve in the actual price data. Hence, the residuals can be split according to 1)
a case of perfect positive dependence, where the residuals from the regime-
switching AR–GARCH will coincide, and 2) a case of non-perfect dependence.

In a third step, we study the dependence of non-equal residuals by apply-
ing the flexible copula models. Below, we elaborate on the second and third
steps in our modeling framework.

3.1 A regime-switching AR–GARCH copula model

Let us denote by yn,t,i the price in area i, at hour n and day t, which has
been corrected for deterministic seasonality. Since we only consider pairs of

3We mention in passing that univariate time series models of the ARMA–GARCH type have
been successfully applied to model day-ahead electricity prices previously (see e.g. Keles et al.
(2012) and Paraschiv (2013)).
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day-ahead prices, i = 1, 2. To simplify the notation in what follows, we sup-
press the subscript n. Whenever we refer to yt,i, we mean the deseasonalized
day-ahead price for some given hour of the day. We consider the following
dynamics for the prices: If yt,1 = yt,2, then we are in the regime of equal
prices denoted by st = 0, and for i = 1, 2,

yt,i =
P

∑
p=1

φ
(0)
p

1
2
(yt−p,1 + yt−p,2) + εt,i (1)

εt,i = σt,iηt,i (2)

σ2
t,i = ω(0) + α(0)

1
2
(ε2

t−1,1 + ε2
t−1,2) + β(0) 1

2
(σ2

t−1,1 + σ2
t−1,2). (3)

Note that under st = 0, it follows from the above that εt,1 = εt,2 and σ2
t,1 = σ2

t,2.
If yt,1 6= yt,2, then we are in the regime of non-equal prices denoted by st = 1,
and for i = 1, 2,

yt,i =
P

∑
p=1

φ
(i)
p yt−p,1 +

Q

∑
q=1

ξ
(i)
q yt−q,2 + εt,i (4)

εt,i = σt,iηt,i (5)

σ2
t,i = ω(i) + α(i)ε2

t−1,i + β(i)σ2
t−1,i. (6)

According to Eqs. (1) and (4) for the conditional mean, and Eqs. (3) and (6) for
the conditional variance, all parameters vary depending on the regime. We
shall thus obtain three sets of parameter estimates: One set corresponding to
the regime where prices are identical, denoted with superscript (0), and two
sets of parameters corresponding to the regime where prices are not identical,
denoted with superscripts (i), for i = 1, 2.

To provide a parsimonious representation, the structure of the models is
slightly different under the two regimes. In the model for the conditional
mean, identical prices are explained by lagged average prices from the two
areas, whereas no averaging appears in the case of non-identical prices. We
note that aside from autoregressive terms, we allow for cross-equation ef-
fects by including lagged values of “the other price series”, in the spirit of
vector autoregressions. Nevertheless, we will refer to the model for the con-
ditional mean as an AR. The model for the conditional variance resembles
the GARCH(1,1) specification: In times of identical prices, the model con-
tains averages of lagged values, whereas the non-identical price regime is
characterized by the classical GARCH(1,1) dynamics. While accounting for
serial dependence and heteroskedastisity, we stress that the construction of
the model in Eqs. (1)–(6) ensures that the regime switching nature of prices
is maintained in the standardized residuals.

For the distribution of the standardized residuals denoted by η in
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Eqs. (2) and (5), we consider different possibilities. First, we consider the
standard choice of a normal distribution:

ηt,i ∼ N(0, 1) for i = 1, 2. (7)

To allow for more flexibility, we also consider

ηt,i ∼
{

Skew t(0, 1, ν(0), λ(0)) if st = 0
Skew t(0, 1, ν(i), λ(i)) if st = 1, for i = 1, 2,

(8)

where ν and λ denote the degrees of freedom and skewness parameters of the
skew t distribution, respectively, and are allowed to vary with the regimes.

Next, we introduce copulas to model the dependence structure of stan-
dardized residuals belonging to the non-equal price regime. Copulas are
flexible tools that enable the study of dependence structures beyond the lin-
ear correlation. For the two-dimensional case we consider here, a copula is
essentially a bivariate distribution function C defined on the unit cube, with
standard uniform margins. The central result concerning copulas is due to
Sklar’s theorem [Sklar (1959)], which states that if we assume (η1, η2) to have
bivariate distribution function F and univariate marginal distribution func-
tions F1, F2, then there exists a bivariate copula C, such that

F(η1, η2) = C(F1(η1), F2(η2)). (9)

If the marginal distribution functions are continuous, we have furthermore
that the copula is unique, and can be defined through

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)), (10)

where the u’s represent standard uniform variables and the F−1’s represent
the inverse of the marginal distribution functions. Adding to the flexibility of
copulas is that the converse of Sklar’s theorem also holds, meaning that we
can combine two marginal distributions, be it from different families even, to
form a joint distribution.

Since we condition on the information generated by past observations of
the variables (by using AR–GARCH filters), we are in fact considering here
the conditional copula. Also in this case, Sklar’s theorem applies, as shown
in Patton (2001).

3.2 Estimation procedure

Estimation of the model parameters is done by maximum likelihood. The
joint conditional density function is obtained by differentiating Eq. (9), and
thus the full-sample log-likelihood takes the form

logL =
2

∑
i=1

T

∑
t=1

log fi(yt,i | Ft−1; Θi) + Ist=1

T

∑
t=1

log c((ut,1, ut,2) | Ft−1; Θ3), (11)

105



Paper III.

where
T

∑
t=1

log fi(yt,i | Ft−1; Θi) = Ist=0

T

∑
t=1

log fi(yt,i | Ft−1; Θ(0)
i )

+ Ist=1

T

∑
t=1

log fi(yt,i | Ft−1; Θ(i)
i ). (12)

In Eqs. (6) and (12), the functions fi denote the conditional marginal density
functions for area 1 and 2, and c is the conditional copula density represent-
ing the non-equal price regime. The variable IΩ denotes the indicator func-
tion of the event Ω. Furthermore, Ft−1 denotes the filtration, and (Θ1, Θ2, Θ3)
refer to the parameters for the full model. Specifically, (Θ1, Θ2) refer to the
parameters of the regime-switching AR–GARCH model, and Θ3 refers to the
copula parameters.

Recall that by construction of the model, ut,1 = ut,2 if yt,1 = yt,2, and
ut,1 6= ut,2 otherwise. In the equal price regime, the residuals thus coincide
and we have a case of perfect positive dependence (also referred to as the
Fréchet-Hoeffding upper bound), where there is no copula parameter to be
estimated. Hence, the only copula parameter to be estimated corresponds to
the pair of standardized residuals in the non-equal state.

Usually, the model parameters are obtained by performing a multi-stage
maximum likelihood estimation, where the marginal models and the copula
are considered separately, see e.g. Dias and Embrechts (2009) and Patton
(2013). Since the parameter vectors of the marginal models have common
elements in our case, these cannot be estimated separately. Hence, in a first
step, a joint numerical maximization of the the first term in Eq. (6) is per-
formed to obtain estimates for (Θ1, Θ2). Then, standardized residuals are
obtained, and the uniforms entering the copula log-likelihood follow imme-
diately from applying the probability integral transform. In a second step,
the copula parameters are estimated by maximizing the copula log-likelihood
numerically.

4 Model fitting

4.1 Seasonal function

As mentioned in Section 3, the first step in our data analysis is concerned
with the seasonality correction. Following the related literature (see e.g. Lu-
cia and Schwartz (2002), Haldrup et al. (2010) and Janczura et al. (2013)), we
consider the following seasonal function Λ for each area in a price pair:

Λst
t = ast + bst t + cst sin (2πt/365) + dst cos (2πt/365) +

4

∑
j=1

wst
j W j

t + hst Ht, (13)
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for st = 0, 1. In Eq. (13), a is a constant, b denotes the trend coefficient and
c and d are coefficients for the yearly cycle. To capture the weekly seasonal-
ity, we use day-of-week dummies denoted by W j, with their corresponding
coefficients denoted by wj. We group Tuesday, Wednesday and Thursday in
one dummy variable, and have therefore limited ourselves to only four day-
of-week coefficients. Lastly, the dummy variable H is included to capture
holiday effects, and its coefficient is denoted by h.4

The seasonal functions are fitted to the data by ordinary least squares.
To ensure that the deseasonalized price data corresponding to a given pair
retains the same regime-switching structure, note that we let all parameters
vary with the regime st. For a given pair, the parameter estimates corre-
sponding to the state st = 0, i.e., state of equal prices, will by construction
be the same for area i = 1 and area i = 2. For the state st = 1, i.e., state of
non-equal prices, the parameter estimates will differ for the two areas.

4.2 Marginal models

After removing the deterministic seasonal component, the regime-switching
AR–GARCH model introduced in Eqs. (1) – (6) is fitted to the data. Specif-
ically, the model is fitted to all four pairs of prices and all hours of the day,
which corresponds to a total of 96 models. For the order of the autoregres-
sion (P) and cross-equation effects (Q) in the equations for the conditional
mean, we consider P = 1, . . . , 7 and Q = 1, . . . , 7. The optimal order of the
models is chosen based on the Bayesian Information Criterion (BIC). In the
interest of brevity, we provide the detailed results in Appendix A, Table 14.
We do however mention that the order of Q is zero for the majority of the
models, revealing that the cross-equation effects (cf. Eq. (4)) can generally be
omitted.

Model specifications other than those stated in Eqs. (1) – (6) were experi-
mented with, and we note that our proposed regime-switching AR–GARCH
model is one of many possible specifications. We found however our specifi-
cation to be superior in terms of parsimony and its fit to the data.

To provide some evidence for the fit of the regime-switching AR–GARCH,
we consider as an example the DE–FR pair at hour 8. Table 2 presents the
estimation results, and Fig. 4 displays sample autocorrelation and quantile
plots. Sample autocorrelation plots are provided for both the standardized
residuals and the squared standardized residuals, and give indication of al-
most no serial correlation left. Regarding the quantile plots, we provide both
the fit with the normal and the skew t distribution, illustrating the superi-
ority of the latter. Similar results to those in Fig. 4 were obtained for the

4In the case of identical prices, a holiday might occur in one area but not the other. To avoid
this, the holiday dummy returns a 1 if a holiday occurs in one of the two areas, and 0 otherwise.
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Model for the pair DE–FR hour 8

Equal price regime (st = 0) Non-equal price regime (st = 1)

Area 1: DE Area 2: FR

Conditional mean (optimal order P = 6, Q = 0)

φ̂
(0)
1 0.3458 (0.0381) φ̂

(1)
1 0.4048 (0.0507) φ̂

(2)
1 0.5036 (0.0481)

φ̂
(0)
2 0.1648 (0.0411) φ̂

(1)
2 0.0810 (0.0508) φ̂

(2)
2 0.1192 (0.0500)

φ̂
(0)
3 0.0134 (0.0396) φ̂

(1)
3 0.0203 (0.0496) φ̂

(2)
3 0.0611 (0.0502)

φ̂
(0)
4 0.0666 (0.0392) φ̂

(1)
4 0.0329 (0.0483) φ̂

(2)
4 0.0644 (0.0519)

φ̂
(0)
5 0.0420 (0.0377) φ̂

(1)
5 0.0111 (0.0458) φ̂

(2)
5 0.0043 (0.0491)

φ̂
(0)
6 0.0949 (0.0361) φ̂

(1)
6 0.1910 (0.0431) φ̂

(2)
6 0.1987 (0.0450)

Conditional variance

ω̂(0) 6.7896 (5.7732) ω̂(1) 8.2661 (8.1208) ω̂(2) 15.6209 (11.2384)
α̂(0) 0.0487 (0.0410) α̂(1) 0.2058 (0.0880) α̂(2) 0.1218 (0.0787)
β̂(0) 0.7641 (0.1260) β̂(1) 0.7359 (0.1681) β̂(2) 0.7693 (0.1935)

Marginal distribution (skew t)

ν̂(0) 4.8602 (1.0360) ν̂(1) 8.0736 (3.0836) ν̂(2) 11.5744 (4.9559)
λ̂(0) 0.0360 (0.0481) λ̂(1) 0.0482 (0.0562) λ̂(2) 0.0839 (0.0582)

Table 2: Parameter estimates for the DE–FR hour 8 model. Simulation based standard errors are
given in parenthesis, and are based on 999 simulations following the procedure in Section 4.5.
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Fig. 4: Sample autocorrelation and quantile plots of standardized residuals resulting from fitting
regime-switching AR–GARCH models to the DE–FR pair for hour 8.
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remaining models. In Appendix A, we provide some additional results for
the remaining pairs at hour 8.

4.3 The pair DE–DK1

Before proceeding to copula modeling, we recall that the pair DE–DK1 be-
haved differently compared to the other pairs in terms of initiatives that im-
pacted the market structure. With price coupling first being introduced on
4 February 2014 as opposed to 10 November 2010, we wish to consider the
pair DE–DK1 more closely. As mentioned earlier, the dynamics of the DE–
DK1 spread has not changed visibly with the transition to price coupling,
with equal prices having been observed prior as well as post price coupling.
Therefore, we applied the same regime-switching AR–GARCH framework to
this pair cf. Section 4.2. However, we wish to investigate whether a break
in the dependence structure has occurred at the time of transitioning from
volume coupling (VC) to price coupling (PC). If this were the case, the sub-
sequent copula modeling would need to account for such a break.

We consider searching for a break in the rank correlation of the filtered
prices (i.e., the standardized residuals obtained after applying the regime-
switching AR–GARCH filter) corresponding to the non-equal price regime,
at t∗ = 4 February 2014. Specifically, we wish to test

H0 : ρVC = ρPC vs. H1 : ρVC 6= ρPC,

where ρVC is the rank correlation (Spearman’s ρ) of filtered prices corre-
sponding to the non-equal price regime in the interval [1, t∗], and ρPC denotes
the rank correlation (Spearman’s ρ) in the interval (t∗, T]. A critical value for
ρVC − ρPC is obtained by using an i.i.d. bootstrap as in Patton (2013).5

We perform the test for all 24 DE–DK1 models, and only find evidence
against the null of equal rank correlation in 2 out of 24 cases (we consider
a 5% significance level). Since we do not find stronger evidence for a break
in the dependence, we decide to treat the pair DE–DK1 like all others in the
subsequent analysis.

4.4 Copula models

Next, we turn to the study of the dependence between residual pairs obtained
from the regime-switching AR–GARCH models. As mentioned in Section 3,
only the pairs of residuals belonging to the non-equal price regime are rel-
evant in this context, and hence copula models are fitted to this data. We
restrict our attention to five copulas, namely the Gaussian, Student t, Gum-

5Note that by performing an i.i.d. bootstrap, we impose H0.
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bel, Rotated Gumbel6 and Symmetrized Joe-Clayton (SJC)7. The choice of
these copulas is motivated by having models that can capture different types
of dependence structures, and also by their extensive use in the economic
and financial literature. In the interest of clarity, we summarize in Table 3 the
key features of the copula models considered in this paper.

Properties of selected copulas
Copula Parameters Asymmetric Upper tail dep. Lower tail dep.

Gaussian ρ ∈ [−1, 1] No 0 0

Student t ρ ∈ [−1, 1], ν > 2 No 2tν+1

(
−
√

ν + 1
√

1−ρ
1+ρ

)
2tν+1

(
−
√

ν + 1
√

1−ρ
1+ρ

)
Gumbel θ ≥ 1 Yes 2− 21/θ 0
Rot. Gumbel θ ≥ 1 Yes 0 2− 21/θ

SJC τU,L ∈ [0, 1] Yes/No τU τL

Table 3: Key features of the five selected copula models. In the tail dependence expression for
the Student t copula, tν+1 refers to the probability density function of the Student t distribution,
with ν + 1 degrees of freedom. For further details on copulas and their properties, we refer to
Joe (1997), Nelsen (1999) and Patton (2013).

The tail dependence terms appearing in Table 3 refer to measures of de-
pendence between extreme events. For the case of positive dependence, the
lower and upper tail dependence are defined as

τL = lim
q→0+

P(ut,1 ≤ q | ut,2 ≤ q) = lim
q→0+

C(q, q)
q

,

τU = lim
q→1−

P(ut,1 > q | ut,2 > q) = lim
q→1−

1− 2q + C(q, q)
1− q

,

where q denotes the quantile and C denotes the bivariate copula distribution
function. As it turns out, the expressions above have simple closed forms for
many copulas. Specifically for the five copulas considered in this paper, tail
dependence coefficients are easily computed using the expressions given in
Table 3.

Turning to the estimation results, the five copula models are fitted to each
residual pair; basing the model selection on the commonly used Akaike In-
formation Criterion (AIC), we report the preferred copula for each model in
Table 4. The results reveal that the Gaussian copula is only chosen for 27 out
of 96 models, confirming that linear correlation is, in most cases, not enough
to describe the dependence between prices in interconnected markets. The
Student t copula, which allows for symmetric upper and lower tail depen-
dence, is preferred for 29 of the models. The even more flexible SJC copula,
which allows for asymmetric upper and lower tail dependence (nesting the

6A Rotated Gumbel (also called Survival Gumbel) is a Gumbel copula fitted to the rotated
data (180 degrees rotation).

7For details regarding the SJC copula, we refer to Patton (2006).
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case of symmetric dependence), is chosen 26 times. Lastly, the Rotated Gum-
bel copula and the Gumbel copula, which allow for tail dependence in only
one of the tails, are preferred in 8 and 6 cases, respectively.

Optimal copula
Hour DE–FR DE–NL NL–BE DE–DK1

0 Student t SJC Gaussian Rot. Gum.
1 Rot. Gum. Gaussian SJC SJC
2 SJC Gaussian Gaussian SJC
3 SJC SJC Gaussian Student t
4 SJC SJC Gaussian SJC
5 SJC SJC Gaussian Rot. Gum.
6 Rot. Gum. SJC Student t SJC
7 SJC Student t Gaussian Student t
8 Gumbel SJC SJC Student t
9 SJC Gaussian Gaussian Student t
10 Gumbel SJC Student t Student t
11 Gumbel Gaussian SJC Student t
12 SJC Gaussian Student t Student t
13 Gumbel Gaussian Student t Student t
14 Student t Gaussian SJC Student t
15 Student t Gaussian Gaussian Student t
16 Student t Gaussian Gaussian Student t
17 Gumbel SJC Rot. Gum. Gaussian
18 Gumbel Student t Student t Gaussian
19 Student t Student t Gaussian Gaussian
20 Student t SJC Student t Gaussian
21 Rot. Gum. Gaussian SJC Gaussian
22 Student t Gaussian Rot. Gum. Rot. Gum.
23 Student t Gaussian Student t SJC

Table 4: Optimal copulas for each hourly model based on AIC.

Tail dependence implied by the optimal copulas

To gain more insight regarding the optimal copulas listed in Table 4, we con-
sider next their implied tail dependence. In Fig. 5, we plot the implied lower
and upper tail dependence coefficients for all pairs of prices and all hours
of the day. An i.i.d. bootstrap procedure was used to obtain the confidence
intervals for the estimates (see e.g. Patton (2013) for more details). Moreover,
the estimated lower and upper tail dependence coefficients grouped by peak
(hours 8-19) and off-peak (hours 20-7) are reported in Table 5.

Recall that the analysis we perform in this section is based on filtered
prices belonging to the non-equal price regime. Recall further that non-equal
prices occur when there is a need to move more electricity across the border
than what the available transmission capacity allows. Hence, we can inter-
pret the lower (upper) tail dependence as being the probability of observing
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Fig. 5: Estimated lower and upper tail dependence implied by the optimal copulas listed in
Table 4. The tail dependence coefficients are obtained using the formulas given in Table 3. The
red vertical lines indicate (from left to right) start and end of peak hours.
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4. Model fitting

Lower tail dependence
DE–FR DE–NL NL–BE DE–DK1

Mean peak 0.0217 0.0324 0.0714 0.0338
Mean off peak 0.1830 0.1008 0.0776 0.2687

Upper tail dependence
DE–FR DE–NL NL–BE DE–DK1

Mean peak 0.1899 0.0328 0.0576 0.0338
Mean off peak 0.0658 0.0261 0.0335 0.1170

Table 5: Tail dependence implied by the optimal copulas listed in Table 4, grouped by peak and
off-peak hours.

very low (high) prices in two interconnected markets conditional on the full
utilization of the interconnector.

According to Fig. 5, the estimates of the preferred copulas translate into
tail dependence coefficients that are often significantly different from zero –
and this holds for selected hours in all price pairs. Further, a general tendency
is that the lower tail dependence is stronger than the upper tail dependence
during the off-peak hours (cf. Fig. 5 and Table 5). One explanation for this
is that the probability of very low prices is higher during the off-peak hours,
where the demand is lower. In a situation where two interconnected areas
exhibit a low demand and at the same time a high generation from renew-
able sources, e.g. wind energy generation, extremely low prices happening
simultaneously is a likely outcome.

Another general feature we observe in Fig. 5 and Table 5 is that the lower
tail dependence is usually higher during off-peak than during peak. Again
here, we expect the lower demand during off-peak to be the main driver of
this behavior. The most pronounced difference between peak and off-peak
lower tail dependence is found for the DE–DK1 pair. This can be explained by
the high wind infeed in both countries as well as similar weather conditions.
Most wind turbines in Germany are placed in the northern part, that is, rather
close to the Danish border, implying that high wind scenarios are likely to
happen simultaneously in both countries.

While low prices happening simultaneously in two neighboring coun-
tries can be explained by e.g. low demand and/or high levels of renewables
production, high prices occurring simultaneously can be explained by combi-
nations of e.g. high demand, low renewables production, low temperatures,
increasing marginal prices of the price setting unit (coal, gas), and plant out-
ages. To provide an economic interpretation of particular events however,
like the high upper tail dependence estimate for DE–NL for hour 8, can be
very difficult, since a set of very specific combinations of events might have
been the cause.
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4.5 Simulation

Performing simulations from the proposed regime-switching AR–GARCH
copula model, which is a central point in almost all applications, requires a
last modeling element: A model for the probabilities of transitions between
the two regimes.

Transition matrices

We let the regimes be determined by a Markov chain of order one, with
transition probability matrix Π:

Π =

[
π00 1− π00

1− π11 π11

]
. (14)

The probability of prices being equal conditional on prices being equal at the
previous time step is denoted by π00. Similarly, π11 denotes the probability
of prices not being equal given that they were not equal at the previous time
step. Recalling that the regimes are observable, the transition probabilities
are simply estimated from the data as

π̂00 =
N00

N00 + N01
,

π̂11 =
N11

N11 + N10
,

where Njk denotes the number of times regime j was followed by regime k,
for j = 0, 1 and k = 0, 1.

Simulation procedure

Performing simulations from the proposed model is straightforward, but
there are many steps involved. In order to create an overview, we briefly
state the necessary steps below.

To generate a pair of (deseasonalized) prices (yt,1, yt,2) at time t, we first
generate the regime st based on the transition probability matrix in Eq. (14).

If a) st = 0, we are in the equal price regime, i.e., yt,1 = yt,2, and a stan-
dardized residual ηt is to be drawn from the univariate marginal distribution,
which can be either N(0, 1) or Skew t(0, 1, ν(0), λ(0)) depending on the model
specification. By applying Eqs. (2) and (1), respectively, a pair (yt,1, yt,2) is
subsequently obtained.

If b) st = 1, we have that yt,1 6= yt,2, and a pair (ut,1, ut,2) is generated
from the copula8. A standardized residual pair (ηt,1, ηt,2) is obtained by ap-
plying the inverse probability integral transform to the generated uniform

8Generating random draws from a copula is based on the inverse of the conditional copula
functions (often referred to as h-functions). See e.g. Aas et al. (2009) for more details.
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pair (ut,1, ut,2). This is done for each uniform individually, based on the
univariate marginal distributions, i.e, N(0, 1) or Skew t(0, 1, ν(i), λ(i), ), for
i = 1, 2. Finally, Eqs. (5) and (4) are employed, respectively, to generate a pair
(yt,1, yt,2).

In-sample simulations

To provide more evidence for the fit of the model, we perform in-sample
simulations. Revisiting the example of DE–FR hour 8, we follow the proce-
dure described in Section 4.5 to generate 1,000 sample paths of German and
French prices of length T −max(P, Q), with T denoting the sample size of
the data, and P and Q referring to the order of the model for the conditional
mean, cf. Eqs. (1) and (4).9 In Fig. 6, we show quantile plots of actual prices
vs. simulated prices, and quantile plots of actual non-zero spreads vs. sim-
ulated non-zero spreads, with the results revealing a satisfactory in-sample
fit.

Similar in-sample fits were obtained for the other pairs regarding quan-
tile plots of the individual price series. For the spreads on the other hand,
the model does not always perform very well when considering matching
both tails. For some hours of the day regarding DE–NL, the model assigns
slightly more mass to the right tail of the distribution, while being able to
capture the left tail nicely. As can be seen in Fig. 2 and Table 1, cases where
the Dutch price is above the German price are either extremely few or none
at all, explaining perhaps the inability of the model to provide a sufficient
explanation of the right tail.
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Fig. 6: Quantile plots of price and (non-zero) spread data vs. simulated prices and (non-zero)
spreads from the fitted model with skew t margins and a Gumbel copula cf. Table 4.

9To start the simulation, we use the first max(P, Q) prices. Regarding σ̂2
0,i , for i = 1, 2, we use

the sample variance of the data.
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5 Financial transmission rights

The presence of heavy tails in the individual price distributions, asymmet-
ric dependence and tail dependence between prices can have significant im-
plications when considering derivatives whose payoffs depend on the price
spread. To investigate such effects, we consider in this section the pricing of
financial transmission rights as a first application.

A financial transmission right (FTR) is a spread option written on the
hourly day-ahead electricity price difference in two interconnected areas. It
gives the option holder the right to “transfer electricity across the border”
if the price difference is positive for the corresponding hour. In reality, no
physical cross-border transfer of electricity is undertaken as the rights are
settled financially, hence the name financial transmission right.

A particular feature of FTRs is that delivery is limited to certain periods,
such as an entire year or month. When entering e.g. a monthly FTR, the op-
tion holder actually enters a string of hourly spread options, and has the right
to exercise at each hour in that month. Also interesting is that FTRs are linked
to the actual available capacity of the interconnector, and they are offered by
the transmission system operators (TSO) through explicit auctions.10

Let us denote by V(t0, T) the value of a financial transmission right at time
t0, with delivery at T. V(t0, T) can be obtained by the usual practice of com-
puting the discounted value of the expected payoff, where the expectation is
taken under a pricing measure Q (see e.g. Benth et al. (2008)):

V(t0, T) = er(T−t0)E
Q
t0
[max(P1

T − P2
T , 0)]. (15)

In Eq. (15), Pi
T denotes the hourly day-ahead electricity price corresponding

to the time period T in area i, where i = 1, 2. Furthermore, r denotes the
risk-free rate, which we for simplicity set to zero in the following analysis.

The value of e.g. a monthly FTR is simply obtained as the sum of all
individual hourly spread option values in that month, which in turn are
obtained using Eq. (15). Thus, the holder of a monthly FTR will have the
right to exchange electricity in area 2 for electricity in area 1, if the price
difference is positive, during each hour of that month.

Having established a modeling framework for pairs of day-ahead electric-
ity prices in interconnected areas, FTR prices can be obtained by Monte Carlo
simulation, following the simulation procedure described in Section 4.5. We
note however that computing expectations based on simulations from a model
that has been fitted to historical data would yield an option price under the
objective measure P, and not the pricing measure Q. We will make the sim-
plifying assumption of P = Q, arguing that a change of measure would not
alter the overall conclusions regarding the impacts of heavy tails and choice

10For more details we refer to Füss et al. (2015).
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of copula on option prices. For further discussions regarding measure change
in the context of electricity markets we refer to Burger et al. (2004), Benth and
Meyer-Brandis (2009), and Benth and Schmeck (2014).

To investigate the effects of heavy tails and choice of copula model, we
consider here the pricing of FTRs for the months June and December 2015 as
examples. The valuation date is set to t0 = 20 May 2015, which corresponds
to the end of our sample. Since we model each hour of the day separately,
we will limit ourselves to pricing monthly FTRs with delivery during one
single hour of the day, for all days in June and December. This way, we avoid
averaging effects to some extent and showcase the different behavior among
the hours of the day. Specifically, we consider hour 2, 8, 14 and 20, for all
pairs of prices, and flows in both directions. The pricing formula for e.g. the
flow direction DE→FR during each hour 2 in June is given by

VDE→FR(t0, T1, T2, h = 2) =
T2

∑
t=T1

EP
t0
[max(PFR

t − PDE
t , 0)],

where t0 =20 May 2015, T1 =1 June 2015, and T2 =30 June 2015. PFR
t and

PDE
t denote the hour 2 prices in France and Germany, respectively, for a given

day t ∈ [T1, T2].
We perform option price calculations using three different models: First,

a model with normal margins and a Gaussian copula (Model 1); second, a
model with skew t margins and a Gaussian copula (Model 2), and third, a
model with skew t margins and the preferred copula cf. Table 4 (Model 3).
By construction, Model 1 is a naive model since it imposes no heavy tails,
no asymmetry and no tail dependence. Model 2 on the other hand allows
for heavy tails but imposes symmetry and no tail dependence, while Model
3 allows for heavy tails, and can allow for tail dependence and asymmetry
(note that preferred copulas are in some cases the Gaussian copula according
to Table 4). In the interest of clarity, we summarize the characteristics of the
above-mentioned models in Table 6.

Model 1 Model 2 Model 3
Normal margins & Skew t margins & Skew t margins &

Gaussian copula Gaussian copula optimal copula
Heavy tails (margins) × X X
Tail dependence × × × or X
Asymmetric dependence × × × or X

Table 6: Model characteristics for the three different models used to compute FTR prices. The
optimal copula entering Model 3 refers to the preferred specification cf. Table 4; this model may
or may not allow for tail dependence and asymmetric dependence.

The pricing results are displayed in Tables 7 – 8, and are based on 200,000
Monte Carlo simulations from the fitted regime-switching AR–GARCH cop-
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ula models from Section 4. Price 1, 2 and 3 in Tables 7 – 8 refer to prices
obtained from Model 1, 2 and 3, respectively, and are given in EUR/MWh.
∆1 refers to the relative difference between Price 1 and 2, measuring the effect
of introducing heavy tails in the model. ∆2 refers to the relative difference
between Price 2 and 3, measuring the effect of using a better fitting copula,
which in contrast to the Gaussian copula, allows for tail dependence and in
some cases asymmetry. Notice that if the Gaussian copula was chosen as
the optimal copula cf. Table 4, no price for the corresponding option was
computed with Model 3, since Model 3 then corresponds to Model 2.

Regarding the robustness of option price estimates, we note that the same
option prices were estimated based on 100,000 and 200,000 Monte Carlo sim-
ulations, yielding estimates that are generally accurate to two or three dec-
imal places. Furthermore, the same random number generator was used to
compute option prices across competing models, thus allowing us to solely
concentrate on the effects induced by the different marginal distributions and
copulas.

According to Tables 7 and 8, introducing heavy tails can have a signifi-
cant effect in terms of magnitude, with the maximum reduction in the option
price being as high as 45%, and the maximum increase reaching 28%. In
terms of sign, the effects are mixed, which might be surprising at first. In
the case of e.g. an out-of-the-money option written on one underlying asset,
heavy tails would imply an increase in the option price, since more mass is
assigned to extreme events. In the case of spread options however, where the
payoff depends on the price differential, heavy tails might or might not can-
cel out, leading to both decreases and increases. Another factor influencing
both the sign and the magnitude is the dependence implied by the Gaussian
copula, which is not exactly the same for the models with normal margins as
for the those with skew t margins. To illustrate this variation, we compute
the Kendall’s τ implied by the models specified in Table 6. The results are
reported in Table 9, revealing differences which naturally impact the option
prices.

Also noticeable in the context of heavy tails is that when comparing the
same option in the two different flow directions, the effect is always magni-
fied for the direction that is least in-the-money. The more difference there is
between the moneyness of the options, the more difference there is in the ef-
fect of heavy tails. This is of course expected, since out-of-the-money options
are more sensitive to changes in the tail behavior of a distribution.

When considering the effects of using a better fitting copula, the results
generally imply a reduction in the option prices, with a maximum drop
amounting to 13%. As with heavy tails, the effects are magnified for out-
of-the-money options. These findings are expected if considering the isolated
effect of tail dependence: Allowing prices to move together in extreme events
lowers the probability of obtaining extreme price differences in the simulated
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5. Financial transmission rights

Kendall’s τ1 Kendall’s τ2 Kendall’s τ3

DE and FR
Hour 2 0.2454 0.2315 0.2116
Hour 8 0.2446 0.2434 0.2350
Hour 14 0.1961 0.2093 0.2126
Hour 20 0.2113 0.2124 0.2132

DE and NL
Hour 2 0.1802 0.1917 –
Hour 8 0.3149 0.2961 0.2742
Hour 14 0.1279 0.1499 –
Hour 20 0.1445 0.1397 0.1242

NL and BE
Hour 2 0.2658 0.2706 –
Hour 8 0.3035 0.2951 0.2812
Hour 14 0.2398 0.2277 0.2137
Hour 20 0.1930 0.1929 0.1941

DE and DK1
Hour 2 0.3984 0.3545 0.3452
Hour 8 0.3243 0.3070 0.3099
Hour 14 0.2883 0.3071 0.3130
Hour 20 0.2546 0.2482 –

Table 9: Kendall’s τ implied by the three models specified in Table 6, for the same pairs of prices
and hours of the day as in Tables 7 – 8.

future payoffs, which ultimately lowers the option price. Furthermore, the
moneyness of the option plays an important role in this context, since it de-
cides the importance of the joint tail behavior for the option price.

Although tail dependence is included in the effect measured by ∆2, we
stress that tail dependence is not the only influencing factor, and hence its
impact cannot be separated and measured explicitly. Equally important is
that ∆2 can include the effects of asymmetry, and simply measures the impact
of assuming a dependence structure that is different from the Gaussian one.
To emphasize this point, we again refer to Kendall’s τ computed in Table 9,
which makes the results comparable across copula models. According to
this measure, some differences are observed in the dependence implied by
Models 2 and 3. With everything else being equal, a reduction in Kendall’s τ
implies an increase in the option price, which would counteract the effects of
tail dependence. Similarly, an increase in Kendall’s τ implies a decrease in the
option price, possibly adding to the reduction implied by tail dependence.

Overall, heavy tails and a better fitting copula are most important to con-
sider in the context of out-of-the-money options - and as we can see from
Tables 7 and 8, there are many such options for the interconnected electricity
markets we analyze here.

Lastly, we note that the seasonal behavior of prices and the electricity flow
patterns discussed in Section 2 are of course reflected in the option prices. For
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the pair DE–FR for example, we observe that the direction FR→DE is more
in-the-money than DE→FR for the summer month June, during hours 2, 8
and 20. During hour 14, when solar production in Germany is at its peak,
the situation reverses. During the winter month December, FR→DE is deep
out-of-the-money compared to DE→FR, which is due to increased demand
and a high wind power production in Germany. Also for the pair DE–NL, the
fact that Netherlands is a significant importer of German power is reflected
in the option prices, with NL→DE being very cheap compared to DE→NL.

6 Forecasting of tail quantiles

To provide more empirical evidence for the proposed modeling framework,
we consider in this section the forecasting of tail quantiles as a second appli-
cation. This can be of interest to parties with physical or financial positions
in two interconnected markets, portfolio managers, and also risk managers
who wish to asses worst-case scenarios.

Clearly, the proposed regime-switching AR–GARCH copula model is a
sophisticated approach to forecasting the tail quantiles of the price spread
distributions. Therefore, aside from wishing to illustrate the effects of heavy
tails and a copula that allows for asymmetry and tail dependence, we also
find it relevant to compare the performance of the proposed copula frame-
work with a much simpler approach. We thus perform the forecasting exer-
cise with the following three models:

• First, we consider the regime-switching AR–GARCH model in Eqs. (1) –
(6) with skew t margins and a SJC copula. This model will be referred
to as Skew t/SJC.

• Second, we consider the regime-switching AR–GARCH model in Eqs. (1) –
(6) with normal margins and a Gaussian copula. This model will be
referred to as N/Gaussian.

• Third, we consider a naive approach that is very different from the
copula framework. Specifically, we apply a regime-switching AR(1)
model to the deseasonalized spread z:

zt = φst zt−1 + εt,st , εt ∼ N(0, σ2
st).

To correct the spread time series for deterministic seasonality, we apply
the seasonal function in Eq. (13). The regimes in this univariate model
are the same as before: Whenever st = 0, we are in the zero spread
(equal prices) regime; if st = 1, we are in the non-zero spread (non-
equal prices) regime. Further, we again let the regimes be determined
by a Markov chain of order one. As far as the regimes are concerned,

122



6. Forecasting of tail quantiles

the only difference from the copula approach is that whenever st = 0
in the univariate spread model, all the model parameters are zero. This
model will be referred to as Univariate.

To evaluate the forecasting power of each model, we perform out-of-
sample day-ahead forecasts of the tail quantiles for the pair DE–DK1 at hours
0, 1, . . . , 6. This choice is motivated by the high degree of asymmetry and tail
dependence obtained for this pair during most off-peak hours, cf. Fig. 5. On
one hand, forecasting with the Skew t/SJC and the N/Gaussian models en-
able us to investigate the effects of heavy tails and those of using a copula
that allows for asymmetry and tail dependence. On the other hand, employ-
ing a very different and much simpler model (the Univariate model) reveals
whether or not the copula modeling framework is at all advantageous in this
context.

Specifically, we consider the 5%, 1% and 0.5% quantiles of the spread
distributions for a period of two years (730 days), corresponding to 21 May
2013 - 20 May 2015. We employ an “expanding window” estimation, where
an out-of-sample forecast for period t + s is obtained by fitting the models to
data in the interval [1, t + s− 1]. The models are re-estimated at each step as
we progress through the out-of-sample period, and each forecast is based on
100,000 Monte Carlo simulations.

The coverage results for the forecasts are summarized in Tables 10 and 11,
where both tails of the spread distributions are considered, i.e. the 5%, 1%
and 0.5% quantile forecasts for the distribution of both DE-DK1 and DK1-DE
prices. To provide a visual example, we also plot in Fig. 7 the results obtained
for hour 0 with the Skew t/SJC model.

Date
Jun-13 Jan-14 Jul-14 Feb-15

D
K

1-
D

E
 (

E
U

R
/M

W
h)
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(a) DK1-DE Hour 0
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(b) DE-DK1 Hour 0

Fig. 7: Out-of-sample day-ahead forecasts for the 1% quantile of spread distributions with a
Skew t/SJC model. The red stars signal exceedances.

While the coverage results in Tables 10 and 11 are informative, they are
not sufficient as to draw conclusions on model adequacy. To asses the per-
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6. Forecasting of tail quantiles
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formance of the models, we hence conduct formal statistical testing. We con-
sider the three likelihood ratio tests proposed in Christoffersen (1998), namely
the test of correct unconditional coverage (LRuc), independence (LRind), and
correct conditional coverage (LRcc). While LRuc and LRind are concerned
with exceedance proportions and the order of exceedance occurrences, re-
spectively, LRcc is a complete test that enables the joint testing of coverage
and independence. When conditioning on the fist observation – as we do
here – Christoffersen (1998) shows that LRcc = LRuc + LRind.11

For the 5% out-of-sample quantile forecasts, we report in Tables 10 and 11
the p-values obtained by performing all three tests mentioned above. When
no concecutive exceedances are present, we note that the independence test
and hence the conditional coverage test are not defined. In such situations,
the p-value is set to NaN. Since the case of no consecutive exceedances is ex-
tremely common for the 1% and 0.5% quantile forecasts, we confine ourselves
to reporting the results corresponding to the test of unconditional coverage
for these quantiles.

Generally, the 5% out-of-sample quantile forecasts pass the independence
test across all models. We only encounter two cases where independence
is rejected: Once for the N/Gaussian model, and once for the Univariate
model. Although not reported in Tables 10 and 11, the independence test is
also passed for the remaining quantile forecasts, whenever this test is defined.
Thus, it is to a high extent the rejection of unconditional coverage that leads
to the rejection of conditional coverage.

To provide a clearer picture of the model performance results, we report
in Table 12 model acceptance percentages that are computed for different
groupings: Overall, for each one of the tails, across the three quantiles, and
across the seven hours of the day. For each quantile, hour of the day and tail
of the spread distribution, a model is labeled as “accepted” if all three tests
are passed (given that they are defined).

The results in Table 12 suggest that the Skew t/SJC model performs the
best, with the overall acceptance and the acceptance across tails and quantiles
always being superior to the other models. As far as acceptance across the
hours of the day is concerned, the Skew t/SJC model always outperforms the
Univariate model, and performs better or at least as good as the N/Gaussian
model. When comparing the N/Gaussian model with the Univariate model,
we find stronger empirical evidence for the former, which performs better
in all but two instances cf. Table 12. Interestingly, we also point out that
while the performance of the Skew t/SJC model is consistent across the two
tails of the distribution, the performance of the other models is asymmetric.
Specifically, the N/Gaussian performs much better when considering the 5%,

11For technical details and a thorough description of all three tests we refer the interested
reader to Christoffersen (1998).
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7. Conclusion and outlook

Acceptance percentages

Across quantiles
Overall DK1-DE DE-DK1 0.05 0.01 0.005

Skew t/SJC 86 86 86 79 93 86
N/Gaussian 69 57 81 64 79 64
Univariate 48 62 33 29 64 50

Across hours
H 0 H 1 H 2 H 3 H 4 H 5 H 6

Skew t/SJC 83 83 100 83 67 100 83
N/Gaussian 83 50 67 83 67 67 67
Univariate 67 67 33 50 33 33 50

Table 12: Acceptance percentages based on the forecast results in Table 11. A model is labeled
as “accepted” if all tests are passed, conditional on the test output being different from NaN.

1% and 0.5% quantiles of the DE-DK1 distribution as opposed to the DK1-DE
distribution, while the reverse is true for the Univariate model.

Overall, the two-year out-of-sample evaluations of tail quantile forecasts
for the DK1–DE pair strengthen further the previously drawn conclusions
regarding the usefulness of the proposed copula framework, and the impor-
tance of capturing heavy tails, asymmetric dependence and tail dependence.
The out-of-sample performance of the Skew t/SJC model is reasonable when
evaluated on its own, and superior when compared with the considered al-
ternative models. While the results are encouraging, they do leave place
for improvement. There are many changes and extensions to the proposed
regime-switching AR–GARCH copula model that are easily implementable
and may improve the tail quantile forecast performance. For example, we
mention replacing GARCH with EGARCH (see Knittel and Roberts (2005)
and Chan and Gray (2006) for the rationale behind this), considering even
more flexible copulas, e.g. copula mixtures, and allowing the copula family
to change through the out-of-sample forecasting period. We leave however
such comparisons for future study.

7 Conclusion and outlook

In this paper we propose a regime-switching AR–GARCH copula for mod-
eling pairs of day-ahead electricity prices in interconnected markets. The
regimes are observable, distinguishing the case of identical prices from the
case of non-identical prices. The AR–GARCH filters account for the serial
dependence in the conditional mean and the conditional variance, and the
copula is introduced to easily relax the assumption of normal margins, and
to investigate the dependency between prices beyond linear correlation.
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Aside from being able to accommodate the structural change in the joint
price dynamics that followed the price coupling of areas, we obtain strong
in-sample evidence for the modeling framework. The same type of regime-
switching AR–GARCH filter is applied to four pairs of prices and each hour
of the day, a total of 96 models, with all results confirming the superiority of
the skewed t distribution over the normal distribution, and also whiteness of
residuals. The copula analysis performed on the filtered data belonging to the
non-identical price regime reveals that the characterization of the dependence
structure with one single number, namely the linear correlation, is indeed not
sufficient in most of the cases. In the context of copulas, we find significant
evidence of tail dependence in all pairs of prices we consider. Moreover, we
also find evidence of asymmetry in the dependence structure.

As a first application we consider the pricing of financial transmission
rights, where the effects of heavy tails and a better fitting copula (compared
to the Gaussian one) are highlighted. We find heavy tails to have a signifi-
cant effect on option prices in terms of magnitude, but are of mixed sign. The
moneyness of the option influences the magnitude of the effect, with out-of-
the-money options being most influenced. Like in the case of heavy tails, the
choice of copula model affects out-of-the-money options the most. Gener-
ally, lower option prices are produced with the preferred copula specification
compared to the Gaussian one.

As a second application, the tail quantile forecast performance of three
competing models is evaluated. For the forecast exercise, two of the models
are copula-based, while the last model represents a much simpler and very
different approach. Forecast performance is evaluated based on the likeli-
hood ratio tests proposed in Christoffersen (1998), with the results revealing
that the best performing model is a copula-based model where heavy tails,
asymmetric dependence and tail dependence are incorporated.

Although major advances were made over the past years toward achiev-
ing the goal of a single European electricity market, the completion of such a
project lies far out in the future. Developing models for the joint dynamics of
prices in interconnected markets that comply with the present institutional
framework is hence of great relevance. However, just as the price coupling of
areas has led to a structural change, ongoing developments challenge further
keeping the models up-to-date. For example, recall that our sample window
ends on 20 May 2015, which represents the change in market coupling algo-
rithm for the CWE region (transitioning from the ATC to the more efficient
FB methodology). We wish to briefly shed some light on implications caused
by this change in the context of the future use of our proposed model. To
this end, we enlarge our sample window, allowing it to end on 25 September
2016, and fit all regime-switching AR–GARCH models to this data, confirm-
ing of course the goodness-of-fit of the skew t distribution and whiteness of
residuals. Then, we perform an analysis similar to that in Sec. 4.3, namely,
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7. Conclusion and outlook

we test for a break in the rank correlation at t∗ = 20 May 2015. Specifically,
we wish to test

H0 : ρATC = ρFB vs. H1 : ρATC 6= ρFB,

where ρATC denotes the rank correlation between filtered prices belonging to
the non-identical price regime in the interval [1, t∗], and ρFB denotes the rank
correlation in the interval (t∗, T].

We apply the test to all four pairs of prices, although the change in
methodology does not concern the DE–DK1 pair. The results are presented
in Table 13, and show significant evidence against the null of equal rank cor-
relations for the CWE pairs. In the case of DE–FR, the null is rejected 17 out
of 24 times in favor of the alternative hypothesis. In the case of DE–NL and
NL–BE, the null is rejected 8 and 12 times, respectively. As expected, there
is not enough evidence for a break in the case of DE–DK1 at any hour of the
day.

In terms of our modeling framework, such a break can be accommodated
by e.g. retaining the same copula model, but allowing the copula dependence
parameter to change between the two periods. Also interesting to notice is
that the transition to the FB methodology generally implies a stronger depen-
dence for the CWE pairs. With everything else being equal, the continuation
of such developments in the future would imply that the effects of e.g. tail
dependence highlighted in Sections 4.4, 5 and 6 will be amplified, and thus
be even more important to account for. At the present time, in-depth studies
of the tail dependence after the launch of the FB market coupling are not pos-
sible due to data shortage, and we leave such extensions to future research.

Finally, we mention that spot electricity prices have a special feature in the
sense that a panel of hourly prices is observed over time. In this paper, we
propose a model that only considers each hour of the day separately. There is
however a lot of cross-sectional dependence for the hourly prices across each
day, and this dependence is not accounted for. As a topic for further research,
it would be interesting to consider how this cross-sectional dependence can
be modeled in the context of copulas, by e.g. applying vine copulas.
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A Additional tables and figures

A.1 Order of marginal models

Hour Order of marginal models
DE–FR DE–NL NL–BE DE–DK1

0 P = 5, Q = 0 P = 4, Q = 0 P = 6, Q = 0 P = 5, Q = 1
1 P = 3, Q = 0 P = 4, Q = 0 P = 6, Q = 0 P = 5, Q = 0
2 P = 3, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 5, Q = 1
3 P = 3, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 5, Q = 1
4 P = 3, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 5, Q = 0
5 P = 3, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 4, Q = 1
6 P = 6, Q = 0 P = 6, Q = 0 P = 7, Q = 0 P = 7, Q = 1
7 P = 6, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 6, Q = 0
8 P = 6, Q = 0 P = 7, Q = 0 P = 6, Q = 0 P = 6, Q = 0
9 P = 7, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 6, Q = 0
10 P = 7, Q = 0 P = 7, Q = 0 P = 7, Q = 0 P = 3, Q = 0
11 P = 7, Q = 0 P = 7, Q = 0 P = 7, Q = 0 P = 3, Q = 0
12 P = 4, Q = 0 P = 7, Q = 0 P = 6, Q = 0 P = 6, Q = 0
13 P = 6, Q = 0 P = 7, Q = 0 P = 7, Q = 0 P = 6, Q = 0
14 P = 7, Q = 0 P = 7, Q = 0 P = 7, Q = 0 P = 6, Q = 0
15 P = 7, Q = 0 P = 7, Q = 0 P = 6, Q = 0 P = 7, Q = 0
16 P = 7, Q = 0 P = 6, Q = 0 P = 7, Q = 0 P = 7, Q = 0
17 P = 7, Q = 0 P = 7, Q = 0 P = 7, Q = 0 P = 6, Q = 0
18 P = 6, Q = 0 P = 6, Q = 0 P = 7, Q = 1 P = 7, Q = 0
19 P = 6, Q = 0 P = 6, Q = 0 P = 7, Q = 1 P = 6, Q = 0
20 P = 6, Q = 0 P = 6, Q = 0 P = 6, Q = 0 P = 6, Q = 0
21 P = 6, Q = 0 P = 6, Q = 0 P = 7, Q = 0 P = 6, Q = 0
22 P = 3, Q = 0 P = 4, Q = 0 P = 6, Q = 0 P = 6, Q = 0
23 P = 3, Q = 0 P = 3, Q = 0 P = 6, Q = 0 P = 4, Q = 0

Table 14: Selected order for all marginal models based on BIC. The variable P refers to the
order of autoregression and the variable Q refers to the order of cross-equation effects, cf.
Eqs. (1) and (4).
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A.2 Parameter estimates for selected models

Model for the pair DE–NL hour 8

Equal price regime (st = 0) Non-equal price regime (st = 1)
Area 1: DE Area 2: NL

Conditional mean (optimal order P = 7, Q = 0)

φ̂
(0)
1 0.3451 (0.0424) φ̂

(1)
1 0.2923 (0.0573) φ̂

(2)
1 0.2419 (0.0517)

φ̂
(0)
2 0.1753 (0.0419) φ̂

(1)
2 0.0905 (0.0573) φ̂

(2)
2 0.1469 (0.0507)

φ̂
(0)
3 0.0588 (0.0381) φ̂

(1)
3 -0.0197 (0.0571) φ̂

(2)
3 -0.0581 (0.0501)

φ̂
(0)
4 0.0588 (0.0374) φ̂

(1)
4 0.0277 (0.0515) φ̂

(2)
4 0.0950 (0.0493)

φ̂
(0)
5 0.0162 (0.0362) φ̂

(1)
5 0.0073 (0.0516) φ̂

(2)
5 0.0093 (0.0482)

φ̂
(0)
6 0.1306 (0.0345) φ̂

(1)
6 0.1279 (0.0516) φ̂

(2)
6 0.1192 (0.0468)

φ̂
(0)
7 0.0898 (0.0340) φ̂

(1)
7 0.0454 (0.0481) φ̂

(2)
7 0.1195 (0.0447)

Conditional variance

ω̂(0) 9.2195 (4.6335) ω̂(1) 36.7656 (13.7786) ω̂(2) 8.6863 (7.5150)
α̂(0) 0.1655 (0.0672) α̂(1) 0.2444 (0.1480) α̂(2) 0.1514 (0.0991)
β̂(0) 0.5524 (0.1299) β̂(1) 0.4139 (0.2149) β̂(2) 0.7432 (0.1795)

Marginal distribution (skew t)

ν̂(0) 5.7397 (1.6234) ν̂(1) 4.4073 (1.0694) ν̂(2) 5.4083 (1.5802)
λ̂(0) 0.0847 (0.0431) λ̂(1) 0.0248 (0.0518) λ̂(2) 0.1642 (0.0514)

Table 15: Parameter estimates for the DE–NL hour 8 model, with s.e. given in parenthesis.

Model for the pair NL–BE hour 8

Equal price regime (st = 0) Non-equal price regime (st = 1)
Area 1: NL Area 2: BE

Conditional mean (optimal order P = 6, Q = 0)

φ̂
(0)
1 0.3690 (0.0376) φ̂

(1)
1 0.3421 (0.0700) φ̂

(2)
1 0.3533 (0.0698)

φ̂
(0)
2 0.1643 (0.0369) φ̂

(1)
2 0.2277 (0.0704) φ̂

(2)
2 0.1006 (0.0633)

φ̂
(0)
3 0.1028 (0.0350) φ̂

(1)
3 -0.0410 (0.0731) φ̂

(2)
3 0.1039 (0.0600)

φ̂
(0)
4 0.0474 (0.0321) φ̂

(1)
4 -0.0302 (0.0665) φ̂

(2)
4 0.1308 (0.0536)

φ̂
(0)
5 -0.0182 (0.0303) φ̂

(1)
5 0.1502 (0.0648) φ̂

(2)
5 0.0374 (0.0526)

φ̂
(0)
6 0.1561 (0.0279) φ̂

(1)
6 0.2186 (0.0648) φ̂

(2)
6 0.1237 (0.0504)

Conditional variance

ω̂(0) 15.7739 (4.6886) ω̂(1) 82.7166 (15.1057) ω̂(2) 23.0052 (9.8562)
α̂(0) 0.2673 (0.0769) α̂(1) 0.1863 (0.1492) α̂(2) 0.4751 (0.1965)
β̂(0) 0.3470 (0.1157) β̂(1) 0.1467 (0.1932) β̂(2) 0.2754 (0.2018)

Marginal distribution (skew t)

ν̂(0) 6.1638 (1.6688) ν̂(1) 6.0508 (3.1611) ν̂(2) 4.1789 (1.3552)
λ̂(0) 0.0946 (0.0400) λ̂(1) 0.0561 (0.0661) λ̂(2) 0.0706 (0.0599)

Table 16: Parameter estimates for the NL–BE hour 8 model, with s.e. given in parenthesis.
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A. Additional tables and figures

Model for the pair DE–DK1 hour 8

Equal price regime (st = 0) Non-equal price regime (st = 1)
Area 1: DE Area 2: DK1

Conditional mean (optimal order P = 6, Q = 0)

φ̂
(0)
1 0.3678 (0.0605) φ̂

(1)
1 0.3419 (0.0381) φ̂

(2)
1 0.3709 (0.0434)

φ̂
(0)
2 0.1709 (0.0664) φ̂

(1)
2 0.1432 (0.0366) φ̂

(2)
2 0.0463 (0.0407)

φ̂
(0)
3 0.0586 (0.0624) φ̂

(1)
3 0.0721 (0.0392) φ̂

(2)
3 0.0854 (0.0372)

φ̂
(0)
4 0.0242 (0.0602) φ̂

(1)
4 0.0226 (0.0368) φ̂

(2)
4 0.0338 (0.0381)

φ̂
(0)
5 0.0862 (0.0574) φ̂

(1)
5 0.0054 (0.0375) φ̂

(2)
5 0.0426 (0.0369)

φ̂
(0)
6 0.1507 (0.0540) φ̂

(1)
6 0.1094 (0.0351) φ̂

(2)
6 0.0792 (0.0446)

Conditional variance

ω̂(0) 0.0008 (10.1640) ω̂(1) 4.2682 (3.8344) ω̂(2) 70.2888 (20.4931)
α̂(0) 0.1323 (0.0718) α̂(1) 0.1811 (0.0556) α̂(2) 0.1715 (0.1159)
β̂(0) 0.8325 (0.1479) β̂(1) 0.7515 (0.0826) β̂(2) 0.1856 (0.2307)

Marginal distribution (skew t)

ν̂(0) 6.5004 (3.5006) ν̂(1) 5.7861 (1.2491) ν̂(2) 3.7827 (0.5552)
λ̂(0) 0.0417 (0.0644) λ̂(1) 0.0368 (0.0424) λ̂(2) 0.2301 (0.0358)

Table 17: Parameter estimates for the DE–DK1 hour 8 model, with s.e. given in parenthesis.

A.3 Model check for selected models

Lag
0 20 40 60 80 100

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

(a) DE-acf for η
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(b) DE-acf for η2
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(c) NL-acf for η
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(d) NL-acf for η2
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Fig. 8: Sample autocorrelation and quantile plots of standardized residuals resulting from fitting
regime-switching AR–GARCH models to the DE–NL pair for hour 8.
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(c) BE-acf for η
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Fig. 9: Sample autocorrelation and quantile plots of standardized residuals resulting from fitting
regime-switching AR–GARCH models to the NL–BE pair for hour 8.
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(c) DK1-acf for η
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Fig. 10: Sample autocorrelation and quantile plots of standardized residuals resulting from fit-
ting regime-switching AR–GARCH models to the DE–DK1 pair for hour 8.
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1. Introduction

ABSTRACT

The recent introduction of wind power futures written on the German
wind power production index has brought with it new interesting chal-
lenges in terms of modeling and pricing. Some particularities of this
product are the strong seasonal component embedded in the underly-
ing, the fact that the wind index is bounded from both above and below,
and also that the futures are settled against a synthetically generated
spot index. Here, we consider the non-Gaussian Ornstein-Uhlenbeck
type processes proposed by Barndorff-Nielsen and Shephard (2001) in
the context of modeling the wind power production index. We discuss
the properties of the model and estimation of the model parameters.
Further, the model allows for an analytical formula for pricing wind
power futures. We provide an empirical study, where the model is
calibrated to 37 years of German wind power production index that
is synthetically generated assuming a constant level of installed capac-
ity. Also, based on one year of observed prices for wind power futures
with different delivery periods, we study the market price of risk. Gen-
erally, we find a negative risk premium whose magnitude decreases as
the length of the delivery period increases. To further demonstrate the
benefits of our proposed model, we address the pricing of European
options written on wind power futures, which can be achieved through
Fourier techniques.

1 Introduction

Following the significant expansion in wind turbine installations that some
European countries have experienced over the past years, the demand for
financial instruments that can be used to address the problem of volumetric
risk in wind power generation has grown. This has led to the launch of a
standardized product written on the wind power production index, namely
the so-called wind power futures (or wind index futures). Currently, wind
power futures can be traded on NASDAQ OMX and the European Energy
Exchange (EEX) on the German wind power production index. The index
is obtained by measuring the German wind power generation relative to the
available installed capacity; hence, the index has a lower bound of 0 and an
upper bound of 1, corresponding to a 0% and a 100% wind power utilization,
respectively.

To clarify the payoff structure of wind power futures, let us denote by
F(t, T) the wind power futures price at time t and delivery during day T,
with 0 ≤ t < T and 0 ≤ F(t, T) ≤ 1. Further, let P(T) be the wind index
measured at day T. Then, a long position in a wind power futures contract
entered at time t ≤ T for delivery at T yields the payoff

24(P(T)− F(t, T)) · x,
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where 24 denotes the usual number of hours in a day and x denotes a known
fixed tick size. For the wind power futures traded at NASDAQ OMX and
EEX, x = 100 EUR. Moreover, the futures are settled against an externally
provided spot index P(T), which is synthetically generated based on weather
data and an individual power curve for every grid point in Germany.

Natural sellers of wind power futures are the wind power producers and
companies with considerable wind park portfolios, as they are interested in
protection against the low wind scenarios, which are likely to lower rev-
enues. Although one could argue that day-ahead electricity prices tend to
increase in times of low wind, wind power generators usually receive a fixed
price per generated unit of electricity, and do not participate in the whole-
sale market themselves. Hence, volumetric risk is the only risk source left to
be addressed, and wind power futures can be an obvious tool for stabilizing
the revenue of the wind power generators. Typical buyers are conventional
power plants acting in e.g. the day-ahead market, whose profitability drops
in times of high wind due to the negative relation between wind power pro-
duction and spot electricity prices.

In this paper, we propose a non-Gaussian Ornstein-Uhlenbeck process in
the spirit of Barndorff-Nielsen and Shephard (2001) to model the wind power
production index. The model is very straightforward, allowing for an easy
estimation of the parameters and analytical pricing of wind power futures,
with the latter facilitating the study of the market price of risk. Based on
one year of observed German wind power futures curves, we perform an
empirical analysis of the risk premia in this newly established market.

Wind power futures are characterized as weather derivatives, and fall
in this category together with derivatives written on temperature, rainfall,
snowfall, humidity, etc. While the existing literature on temperature deriva-
tives is extensive and broad in terms of modeling approach (see e.g. Davis
(2001), Brody et al. (2002), Cao and Wei (2004), Campbell and Diebold (2005),
Platen and West (2005), Härdle and Cabrera (2012) and Benth and Benth
(2011)), literature related specifically to wind derivatives is very scarce. To
the best of our knowledge, the first study concerned with the pricing of wind
derivatives is that of Benth and Benth (2009), which was motivated by the
introduction of futures and options on wind speed indexes at different wind
farm locations in the US back in 2007. However, trade in these products never
really picked up, explaining perhaps the scarcity of related studies.

Almost ten years after the first attempt to establish a market for wind
derivatives, the introduction of the German wind power futures on NAS-
DAQ OMX and EEX awakens interest again. The study of Gersema and
Wozabal (2017) is the first to provide a thorough introduction to the Ger-
man wind power futures market, the market players and their risks. Fur-
ther, Gersema and Wozabal (2017) propose an equilibrium pricing model,
and based on different case studies they conclude that a negative risk pre-
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2. Data presentation

mium is to be expected in wind power futures markets. A second related
study concerning wind power futures is that of Pircalabu and Jung (2017),
where the authors focus on the hedging benefits of wind power futures in
the context of energy trading companies entering into long-term agreements
with wind power generators, where the fluctuating wind power production
is bought at a pre-determined fixed price. Here, wind power futures are not
the main focus of the analysis, and they are thus treated on a conceptual
basis, disregarding some practical aspects concerning the data foundation in
their pricing application. In this paper, we shall address this aspect in detail,
highlighting its importance.

The paper is structured as follows: In Section 2, we present the data and
comment on key features as to motivate the model choice. In Section 3,
we introduce the model for the wind power production index and provide
an empirical study where the model is applied to German data. Analytical
futures prices are derived in Section 4, and based on one year of market
prices for wind power futures with different delivery periods, the market
price of risk is studied. In Section 5, we elaborate on further applications of
the proposed model in derivatives valuation. Section 6 concludes.

2 Data presentation

Since wind power futures are only traded on the German wind power index
at the moment, the empirical analysis performed in this paper is based on
German data. We consider a time series of daily wind power production
indexes for the German market, which was synthetically constructed by Me-
teoGroup for a period of 37 years (1 January 1979 to 31 December 2015). The
synthetic index is displayed in Fig. 1, and measures how the utilization of
installed wind power capacity would have looked like in the German market
zone in the past, conditional on the present level of available capacity and geo-
graphical location of wind turbines. Specifically, the present level we consider
here corresponds to September 2016. To construct such an index, a bottom-
up approach was implemented based on historical weather data and power
curves. Clearly, since the wind index measures the wind power production
relative to the installed capacity, it must be bounded between zero and one.
For the data in Fig. 1, the lowest and highest values recorded are 0.35% and
83.05%, respectively.

In the context of pricing wind power futures, which is the main focus
of the present paper, we argue that fitting a model to the type of data in
Fig. 1 seems much more reasonable than considering the historical evolution
of the wind index. This is an essential point, since the wind power futures
price today is clearly not influenced by how the available installed capacity
evolved over time in Germany, but rather on the present and ideally the
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future installed capacity level.
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Fig. 1: Index constructed based on the total installed wind power capacity observed in September
2016.

2.1 Seasonality

Aside from the wind index being bounded on [0,1], another key feature is the
yearly seasonality we observe in the data illustrated in Fig. 1. To emphasize
the annual pattern, we complement the time series plot in Fig. 1 with the
empirical autocorrelation function of the index in Fig. 2(a). Following the
related literature (see e.g. Benth et al. (2008), Härdle and Cabrera (2012),
and Benth and Benth (2011)), the yearly seasonality can be addressed by the
following seasonality function:

Λ(t) = a1 + a2 sin(2πt/365) + a3 cos(2πt/365). (1)

Fitting this function to the wind index by ordinary least squares yields the
parameter estimates reported in Table 1. In Fig. 2(b), the wind power pro-
duction index is plotted together with the fitted seasonal function. For better
clarity, we display a snapshot of the last 10 years, i.e., from year 2006 to 2015.

Estimate Standard error

â1 0.2164 0.0014
â2 0.0102 0.0020
â3 0.0839 0.0020

Table 1: OLS estimates for the parameters of the seasonal function.

3 A model for the wind power production index

Motivated by the two key features of the wind index enhanced in Section 2,
i.e., boundedness on [0,1] and yearly seasonality, we specify a model for
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3. A model for the wind power production index
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Fig. 2: Empirical autocorrelation function of the synthetic wind power production index and
fitted seasonal function.

the wind power production index as follows. Let (Ω,F , P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions.
We denote by P the wind power production index obtained by measuring the
wind power production relative to the available installed capacity, implying
that P(t) ∈ [0, 1] for all t.

We define P(t) as
P(t) = Λ(t) exp(−X(t)), (2)

where Λ(t) describes the deterministic seasonal component of the wind
power production index and X(t) follows a non-Gaussian Ornstein-
Uhlenbeck process as in the stochastic volatility model proposed by
Barndorff-Nielsen and Shephard (2001). Specifically,

dX(t) = α(µ− X(t))dt + dL(t), (3)

with L being a driftless subordinator, and µ > 0, α > 0 denoting two con-
stants. From standard theory, the solution of the Ornstein-Uhlenbeck process
is

X(t) = X(0)e−αt + µ(1− e−αt) +
∫ t

0
e−α(t−s)dL(s),

where X(0) = ln(Λ(0)/P(0)). The constant µ is connected to Λ(t), and its
purpose is to ensure that P(t) never exceeds 1. In order to elaborate on this,
we include the following Proposition regarding the stationarity of X(t).

Proposition 3.1. Let `(dz) denote the Lévy measure corresponding to the Lévy
process L(t). If ∫

|z|>2
ln |z|`(dz) < ∞,
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then X(t) given by the Ornstein-Uhlenbeck process in Eq. (3) has a limiting distri-
bution. The stationary solution of X(t) is

X(t) = µ +
∫ t

−∞
e−α(t−s)dL(s),

where L here is a two-sided Lévy process.

We refer to Sato (1999), Thm. 17.5, for a proof and more details on this re-
sult. Regarding the stationary solution X, we refer to an extensive discussion
in Basse-O’Connor et al. (2014).

Returning to the connection between µ and Λ(t), let M = max(Λ(t)).
Then, we must have that

max(P(t)) = max(Λ(t) exp(−X(t))

≤ M exp(−min(X(t))).

Owing to L being a subordinator, it follows from the stationary solution in
Proposition 3.1 that X(t) ≥ µ. Further, since we also have that 0 ≤ P(t) ≤ 1,
we choose µ such that M exp(−µ) = 1. Thus, we let

µ = ln M, (4)

and obtain an exact upper bound of 1 as a possible case. This way of intro-
ducing seasonality in the model has its advantages and disadvantages, and
we refer to Appendix A for a detailed discussion on the subject.

Next, we state the limiting distribution of X(t) − µ for a specific case,
since this will be used in our empirical study.

Proposition 3.2. If L(t) is a compound Poisson process with exponentially dis-
tributed jumps,

L(t) =
N(t)

∑
k=1

Jk, (5)

where N(t) is a Poisson process with frequency λ and Jk are independent identically
distributed exponential random variables with density function

f J(x) = κe−κx, (6)

then the limiting distribution of X(t)− µ, where X(t) evolves according to Eq. (3),
is the Gamma distribution with density function given by

fΓ(x) =
κλ/αxλ/α−1e−κx

Γ( λ
α )

. (7)

Proof. See Appendix B.1.
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3. A model for the wind power production index

While the model proposed in this section captures key features of the
wind index, there are other alternatives when it comes to modeling data
with range [0,1]. In particular, we mention the Jacobi processes. A Jacobi
process, which is in fact an extension of the Heston model, will have values
in any desirable positive interval [Ackerer et al. (2017)]. In our case, we could
consider a process of the type

dP(t) = −a(P(t)− b)dt +
√

cP(t)(1− P(t))dW(t),

where a > 0, c > 0, 0 < b < 1 and W denotes a Brownian motion.
On one hand, the Jacobi approach is simpler compared to our proposed

model in that the wind index is modeled directly, and the Lévy process is re-
placed by a Brownian motion. On the other hand, since we let ln (Λ(t)/P(t))
be an Ornstein-Uhlenbeck, our approach is advantageous from a calibration
perspective. In fact, estimation of model parameters for the Jacobi process
is not straightforward cf. Gouriéroux and Valéry (2002). Furthermore, the
marginal distribution of the Jacobi process is fixed to the beta distribution,
whereas our model allows for great flexibility in choosing marginal distri-
butions. In terms of derivatives pricing, both models have their advantages
when it comes to the pricing of wind power futures. For the Jacobi process,
making use of its polynomial property could result in simple (possibly ex-
plicit) expressions for the futures price. Regarding our proposed process,
explicit pricing formulas for wind power futures are attainable, as we shall
illustrate later in the paper. Unlike our model however, it is unclear how a
measure change is included in the Jacobi model as to preserve the Jacobi-
structure. In light of the discussion above, we favor the model in Eqs. (2)-(3),
and shall not pursue the Jacobi processes in the present paper. Nevertheless,
we stress that the Jacobi approach is an interesting and unexplored alterna-
tive for modeling the wind power production index.

3.1 An empirical analysis on German wind index data

In this section, we turn to the empirical study of the German wind index
time series in Fig. 1. Recalling that the seasonal function entering Eq. (2) has
already been estimated in Section 2.1, an estimate for µ immediately follows
from Eq. (4). We obtain M̂ = 0.3009, implying that

µ̂ = −1.2010. (8)

Using the expression for P(t) in Eq. (2), the variable X(t) − µ is then con-
structed by

X(t)− µ = −
(

ln
(

P(t)
Λ(t)

)
+ µ

)
. (9)
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According to Appendix A, our way of incorporating seasonality in the model
introduces the potential of having

X(t)− µ < 0. (10)

When considering the time series X(t)− µ, we do indeed observe negative
values; however, the percentage of negative data points is very low, corre-
sponding to 0.95%, which we find acceptable.

Next, we consider the parameter α entering the dynamics of the X(t)
process cf. Eq. (3), and note that

X(t + 1)− µ = e−α(X(t)− µ) +
∫ t+1

t
e−α(t+1−s)dL(s). (11)

Clearly, it follows from Eq. (11) that α can be obtained by fitting an AR(1)
model to X(t)− µ, and by using the relation φ = exp(−α), where φ denotes
the slope coefficient in the AR(1). However, this procedure requires residuals
to be normally distributed, which is not the case here. Recalling that the lag
s correlation between observations s periods apart can be expressed as

Corr(X(t + s), X(t)) = φs = e−αs,

we fit instead the function exp(−αt) to the sample autocorrelation of X(t)− µ
using nonlinear least squares1, and obtain

α̂ = 0.5455 (12)

with a standard error of 0.0011. For comparison purposes, we provide in Ap-
pendix C detailed results from implementing the AR(1)-estimation approach,
including a residual analysis.

To get an idea of the goodness-of-fit of the proposed exponential function,
we plot in Fig. 3 the empirical autocorrelation function together with the
fitted exponential. The fit is satisfactory, capturing rather well the sample
autocorrelations at the first lags, which are also the most significant. We do
however note that the fitted exponential drops to zero slightly quicker than
the sample autocorrelation does.

The remaining part of the fitting procedure relates to estimating the pa-
rameters of the stationary distribution of X(t)− µ, i.e. the Gamma distribu-
tion cf. Proposition 3.2. The choice of a Gamma distribution is motivated by
its correspondence to an L(t) being a compound Poisson process with expo-
nential jumps, as well as its reasonable description of the data which we shall
illustrate shortly.

Due to the presence of dependence, fitting the Gamma distribution to
the actual data (the positive part) would not necessarily yield accurate esti-
mates. Consequently, we wish to fit the Gamma distribution to an iid sample

1We applied the nlinfit function in Matlab.
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Fig. 3: Fitted exponential to the empirical autocorrelation function of X(t)− µ.

generated from the actual data. To achieve this, we consider the ‘opposite’
of a block bootstrap, in the sense that we do not wish to generate a boot-
strapped sample that preserves the autocorrelation structure the we observe
in the data; on the contrary, we wish to ensure independence. Specifically,
we follow the procedure described below to obtain a sample with the desired
properties:

1. Estimate an optimal block-length l by following the procedure in Politis
and White (2004) and Patton et al. (2009).2

2. Draw a number x1 ≥ 0 from the empirical distribution of X(t)− µ and
let B1,l = {x̃1, x̃2, . . . , x̃l} denote the block consisting of l consecutive
indexes, with x̃1 corresponding to the position of x1 in X(t)− µ.

3. Let T̃ equal the length of the original time series (T̃ = 13, 514 cf. Fig. 1)
and repeat the following for j = 2, . . . , T̃.

(a) Draw (with replacement) a new number zj ≥ 0 from the empirical
distribution of X(t)− µ, and let z̃j be the corresponding index.

(b) If z̃j ⊆ Bj−1,l , discard the draw and repeat step (a). Otherwise, set
xj = zj, Bj,l = {x̃j, . . . , x̃j+l−1} and proceed.

We implement the above procedure with l̂ = 45, and fit a Gamma distribu-
tion to the generated bootstrap sample of the data of length T̃. Stressing that
the parameter α in Eq. (3) coincides with α in Eq. (7), we retrieve λ̂ and κ̂ con-
ditional on α̂ cf. Eq. (12). By repeating this N = 10, 000 times, a bootstrapped
distribution of {(λ̂i, κ̂i)}N

n=1 is produced. Based on these bootstrapped dis-
tributions, we then obtain the estimates reported in the first column block of

2The procedure is intended for e.g. carrying out the so-called stationary block bootstrap
introduced in Politis and Romano (1994), which is generally applicable for stationary weakly
dependent time series.
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Table 2. For comparison, we also fit a Gamma distribution to the actual data
(the positive part). The results are displayed in the second column block of
Table 2, and we find that they are very similar to the ones obtained with the
bootstrap method. To provide some evidence for the goodness-of-fit of the
Gamma distribution, we plot in Fig. 4 an example of a bootstrapped sample
of the data and the empirical distribution of X(t) − µ, together with corre-
sponding fitted Gamma distributions. Disregarding the few negative values
in the empirical distribution of X(t) − µ, the results show that the Gamma
distribution provides an acceptable fit to the data.

Bootstrap procedure Empirical distribution of X(t)− µ

Estimate Standard error Estimate Standard error

λ̂ 1.3649 0.0183 1.3645 0.0157
κ̂ 1.6201 0.0207 1.6187 0.0206

Table 2: Parameter estimates for the Gamma distribution, conditional on α̂.
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Fig. 4: Bootstrapped and empirical distribution of X(t) − µ together with the corresponding
fitted Gamma distribution.

We remark in passing that other stationary distributions could be chosen
as long as they are within the class of self-decomposable distributions. How-
ever, a different choice of a stationary distribution does not always result in
the Lévy process being easily characterisable, as is the case with the Gamma
distribution. For detailed discussions on self-decomposability, we refer the
interested reader to Barndorff-Nielsen and Shephard (2001) and Halgreen
(1979).

Based on the empirical results obtained in this section, we conclude that
the model proposed in Eqs. (2)-(3) provides a good overall fit and is thus a
reasonable model for the German wind power production index.
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4 Pricing of wind power futures

Motivated by the recent introduction of futures written on the German wind
power production index, we derive in this section futures prices based on our
proposed model. We denote by F(t, T) the wind power futures price at day
t ≥ 0, with delivery at day T ≥ t. As it is usual in these types of markets,
if we want to consider martingale pricing, we must define the futures price
as the conditional expectation of the wind index at delivery, since the buy-
and-hold argument does not hold. The expectation is not to be taken under
the objective measure P, but under a pricing measure Q that is equivalent
to P, and hence, Q-dynamics for the wind power production index must be
established.

Since wind is naturally not a tradable asset, there are many potential mar-
tingale measures Q. In order to choose such one, we consider here the class
of parametrized equivalent measures that can be obtained from the Esscher
transform [Esscher (1932)]. Restricting our discussion to a constant market
price of risk which we shall denote by θ, and following Benth et al. (2008),
we define the probability Q through

dQ

dP

∣∣∣∣
Ft

= exp
(

θL(t)− ψL(1)(−iθ)t
)

, (13)

with ψL(1) being the cumulant function of L(1) defined as

ψL(1)(x) = ln E[eixL(1)]. (14)

Furthermore, to ensure that the Esscher transform is well-defined, we assume
that there exists a non-negative constant c such that

E[ecL(1)] < ∞. (15)

Hence, the Esscher transform is well-defined for all θ ≤ c.
Narrowing the discussion down to our context, where we let L(t) be a

compound Poisson process with exponentially distributed jumps, the cumu-
lant function of L(1) becomes

ψL(1)(x) = λ
ix

κ − ix
. (16)

For a detailed derivation of this result we refer to the proof in Appendix B.1.
Also, since we have established that the limiting distribution is the Gamma
distribution, we get explicit conditions for the non-existence of the cumulant,
as we shall illustrate shortly.

In the following proposition, we derive an explicit expression for the fu-
tures price.
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Proposition 4.1. Let 0 ≤ t ≤ T and assume that P(t) and X(t) evolve according
to the model in Eq. (2) and Eq. (3), respectively. Further, let L(t) be a compound
Poisson process as specified in Proposition 3.2. Assuming that the exponential mo-
ment condition in Eq. (15) holds for a c ≥ 0, we have that the wind power futures
price F(t, T) is given by

F(t, T) = Λ(T)Hθ(t, T)
(

P(t)
Λ(t)

)exp(−α(T−t))
, (17)

where

Hθ(t, T) = exp
(
−µ(1− e−α(T−t))

)(κθ + e−α(T−t)

κθ + 1

)λθ /α

,

and

κθ = κ − θ,

λθ =
λκ

κ − θ
.

Proof. See Appendix B.2.

Since P(t) ≤ 1, it follows that EQ[P(T)|Ft] ≤ 1, and so F(t, T) ≤ 1;
moreover, if P(t) ≥ 0, we also have that F(t, T) ≥ 0.

Considering the expression for F(t, T) in Proposition 4.1, we note that
the condition θ < κ must be imposed to ensure exponential integrability of
L and thus the existence of an Esscher transform. Since the estimated κ is
positive cf. Table 2, we have no sign restriction on the market price of risk
θ. Also note that while the distributional properties of the jump process
remain unchanged, the jump intensity and jump size are impacted by the Es-
scher transform: L(t) is still a compound Poisson process with exponentially
distributed jumps, but now with intensity λθ and mean jump size 1/κθ . A
positive θ will emphasize the jump intensity and the mean jump size, while
a negative θ will have the opposite effect.

According to Eq. (17), the shape of the futures curve T → F(t, T) depends
explicitly on the seasonal function Λ, a function Hθ that incorporates the
market price of risk θ and a term that includes today’s spot wind power
index P(t). The seasonal component gives a contribution to the futures curve
corresponding to the fitted seasonal function plotted in Fig. 2(b).

To illustrate the contribution from the second term entering the expression
for F(t, T), we plot in Fig. 5 the evolution of Hθ(t, T) as a function of θ for
five different maturities, and using the parameter estimates for α, λ and κ
obtained in Sec. 3.1 for the German data. When considering the different
maturities T, we observe that Hθ(t, T) converges very fast to a fixed shape as
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T increases; with no market price of risk, that is θ = 0, the contribution from
the second term is very close to 1 meaning that the futures price is almost
unaffected by this term. Generally, we observe that a negative θ implies a
value of Hθ(t, T) > 1 and hence an increase in the futures price. Equivalently,
a positive θ implies a decrease in the futures price.
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Fig. 5: Values of Hθ(t, T) for θ ∈ [−1.5, 1.5] and different maturity periods. α, λ and κ are fixed
to the estimated values obtained in Sec. 3.1.

Unlike the first two terms, the third term in Eq. (17) gives rise to a stochas-
tically varying shape for the futures curve in the short end. As the time to
maturity increases, this term will either decrease or increase to 1 depending
on whether P(t) > Λ(t) or P(t) < Λ(t). To depict this behavior, we set t = 0
and α to its estimated value from Sec. 3.1, and plot in Fig. 6 two situations:
First, we let P(0) = 0.40 and Λ(0) = 0.30 and second, we let P(0) = 0.20 and
Λ(0) = 0.30.
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Fig. 6: The shape of the third term entering the expression for the futures price in Eq. (17). We
consider the case where Λ(0) = 0.30, and P(0) = 0.20 and P(0) = 0.40, respectively.

Combining the three terms discussed above, we obtain two futures curves
which we plot in Fig. 7. The same values for Λ(0) and P(0) as in Fig. 6 are
employed, with θ = 0 and the parameter estimates obtained for the German
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data. On the short end, the shape of the futures curve is highly influenced
by the behavior of the contributing term from Fig. 6. On the long end, the
shape is mostly influenced by the seasonal function, as F(t, T) ∼ vΛ(T) for a
constant v and T � t. The decreasing pattern of both curves in Fig. 7 in the
long end is due to the yearly seasonal cycle and the fact that the initial value
of the seasonality curve, i.e. Λ(0), corresponds to data as of 1 January. We
stress that the annual pattern of the term structure is not clear in Fig. 7 as we
restrict our attention to 100 days.
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Fig. 7: Theoretical futures curves implied by the proposed model fitted to the German data. The
market price of risk θ is set to zero, and the start values for Λ(0) and P(0) set to illustrate the
same instances as in Fig. 6.

Since the market price of risk is rarely zero in reality, we also investigate
the contribution to the futures curve implied by θ = ±0.1; that is, we again
compute Hθ(t, T), but now for two fixed values of θ and maturities T ∈ [1, 50].
The results are displayed in Fig. 8, showing that the contribution of a constant
market price of risk θ 6= 0 corresponds to a function that is either decreasing
or increasing exponentially.

4.1 An empirical study of the market price of risk

Since wind power futures on the German wind power index have been traded
for a while now, historical futures prices quoted in the market are available,
allowing us to perform an empirical study of the market price of risk. Like
with commodity futures such as power or gas futures, delivery periods for
wind power futures are usually an entire week, month, year, etc. This is in
contrast with the type of curve implied by our proposed model, which is
smooth and made up of daily futures prices (contracts with non-overlapping
delivery periods). To convert the single-day delivery prices F(t, T) obtained
with our model to prices of contract types quoted in the market, we assume
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Fig. 8: Contribution of a constant market price of risk to the futures curve. Here, we consider
the cases θ = ±0.1.

that

f (t, T1, T2) =
1

T2 − T1 + 1

T2

∑
τ=T1

F(t, τ),

where T1 and T2 denote start and end delivery dates, respectively.
As we shall illustrate shortly, wind power futures prices are given in

EUR/wph (wind production hour) with a tick size fixed to EUR 100, which is
used to convert differences between futures and spot values into a monetary
measure (see NASDAQ OMX (2017)). Given a wind power futures contract
with delivery during e.g. a week, a difference of 0.01 (1%) between the value
of the futures contract at time t and the average realized index for the same
delivery will yield a profit or loss of 1 (EUR/wph) × 24 (hours) × 7 (days)
= 168 (EUR). With our model, we established that 0 ≤ F(t, T) ≤ 1, and we
will simply multiply this value by 100 such that theoretical and quoted prices
are comparable.

To provide an example of a wind power futures curve quoted in the mar-
ket, we illustrate in Fig. 9 the observed curve on t = 1 September 2016. The
observations correspond to NASDAQ OMX closing prices and are plotted
using horizontal lines from start to end delivery, where time is measured
in days. We note that we make up the observed curve using 13 contracts,
namely 3 front weeks, 5 front months, 4 front quarters and 1 front year, rela-
tive to the valuation date t. For comparison purposes, we also add in Fig. 9
prices implied by our model with θ = 0.

Generally, our model produces prices that are above the quoted prices
in the market, translating to the fact that θ > 0 according to our discussion
earlier. Further, note the strong seasonality pattern in both the theoretical
and the market quoted futures curves, with winter contracts being much
more expensive than summer contracts.
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Fig. 9: Observed wind power futures curve on 1 September 2016 together with the corresponding
theoretical curve implied by our proposed model with zero market price of risk. All prices are
given in EUR/wph, and a tick size equal to EUR 100, i.e. we use the conversion 1% = 1
EUR/wph.

Having an explicit futures price formula facilitates the calibration of θ,
which can be achieved through a minimization of the distance between theo-
retical and observed prices. To distinguish between theoretical prices implied
by our model and market prices, let fθ(t, T1, T2) denote the theoretical price,
emphasizing its dependence on θ. Further, let f Obs(t, T1, T2) denote the corre-
sponding closing price observed in the market. To extract the implied market
price of risk associated with the contracts in Fig. 9, we consider the following:

θ̂(t, T1, T2) = min
θ
| f Obs(t, T1, T2)− fθ(t, T1, T2)|.

Implementing this procedure3 yields a market price of risk per contract and
valuation date. The obtained values are tabulated in Table 3, confirming that
the implied values for θ̂ are generally positive.

Next, we briefly turn our attention to the risk premium, defined as

RP(t, T1, T2) = f Obs(t, T1, T2)− fθ=0(t, T1, T2).

Owing to our model construction, notice that we will generally have an alter-
nating sign between the implied market price of risk and the risk premium,
i.e. θ > 0 implies RP < 0 and vice versa.

So far in our analysis, we have restricted our attention to a single ob-
served futures curve. Based on this, it is of course difficult to comment on
general tendencies regarding the market price of risk in the wind power fu-
tures market. In a stylized situation, to have a time series for a given contract
could be very interesting, since this would render the time series properties
of the market price of risk visible. However, it may be problematic that the

3We applied the fmincon function in Matlab.
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Contract Delivery Implied θ̂

type period 1 September 2016

1 Week 1 0.2411
2 Week 2 0.0980
3 Week 3 0.2385
4 Month 1 0.1213
5 Month 2 0.1140
6 Month 3 0.0437
7 Month 4 -0.0005
8 Month 5 0.0382
9 Quarter 1 0.0684
10 Quarter 2 0.0252
11 Quarter 3 0.0268
12 Quarter 4 0.0634
13 Year 1 0.0376

Table 3: The implied market price of risk on 1 September 2016.

contracts move in time to maturity (time to start of delivery), suggesting that
the various market prices of risk are not directly comparable. An alternative
approach would be to find one market price of risk every day, given by a θ
that minimizes the distance of the theoretical curve to all the available futures
contracts that day. Then, we would get a series of market prices of risk for
the whole market. This hides potential dependencies on time to delivery and
length of delivery, but will nonetheless reveal the risk premium sign, and po-
tentially if there are any interesting time series properties for the market price
of risk. To gain more insight, we address next both types of investigations
mentioned here.

The data we consider are observed wind power futures curves for the
period from 1 February 2016 to 31 January 2017, amounting to a total of
257 curves. Each curve consists of 13 observed prices corresponding to the
contract types specified in Table 3. Further, we consider static parameter
estimates, that is, the ones obtained in Sec. 3.1. Ideally, the model should
be recalibrated each day in the interval from 1 February 2016 to 31 January
2017, but lack of a synthetic index time series constructed for each of the
valuation dates impedes such analysis. Nevertheless, we do not believe that
the market has undergone significant changes in the period 1 February 2016
to 31 January 2017 relative to September 2016, thus justifying our study.

Performing the same analysis as the one given in Table 3 on all wind
power futures curves yields a time series of implied θ̂s for each one of the 13
contract types. In Fig. 10, we plot some examples. Despite the lack of direct
comparability caused by the presence of a strong seasonal effect, Fig. 10 high-
lights some interesting features. First, notice that the implied market price of
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Fig. 10: Implied θ̂s obtained by minimizing the distance between the observed futures prices
and the theoretical prices for a given day and contract type. The time series stretches from 1
February 2016 to 31 January 2017.
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risk corresponding to shorter deliveries is more volatile. Especially the front
week contract series exhibits a singular behavior, with one possible explana-
tion being the valuable information encompassed in short-term weather fore-
casts. Since this forward-looking information is not included in our model,
the computed values for θ̂ for the front week contracts contain both a market
price of risk as well as a sort of information premium. For longer delivery
periods or start deliveries that lie further away from the valuation date, the
information from weather forecasts becomes less reliable and hence its effect
diminishes. Second, we mention that the market for wind power futures is
still very illiquid, and especially Figs. 10(e) and 10(f) illustrate this through
the long periods with an unchanged implied θ̂. For contracts with shorter
delivery lengths, we stress that these contracts roll more often, thus ‘forcing’
the price to change regardless of the trading activity.

Averaging across the implied θ̂s for each of the contract types produces
the values displayed in Fig. 11. We observe that all mean values are positive,
consolidating our earlier findings relating to a positive θ (and hence a nega-
tive risk premium). Also notable is the decay in mean values with the length
of delivery period. Possible explanations for this behavior can be different
actors operating in different segments of the market, viable weather forecasts
for very near and short delivery periods, illiquidity and seasonality.
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Fig. 11: Mean implied θ̂ per contract type, obtained by averaging across the daily implied θs
corresponding to each of the contract types. The numbering of contract types coincides with
that of Table 3.

Next, we compute a single implied θ at each t, based on all contracts
making up the futures curve. That is, we consider the following minimization
problem:

θ̂(t) = min
θ

K

∑
k=1

∣∣∣∣ f Obs
(

t, T(k)
1 , T(k)

2

)
− fθ

(
t, T(k)

1 , T(k)
2

) ∣∣∣∣,
where K = 13 in our case, since each curve consists of 13 wind power fu-
tures contracts. As mentioned previously, an investigation of this type would
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produce more comparable values for the market price of risk. The results
are presented in Fig. 12, yielding that the implied θ̂ for the whole market is
positive, which is not surprising considering our previous empirical findings.
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Fig. 12: Daily implied θ̂s obtained by minimizing the distance between all market prices and
theoretical prices for a given valuation date. We consider historical wind power futures curves
for the period 1 February 2016 to 31 January 2017.

Correlations and sign of risk premia

All the empirical analyses performed in this section point convincingly to-
wards a negative risk premium, implying a wind power futures market that
is in backwardation. Generally in typical commodity markets, the normal
backwardation case is an expected situation, since the hedgers are usually
the producers who are willing to accept a lower price (e.g. the futures price)
than what is predicted in the spot. This seems to be the case for the German
wind power futures market as well, and a possible explanation, as also stated
in Gersema and Wozabal (2017), goes as follows: The production of single
(or a collection of) wind parks is generally much more correlated to the aver-
age German wind power production than e.g. the production of a gas-fired
power plant. Thus, wind power futures are a more powerful hedging tool
for wind power generators than for conventional generators. As a result, the
former group exhibits a higher demand and is willing to accept a lower price
when selling wind power futures – and hence the negative risk premium in
the German wind power futures market.

To substantiate the claims stated above, we perform a concise empirical
investigation: On one hand, we compute the correlation between the German
synthetic wind index (cf. Fig. 1) and the historical wind power production
index of 26 different German wind parks. This data consists of daily mea-
surements from 1 January 2012 to 31 December 2015, and is provided to us
by Neas Energy. Further, the 26 wind parks we consider differ in e.g. to-
tal installed capacity, number of wind turbines in the park and geographical
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location.
On the other hand, we compute the correlation between the German syn-

thetic wind index and the historical day-ahead spark spread. Note that the
decision to run/not run of gas-fired power plants depends on whether or
not the spark spread is positive, and hence the spark spread is a measure
for the profitability of such plants. We compute the spark spread as the
difference between the day-ahead electricity price in Germany and the day-
ahead gas price in the NetConnect Germany hub scaled by a heat rate h,
with h ∈ [1.9, 2.4]. This interval corresponds to an efficiency between approx-
imately 42% and 53%, which reflects a realistic level according to e.g. figure
14 in the report by Ecofys (2014).

Since the interval from 1 January 2012 to 31 December 2015 is the ‘com-
mon denominator’ for the many different time series we consider here, all
correlations are computed based on this time interval. The correlations be-
tween the generation of the 26 wind parks and the German synthetic wind
index are illustrated in Fig. 13, hereby also showing the approximate geo-
graphical location of each individual wind park we consider.
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Fig. 13: Linear correlations between the German synthetic index and the actual wind power
production index of 26 distinct wind parks.

Fig. 13 shows a very strong positive relation (generally) between the pro-
duction index of one specific wind park and the German index. When com-
puting the linear correlation between the day-ahead spark spread and the
German index, we get a value of −0.47 for the lowest h, i.e. h = 1.9. Increas-
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ing h, that is assuming a less efficient gas-fired power plant, weakens the
negative relation between the spark spread and the German index, rendering
wind power futures less attractive as hedging instruments (for h = 2.4, we
get a value of −0.44).

4.2 Synthetic vs. historical wind index

An essential point in the context of pricing wind power future is the dis-
tinction between the synthetic index (illustrated in Fig. 1) and the historical
evolution of the actual German wind power production index. To highlight
the importance of this distinction, we perform a comparison study in what
follows.

Let us start with introducing the historical data we shall use for compari-
son: Because data for the actual historical index is not directly available to us,
we construct the index using its two underlying data components. First, we
consider the total wind power production on a daily basis corresponding to
the period from 1 January 2012 to 31 December 2015 (a total of 1461 observa-
tions). Second, we consider monthly observations for the total installed wind
power capacity for the same period, with monthly measurements having the
1st of each month as time stamps (a total of 49 observations, counting the
measurement corresponding to 1 January 2016). The two data components
are illustrated in Fig. 14(a) and Fig. 14(b), respectively, revealing the impres-
sive growth that Germany has experienced over the considered period.
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Fig. 14: Historical data for Germany.

A proxy for the actual daily index P̃ is then obtained as

P̃(t) =
W(t)

24C(t)
, (18)

where W(t) denotes the total wind power production in Germany at day t,
and C(t) denotes the total installed capacity in Germany at day t. Since the
installed capacity data is measured at monthly intervals, intermediate daily
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values are obtained by linear interpolation. The evolution of the index P̃ is
displayed in Fig. 14(c), confirming that all measurements lie above 0 and be-
low 1, as expected. The minimum measurement corresponds to a value of
approx. 0.01 (a 1% utilization of the installed capacity), and the maximum
measurement reaches approx. 0.76 (a 76% utilization of the installed capac-
ity).

Next, we perform a linear regression of the actual index against the syn-
thetic index, based on data in the interval 1 January 2012 to 31 December
2015 (corresponding to the four years that the two indexes have in common).
We obtain an estimate for the intercept of 0.0055 (with standard error 0.0011)
and an estimate for the slope of 0.8303 (with standard error 0.0039); a scatter
plot of the actual index against the synthetic index is displayed in Fig. 15.
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Fig. 15: Scatter plot of the actual index against the synthetic index.

The regression results translate to the fact that using the actual instead
of the synthetic index data for model calibration would lead to an under-
estimation of the wind power futures price, which is indeed not surprising.
One factor that helps explain this finding is that the synthetic index does not
include information concerning intentional temporary switch off of turbines
to reduce output, whereas the actual data does. With everything else being
equal, this entails that the actual historical index must generally yield lower
values than the synthetic index. Another contributing factor - and likely the
most important - is the fixed installed capacity used to compute the synthetic
index as opposed to the varying installed capacity used to compute the ac-
tual historical index, cf. Fig. 14(b). In continuation hereof, the expansion in
wind turbine installations is centered in the wind-rich northern part of Ger-
many, which is expected to have pulled the German index upwards. Hence,
the synthetic index which is based on the newer installed capacity numbers
for September 2016 is expected to have a higher mean than the actual index
which is based on a varying installed capacity. In the context of pricing wind
power futures, we are only interested in the available installed capacity on
the valuation date, and not on its historical evolution. Lastly, we mention
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that advancements in wind turbine technology can also be of relevance in
this context.

To investigate how the use of the actual historical index influences the
conclusions drawn in Section 4.1 regarding the risk premium, we have re-
run all the computations performed in Sections 2.1, 3.1 and 4.1, based on
this data. Surprisingly, not only does the model produce lower futures prices
(with θ = 0) as argued above, but the conclusions on the risk premium change
drastically. Based on the newly calibrated model, we obtain a risk premium
that is generally positive, implying a wind power futures market that is in
contango, which is in contrast with our earlier findings. In a nutshell, us-
ing the ‘wrong’ data, i.e. the actual historical index, for the calibration of
the model parameters has a significant impact, leading to very misleading
conclusions.

5 Pricing options on wind power futures contracts

As a further demonstration of the advantages of our proposed model and the
measure change using the Esscher transform, we consider here the pricing of
European options written on wind power futures. While we acknowledge
that these options are not traded on an exchange at the current time, they
are potentially interesting, and hence this section is intended to provide an
outlook.

Let us consider a call option on a wind power futures contract, where the
exercise time of the option is T, the strike price is K, and r denotes a constant
risk-free rate. To simplify calculations in what follows, we further assume
that the maturity of the futures contract coincides with the exercise of the op-
tion, i.e., the call option is written on the actual wind power production. The
call option price C(t; T, K, T) can be expressed as the discounted conditional
expectation of the future payoff under Q, which is the pricing measure under
the Esscher transform cf. Section 4. Hence,

C(t; T, K, T) = e−r(T−t)EQ[max(F(T, T)− K, 0)|Ft]

= e−r(T−t)EQ[max(P(T)− K, 0)|Ft]

= e−r(T−t)EQ[max(A(T)eZ(T) − K, 0)|Ft],

where

A(T) = Λ(T) exp(−X(t)e−α(T−t) − µ(1− e−α(T−t))),

Z(T) = −
∫ T

t
e−α(T−s)dL(s).

Note that A(T) can easily be computed given P(t), the estimated seasonality
function Λ̂, and the speed of mean reversion α̂. To compute the call option
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price based on our model framework, it is convenient to employ Fourier
techniques, as suggested in Benth et al. (2008). Following Benth et al. (2008),
we define the Fourier transform of a function g ∈ L1(R) as

ĝ(y) =
∫

R
g(x)e−iyxdx. (19)

If ĝ ∈ L1(R), the inverse Fourier transform can be expressed as

g(x) =
1

2π

∫
R

ĝ(y)eiyxdy.

Before proceeding to computing the price C(t; T, K, T), we state the payoff
function in terms of the Fourier transform.

Lemma 5.1. For a > 1, we define

gT(x) = e−ax max (A(T)ex − K, 0).

Then, we have that

ĝT(y) =
K

(a− 1 + iy)(a + iy)

(
K

A(T)

)−(a+iy)
,

where ĝT is the Fourier transform of gT .

The result in Lemma 5.1 follows from employing the definition in Eq. (19).
We note that the factor exp(−ax) in the definition of gT is introduced due
to the call option payoff not being a square-integrable function. For more
details, we refer to Benth et al. (2008), Lemma 9.1, and Carr and Madan
(1999). In the next Proposition, we derive the price C(t; T, K, T).

Proposition 5.1. Let C(t; T, K, T) denote the price of a call option written on a wind
power futures contract with strike K, exercise T, and delivery period of the futures
contract T. The price C(t; T, K, T) at time t ≤ T is given as

C(t; T, K, T) = e−r(T−t) 1
2π

∫
R

ĝT(y)Ξ(t, T)dy, (20)

where

Ξ(t, T) =

(
κθ + (a + iy)e−α(T−t)

κθ + a + iy

)λθ /α

.

Proof. See Appendix B.3.

We note that by having an analytical expression for the cumulant ψQ

L(1),
the call option price C(t; T, K, T) can easily be determined by solving the
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integral in Eq. (20) numerically. Concerning the estimation of put option
prices, these follow from the put-call parity.

We conclude this section by illustrating in Fig. 16 call option prices ob-
tained by applying the formula in Proposition 5.1 for a series of strike in-
dexes K. The valuation date t equals 31 December 2015, and we consider two
different maturities, 1 July 2016 and 1 December 2016, as to emphasize the
seasonal effects. Not surprisingly, the yearly seasonality in the wind index
translates to the call options being cheaper for delivery during summer than
during winter. Lastly, we note that the option prices could be multiplied by
a tick size of EUR 100 in order to achieve comparability with the forward
prices quoted in the market, see e.g. Fig 9.
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Fig. 16: Estimated call option prices as functions of the strike K at t = 31 December 2015.
The computations are performed with r = 0, a = 1.1 and the parameter estimates obtained in
Sections 2.1 and 3.1. We assume θ = 0, and thus κθ = κ, λθ = λ.

6 Conclusion

In this paper we propose a non-Gaussian Ornstein-Uhlenbeck model for the
wind power production index. The model has appealing characteristics,
among others straightforward estimation of model parameters and analyt-
ical tractability. Motivated by the recent introduction of the German wind
power futures on NASDAQ OMX and EEX, we employ the proposed model
to conduct an empirical study on German data. First, the model is fitted
to a synthetically generated time series of German wind power production
indexes, revealing a good overall fit. Then, explicit prices for wind power fu-
tures are derived in the framework of no-arbitrage pricing. This facilitates the
study of the market price of risk, which can be obtained by the usual prac-
tice of minimizing the distance between theoretical prices produced with our
model and actual prices observed in the market. Based on historical wind
power futures curves made up of closing prices from NASDAQ OMX, we
perform different studies of the market price of risk.
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6. Conclusion

Generally, we find evidence of a negative risk premium, whose magni-
tude decreases as the length of the delivery period increases. The negative
risk premium suggests that wind power producers are willing to accept a
lower price when selling wind power futures. As also argued in Gersema
and Wozabal (2017), this behavior is due to wind power futures being a more
powerful hedging tool for wind power generators than for conventional gen-
erators. This argument is enhanced by a brief empirical study, which demon-
strates that the production of individual wind parks at different locations
in Germany is more correlated to the German index than the production of
conventional generators (here gas-fired power plants). Also, we find that the
market price of risk is more volatile for shorter delivery periods, and argue
that this behavior might be related to liquidity aspects and the information
contained in short-term weather forecasts, which our model does not incor-
porate.

In this paper, we have restricted our attention to a constant market price
of risk θ; admittedly, it is possible to allow for e.g. a seasonally varying θ
in the Esscher transform. While it remains unclear whether this is backed
by the data, one could potentially imagine a seasonality in the market. For
a more general measure change, stochastic θ’s (even being state dependent)
could be considered as well, however this aspect is left for future research.

To highlight the importance of fitting our proposed model to a wind in-
dex that is generated assuming a constant as opposed to a varying level of
installed capacity, we show through an empirical example that building on
the ‘wrong’ data foundation can lead to the opposite conclusion regarding
the sign of the risk premium. Finally, we address the pricing of European op-
tions written on wind power futures contracts, as to elaborate further on the
benefits of the proposed modeling approach. Since an analytical expression
for the cumulant is readily available, we show that the pricing of calls and
puts can be achieved without difficulty.
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A Seasonality in the non-Gaussian Ornstein-Uh-
lenbeck model

The purpose of this appendix is to elaborate on issues related to seasonality in
the non-Gaussian Ornstein-Uhlenbeck model for the wind power production
index. Let us start by considering a simplified version of our model proposed
in Eqs. (2)–(3), where Λ(t) = 1 and µ = 0:

P(t) = exp(−X(t)),

dX(t) = −αX(t)dt + dL(t).

Since L is a subordinator, it follows that X(t) is non-negative, and thus
P(t) ∈ [0, 1] is not violated with this model specification. While it is highly
important to comply with the bound restrictions for P(t), we cannot ignore
the shortcoming of the above model regarding seasonality: The wind power
production index has a strong seasonal component embedded in its dynam-
ics, causing Λ(t) 6= 1 and µ 6= 0 in reality.

To include seasonality, one possibility is to relax the assumptions imposed
on Λ(t) and µ above. This has led to our model proposed in Eqs. (2)–
(3), and based on the variable P(t), we have argued that µ = ln M, where
M = max(Λ(t)). However, if we let m = min(Λ(t)) and instead regard
the variable P(t)/Λ(t), a renewed analysis yields that P(t)/Λ(t) ∈ [0, 1/m],
while exp(−X(t)) ∈ [0, exp(−µ)] = [0, 1/M]. Since m < M, we have that
1/m > 1/M, implying that the span of the data P(t)/Λ(t) will be bigger
than what our model, that is exp(−X(t)), can capture. Hence, there is a
potential of having

X(t)− µ < 0,

which is somehow in contradiction with Proposition 3.2, where we obtained
a Gamma distribution as the limiting distribution of X(t)− µ.

Despite the slight inconsistency produced with our model specification in
Eqs. (2)–(3), there are strong arguments in favor of this model. First, the above
mentioned issue proves to have very limited impact in practice and second,
the task of parameter estimation becomes more straightforward, since Λ(t)
can be fitted by ordinary least squares, and an estimate for µ immediately
follows from the established relation µ = ln M.

Lastly, we mention that there are of course other alternatives concerning
the inclusion of a seasonal component in the model. In our case for example,
where we assume L(t) to be a compound Poisson process with exponentially
distributed jumps, such an alternative could be to consider seasonal instead
of constant intensity. Such an approach will, in mean, provide us with a
seasonally varying P(t), while satisfying P(t) ∈ [0, 1]. However, this will
come at the cost of having a complex empirical analysis, for which reason we
have not pursued this approach in the present paper.
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B Proofs

B.1 Proof of Proposition 3.2

Because

X(t) = X(0)e−αt + µ(1− e−αt) +
∫ t

0
e−α(t−s)dL(s),

the characteristic function of X(t) becomes

E[eixX(t)] = exp
(
(X(0)e−αt + µ(1− e−αt))ix

)
E[eix

∫ t
0 e−α(t−s)dL(s)]

= exp
(

ixX(0)e−αt + ixµ(1− e−αt) +
∫ t

0
ψL(1)(xe−α(t−s))ds

)
.

Further, the cumulant function of L(1) denoted by ψL(1) above is defined as

ψL(1)(x) = ln E[eixL(1)]

= ln E

[
E

[
exp

(
ix

N(1)

∑
k=1

Jk

) ∣∣∣∣∣N(1)

]]

= ln
∞

∑
n=0

e−λ λn

n!

(
E[eixJ ]

)n

= ln
(

e−λeλE[eixJ ]
)

= λ(E[eixJ ]− 1),

with the second equality following from the definition of L(t). Since J is
an exponentially distributed random variable with density function given in
Eq. (6), its characteristic function entering the expression of ψL(1) is simply

E[eixJ ] =
∫ ∞

0
eixyκe−κydy =

κ

κ − ix
.

Hence,

ψL(1)(x) = λ
ix

κ − ix
.

In the limit as t→ ∞, we obtain

lim
t→∞

E[eixX(t)] = exp
(

ixµ +
∫ ∞

0
ψL(1)(xe−αs)ds

)
= exp

(
ixµ + λ

∫ ∞

0

ixe−αs

κ − ixe−αs ds
)

= exp
(

ixµ +
λ

α
ln

κ

κ − ix

)
= eixµ

(
1− i

x
κ

)− λ
α ,
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where we recognize the second factor of the above product as the character-
istic function of the Gamma distribution. The result follows.

B.2 Proof of Proposition 4.1

Appealing to the adaptedness of X(t) and recalling Eq. (2) and Eq. (3), we
have that

F(t, T) = EQ[P(T)|Ft]

= Λ(T) exp
(
−X(t)e−α(T−t) − µ(1− e−α(T−t))

)
×EQ

[
exp

(
−
∫ T

t
e−α(T−s)dL(s)

) ∣∣∣∣Ft

]
,

where Q is the pricing measure obtained from the Esscher transform. Fur-
ther, since L is a Q-Lévy process and thus characterized by independent in-
crements, we find

EQ

[
exp

(
−
∫ T

t
e−α(T−s)dL(s)

) ∣∣∣∣Ft

]
= EQ

[
exp

(
−θ

∫ T

t
e−α(T−s)dL(s)

)]
= exp

(∫ T

t
ψQ

L(1)(ie
−α(T−s))ds

)
= exp

(∫ T−t

0
ψQ

L(1)(ie
−αs)ds

)
,

where ψQ

L(1) denotes the cumulant function of L(1) under the Esscher trans-
formed measure Q. Using the Radon-Nikodym derivative in Eq. (13) and the
definition in Eq. (14), it follows that the characteristic function of L(1) under
Q can be expressed as

EQ
[
eixL(1)

]
= E

[
eixL(1)+θL(1)

]
e−ψL(1)(−iθ)

= exp(ψL(1)(x− iθ)− ψL(1)(−iθ)).

Thus,
ψQ

L(1)(x) = ψL(1)(x− iθ)− ψL(1)(−iθ).

Recalling the expression for ψL(1) stated in Eq. (16), we obtain

ψQ

L(1)(x) = λ

(
i(x− iθ)

κ − i(x− iθ)
− i(−iθ)

κ − i(−iθ)

)
= λθ

(
ix

κθ − ix

)
,
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where

κθ = κ − θ,

λθ =
λκ

κ − θ
.

Inserting all the information obtained above in the expression for F(t, T)
yields

F(t, T) = Λ(T) exp
(
−X(t)e−α(T−t) − µ(1− e−α(T−t)) +

∫ T−t

0
λθ
−e−αs

κθ + e−αs ds
)

= Λ(T)e−µ(1−exp(−α(T−t)))

(
κθ + e−α(T−t)

κθ + 1

)λθ /α (
P(t)
Λ(t)

)exp(−α(T−t))
.

The proposition follows.

B.3 Proof of Proposition 5.1

From Lemma 5.1, it follows that the call option price can be expressed as

C(t; T, K, T) = e−r(T−t) 1
2π

∫
R

ĝ(y)EQ[e(a+iy)Z(T)|Ft]dy.

Recall from the derivation of the wind power futures price in Appendix B.2
that the conditional expectation above is given by

EQ[e(a+iy)Z(T)|Ft] = EQ[e−(a+iy)
∫ T−t

0 e−αsdL(s)|Ft]

= exp
(∫ T−t

0
ψQ

L(1)((ai− y)e−αs)ds
)

.

The result follows from a straightforward calculation, where the expression
for ψQ

L(1)(x) derived in Appendix B.2 must be employed.

C Further details on the estimation of α

In this appendix, we consider the estimation of α cf. Eq. (3) by performing an
AR(1)-estimation. Recalling the discussion and notation in Section 3.1, fitting
an AR(1) to X(t)− µ yields φ̂ = 0.6067, with a standard error of 0.0070. This
implies that

α̂ = 0.4997,

which is different (but not too far) from the estimate obtained in Section 3.1.
Considering the sample autocorrelation of the resulting residuals

(Fig. 17(a)) and residuals squared (Fig. 17(b)), we note that an autoregressive
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model of higher order could be beneficial. By computing the partial autocor-
relation function of X(t)− µ, this is indeed confirmed. Specifically, the pacf
cuts off at lag 3, indicating that an AR(3) is preferred. With its continuous-
time analogous, the CAR(3) model, we are however not ensured positivity,
which is clearly an essential point in our modeling of the wind power produc-
tion index. The proposed Ornstein-Uhlenbeck process in Eq. (3) is positive by
design, while a similar CAR(3) process is not necessarily so. One could check
case by case, but this is somehow cumbersome, and therefore not pursued
further in the present study.
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Fig. 17: The acf of residuals and residuals squared after having fitted an AR(1) to X(t)− µ.
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1. Introduction

ABSTRACT

The recently introduced German wind power futures have brought the
opportunity to address the problem of volume risk in wind power gen-
eration directly. In this paper, we study the hedging benefits of these
instruments in the context of peak gas-fired power plants, by employ-
ing a strategy that allows trading in the day-ahead clean spark spread
and wind power futures. To facilitate hedging decisions, we propose a
seasonal copula mixture for the joint behavior of the day-ahead clean
spark spread and the daily wind index. The model describes the data
surprisingly well, both in terms of the marginals and the dependence
structure, while being straightforward and easy to implement. Based
on Monte Carlo simulations from the proposed model, the results in-
dicate that significant benefits can be achieved by using wind power
futures. Moreover, a comparison study shows that accounting for asym-
metry, tail dependence, and seasonality in the dependence structure is
especially important in the context of risk management.

1 Introduction

The sudden change in German energy policy that followed the Fukushima
nuclear accident marked a new era for the German power market. Since the
nuclear shutdown and the shift to renewables, Germany has experienced an
impressive growth in both wind and solar power, and has reached a level
that far exceeds the Kyōto climate obligations. This change has undoubtedly
brought benefits on several fronts, however, the non-programmable nature of
wind and solar electricity production has resulted in a large share of weather-
dependent supply of electricity. From a financial point of view, the cash-
flows from such non-programmable power plants can be incredibly volatile,
not only due to price uncertainty, but also due to the uncertainty associated
with the volume produced. While renewable generators are clearly affected
by the uncertain volume, they are not the only ones; by market design and
economics principle, the presence of renewables in the bid stack will always
force conventional generators to produce less. In Germany, where the share
of renewable energy is especially high, the conventional producers’ competi-
tiveness on e.g. the spot and forward markets has deteriorated, which has in
turn invoked the need for far more intricate operation patterns and strategies.

In light of the advancements concerning renewables in Germany and the
challenges imposed by volume risks for many different market players, the
European Energy Exchange (EEX) recently introduced a financial instrument
to mitigate the volume uncertainty associated with wind power generation.
This instrument is referred to as a wind power futures, and its underlying is
the German wind index. Representative agents for the sell and buy sides
of wind power futures are the wind electricity producers and the conven-

177



Paper V.

tional electricity producers, respectively. On one hand, low wind scenarios
are unfavorable for wind electricity producers, since they have a lowering ef-
fect on cash-flows; on the other hand, conventional generators are exposed to
high wind scenarios, since a large share of wind power in the electrical grid
displaces the costlier sources.

In this paper, we study the risk-reducing benefits of wind power futures in
the context of conventional generators that operate in the day-ahead market
whenever profitable. As a representative agent for the conventional gener-
ator, we consider the case of a peak gas-fired power plant whose profit per
unit of electricity produced is measured in terms of the day-ahead clean spark
spread. Since the dependence between the day-ahead clean spark spread and
the wind index is essential for assessing the benefits of wind power futures,
the contribution of this paper is twofold.

First, we propose a seasonal copula mixture to model the joint behavior
of the day-ahead clean spark spread and the daily wind index. The model
is fitted to four years of German data, and captures the marginal behavior of
the individual variables and also the seasonality in the dependence between
the variables very well. Second, we employ the proposed seasonal copula
mixture to facilitate hedging decisions and showcase the effectiveness of wind
power futures. To highlight the benefits of the seasonal copula mixture, we
perform a study where the proposed model is compared against alternative
models.

Owing to the recent introduction of the German wind power futures, the
related literature is very scarce. The first related study is that of Gersema
and Wozabal (2017), where the authors focus mainly on the pricing of wind
power futures and explaining risk premia, for which an equilibrium pricing
model is proposed. Also concentrating on the pricing aspect is the work
of Benth and Pircalabu (2017), who apply a non-arbitrage approach to the
pricing of wind power futures, and obtain results concerning the sign of
risk premia that support the conclusions drawn in Gersema and Wozabal
(2017). In contrast to the two existing studies, which focus mainly on pricing
and less on hedging and risk management, we take a simplistic approach
to pricing but study in detail aspects related to the risk-reducing ability of
wind power futures. Nevertheless, we acknowledge that some of the results
in Gersema and Wozabal (2017) and Benth and Pircalabu (2017) are very
relevant in the context of the present study, and they shall thus be included
in our discussion.

Turning to applications of copulas in energy markets, we mention that
these models have gained substantial interest over the past years and have
become a popular tool to model the non-linear dependence between differ-
ent commodities. Some examples concerning applications of bivariate copu-
las are Börger et al. (2009), Benth and Kettler (2011), Grothe and Schnieders
(2011), Avdulaj and Barunikl (2015), and Elberg and Hagspiel (2015). For ap-
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plications beyond bivariate copulas, we mention the study of Pircalabu and
Jung (2017), and that of Aepli et al. (2017). The present paper contributes
to this stream of literature in terms of the application, which to the best of
our knowledge has not yet been considered, and also in terms of modeling
approach, by proposing an extension that deals with seasonality in the de-
pendence structure.

The remaining of this paper is structured as follows: In Section 2, we in-
troduce the data and elaborate on the construction of the variables. In Section
3, we describe the modeling framework and report estimation results. Sec-
tion 4 introduces the seasonal copula mixture model and provides evidence
for its quality of fit. In Section 5, we employ the proposed model to study
the benefits of wind power futures, and perform various comparison studies.
Section 6 concludes.

2 Background and data

To investigate the benefits of wind power futures for a gas-fired power plant
(GFPP), two data components are of interest in the analysis performed in
this paper, namely the day-ahead clean spark spread and the daily wind
index. In this section, we address each of these in turn, commenting on their
construction.

2.1 Clean spark spread

As an indicator for the profit per unit of electricity generated by a GFPP,
we consider the day-ahead clean spark spread (CSS). This measure depends
on electricity, gas, and emission prices, and also on the heat rate and the
emission factor. The heat rate represents the required number of natural
gas MWhs to produce one MWh electricity, i.e., the efficiency at which the
GFPP transforms gas to electricity. Further, the emission factor represents the
number of tons of CO2 emitted by producing one MWh electricity.

With GFPPs being mainly peak-operated power plants—that is, power
plants dispatching during the peak hours between 8 AM to 8 PM on week-
days and non-holidays—we consider the peak electricity price. Specifically,
let SE

t denote the day-ahead peak load electricity price, SG
t the day-ahead gas

price, and SC
t the day-ahead emission price, with the subscript t indicating

time measured in days. Further, let h be the heat rate and e the emission
factor. We define the day-ahead CSS on day t as

CSSt = SE
t − hSG

t − eSC
t , (1)

where SE
t and SG

t are measured in EUR/MWh, and SC
t is measured in

EUR/tCO2.
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Data preparation for the clean spark spread

To construct a time series for the day-ahead CSS, we consider the following
time series:

• SE
t : The German electricity price, which is computed as the average of

all hourly electricity prices between 8 AM to 8 PM on weekdays and
non-holidays. The source of this data is EEX.

• SG
t : The day-ahead gas price for NetConnect Germany (NCG), which

corresponds to the closing price. The source of this data is EEX.

• SC
t : The EU Allowance unit of one tonne of CO2 (EUA) phase 3 daily

futures price. This data is collected from the Intercontinental Exchange,
and represents the closing price. For more information regarding the
EU emissions trading system, we refer the interested reader to Euro-
pean Commission (2017).

All time series above span 1030 observations in the period from 3 January
2013 to 30 December 2016, and cover weekdays that are non-holidays. To
provide a sense of the data, we plot in Fig. 1 the time series corresponding
to each of the three data sources described above. Moreover, we plot the CSS
obtained by applying Eq. (1), and using the values for h and e reported in
Table 1. These numbers are based on ICIS (2016), and shall be used in the
remaining of this paper unless explicitly stated otherwise.

Heat rate h Emission factor e

2.035 0.375

Table 1: Heat rate (MWhs natural gas per MWh electricity) and emission factor (tCO2 per MWh
electricity) based on ICIS (2016). The chosen heat rate corresponds to an efficiency of 49.13%.

2.2 Wind index

Since the German wind power futures (WPF) were introduced only recently,
we find it relevant to provide a brief description of these products and to
clarify their payoff structure. WPF contracts are written on the average wind
index in Germany, and can be traded at the European Energy Exchange (EEX)
and Nasdaq OMX. In this paper, we shall restrict our attention to the WPF
traded at EEX.

The German wind index is obtained as the ratio between the total wind
power generation and the total available installed wind power capacity. Hence,
the index is bounded between zero and one, and provides a measure of
the German wind utilization. Currently, the delivery periods correspond to

180



2. Background and data

Jan-13 Jan-14 Jan-15 Jan-16

Date

-60

-40

-20

0

20

40

D
ay

-a
he

ad
 C

S
S

 (
E

U
R

/M
W

h)

(a) CSSt: Daily day-ahead CSS (peak load)

Jan-13 Jan-14 Jan-15 Jan-16

Date

-10

5

20

35

50

65

80

P
ea

k 
el

ec
tr

ic
ity

 p
ric

e 
(E

U
R

/M
W

h)

(b) SE
t : German day-ahead

electricity price (peak load)

Jan-13 Jan-14 Jan-15 Jan-16

Date

10

20

30

40

G
as

 p
ric

e 
(E

U
R

/M
W

h)

(c) SG
t : NCG gas day-ahead

closing price

Jan-13 Jan-14 Jan-15 Jan-16

Date

2

3

4

5

6

7

8

9

E
U

A
 p

ric
e 

(E
U

R
/tC

O
2
)

(d) SC
t : EUA day-ahead clos-

ing price

Fig. 1: Historical evolution of the daily day-ahead CSS (peak load), the German day-ahead
electricity price (peak load), the NCG day-ahead gas closing price, and the EUA day-ahead
closing price, from 3 January 2013 to 30 December 2016. The applied heat rate and emission
factor to construct the day-ahead CSS are given in Table 1.

weeks, months, quarters and years, and only trading the base load profile is
possible. Compared to the definition of the day-ahead CSS data in Eq. (1),
there is clearly a mismatch between delivery periods, with wind power fu-
tures hedging all hours of every day, and gas turbines generating output dur-
ing peak hours. However, this reflects the present market conditions, where
the volume risk of a GFPP can only be imperfectly hedged.

Assuming a delivery period [T1, T2] consisting of H hours, the payoff cor-
responding to a long position in one WPF contract is given by

RWPF = H

 1
T2 − T1 + 1

T2

∑
t=T1

Wt︸ ︷︷ ︸
=W̄

−Wt0

X, (2)

where Wt ∈ [0, 1] is the daily wind index, W̄ ∈ [0, 1] is the realized average
wind index over the delivery period, and Wt0 ∈ [0, 1] can be thought of as the
“futures price”, i.e., the index set at t0 when entering the contract. Further,
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X is a pre-specified constant tick size which is used to convert the index
differences into monetary measures. According to EEX, X = 100 EUR. We
see from Eq. (2) that a short position in WPF will generate a profit in low-
wind scenarios, making it a useful hedging instrument for the wind power
producer. Conversely, a long position will generate a profit in the high-wind
scenarios, to which the GFPPs are exposed.

Data preparation for the wind index

The index that a WPF contract is settled against is externally provided by
EuroWind. Since trading in WPF began only recently, the amount of data
available on the spot wind index provided by EuroWind is limited. To obtain
a longer time series, we consider instead a proxy wind index constructed
using the wind power production in Germany on a daily basis, and monthly
recordings of the German installed wind power capacity, which are updated
at the start of each month. The wind power production data is collected from
the four different transmission system operators in Germany, and the source
of the installed capacity data is PointConnect.

Specifically, the daily German wind index is constructed as

Wt = Daily wind index =
Daily wind power generation (MWh)

h · Installed capacity (MW)
,

where h denotes the number of hours in a given day, and the installed ca-
pacity on a daily basis is obtained by linear interpolation. In order to unify
the length of the day-ahead CSS and the wind index, we omit weekends and
holidays for the wind index data. Hence, the constructed index spans the pe-
riod from 3 January 2013 to 30 December 2016, a total of 1030 observations,
and is plotted in Fig. 2(a).

To provide some evidence for how the constructed wind index matches
the true settlement data, we plot in Fig. 2(b) our proxy together with the
one year of actual data from EuroWind that we have available. The time
series plot reveals an acceptable resemblance, and to provide a quantitative
indication, we compute the mean absolute error to 0.020.

3 Model construction and fit

To model the joint behavior of the day-ahead CSS and the daily wind in-
dex (henceforth referred to as simply CSS and wind index, respectively), we
consider copula models. Restricting our presentation to the two-dimensional
case, a copula is the joint distribution of the random variables U1 and U2,
where each variable is marginally uniformly distributed as U(0, 1). Since
our data exhibits seasonality and autocorrelation, we wish to filter out these
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Fig. 2: Historical evolution of the German wind index (Wt) on a daily basis from 3 January 2013
to 30 December 2016, and a comparison of Wt with the actual wind index provided by EuroWind
for the year 2016.

effects before applying the copula. Therefore, we are here considering the
conditional copula.

Let F(·|Ft−1) denote the conditional joint distribution function of the ran-
dom vector Yt = (Y1t, Y2t), and let F1(·|Ft−1) and F2(·|Ft−1) denote the condi-
tional continuous marginal distribution functions of Y1t and Y2t, respectively.
Then, according to Sklar’s theorem [Sklar (1959)] for conditional distribu-
tions, there exists a unique copula C such that F can be decomposed as

F(y1t, y2t|Ft−1) = C(F1(y1t|Ft−1), F2(y2t|Ft−1)|Ft−1). (3)

The converse also holds, meaning that given two univariate distributions
F1, F2 and a copula C, F as defined in Eq. (4) is the joint distribution with
margins F1, F2. Thus, Sklar’s theorem not only provides a way of decomposing
a joint distribution function, but also a way of composing it given marginal
distributions and a copula, both of which are very useful in practical applica-
tions. For the proof of Sklar’s theorem for conditional distributions, we refer
to Patton (2006).

Recalling the probability integral transform, we note that Uit :=
Fi(Yit|Ft−1) ∼ U(0, 1), for i = 1, 2. Differentiating both sides of Eq. (4) with
respect to (y1t, y2t) thus yields

f (y1t, y2t|Ft−1) = c (u1t, u1t|Ft−1) · f1(y1t|Ft−1) · f2(y2t|Ft−1), (4)

where f denotes the joint density function, c is the copula density, and f1, f2
denote marginal density functions.

In our context, copula models are advantageous for various reasons: First,
being able to capture dependence beyond the linear correlation can be of
utmost importance when illustrating the hedging benefits of WPF, and this
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can be achieved with copulas. Second, we can separate the treatment of the
dependence structure from that of the marginal behavior of the individual
variables (cf. Eq. (4)), since the dependence structure is fully contained in
the copula. Third, selecting one type of marginal distribution for the first
variable does not restrict our choice of marginal distribution for the second
variable.

Turning to the estimation of the model parameters, we let T denote the
sample size, θc the copula parameters, and θ1 and θ2 the parameters of the
marginal models. From Eq. (4) it follows that the log-likelihood function is

logL =
T

∑
t=1

log c (u1t, u1t|Ft−1, θc) +
T

∑
t=1

log f1(y1t|Ft−1, θ1)

+
T

∑
t=1

log f2(y2t|Ft−1, θ2).

Here, we apply a two-stage maximum likelihood estimation procedure. In a
first step, the parameters of the marginal models are obtained; in a second
step, the copula parameters are estimated while keeping fixed the estimates
from the first step. This provides a far less complicated estimation procedure
relative to the one-stage procedure. For more details on the relative efficiency
of the two-stage compared to the one-stage maximum likelihood estimation,
we refer to Joe (2005).

In the following two sections, we present in detail the marginal models
and the constant copulas considered in this paper, and provide empirical
evidence for the fit of these models to our data.

3.1 Marginal models

Since both the CSS and the wind index exhibit seasonality, we start the
marginal treatment of the individual variables by applying suitable seasonal
functions to remove the deterministic seasonal component.

For the CSS, we consider the seasonal function

ft = a1 + b1t + c1 sin (2πt/K) + c2 cos (2πt/K) ,

where a1 is a constant, b1 is the trend coefficient, and c1 and c2 are coefficients
for the annual cycle. We have on average approximately K = 258 observations
per year.

Not surprisingly, the seasonality function for the CSS resembles a season-
ality function that would typically be considered for the day-ahead electricity
price (see e.g. Haldrup and Nielsen (2006), Benth and Benth (2011), and Här-
dle and Cabrera (2012)). This resemblance is caused by the magnitude of the
electricity price compared to the gas and emission price, cf. Fig. 1, causing
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the former to have the dominant effect. Aside from electricity prices usually
exhibiting a yearly seasonality, a strong within-week seasonality is also often
observed. However, with the exclusion of weekends from our data, adding
a term that addresses the weekly seasonality (e.g. day-of-week dummies) is
unnecessary. Furthermore, adding more trigonometric terms (based on the
periodogram) does not improve the fit of the seasonal function substantially.

Turning to the wind index, recall that this series is bounded between 0
and 1, cf. Fig. 2. Following Pircalabu and Jung (2017), we apply the logit-
transform to the wind index1, and consider the following seasonal function
for the logit wind index (LWI):

ft = a1 + c1 sin (2πt/K) + c2 cos (2πt/K) ,

which is motivated by the prominent annual cycles we observe in the sam-
ple autocorrelation of the LWI. Also here, different meaningful extensions of
the seasonal function were experimented with, without yielding a significant
improvement.

The seasonality functions are fitted to the data by ordinary least squares,
and Table 2 summarizes the results obtained for the CSS and the LWI.

â1 b̂1 ĉ1 ĉ2

CSS -10.131 0.014 -3.611 2.990
(0.579) (0.001) (0.411) (0.404)

LWI -1.828 - 0.066 0.472
(0.030) - (0.042) (0.043)

Table 2: OLS estimates for parameters of the seasonal functions for the CSS and the LWI. Stan-
dard errors are reported in parenthesis, and are based on a naive OLS calculation.

Next, we apply ARMA-GARCH filters to the deseasonalized data. Given
a time series of data yt, an ARMA(p,q)–GARCH(h,k) model is defined by

yt =
p

∑
i=1

φiyt−i +
q

∑
j=1

θjεt−j + εt,

εt = σtηt,

σ2
t = ω +

h

∑
i=1

αiε
2
t−i +

k

∑
j=1

β jσ
2
t−j,

where ηt ∼ iid N(0, 1). It was Engle (1982) who introduced the ARCH model,
and later Bollerslev (1986) who extended the variance equation to include
lagged values of σ2

t . For a review of ARMA and GARCH models, see for

1The logit function is given by logit(x) = log(x)− log(1− x).
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example Shumway and Stoffer (2011). In the following, we denote by ηCSS
t

and ηLWI
t the standardized residuals resulting from applying the ARMA–

GARCH models to the CSS and the LWI, respectively.
Model selection is based on the Bayesian Information Criterion (BIC), and

we consider ARMA(p, q)–GARCH(h, k) models for all possible combinations
of p, q, h and k, for p = 0, . . . , 7, q = 0, . . . , 7, h = 0, 1, 2, and k = 0, 1, 2. The
optimal order of the models and the corresponding estimated parameters are
reported in Table 1.

CSS LWI

Model ARMA(2,1) – GARCH(1,1) ARMA(1,1)

Conditional mean
AR1 φ̂1 1.313 (0.077) 0.360 (0.055)
AR2 φ̂2 -0.360 (0.058) -
MA1 θ̂1 -0.818 (0.064) 0.208 (0.055)
Variance σ̂2 - 0.677 (0.030)

Conditional variance
Constant ω̂ 3.611 (0.636) -
ARCH α̂1 0.110 (0.022) -
GARCH β̂1 0.827 (0.027) -

Table 3: Type and order of marginal models, parameter estimates and corresponding standard
errors in parenthesis.

Considering the goodness-of-fit of the normal distribution, we find a sat-
isfactory fit in the case of η̂LWI

t , cf. Figs. 3(e) and 3(f). This is however not the
case for η̂CSS

t . Consequently, we relax the normality assumption for the CSS,
and consider instead the normal-inverse Gaussian (NIG) distribution. The
probability density function of the NIG distribution is given by

g(x|α, β, µ, δ) =
αδG1

(
α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2
eδ
√

α2−β2+β(x−µ),

where

G1(x) =
1
2

∫ ∞

0
e−

1
2 x(t+t−1)dt

is the modified Bessel function of third kind and index 1. The NIG distri-
bution is a popular choice in the financial literature (for some examples, see
Barndorff-Nielsen (1997a), Rydberg (1997), Barndorff-Nielsen (1997b), and
Jensen and Lunde (2001)), and is also often able to provide a good description
of commodity data, see e.g. Benth and Benth (2004) and Benth and Kettler
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(2011). The NIG distribution is fitted to the residuals from the ARMA(2,1)–
GARCH(1,1) model cf. Table 1 by maximum likelihood, and the parameter
estimates are reported in Table 4. As it appears from the histogram and
quantile plots displayed in Figs. 3(a) and 3(b), the NIG distribution provides
a satisfactory fit to the CSS data.

α̂ β̂ µ̂ δ̂

1.584 (0.309) -0.189 (0.144) 0.189 (0.127) 1.534 (0.282)

Table 4: Maximum likelihood estimates obtained by fitting the NIG distribution to η̂CSS
t . Corre-

sponding standard errors are given in parenthesis.
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Fig. 3: Diagnostics for the standardized residuals η̂CSS
t (first row) and η̂LWI

t (second row).

To provide further evidence for the appropriateness of the chosen marginal
distributions, we perform the Kolmogorov-Smirnov (K-S) and the Cramer-
von Mises (CvM) goodness-of-fit tests. To obtain critical values for the tests,
we employ the simulation-based method described in detail in Patton (2013).
In the CSS case we obtain p-values of 0.627 and 0.785 for the K-S and CvM
test, respectively, and can thus not reject the null that the NIG distribution is
well-specified. This is also the conclusion in the LWI case, where we test the
goodness-of-fit of the normal distribution. Here, the resulting p-values are
0.746 and 0.915 for the K-S and CvM test, respectively.

Aside from providing evidence for the goodness-of-fit of the marginal
distributions, the sample autocorrelations provided in Fig. 3 suggest that no
considerable serial dependence is left in the conditional mean and variance,
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for either variable. Having verified that the models proposed here are suit-
able for describing the marginal behavior of the CSS and the LWI, we proceed
in the next section to the modeling of the dependence structure.

3.2 Constant copula models

Let FNIG and FN denote the cumulative distribution functions for the NIG
and standard normal distribution, respectively. To obtain the approximately
uniforms that are the input variables to the copula function, we apply the
probability integral transform, i.e.,

ûCSS
t = FNIG(η̂CSS

t |Ft−1, α̂, β̂, µ̂, δ̂),

ûLWI
t = FN(η̂LWI

t |Ft−1),

for t = 1, . . . , T. In Fig. 4 we plot the results, revealing a strong negative
relation between the variables.
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Fig. 4: Empirical copula density.

From an economic point of view, this negative dependence is caused by
the strong negative relation between the electricity price and the wind index.
A high wind penetration in the electricity grid puts a downward pressure
on day-ahead electricity prices owing to the process of day-ahead price for-
mation, which prioritizes cheap electricity producers. With everything else
being equal, this lowering effect on the electricity price is then reflected in the
CSS, which is also lowered, cf. Eq. (1). Similar arguments apply to the case of
a low wind scenario, where electricity prices are typically pushed upwards.

The dependence structure seems to be slightly asymmetric, with the north
west corner of Fig. 4 exhibiting more concentration and being sharper in
shape compared to the south east corner. That is, there seems to be more
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probability of observing the combination of extremely high wind / extremely
low CSS than the reverse. Since non-zero dependence in extreme events could
have notable implications for the benefits of WPF, being able to capture such
behavior in a model for the dependence structure must be considered. Luck-
ily in the context of copulas, such extreme events can be easily captured by
considering certain copula families that allow for non-zero tail dependence.
More specifically, the lower and upper tail dependence can be defined as

Λl = lim
q→0+

P(uCSS
t ≤ q|uLWI

t ≤ q)

Λu = lim
q→1−

P(uCSS
t > q|uLWI

t > q),

where q denotes the quantile. Clearly, since our data is characterized by neg-
ative dependence, computing Λl and Λu as defined above is not meaningful.
This can however be resolved by performing suitable rotations of the data,
which shall be discussed in more detail shortly.

To investigate which copula best describes the dependence structure illus-
trated in Fig. 4, we consider first the following standard copulas, which are
often employed in the related literature: Gaussian, Gumbel, rotated Gumbel
(RGumbel), Clayton, rotated Clayton (RClayton), Frank, symmetrized Joe-
Clayton, and Student t.2 These copula models cover a wide range of de-
pendency structures, with some models being able to capture asymmetric
dependence, and also upper and lower tail dependence, i.e., a non-zero prob-
ability of extreme events happening simultaneously. In the interest of brevity,
we shall not go into detail with the properties of each copula model here, and
refer instead to McNeil et al. (2005), Nelsen (2006), and Patton (2006) for a
comprehensive description.

To allow for further flexibility compared to the standard copulas enumer-
ated above, we also consider copula mixtures. As in e.g. Rodriguez (2007)
and Dias and Embrechts (2009), for a given t we mix copula a, having copula
density ca(·|Ft−1, θθθa), with copula b, having copula density cb(·|Ft−1, θθθb), by
using a mixing parameter 0 < λ < 1 and the following form:

cm(·|Ft−1, θθθa, θθθb, λ) = λca(·|Ft−1, θθθa) + (1− λ)cb(·|Ft−1, θθθb). (5)

As expected, a mixture copula inherits characteristics from its mixing compo-
nents. In the following proposition, we present an especially useful result re-
lating to the tail dependence of a mixture copula, which we shall use shortly.
Notice that we omit the conditioning to ease the notation.

Proposition 3.1. Let Ui ∼ Uni f (0, 1) for i = 1, 2, and let Cm denote the bivariate
copula of (U1, U2). Further assume Cm is given as the mixture

Cm(u1, u2) = λCa(u1, u2) + (1− λ)Cb(u1, u2),

2By rotated, we mean a 180 degree rotation of the data.
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where Ca and Cb are two bivariate copulas, and 0 < λ < 1. Then, the lower tail
dependence Λl and the upper tail dependence Λu for the mixture Cm are given as

Λl = λΛl,a + (1− λ)Λl,b,

and

Λu = λΛu,a + (1− λ)Λu,b,

where Λl,a, Λl,b, Λu,a, and Λu,b are the respective tail dependence measures for Ca

and Cb.

Proof. See Appendix A.1.

Moving on to the estimation aspect, we let c(·|Ft−1, θθθ) denote the con-
ditional copula density with parameter vector θθθ ∈ Rl , where l ∈ N is the
number of parameters in the copula. For each copula model, we obtain an
estimate for θθθ by maximizing the copula log-likelihood, i.e.,

θ̂θθ = argmax
θθθ

T

∑
t=1

log c(ûCSS
t , ûLWI

t |Ft−1, θθθ). (6)

We note that it is only the Gaussian and Student t copulas that allow for
negative dependence. To fit the remaining copulas to our data, we perform
suitable rotations of the data. Specifically, we rotate around the LWI variable
for the case of the Gumbel, Clayton, Frank, and symmetrized Joe-Clayton
copulas, and consider thus the pair (ûCSS

t , 1− ûLWI
t ) as input to Eq. (6) for

these models. Regarding tail dependence, the rotation of data implies that
lower tail dependence for the estimated copulas corresponds to high wind
index / low CSS scenarios (north west corner of Fig. 4), whereas upper
tail dependence for the estimated copulas corresponds to low wind index /
high CSS scenarios (south east corner of Fig. 4). To fit the RGumbel and
the RClayton, we note that a further 180 degree rotation of the pair (ûCSS

t ,
1− ûLWI

t ) is performed.
In Table 5, we report the estimation results for all standard copula models

and three selected mixtures. Other copula mixtures aside from those reported
in Table 5 were considered, but we found no increase in performance. As a
model selection criterion, we employ the Akaike Information Criterion (AIC).
According to the AIC, the preferred model is the mix of Frank and RGumbel
(hereafter denoted FRG copula), confirming the presence of slight asymmetry
in the dependence structure illustrated in Fig. 4.

Considering the FRG copula in more detail, its first mixing component,
the Frank copula, imposes symmetric dependence and a zero tail depen-
dence. Its second mixing component, the RGumbel, imposes an asymmetric
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3. Model construction and fit

dependence structure, with zero upper tail dependence and lower tail depen-
dence given by

Λl,RG = 2− 21/θRG
,

where θRG is the parameter for the RGumbel copula. Recalling Prop. 3.1, we
thus have that the upper and lower tail dependence for the FRG copula are

Λu,FRG = 0,

Λl,FRG = (1− λ)Λl,RG. (7)

The fit produced by the FRG translates into a tail dependence coefficient
of approximately 0.359 when considering the north west corner of Fig. 4,
and hence a rather high probability of extremely high wind index / low CSS
happening simultaneously. To illustrate the shape of the FRG copula and how
it deviates from the shapes of the individual copulas in the mixture, we plot
in Fig. 5 simulations from the fitted Frank, RGumbel and FRG copulas. The
simulations reveal that while the fitted Frank copula is too symmetric and the
fitted RGumbel is too asymmetric compared to the observed dependence in
Fig. 4, the fitted FRG mixture is able to dampen the individual effects, hence
providing a better resemblance to the observed dependence structure.
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Fig. 5: T simulations from the fitted Frank, RGumbel and FRG copulas, cf. Table 5.
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Copula model Param. (s.e.) log Lc AIC

Gaussian ρ̂ -0.636 (0.019) 266.503 -531.006

Gumbel* θ̂ 1.675 (0.049) 226.083 -450.165

RGumbel* θ̂ 1.773 (0.053) 277.829 -553.657

Clayton* θ̂ 1.233 (0.083) 245.947 -489.894

RClayton* θ̂ 0.911 (0.071) 167.862 -333.724

Frank* θ̂ 5.029 (0.247) 267.805 -533.611

Sym. Joe-Clayton* Λ̂u 0.274 (0.048) 265.777 -527.553
Λ̂l 0.539 (0.026)

Student t ρ̂ -0.646 (0.020) 274.596 -545.192
ν̂ 9.873 (15.008)

Mix of Gumbel and θ̂1 1.964 (0.500) 285.060 -564.120
RGumbel* θ̂2 1.797 (0.101)

λ̂ 0.219 (0.081)

Mix of Frank and θ̂1 4.552 (1.309) 286.419 -566.837
RGumbel* θ̂2 1.920 (0.169)

λ̂ 0.365 (0.104)

Mix of Gaussian and ρ̂ -0.494 (0.092) 285.152 -564.304
RGumbel* θ̂ 2.095 (0.234)

λ̂ 0.357 (0.130)

Table 5: Estimation results for 11 selected copula models. The maximized value of the copula
log-likelihood is denoted log Lc. For the functional forms of the considered copulas and other
characteristics, we refer to McNeil et al. (2005), Nelsen (2006) and Patton (2006). A copula
marked by an asterisk has been estimated using a suitable rotation of the data. Standard errors
are based on 999 simulations.

4 Time-Varying Dependence

Up until this point, we have assumed a static model for the dependence
structure, which is seldom a realistic representation. Natural follow-up ques-
tions are therefore related to the presence and type of time variation in the
dependence. In this section, we consider these questions in more detail.

To investigate the time-varying aspect we consider Kendall’s τ, which is
a measure of concordance. In terms of a bivariate copula C, Kendall’s τ can
be expressed as (see e.g. McNeil et al. (2005))

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1 = 4E[C(U1, U2)]− 1. (8)
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We compute Kendall’s τ between ûCSS
t and ûLWI

t based on a rolling window
of 60 days. Fig. 6 displays the results, and reveals a strong seasonal pat-
tern in the dependence structure. According to Fig. 6, the dependence is
strongest around winter and weakest around summer. A possible explana-
tion for this behaviour relates to the power generation mix in Germany and
the import/export conditions. During winter, the increased wind power pro-
duction has a direct lowering effect on the daily electricity price due to the
mechanism of day-ahead electricity price formation. As argued in Section 3.2,
this lowers the CSS. During summer, the lower wind power production does
not have the same direct effect on the daily electricity price. If that were the
case, prices should increase. The high photovoltaic production during peak
periods combined with the high likelihood of being able to import cheap
nuclear power from France prevents however prices from increasing. Conse-
quently, this weakens the dependence between the wind power production
and the CSS during the summer months. This is in line with the observations
of asymmetry made in Section 3.2: The lack of wind power production does
not have the exact opposite effect on the CSS as the excess of it.
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Fig. 6: Kendall’s τ between ûCSS
t and ûLWI

t based on a 60-days rolling window. The confidence
interval is based on 999 bootstraps. Note that the date corresponding to each estimate refers to
the last day in the 60-days period.

In light of these findings we consider next extending the static copula
mixture, such that the yearly seasonality in the dependence measured by
Kendall’s τ in Fig. 6 can be accounted for.

4.1 A seasonal copula mixture

Since the FRG copula is the best performing static copula cf. Table 5, we shall
restrict our attention to this particular model in order to fix ideas. First, let us
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state a general but simple result concerning Kendall’s τ for copula mixtures,
which is particularly useful in our modeling context. Again here, we omit
the conditioning for notational convenience.

Proposition 4.1. Let Ui ∼ Unif(0,1) for i = 1, 2, and let Cm denote the bivariate
copula of (U1, U2). Further, suppose Cm is given as

Cm(u1, u2) = λCa(u1, u2) + (1− λ)Cb(u1, u2)

for two copulas Ca and Cb, and mixing parameter 0 < λ < 1. Then Kendall’s τ
implied by Cm can be expressed as

τm = λτa + (1− λ)τb, (9)

where τa is Kendall’s τ corresponding to copula Ca, and τb is Kendall’s τ corre-
sponding to copula Cb.

Proof. See Appendix A.2.

It follows from Prop. 4.1 that Kendall’s τ for the copula mixture is simply
a linear combination of the individual Kendall’s τ’s corresponding to the
copulas comprised in the mixture. Thus, introducing time variation in τa

and τb translates into time variation in τm. Further, explicit relations between
Kendall’s τ and the copula parameter are available for many of the copulas
usually employed in the literature, see e.g. McNeil et al. (2005). Considering
the FRG copula, we have that Kendall’s τ for the Frank copula is given by

τF = 1− 4
θF

(
1− 1

θF

∫ θF

0

t
et − 1

dt

)
, (10)

and Kendall’s τ for the RGumbel copula is given by

τRG = 1− 1
θRG . (11)

The superscripts F and RG are added in the above formulas to indicate their
link to a particular copula. Notice that in both expressions, Kendall’s τ is
monotonically increasing as a function of the corresponding copula parame-
ter. Therefore, specifying time variation for τF and/or τRG will also uniquely
determine values of θF and θRG. If we instead were to introduce time vari-
ation directly in Kendall’s τ for the FRG copula, we would not be able to
identify θF and θRG.

Based on the discussion above and motivated by the pronounced yearly
cycle in Fig. 6, we propose a simple extension to the static FRG model. Specif-
ically, we introduce a yearly cycle in Kendall’s τ corresponding to the RGum-
bel copula, i.e.

τRG
t = aRG + bRG sin (2πt/K) + cRG cos (2πt/K) , (12)
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where aRG, bRG, and cRG are constant coefficients, and K = 258 as was the
case with the seasonal functions in Section 3.1. Regarding the Frank con-
tribution in the FRG copula, we keep the corresponding Kendall’s τ static.
Consequently, the evolution equation for the overall Kendall’s τ implied by
the seasonal FRG copula is

τSFRG
t = λSFRGτF + (1− λSFRG)τRG

t . (13)

Given the relations in Eqs. (10) and (11) and the seasonal specification in
Eq. (13), the model is estimated by maximizing the FRG copula loglikelihood.
The estimation results are given in Table 6, revealing a clear improvement in
AIC compared to the static FRG copula.

τ̂F âRG b̂RG ĉRG λSFRG logLc AIC

0.542 0.412 -0.111 0.170 0.314 309.711 -609.422
(0.068) (0.033) (0.033) (0.035) (0.092)

Table 6: Maximum likelihood estimation results for the seasonal FRG copula described in
Eqs. (12)–(13). The maximized value of the copula log-likelihood is denoted log Lc. Standard
errors are reported in parenthesis and are computed following the simulation-based procedure
described in detail in Patton (2013), where we note that the estimation error from the marginal
models is taken into account.

Since the FRG copula has three parameters, there are of course different
ways of incorporating yearly seasonality in the model. Other specifications
were therefore considered, such as introducing a yearly cycle in τF instead
of τRG, and letting both τRG and τF vary over a yearly horizon. In terms
of AIC, none of these alternatives outperformed the model in Eqs. (12)–(13).
On a different note, by selecting the static FRG copula as the optimal model
amongst static alternatives does not guarantee that the seasonal FRG copula
will be preferred to time-varying extensions of other copula models. As a re-
sult, similar extensions as those proposed in Eqs. (12)–(13) were implemented
for most of the copulas in Table 5 to ensure that the seasonal FRG is superior
in terms of AIC.

To illustrate the fit of the proposed seasonal FRG model, we plot in
Fig. 7(a) the empirical Kendall’s τ together with τ̂SFRG

t implied by the sea-
sonal FRG, using a 60-days moving window, as in Fig. 6. As a standard of
comparison, we include the Kendall’s τ implied by the static FRG. The results
indicate that the dependence implied by the seasonal FRG follows the yearly
cycle observed in the actual Kendall’s τ rather well. Moreover, it appears
from Fig. 7(a) that we would underestimate the strength of the dependence
between the CSS and the LWI during autumn and winter with the static FRG.
The reverse is observed during spring and summer, with the strength of the
dependence being overestimated by the static FRG. To provide further sup-
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port for the proposed seasonal FRG, we display in Fig. 7(b) a simulated path
over a four-year horizon, which resembles the actual data nicely.
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(a) Actual and implied Kendall’s τ
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Fig. 7: (left) Actual Kendall’s τ and Kendall’s τ implied by the static and seasonal FRG copula,
based on a 60-days rolling window. The date corresponding to each estimate refers to the last
day in the 60-days period. (right) A simulated path of Kendall’s τ from the seasonal FRG copula,
aggregated using a 60-days rolling window.
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Fig. 8: Kendall’s τ and lower tail dependence implied by the static and seasonal FRG copulas
throughout the year. A 90% confidence interval is provided for the seasonal parts.

To complement Fig. 7(a), a clearer picture of the yearly shape of Kendall’s
τ implied by the seasonal FRG is given in Fig. 8(a), where we illustrate
the fit at each time point during a year (i.e., no averaging of Kendall’s τ
is performed). Equally interesting to consider is the lower tail dependence
implied by the fitted seasonal FRG copula, which follows directly from ap-
plying Eq. (7). The results are plotted in Fig. 8(b), revealing that the lower
tail dependence coefficient reaches its lowest value of approximately 0.2 dur-
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ing summer and its maximum value of approximately 0.50 during winter.
This entails that there is a rather large difference between the probability of
observing the event of extreme high wind index / low CSS during winter
compared to summer. In Fig. 8(b), we again provide as benchmark the corre-
sponding static estimate.

5 Application results

Having established a model for the joint behavior of the CSS and the wind
index, we consider next the quantification of the benefits that WPF can offer
GFPPs. A GFPP acting in the day-ahead market can decide from day to day
whether to run or not, and thereby take advantage of the daily variation in
the CSS. By the construction of the day-ahead wholesale electricity market,
a GFPP will not run in times of a negative CSS; its profit RCSS for a period
t ∈ [T1, T2] can thus be represented as

RCSS =
T2

∑
t=T1

12 max(CSSt, 0)s, (14)

where s is the size of the GFPP measured in MW, and 12 is the number
of peak load hours during a day. Recalling the payoff in Eq. (2), taking a
position γ ∈ Z in WPF contracts yields the hedged profit of the GFPP, which
we denote by R:

R = RCSS + γRWPF. (15)

We note that by excluding weekends and holidays from our analysis, these
are not captured in RWPF. We argue however that this does not alter the
overall conclusions drawn below.

To facilitate hedging decisions, we perform Monte Carlo simulations from
the proposed model. Specifically, the marginal models fitted in Section 3.1
and the seasonal FRG copula fitted in Section 4.1 are employed to produce
simulations of the joint behavior of the CSS and the wind index, i.e., the pair
(CSSt, Wt). The “price” Wt0 affecting RWPF in Eq. (15) is computed by averag-
ing across all Monte Carlo simulations of Wt for the delivery [T1, T2].3 While

3When constructing the wind index data used in this paper, we considered the historical
evolution of its two underlying data components, namely the wind power production and the
installed capacity, as discussed in Section 2. This implicitly means that we have captured 1) the
variations due to changes in wind speeds and 2) the variations caused by the increase in installed
capacity and changes in the geographical distribution of wind turbines. While the latter aspect
is important to capture in the modeling part of this paper, we argue that a different wind index
series should be used in a pricing context. This is because today’s WPF price is not affected by
the historical evolution of the installed capacity and the changes in the geographical distribution
of turbines, but by the present conditions. We argue that this issue does not affect the conclusions
drawn in this paper, but can have serious implications in other contexts. For more details, we
refer the interested reader to Benth and Pircalabu (2017).
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we recognize that this pricing approach is simplistic in that it assumes a zero
market price of risk, it simplifies our hedging exercise somewhat, since the
mean of the hedged profit R will not be affected by varying the quantity γ.
Consequently, instead of the classical mean-variance objective, we can restrict
ourselves to the variance minimization criterion in order to determine opti-
mal positions in WPF contracts. Hence, we consider the following objective:

min
γ∈Z

Var[R]. (16)

5.1 Effectiveness of wind power futures

To illustrate the results obtained by applying the hedging approach described
above, we fix s = 200 MW, t0 = 30 December 2016 (the last date in our sam-
ple), and perform 20,000 Monte Carlo simulations of the pair (CSSt, Wt) one
year ahead. The resulting simulated paths are split into monthly periods, and
WPF prices corresponding to monthly deliveries are computed as explained
earlier. Then, monthly quantities for RCSS and RWPF are constructed for each
simulated path, and the minimization in Eq. (8) is applied to each month in
turn. The subdivision to monthly profits is motivated by the seasonal pat-
tern observed in the dependence structure cf. Fig. 7(a), and allows us to
investigate the effect of the yearly seasonality on hedging-related aspects.

In Fig. 9, we illustrate the simulated unhedged profit distribution RCSS

and the hedged profit distribution R obtained by solving Eq. (8) for the
months July and October. We observe a compression of the profit distri-
bution in both cases when applying the hedge, which entails that WPF have
variance reducing effects. In fact, this finding applies to all 12 months, as will
be illustrated shortly.
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Fig. 9: Examples of profit distributions before and after hedging with WPF, based on Monte
Carlo simulations from the proposed seasonal FRG copula model.
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Perhaps unsettling is the fact that losses can occur when considering the
hedged profit distribution in Fig. 9(a), whereas the unhedged profits cannot
attain negative values by construction (see Eq. (14)). Nevertheless, we find
that the probability of a loss when hedging with WPF is approximately 0.4%
on average. The downside of performing the hedge is therefore quite small.
In the pursuit to impair this concern even further, recall that the price of WPF
is computed under the assumption of a zero market price of risk. In reality,
the studies of Gersema and Wozabal (2017) and Benth and Pircalabu (2017)
find evidence of a negative market price of risk in the German market for
WPF, implying that a GFPP buys WPF at a discounted price compared to
the one computed here. Accounting for this would shift the hedged profit
distributions to the right, potentially excluding losses altogether.

Next, we consider in more detail the reduction in the variance of profit
distributions attained by performing the hedge. The results are stated in
Fig. 10 for all months of the year, and reveal considerable reductions; even for
May and June, where we observe the lowest values, the variance reductions
are above 10 %. Further, notice the connection between the yearly pattern
of the reductions in Fig. 10 and the implied Kendall’s τ in Fig. 8(a): Not
surprisingly, the stronger the dependence, the higher the variance reduction.
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Fig. 10: Variance reduction achieved by hedging with WPF, for each month of 2017. The results
are based on Monte Carlo simulations from the proposed seasonal FRG copula model.

Also relevant to consider in this context is the impact on hedging effec-
tiveness from changing the GFPP efficiency. To assess this, we allow the
efficiency to vary from 43.13% to 55.13% with a step size of 2%, and let the
emission factor vary according to

e = 0.184h,

which is based on ICIS (2016). Fig. 11 illustrates the variance reductions ob-
tained with the different efficiencies, across all months of the year. It appears
that increasing the efficiency (i.e., lowering the heat rate) leads to an increase
in the variance reductions for all months. The effect seems to be more pro-
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nounced during autumn and winter compared to spring and summer. From
Eq. (1), it was already apparent that increasing the efficiency of a GFPP pro-
duces a higher CSS and hence increases profitability. The findings presented
in Fig. 11 incentivize such action even further: Aside from the higher CSS, an
increased hedging effectiveness of WPF can be achieved.
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Fig. 11: Variance reduction implied by hedging with WPF, for GFPP efficiencies spanning from
43.13% to 55.13% with a step size of 2%.

5.2 Comparison with alternative models

So far in the hedging application, we have focused on the results obtained
with the preferred copula model, that is, the seasonal FRG. In this section, we
wish to highlight the benefits of this copula compared to other less optimal
alternatives. We consider the following natural progression in comparisons:

1. Frank copula versus FRG copula: In this comparison, we focus on the
effect of asymmetry and tail dependence on the benefits of WPF. These
features are captured by the FRG copula, as discussed in Section 3.2,
but not by the Frank copula, which imposes symmetry and no tail de-
pendence.

2. FRG copula versus seasonal FRG copula: Here, we concentrate on the
effect of seasonal dependence on the hedging benefits.

To perform comparisons, we keep the marginal models proposed in Sec-
tion 3.1 fixed, and repeat the simulations performed in Section 5.1 with the
Frank, FRG, and seasonal FRG copulas, instead of only the seasonal FRG. We
note that the same random seed was used to produce Monte Carlo simula-
tions from the three models. Then, we compute optimal hedge quantities γ
and associated variance reductions with each model, on a monthly basis.

200



5. Application results

The effects of asymmetry and tail dependence in the copula

Recalling Figs. 5(a) and 5(c), it is apparent that by employing the FRG cop-
ula instead of the Frank copula, we introduce a slight asymmetry and assign
more probability to the extreme events where high wind and low CSS hap-
pen simultaneously. The resulting effects on hedging are depicted in Fig. 12,
where we present the optimal hedge quantities and variance reductions pro-
duced by the two copulas. Regarding the former, we notice that the Frank
copula generally suggests less WPF in the hedging portfolio. Further, the
optimal hedge quantities vary across the year, which is a consequence of the
seasonality captured in the marginal models.

Turning to the variance reductions, which are depicted in Fig. 12(b), we
observe that the values implied by the Frank copula are generally lower com-
pared to those implied by the FRG copula. This finding is expected, since
GFPPs seek to cover their exposure to high wind / low CSS scenarios. By
assigning more probability mass to precisely these events happening simul-
taneously, which is done by shifting from the Frank to the FRG copula, we
increase the benefits of WPF. At the same time, due to the asymmetric behav-
ior of the FRG copula, we are not increasing the probability of observing the
reverse combination of low wind / high CSS, and thus not counteracting the
increased benefits of WPF. Briefly put, by believing in a dependence struc-
ture described by the Frank copula compared to the FRG copula, we would
underestimate the risk-reducing power of WPF.
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Fig. 12: Comparison of hedging results implied by the Frank and FRG copulas.
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The effects of seasonal time variation in the copula

Proceeding to the comparison of the FRG copula with its seasonal version,
we present in Fig. 13 results that are similar to those in Fig. 12. Regarding the
optimal hedge quantities in Fig. 13(a), the FRG copula yields higher values
than the seasonal FRG copula during spring and summer, while the situation
reverses during autumn and winter. This alternating behavior is connected
to that of the differences in Kendall’s τ implied by the FRG and the seasonal
FRG, cf. Fig. 8(a). That is, the hedge quantities decrease (increase) with a
decrease (increase) in absolute values of Kendall’s τ.

Considering Fig. 13(b), the results reveal a fairly constant level in the vari-
ance reduction produced by the FRG copula, compared to the variance reduc-
tion levels implied by the seasonal model. Hence, believing in static depen-
dence can lead to very misleading conclusions when managing risks. Again
in this context, we mention the link between the difference in percentage
reductions and the difference between the Kendall’s τ implied by the two
models (cf. Fig. 8(a)): The difference in reductions is largest in May/June
and November/December, reflecting the fact that the dependence implied by
the seasonal FRG model is weakest during May/June and strongest during
November/December.
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Fig. 13: Comparison of hedging results implied by the FRG and seasonal FRG copulas.

Having found clear evidence of seasonal dependence between the CSS
and the wind index, we conclude this section by briefly addressing the er-
ror we would get by applying a hedge based on the static FRG model in a
seasonal time-varying reality. To perform this analysis, we asses the opti-
mal hedge quantities implied by the static FRG copula in a seasonal setting
by using the simulated CSS and wind index from the seasonal model. The
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variance reductions obtained with this approach are then compared with the
reductions implied by the seasonal model shown in Fig. 13(b). The results,
presented in Fig. 14, reveal very small errors. The smallest and largest errors
occur in February and June, respectively, which is connected to the findings
presented in Fig. 13(a); the absolute difference in the optimal number of WPF
in the static and seasonal case generates the pattern seen in Fig. 14.

With the small errors in mind, the real error one commits by believing in
static dependence, is the belief in a wrong resulting variance reduction. Thus,
while the static model creates a misleading picture in a risk management
context, our results suggest that it could be employed to determine optimal
hedging quantities.
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Fig. 14: The effects of using the “wrong” hedge quantity: Difference in variance reduction of the
profit distribution when using hedge quantities obtained from 1) the FRG, and 2) the seasonal
FRG, both evaluated using simulations from the seasonal FRG copula model.

5.3 Discussion of the proposed hedging strategy

To conclude this section, we turn briefly to the standard hedging principle of-
ten employed to hedge the day-ahead CSS. Usually, conventional generators
remove their exposure to day-ahead price risk either completely or partially
by entering a short position in standard power forwards, and a long position
in fuel forwards and carbon credit forwards. In this paper, we have con-
sidered a different hedging approach with the purpose of determining the
potential of the newly introduced wind power futures, but we stress that our
strategy is not incompatible with the industry standard. In fact, our hedg-
ing portfolio consisting of wind power futures could be extended to include
the additional forwards mentioned above. However, this would require us to
switch from our bivariate modeling problem to a multivariate one, since the
joint behavior of the wind index, the day-ahead CSS and the different forward
clean spark spreads should be considered. While this is outside the scope of
the present paper, it is nevertheless an interesting perspective that has not
been studied yet, and could possibly be approached with vine copulas. In
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the context of the effectiveness of the standard hedging principle that con-
ventional generators usually employ, we mention the study of Charalampous
and Madlener (2016).

6 Conclusion

In this paper, we propose a joint model for the day-ahead clean spark spread
and the daily wind index that can facilitate hedging decisions for a gas-fired
power plant. The modeling procedure is based on two steps: First, the
marginal behavior of the variables is considered, where we apply seasonal
functions and ARMA–GARCH filters to remove the seasonality and the serial
dependence in the conditional mean and variance. While the usual Gaussian
assumption for the innovation process works in the case of the daily wind
index, the normal-inverse Gaussian distribution provides a better fit for the
day-ahead clean spark spread. Second, the standardized residuals from the
ARMA–GARCH models are connected through copulas. The data reveals a
dependence structure that is slightly asymmetric, and also varying according
to an annual cycle. To capture these empirical findings, we propose a sea-
sonal copula mixture, where the mixing components are the rotated Gumbel
and the Frank copulas.

Based on Monte Carlo simulations from the proposed model, we show
that wind power futures have considerable risk-reducing benefits in the con-
text of a gas-fired power plant operating in the day-ahead market. Further,
their hedging effectiveness increases as a function of the efficiency of the
gas-fired power plant. To highlight the importance of capturing asymmetry,
tail dependence, and seasonality in the dependence structure, we perform
comparison studies where the optimal model is compared to less optimal al-
ternatives. Accounting for asymmetry and tail dependence (as opposed to
imposing symmetry and zero tail dependence) leads to an increase in the
effectiveness of wind power futures. Moreover, we find that the conclusions
drawn with a static dependence model deviate to a large extent from those
obtained with a seasonal dependence model. With static dependence, the
variance reductions of the profit distributions attained by the hedge vary be-
tween 20% and 31%; in the seasonal case the corresponding reductions vary
between 10% and 45%.

Although we have concentrated on the German market and the case of
gas-fired power plants, the results are relevant for other markets, and are also
transferable to other conventional electricity producers. Since the amount
of electricity generated by wind turbines is expected to grow globally, the
dependence between the day-ahead clean spark spread and the daily wind
index in other market places will most likely be strengthened in the future.
Hence, it is reasonable to assume that more weather-based instruments sim-
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ilar to the German wind power futures will be introduced, enabling similar
analyses to be performed on other than the German market.
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A Results for copula mixtures

A.1 Proof of Proposition 3.1

For positive dependent variables, the upper tail dependence for copula C can
be written as (see e.g. (McNeil et al., 2005, p. 209))

Λu = lim
u↑1

Ĉ(1− u, 1− u)
1− u

= lim
u↑1

1− 2u + C(u, u)
1− u

, (17)

where Ĉ(u, v) := P(U > u, V > v) = C(1 − u, 1 − v) + u + v − 1 is the
survival copula. Applying Eq. (17) to the copula mixture, we get that the
upper tail dependence is

Λu = lim
u↑1

[
1− 2u + λCa(u, u) + (1− λ)Cb(u, u)

1− u

]

= lim
u↑1

[
1− 2u
1− u

+ λ
1− 2u + Ca(u, u)

1− u
+ (1− λ)

1− 2u + Cb(u, u)
1− u

− λ
1− 2u
1− u

− (1− λ)
1− 2u
1− u

]
= λΛu,a + (1− λ)Λu,b.

Similarly, the lower tail dependence can be written in terms of copula C
as (again for positive dependent variables)

Λl = lim
u↓0

C(u, u)
u

,
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resulting in the following lower tail dependence for the copula mixture:

Λl = lim
u↓0

[
λCa(u, u) + (1− λ)Cb(u, u)

u

]
= λΛl,a + (1− λ)Λl,b.

A.2 Proof of Proposition 4.1

From Eq. (8) we have that Kendall’s τ implied by copula Cm is

τm = 4E[Cm(U1, U2)]− 1

= 4
(

λE[Ca(U1, U2)] + (1− λ)E[Cb(U1, U2)]
)
− (1 + λ− λ)

= λ (4E[Ca(U1, U2)]− 1) + (1− λ)
(

4E[Cb(U1, U2)]− 1
)

= λτa + (1− λ)τb.
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1. Introduction

ABSTRACT

The wind power futures recently introduced on the German market fill
the gap of a standardized product that addresses directly the volume
risk in wind power trading. While the German wind power futures en-
tail risk-reducing benefits for wind power generators generally speak-
ing, it remains unclear the extent of these benefits across wind farms
with different geographical locations. In this paper, we consider the
wind utilization at 31 different locations in Germany, and for each site,
we propose a copula model for the joint behavior of the site-specific
wind index and the overall German wind index. Our results indicate
that static mixture copulas are preferred to the stand-alone copula mod-
els usually employed in the economic literature. Further, we find evi-
dence of asymmetric dependence and upper tail dependence. To quan-
tify the benefits of wind power futures at each wind site, we perform a
minimum variance hedge, and find that variance reductions can differ
greatly depending on the geographical location. Further, different com-
parison studies reveal that the presence of 1) a negative risk premium in
the wind power futures market and 2) upper tail dependence weaken
the benefits of wind power futures for wind power generators.

1 Introduction

Wind power generators worldwide have historically been given subsidies in
order to incentivize the development of renewable energy sources. The non-
programmable nature makes investment in wind power generation unpre-
dictable, and although subsidies simplify investment decisions, the stochastic
behavior of wind demands further risk reducing opportunities. As a result,
the so-called German wind power futures have recently been introduced on
the European Energy Exchange and Nasdaq. These instruments are written
on a wind power production index that reflects the average German utiliza-
tion, and a long (short) position gives a profit in high-wind (low-wind) sce-
narios. It follows naturally that wind power generators constitute the seller
group, as they seek to cover their exposure to the low-wind scenarios that
affect their cash-flows negatively.

In this paper, we study the hedging benefits of wind power futures for
wind turbines or wind farms with different geographical locations in Ger-
many. To facilitate optimal hedging decisions, we employ copula models for
the joint behavior of the site-specific and the German wind power produc-
tion indexes. Specifically, we base our empirical analysis on data from 31
different sites in Germany, and quantify the hedging benefits of wind power
futures for each site, showcasing how these vary across locations. Further,
we comment on how the negative risk premium in the wind power futures
market affects the wind power generator’s hedged profit distribution. For
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the data we consider, we find significant evidence of asymmetric dependence
and upper tail dependence between the site-specific and the German wind
utilization. To highlight the importance of capturing such effects, we include
a comparison study where the hedging exercise is performed with the opti-
mal copula model and a less optimal alternative that imposes symmetry and
no tail dependence.

Owing to the recent introduction of wind power futures to the market,
the related literature is yet scarce. The first studies to consider the German
wind power futures are Gersema and Wozabal (2017) and Benth and Pircal-
abu (2017). Both papers concentrate on the pricing rather than the hedging
aspect, and agree on the presence of a negative risk premium which is ex-
plained by the fact that the wind power producer’s profit is more correlated
to the German wind utilization than the conventional generator’s profit. Con-
sidering the hedging aspect is Christensen et al. (2017), where the benefits of
wind power futures are studied in the context of conventional generators.
Due to the prioritization of the cheapest energy sources in the day-ahead
market, conventional generators are affected by the share of wind power in
the system. In high-wind scenarios, conventional generators will produce
less, and they can minimize this exposure by taking a long position in wind
power futures. While the present paper is similar to the study in Christensen
et al. (2017) in that it investigates the hedging power of wind power futures, it
differentiates itself by considering the seller rather than the buyer side. Fur-
thermore, we consider multiple potential sellers in order to emphasize the
spatial aspect, which in contrast to conventional generators is very important
to consider here.

Turning to copulas, their application in the energy markets literature
has grown tremendously over the past years, see e.g. Benth and Kettler
(2011), Grothe and Schnieders (2011), Avdulaj and Barunikl (2015), Elberg
and Hagspiel (2015), Pircalabu and Jung (2017), Aepli et al. (2017) and Liu
et al. (2017) to name a few. Closest to the present paper are the studies of
Grothe and Schnieders (2011) and Elberg and Hagspiel (2015), who also em-
ploy copulas to model the German wind power production. The study of
Grothe and Schnieders (2011) concentrates on the optimal geographical allo-
cation of wind turbines, and Elberg and Hagspiel (2015) quantify the value
of wind turbines at different locations in Germany, which requires model-
ing the dependence between the aggregated German wind power generation
and the wind power generation from each wind turbine. While our modeling
approach is very similar to that in Elberg and Hagspiel (2015), we introduce
further flexibility by considering copula mixtures.

The remaining of this paper is structured as follows: Section 2 presents the
data and introduces the wind power futures. In Section 3 we briefly describe
the modeling approach and present the estimation results. In Section 4 we
examine the spatial hedging effectiveness of wind power futures and provide
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a comparison study. Section 5 concludes.

2 Data presentation and the wind power futures

The empirical study performed in this paper relies on wind index data from
31 different sites in Germany, and on the overall German wind index, which
acts as the underlying of wind power futures. In the following, we elaborate
on the data and introduce the German wind power futures.

2.1 German and site-specific wind index data

The first data component in our analysis consists of German wind index data
provided by Narex. The index represents the aggregated utilization of wind
power plants in Germany on a daily basis, and covers the period from 1
January 2012 to 31 December 2015, that is we have a total of 1461 observa-
tions. We remark that the index is computed based on wind speed data and
a constant level of installed capacity in Germany, as to exclude effects that
originate from the historical variations in the installed capacity. Specifically,
the level is set to that of December 2015, and the German wind index data
reflects therefore the distribution of wind generation capacity at that time.

The second data component consists of wind index data at 31 specific
wind sites, again for the period 1 January 2012 to 31 December 2015. For
each site, we have access to the actual daily wind power generation data
and the installed capacity data. To construct the site-specific wind index,
we consider the following: Let Pt,i denote the day t wind power generation
measured in MWh for wind site i, and let Ct,i denote the installed capacity
for wind site i. The wind index Wt,i ∈ [0, 1] is then obtained as

Wt,i =
Pt,i

h · Ct,i
, (1)

where h is the number of hours in a given day. We note that the number
of turbines included in each wind site, their type, condition, height, and
the surrounding terrain vary across the sites. While we acknowledge that
circumstances other than the geographical location can have an impact on
the site-specific wind index, it is not possible to separate such effects based
on the data we have available. Therefore, whenever we refer to differences
between the wind sites which are caused by their geographical locations, we
implicitly mean other circumstances as well.

To illustrate how the 31 wind sites are spread across Germany, we plot in
Fig. 1(a) their approximate geographical location, with corresponding site ID
number. Moreover, we report in Fig. 1(b) the linear correlation between the
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Fig. 1: Location of wind sites with site ID, and linear correlations between German wind index
and each site wind index.
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wind index of each site and the German wind index – not surprisingly, we
generally find a very strong positive relation.

To provide the reader with more sense of the data, we present in the
upper row block of Fig. 2 time series plots of the German wind index and
the wind indexes at sites 2 and 31. In the lower row block of Fig. 2, we plot
the corresponding sample autocorrelation functions. The plots reveal clear
yearly cycles for the German wind index and the wind index at site 2, while
the yearly seasonality at site 31 is much less pronounced.
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Fig. 2: Upper row block: Time series plots of the German wind index and the wind index at sites
2 and 31. Lower row block: Sample autocorrelation of the German wind index and the wind
index at sites 2 and 31.

2.2 Wind power futures

The German wind index displayed in Fig. 2(a) acts as the underlying for Ger-
man wind power futures (WPF) traded on the European Energy Exchange
and Nasdaq. To clarify the WPF payoff, let us consider a contract with deliv-
ery period [T1, T2], where T1 < T2. Further, let us denote by WDE

t the realized
wind index in Germany at day t. Then, a long position in a WPF contract
yields the payoff

RWPF = H

(
1

T2 − T1 + 1

T2

∑
t=T1

WDE
t −Wt0

)
X, (2)
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where H is the number of wind production hours (wph) in the delivery pe-
riod, Wt0 is the “market price” set at day t0 < T1, and X is the tick size set to
100 EUR at EEX. The price is quoted in EUR per wph, and a price of e.g. 30
EUR/wph translates to Wt0 = 0.30.

It follows from Eq. (2) that a long position in a WPF contract generates
a profit in high wind scenarios, whereas a short position generates a profit
in low wind scenarios. For a wind power generator, a short position in WPF
contracts is therefore an interesting opportunity to mitigate the volumetric
risk associated with wind power generation.

3 Modeling procedure

To model the joint behavior of the German wind index and a site-specific
wind index, we employ ARMA–GARCH copula models; with 31 different
wind sites, we end up with 31 bivariate models. The choice of modeling ap-
proach is motivated by the well-known flexibility of these models, and also by
the copula being an excellent tool for modeling nonlinear dependence. Since
ARMA–GARCH copula models are common in the financial and economet-
ric literature, we shall not provide a comprehensive introduction here, and
refer the interested reader to e.g. Patton (2006, 2013), Dias and Embrechts
(2009), and Pircalabu et al. (2017).

In the following subsections, we consider 1) univariate ARMA–GARCH
type models for the marginal behavior of the German wind index and all site-
specific wind indexes, and 2) bivariate copulas for the dependence between
the German wind index and each site-specific wind index. For readability,
we only report the results for four chosen sites, namely site 2, 19, 20, and 31
cf. Fig. 1(a). The four sites are selected as to emphasize the spatial effects.

3.1 Marginal models

As already illustrated in Fig. 2, the wind index data is bounded between
zero and one. Since ARMA-GARCH models are not suited for modeling
this type of bounded data, we first apply the logit transform to the wind in-
dexes.1 Then, to capture the yearly seasonality revealed in Fig. 2, we employ
a seasonal function of the form,

ft = a1 + c1 sin (2πt/365) + c2 cos (2πt/365) , (3)

which is fitted to each logit-transformed wind index.
After removing the yearly seasonality from the data, we filter each marginal

series through ARMA–GARCH models. To determine the optimal order of

1The logit transform is given by logit(x) = log(x)− log(1− x).
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3. Modeling procedure

the models, we employ the Bayesian Information Criterion (BIC), where we
consider ARMA(p,q)–GARCH(h,k) models of order p, q = 0, .., 5 and (h, k) =
{(0, 0), (0, 1), (1, 1)}. Table 1 presents the optimal models and corresponding
parameter estimates with standard errors in parenthesis, revealing that the
preferred specifications vary across the chosen sites.

Considering the goodness-of-fit of the proposed models in Table 1, let
us denote by ηDE the standardized residuals corresponding to the German
wind index, and ηi the standardized residuals corresponding to the wind in-
dex at site i. Diagnostic plots are displayed in Fig. 3 for the German index,
and in Fig. 4 for four selected sites. The autocorrelation functions for the
standardized residuals and the standardized residuals squared show almost
no correlation, hence indicating appropriate model selection. Regarding the
distributional assumptions, the normal distribution provides a nice fit to the
standardized residuals corresponding to the German wind index, as it ap-
pears from Figs. 3(a) and 3(b). For the site-specific wind indexes however,
the normal distribution is less appropriate. As a result, we relax the normal-
ity assumption and find that a skew t distribution provides a much better fit,
as shown in Fig. 4. Parameter estimates for the fitted skew t distributions
together with standard errors are reported in the last row block of Table 1.
Although results concerning four selected sites are displayed in this section,
we stress that very similar results are obtained for the remaining series.
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Fig. 3: Model check for the German wind index.

3.2 Copula models

Next, we turn to dependence modeling with copulas, which are esentially
distributions with uniform margins. Let us consider the random vector
Yt = (Yt,1, Yt,2), with joint conditional distribution F(·|Ft−1). Then, accord-
ing to Sklar’s theorem [Sklar (1959)] for conditional distributions, we can
decompose F(·|Ft−1) as

F(yt,1, yt,2|Ft−1) = C(F1(yt,1|Ft−1), F2(yt,2|Ft−1)|Ft−1), (4)

where C denotes the copula function, F1(·|Ft−1) and F2(·|Ft−1) are the marginal
distribution functions of Yt,1 and Yt,2, respectively, and Ft−1 is the filtration.
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Fig. 4: Model check for four selected sites: 2, 19, 20, and 31.
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Having established marginal models in the previous section, we are now
left with the construction of the copula C. To this end, we apply the proba-
bility integral transform to the standardized residuals to obtain

ûDE
t = FDE(η̂DE

t |Ft−1),

ûi
t = Fi(η̂i

t|Ft−1),

for i = 1, . . . , 31. Fi and FDE are distribution functions corresponding to
each wind site and the German wind index, respectively. Fig. 5 presents the
estimated uniforms for the four selected sites plotted against ûDE

t , showing
variations in the strength of the dependence, which we already expected con-
sidering the results in Fig. 1(b). However, Fig. 5 also indicates that the shapes
of the dependence structure could possibly differ, and thus the preferred cop-
ula specifications might vary across the wind sites. Specifically, notice that
Figs. 5(b) and 5(d) exhibit a slight asymmetric behavior with more concen-
tration in the north east corner compared to the other corners. This pattern
is not as clear in Figs. 5(a) and 5(c).

The copula models we consider are the Gaussian, Gumbel, rotated Gum-
bel (RGumbel), Clayton, rotated Clayton, Frank, symmetrized Joe-Clayton,
and Student t2. These are fitted to all 31 pairs and the Akaike Information
Criterion (AIC) is used as model selection criterion. To introduce further flex-
ibility, we also consider copula mixtures as in Rodriguez (2007) and Dias and
Embrechts (2009). A copula mixture is given by

cm(·|Ft−1, θθθa, θθθb, λ) = λca(·|Ft−1, θθθa) + (1− λ)cb(·|Ft−1, θθθb), (5)

where ca(·|Ft−1, θθθa) is the copula density for copula a having parameter vec-
tor θθθa, and cb(·|Ft−1, θθθb) is the copula density for copula b with parameter
vector θθθb. The mixing parameter 0 < λ < 1 controls the proportion of each
copula.

In addition to the already mentioned copulas, we employ the follow-
ing mixtures: Gumbel/RGumbel, Gaussian/Gumbel, Gaussian/RGumbel,
Frank/Gumbel, and Frank/RGumbel. For each site, the optimal copula
model is reported in Table 2. Moreover, we include in Table 2 the implied
Kendall’s τ, upper tail dependence, and lower tail dependence.3 The op-
timal copula differs across the 31 wind sites, with Gaussian/Gumbel and
Frank/Gumbel being preferred in most cases. These copula mixtures are both
characterized by an asymmetric dependence structure and upper tail depen-
dence. According to the results in Table 2, only two models corresponding to

2Rotation refers to a 180 degree rotation of data.
3Recall that tail dependence measures the dependence in extreme events. For positively

related data, the upper tail dependence is defined as τU = limq→1− P(u1,t > q|u2,t > q), where q
denotes the quantile and the u’s represent standard uniform variables. The lower tail dependence
is defined analogously.
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Fig. 5: Empirical copula density plots for four selected sites, with site ID 2, 19, 20, and 31.

northern sites imply lower tail dependence, while upper tail dependence is a
common feature across all models. The upper tail dependence corresponds
to scenarios with high German wind index and high site-specific wind index.
For the wind power generator, this feature weakens the power of WPF as
hedging instruments, which we shall elaborate in the next section.

To test whether or not the optimal copulas in Table 2 are well-specified,
we perform the Kolmogorov-Smirnov (K-S) and the Cramer-von Mises (CvM)
goodness-of-fit tests (see Berg (2009), Genest et al. (2009) and Patton (2013)
for a detailed description). The resulting p-values are reported in the last two
columns of Table 2 and are based on 999 simulations, indicating that the null
hypothesis of a well-specified copula cannot be rejected.
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ID Optimal copula Kendall’s τ Upper tail dep. Lower tail dep. K-S CvM

1 Mix Gaussian/Gumbel 0.582 (0.011) 0.246 (0.060) - 0.893 0.886
2 Mix Gumbel/RGumbel 0.606 (0.008) 0.358 (0.038) 0.328 (0.039) 0.512 0.527
3 Mix Gaussian/Gumbel 0.534 (0.010) 0.004 (0.044) - 0.864 0.989
4 Student t 0.642 (0.010) 0.215 (0.123) 0.215 (0.123) 0.968 0.998
5 Mix Gaussian/Gumbel 0.603 (0.009) 0.074 (0.059) - 0.809 0.812
6 Mix Gaussian/Gumbel 0.516 (0.010) 0.189 (0.057) - 0.902 0.955
7 Mix Gaussian/Gumbel 0.576 (0.009) 0.056 (0.050) - 0.857 0.818
8 Mix Gaussian/Gumbel 0.609 (0.008) 0.082 (0.054) - 0.881 0.877
9 Mix Gaussian/Gumbel 0.647 (0.008) 0.333 (0.069) - 0.783 0.793
10 Mix Frank/Gumbel 0.453 (0.012) 0.211 (0.048) - 0.851 0.755
11 Mix Frank/Gumbel 0.492 (0.011) 0.146 (0.047) - 0.900 0.765
12 Mix Gaussian/Gumbel 0.659 (0.007) 0.239 (0.066) - 0.683 0.789
13 Mix Gaussian/Gumbel 0.613 (0.009) 0.261 (0.068) - 0.590 0.642
14 Mix Frank/Gumbel 0.554 (0.011) 0.373 (0.048) - 0.683 0.823
15 Mix Frank/Gumbel 0.570 (0.010) 0.376 (0.046) - 0.510 0.582
16 Mix Frank/Gumbel 0.513 (0.011) 0.494 (0.043) - 0.716 0.797
17 Mix Frank/Gumbel 0.479 (0.012) 0.395 (0.043) - 0.358 0.533
18 Mix Frank/Gumbel 0.570 (0.010) 0.246 (0.050) - 0.876 0.783
19 Mix Frank/Gumbel 0.437 (0.013) 0.363 (0.045) - 0.765 0.703
20 Mix Frank/Gumbel 0.470 (0.013) 0.190 (0.052) - 0.958 0.911
21 Mix Gaussian/Gumbel 0.385 (0.015) 0.223 (0.058) - 0.982 0.972
22 Mix Frank/Gumbel 0.506 (0.011) 0.302 (0.048) - 0.796 0.757
23 Mix Frank/Gumbel 0.510 (0.013) 0.302 (0.048) - 0.742 0.864
24 Mix Frank/Gumbel 0.416 (0.014) 0.196 (0.045) - 0.504 0.664
25 Mix Gaussian/Gumbel 0.383 (0.014) 0.271 (0.068) - 0.800 0.880
26 Mix Frank/Gumbel 0.437 (0.013) 0.250 (0.048) - 0.773 0.781
27 Mix Gaussian/Gumbel 0.349 (0.013) 0.260 (0.059) - 0.763 0.769
28 Mix Frank/Gumbel 0.390 (0.014) 0.298 (0.046) - 0.457 0.558
29 Mix Frank/Gumbel 0.359 (0.015) 0.186 (0.046) - 0.696 0.776
30 Mix Frank/Gumbel 0.361 (0.014) 0.282 (0.046) - 0.766 0.758
31 Gumbel 0.215 (0.015) 0.277 (0.018) - 0.756 0.778

Table 2: Optimal copula, Kendall’s τ, upper and lower tail dependence implied by the optimal
copula, and p-values resulting from performing goodness-of-fit tests. Standard errors are re-
ported in parenthesis. The symbol “-” indicates that the tail dependence imposed by the chosen
copula is zero. Kendall’s τ for a convex combination of copula a and copula b, individually im-
posing a Kendall’s τ of τa and τb, respectively, is λτa + (1− λ)τb. Likewise, the upper (lower)
tail dependence is a convex combination of the individual upper (lower) tail dependence coeffi-
cients. See Christensen et al. (2017) for more information.

4 Spatial hedging benefits of wind power futures

In this section, the models presented in Sec. 3 are employed to asses the
hedging effectiveness of WPF for the different wind sites. As in Sec. 3, we
limit ourselves to presenting results for four chosen sites – if otherwise, it
will be clear from the context. In order to perform the hedging exercise, we
assume the following: Wind power producers receive a fixed price of 30 EUR
per produced MWh regardless of geographical location, and the installed
capacity of the wind turbines at each wind site is 100 MW. Thus, from Eq. (1)
we get that the daily wind power generation at site i and day t is

Pt,i = 100 ·Wt,i · h,
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and hence the wind power producer’s unhedged profit at site i, over the
period [T1, T2], is given by

RU
i = 30

T2

∑
t=T1

Pt,i. (6)

When hedging the volume risk associated with wind power generation using
a position γi ∈ Z in WPF – recall Eq. (2) – we get the following hedged profit

RH
i = RU

i + γiRWPF. (7)

To determine γi, we use 20,000 Monte Carlo simulations from the proposed
models, each spanning a year from 1 January 2016. Since the end of the
in-sample data is 31 December 2015, it follows that the simulations are per-
formed out-of-sample. We shall restrict our attention to WPF with monthly
delivery, and divide therefore each simulated path into 12 parts correspond-
ing to the length of each month. This way, we are able to asses monthly
differences in the hedging effectiveness of WPF across a calender year.

Regarding pricing of WPF, i.e., estimating Wt0 in Eq. (2) for each month,
we note that t0 is fixed at 31 December 2015 regardless of which monthly
delivery we consider. Assuming a zero market price of risk, we obtain Wt0 as
a simple average of Monte Carlo simulations covering the specified delivery
period. We stress that this assumption implies that the expected value of the
profit distribution will not be affected by changing γi. Thus, we concentrate
on a minimum variance hedge, and determine γi for each month by

min
γi∈Z

Var[RH
i ]. (8)

4.1 Empirical results

Using the specifications above, we estimate the unhedged profit distributions
for all sites and all months of the year. In Fig. 6, we present the results
for January and sites 2, 19, 20, and 31. Note that we are able to compare
the profits, since the wind generation capacity is set at 100 MW for all sites.
The unhedged profit distributions have different means, with site 31 having
the lowest value. Regarding the hedged profit distributions, which are also
included in Fig. 6, we observe that WPF are most beneficial for site 2, followed
by sites 19 and 20, which achieve similar benefits. Hedging benefits for site
31 are lowest, since this site is least correlated to the German wind index cf.
Table 2. Although Fig. 6 only illustrates the case for January, we find similar
results for the remaining months. In fact, the average difference between the
maximum and minimum variance reductions throughout the year for all sites
is only 2.3%, and all range between 1% and 5%.
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Motivated by the earlier studies of Gersema and Wozabal (2017) and
Benth and Pircalabu (2017), who argue for the existence of a negative risk
premium in the German wind power futures market, we consider next the
effect of including such a quantity in our analysis. Cf. Eq. (2), a risk premium
of e.g. -1 EUR/wph translates to a reduction in Wt0 of 1 %, and implies that
WPF are sold at a discount. To indicate the effect of a negative risk premium
on the hedged profit distribution, we plot in Fig. 6 the results of assuming
a risk premium of -1 EUR/wph and -2 EUR/wph. We note that the hedge
quantities remain unchanged, since hedging decisions are based on a mini-
mum variance hedge, thus disregarding the cost of the hedge portfolio. In the
hedging exercise considered here, this implies that a negative risk premium
shifts the hedged profit distribution to the left compared to the case of a zero
risk premium, as it appears from Fig. 6.4

To study further the implications of a negative risk premium, we consider
the reduction in the mean of the hedged profit distribution when taking into
account a risk premium of -2 EUR/wph, as opposed to none at all. The re-
sults are plotted in Fig. 7(a) on a monthly basis, and can be explained by
the seasonality in the marginal models in combination with a static copula.
On one hand, the seasonal behavior embedded in the site-specific wind in-
dex causes the profit corresponding to the naked position RU

i to be lowest
during summer and highest during winter. On the other hand, the optimal
hedge quantity γ∗ in WPF is highly influenced by the dependence – which
is constant throughout the year – thus translating to a fairly constant γ∗ as
illustrated in Fig. 7(b).

Clearly, since wind power generators seek to cover their exposure to low
wind scenarios, they would be more inclined to use WPF as hedging in-
struments during the summer months. According to the results in Fig. 7(a)
however, the reduction in the mean of the hedged profit distribution is ap-
proximately double as high during summer compared to winter, which is
highly unfavorable. We stress that the results in Fig. 7(a) only hold under the
assumption of a constant risk premium across the months of a calendar year,
which cannot be the case in practice. Nevertheless, since the empirical inves-
tigation carried out in Benth and Pircalabu (2017) does not suggest any clear
seasonal pattern in the market price of risk associated with German WPF, we
argue that our results are relevant from a practical perspective. Furthermore,
the analysis above would only be rendered superfluous in a situation where
the risk premium was shaped as to counteract the yearly seasonality in the
wind index.

4In practice, the hedger is not indifferent to the cost of the hedging portfolio. The objective
in Eq. (8) can easily be extended to e.g. a situation where the variance of the profit distribution
is minimized while also minimizing the cost of the hedging portfolio, based on some preference
regarding the trade-off between variance and cost reduction. This is however outside the scope
of the present paper, and shall not be pursued further.
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(d) Site 31

Fig. 6: Unhedged and hedged profit distributions for wind sites 2, 19, 20 and 31 cf. Fig. 1(a). The
results are obtained by employing the marginal models determined in Sec. 3.1 and the optimal
copulas cf. Table 2. The hedged distributions are computed with a risk premium corresponding
to 0 EUR/wph, -1 EUR/wph and -2 EUR/wph. The optimal hedge quantities are obtained by
solving Eq. (8), and do not vary with the risk premium.

On a different note, we mention in passing that the yearly seasonality
associated with wind power production is also important in the context of
liquidity in the German WPF market. According to Christensen et al. (2017),
hedging benefits for conventional power producers are highest during winter.
Hence, a large part of the buyer side is incentivized to take a position in WPF
during winter, whereas the seller side is incentivized to do so during summer.

Next, we consider the variance reduction achieved by hedging with WPF.
In Fig. 8(a), we present the estimated average variance reductions throughout
the year. As expected, the variance reductions and geographical location of
wind turbines are related, with the reductions decreasing as we move from
north to south Germany. The results vary substantially across the wind sites,
with the highest numbers being above 70%, and the lowest number being
13%.

Also relevant to consider in this context is the effect of variance reduction
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Fig. 7: Percentage reduction in mean of the hedged profit distribution when including a risk
premium of -2 EUR/wph as opposed to no risk premium, and the optimal number of WPF
contracts for each month throughout the year. The results are displayed for wind sites 2, 19, 20,
and 31 cf. Fig. 1(a).

on the tails of the hedged profit distribution. Under the assumption of a zero
risk premium, we wish to quantify whether the right tail is reduced by more
than the left tail, i.e., are we reducing the probability of a very high income
by more than that of a very low income? To answer this question, we let qH

j,i
denote the jth quantile of the demeaned hedged profit distribution for site i,

qH
j,i = F−1(RH

i −E[RH
i ], j).

Similarly, qU
j,i denotes the jth quantile of the demeaned unhedged profit dis-

tribution. The percentage change of the jth quantile from performing the
WPF hedge can then be measured by

Tl
i (j) =

qU
j,i − qH

j,i

qU
j,i

.

To measure the difference between the change in the tails, we define the
variable,

Ti(j) = |Tl
i (j)| − |Tr

i (j)|,

where

Tr
i (j) =

qH
1−j,i − qU

1−j,i

qU
1−j,i

.

The quantity Tl
i (j) defined above will be positive if we shrink the left tail (jth

quantile) when performing the WPF hedge, which is the case for all sites.
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Fig. 8: Average variance reduction for each wind site using the optimal copula cf. Table 2, and
the difference between the change in the tails of the profit distribution measured by Ti(0.05).
The stars indicate the location of the sites with ID 2, 19, 20, and 31.
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Further, Tr
i (j) will be negative if we shrink the right tail (1 − jth quantile)

when performing the WPF hedge, which is also the case for all sites. Hence,
a negative value of Ti(j) means that the right tail has shrunk more than the
left tail. We note that Ti(j) is measured in percentage points (pp). Esti-
mates for Ti(0.05) are reported in Fig. 8(b), revealing negative values for all
sites, with -8pp being the lowest. Interestingly, the magnitude of the aver-
age variance reduction does not seem to influence the magnitude of Ti(0.05),
cf. Figs. 8(a) - 8(b). For example, the lowest value of Ti(0.05) corresponds
to a variance reduction of 46%, which is significantly lower than the highest
variance reduction of 72%.

Since a zero risk premium is imposed concerning the results in Fig. 8(b),
the negative values of Ti(0.05) obtained for all sites can be explained by 1)
the marginal specifications and 2) the presence of asymmetry and tail de-
pendence in the copula. On one hand, the marginal distributions of wind
indexes are skewed, with a heavy tail to the right. On the other hand, cf. Ta-
ble 2, evidence for asymmetry and upper tail dependence is found for most
wind sites, entailing that site-specific wind indexes are related to the German
index in extreme high wind scenarios. Since wind power producers seek to
cover their exposure to low wind scenarios, lower tail dependence would be
much preferred to the upper tail dependence that we find in the data. It
is however difficult to separate the effects related to the margins from those
related to the dependence structure without further analysis. In the next sec-
tion, we return to this issue. Lastly, we stress that the results in Fig. 8(b) are
obtained assuming a zero risk premium. In the presence of a negative risk
premium, the negative effects illustrated in Fig. 8(b) will clearly be magnified.

4.2 Comparison study

To highlight the effects of employing a copula that allows for asymmetry and
upper tail dependence, we consider in this section a comparison study based
on a naive copula. Specifically, we rerun the computations performed in Sec-
tion 4.1 with the Frank copula, while keeping the marginal models fixed. We
employ the Frank copula as a naive alternative since Frank is represented in
the optimal copula mixtures in 16 out of 31 cases cf. Table 2. In addition,
the Frank copula is symmetric and imposes zero tail dependence, whereas
the optimal copulas are all asymmetric (except for site 4) and imply tail de-
pendence (upper tail dependence for the most part). Further, by performing
the K-S and CvM goodness-of-fit tests, we cannot reject the Frank copula for
any of the 31 sites at a 5% significance level. In fact, if excluding the cop-
ula mixtures from our analysis, Frank would become the preferred copula
specification for many wind sites based on AIC. In the absence of copula
mixtures, a hedger or risk manager could therefore easily have employed a
Frank copula to model dependence.
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Fig. 9: Average and maximum difference in variance reductions implied by the optimal copula
cf. Table 2 and the Frank copula (optimal minus naive). The maximum differences refer to the
largest monthly difference. The stars indicate the location of the sites with ID 2, 19, 20, and 31.

229



Paper VI.

In Fig. 9(a), we report the average difference in the percentage variance
reduction across the months of the year, when going from the optimal copula
cf. Table 2 to the Frank copula. We identify increases in the average variance
reduction for all sites when using the optimal copula. We complement these
findings with Fig. 9(b), where we report the maximum monthly difference
between percentage variance reduction implied by the optimal copula and
Frank. The maximum difference reaches as high as 19pp, revealing that using
a less optimal model can have a substantial impact. In a nutshell, we would
simply undermine the variance reduction strength of WPF with the Frank
copula.

Finally, recall Fig. 8(b), where it was difficult to separate the effects from
the marginals and the dependence structure. Performing similar calculations
as in the case of Fig. 8(b) with the Frank copula yields the estimates of Ti(0.05)
given in Fig. 10. Compared to Fig. 8(b), we find that introducing a different
dependence structure accounts for approximately 2-3pp of the difference be-
tween left and right tail percentage change. Hence, using the Frank copula
would lead to an underestimation of the difference between the change in
tails implied by hedging with WPF.
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Fig. 10: Estimates of Ti(0.05) when performing the hedge with WPF using the naive approach,
i.e, the Frank copula. The stars indicate the location of the sites with ID 2, 19, 20, and 31.
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5. Conclusion

5 Conclusion

In this paper, we analyze the hedging effectiveness of wind power futures for
wind power generators with 31 different locations in Germany. We propose
ARMA–GARCH copula models for each pair of German wind index and site-
specific wind index. The ARMA–GARCH type models capture the marginal
behavior of the variables rather well, and a detailed study of the different
dependence structures reveals a general tendency of asymmetric dependence
and upper tail dependence, thus justifying the use of copulas.

Based on Monte Carlo simulations from the proposed models, the benefits
of wind power futures are quantified through a minimum variance hedge,
which we apply for each wind site. The variance reductions vary from 13%
to 72%, with the lowest values corresponding to wind farms located in the
south of Germany. Motivated by earlier findings in the literature that argue
for the existence of a negative risk premium in the German wind power
futures market, we extend our analysis to include this feature. Compared
to the case of a zero risk premium, the hedged profit distribution is shifted
to the left, thus weakening the benefits of wind power futures in the context
of our paper. Considering how the wind power futures hedge affects the
tails of the profit distributions, our results indicate a higher decrease in the
upside potential compared to the decrease in the downside risk. While this is
expected due to the presence of skewness in the unhedged profit distribution,
the asymmetric dependence plays an important role as well.

Lastly, we highlight the importance of capturing asymmetry and upper
tail dependence by performing a comparison study, where the hedging ex-
ercise is carried out assuming a naive model for the dependence structure.
With the naive specification, the variance reduction resulting from the wind
power futures hedge would be undermined. Further, approximately half of
the difference in reduction between the tails the hedged profit distribution is
caused by the asymmetric dependence.
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