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SUMMARY 

The wind energy with 153.7 GW of installed capacity by the end of 2016 is currently 

the second largest power generation capacity in Europe. Derived by the continuous 

pursuit of European countries for environmental friendly and sustainable energy 

sources, significant further growth of wind energy especially in form of offshore wind 

farms is anticipated. The offshore wind farms compared to onshore ones have higher 

energy yield and less environmental impact for humans. However, due to harsh 

offshore weather condition, the maintenance of unplanned component failures results 

into high operation and maintenance (O&M) costs. The O&M costs are one of the 

main cost drivers for offshore wind farms. The main objective of this thesis is to 

provide smart solutions in form of long-term and short-term O&M strategies to reduce 

the O&M costs of offshore wind farms to their minimum. 

During development phase of an offshore wind farm, the optimal baseline O&M costs 

(direct cost of maintenance and indirect cost due to lost power caused by downtime 

of wind turbines) and O&M resources (e.g. vessels, technicians and spares) can be 

determined based on optimal long-term O&M strategies. Additionally, once the 

offshore wind farm is in operation, the long-term O&M strategies can be used to 

optimize the required O&M resources using all available historical O&M data of that 

wind farm. A long-term O&M strategy is based on reliability and cost models. In this 

thesis first, based on failure probability of offshore wind components a reliability 

model is defined and then, a custom Monte Carlo O&M cost model is developed in R 

programming language. Afterwards, based on the developed reliability and cost 

models, LCoE and O&M costs of an 800 MW reference offshore wind farm with 8 

MW wind turbines on monopiles through several illustrative case studies are 

estimated and recommendations for optimization of O&M resources are given. 

During the operational years of an offshore wind farm, optimal short-term O&M 

strategies can be used to make sure existing corrective maintenance work orders are 

executed with minimum cost and downtime and future corrective maintenance actions 

are avoided as much as possible. The unplanned component failures of offshore wind 

farms can be avoided if future faults of components are predicted before they occur 

or be detected as soon as they are initiated and before they lead to a failure.  

A short-term O&M strategy is based on diagnostic, prognostic and decision models. 

In this thesis, a Bayesian based holistic diagnostic model is defined. This holistic 

multi-agent model is based on confidence and diagnosis matrices to determine 

confidence (relevance) and result (diagnosis) of each individual diagnostic agent (e.g. 

vibration, temperature or oil particle analyses) for a given wind farm component. 

Once both confidence and diagnosis matrices for all diagnostic agents and wind farm 

components are defined, within a holistic diagnostic framework all individual 

diagnoses are incorporated into one final verdict on components’ fault state. 
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Furthermore, once sufficient observations on the component fault state (e.g. by 

inspections) are available, based on the Bayes’ rule the initial assumptions made in 

the confidence matrix can be updated. At last, through several illustrative examples 

the condition based maintenance of offshore wind farms based on this Bayesian 

holistic multi-agent diagnostic model is explained. 

Fault detection and condition based maintenance of offshore wind components can 

reduce O&M costs significantly. However, offshore wind O&M costs can be reduced 

to their minimum only if faults are predicted and maintained by sufficient predictive 

maintenance work orders. This can be done using a Bayesian prognostic model. The 

prognostic model defined in this thesis is based on degradation, remaining useful 

lifetime and inspection threshold models. The degradation model defined in this thesis 

is an exponential degradation model with stochastic normal distributed scale factor. 

The initial shape and scale factors of this degradation model can be defined based on 

failure probability of each component. Once enough observation through inspections 

or failures is available, based on the Bayes’ rule and Normal-Normal model the prior 

shape and scale factor of an exponential degradation model can be updated. Later, the 

posterior degradation model is used to define a stochastic remaining useful lifetime 

(RUL) model. Furthermore, it is discussed that the best trigger for a predictive 

inspection is a hybrid of degradation and RUL limits to make sure false predictions 

are very low, enough time for planning, preparation and execution of predictive work 

orders is available and the predictive maintenance cost is kept to its minimum. At last, 

within a case study translation of inspections’ outcome to degradation level of a 

component using a degradation matrix is explained and a proposal for validation of 

predicated degradations based on inspections’ outcome is given.  

In the last chapter of this thesis scheduling and prioritization of all maintenance work 

orders, specially condition based and predictive work orders are discussed. It is seen 

that within a stochastic risk based decision model the optimal scheduling and 

prioritization of all outstanding work orders according to their defined end date and 

cost targets can be determined. The application of this model within a case study for 

the work orders of the reference offshore wind farm is explained in detail and 

significant O&M cost reduction opportunities for everyday operation and 

maintenance of offshore wind farms are highlighted. 

The discussed risk and reliability models in this thesis for optimal short-term and long-

term O&M planning of offshore wind farms are developed in a way to be easily 

implemented into any offshore wind asset management system. At the end of each 

chapter of this thesis, clear recommendations for future studies on this topic are given. 

In future studies on this topic it should be noted that an O&M planning model brings 

no added value to an offshore wind farm if it cannot be easily implemented into the 

existing infrastructure of offshore wind farms, no matter how accurate that O&M 

planning model is.
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DANSK RESUME 

Vindenergi med 153,7 GW installeret kapacitet ved slutningen af 2016 er på 

nuværende tidspunkt den andenstørste kapacitet inden for energiproduktion i Europa. 

Afledt af de europæiske landes stadige stræben efter miljøvenlige og vedvarende 

energikilder, forventes der en betragtelig, yderligere vækst i vindenergi, specielt i 

form af offshore vindmølleparker. Sammenlignet med onshore vindmølleparker giver 

offshore vindmølleparker større energiudbytte og har mindre miljømæssige 

påvirkninger på mennesker. På grund af barske offshore vejrforhold, resulterer 

vedligeholdelse af uplanlagte komponentfejl generelt i høje drifts- og 

vedligeholdelsesomkostninger.  Drifts- og vedligeholdelsesomkostninger er en af de 

store omkostningsfaktorer for offshore vindmølleparker. Hovedformålet med denne 

afhandling er at bidrage med forbedrede metoder til drifts- og 

vedligeholdelsesstrategier på både kort og langt sigt for at reducere disse 

omkostninger.  

I løbet af udviklingsfasen for en offshore vindmøllepark, kan den optimale 

basisstrategi for drifts- og vedligeholdelsesomkostninger (direkte omkostning for 

vedligeholdelse og indirekte omkostning på grund af tabt strømproduktion grundet 

nedetid af vindmøller) og ressourcer til drifts- og vedligeholdelse (f.eks. fartøj, 

teknikere and reserver) bestemmes ved hjælp af optimale langsigtede drifts- og 

vedligeholdelsesstrategier. Ydermere, når offshore vindmølleparken er taget i brug, 

kan de langsigtede drifts- og vedligeholdelsesstrategier bruges til at optimere de 

nødvendige ressourcer ved brug af alle tilgængeligt historisk drifts- og 

vedligeholdelsesdata for den pågældende vindmøllepark.  

En langsigtet drifts- og vedligeholdelsesstrategi baseres på pålideligheds- og 

omkostningsmodeller. Denne afhandling beskriver først en pålidelighedsmodel 

baseret på fejlrater af offshore vindmøllekomponenterne og derefter udvikles en  

Monte Carlo drifts- og vedligeholdelse omkostningsmodel i programsproget R. 

Herefter estimeres energiomkostninger og drifts- og vedligeholdelsesomkostninger 

for en 800 MW reference offshore vindmøllepark med 8 MW vindmøller på 

monopæle ved hjælp af adskillige illustrative case undersøgelser og der gives 

anbefalinger til optimering af ressourcer for drift- og vedligeholdelse.  

I driftsfasen for en vindmøllepark kan optimale kortsigtede drifts- og 

vedligeholdelsesstrategier benyttes til at sikre at eksisterende korrektive 

vedligeholdelsesordrer udføres med minimum omkostninger og nedetid og at 

fremtidige korrektive vedligeholdelseshandlinger undgås så vidt muligt. De 

uplanlagte komponentfejl ved offshore vindmølleparker kan undgås, hvis fremtidige 

fejl på komponenter forudsiges før de sker eller opdages så snart de starter og før de 

fører til fejl.  
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En kortsigtet drifts- og vedligeholdelsesstrategi er baseret på diagnostiske, 

prognostiske og beslutningsmodeller. Denne afhandling definerer en Bayesiansk-

baseret holistisk diagnostisk model. Denne holistiske multi-agent model er baseret på 

konfidens og diagnose matricer til at afgøre konfidens (relevans) og resultat 

(diagnose) for hver individuel diagnostisk agent (f.eks. vibration, temperatur eller 

oliepartikel analyser) til en given vindmøllepark komponent. Når både konfidens- og 

diagnosekilderne for alle diagnostiske agenter og vindmølleparkkomponenter er 

definerede inden for et holistisk diagnostisk rammeværk, inkorporeres alle 

individuelle diagnoser i en endelig afgørelse af komponentens fejlstatus. Ydermere, 

når tilstrækkelige observationer af komponent fejlstatus (f.eks. ved inspektioner) er til 

rådighed, kan de første antagelser opdateres i konfidensmatricen baseret på Bayes’ 

regel. Gennem adskillige illustrative eksempler forklares til sidst den 

tilstandsbaserede vedligeholdelse af offshore vindmølleparker baseret på denne 

Bayesianske, holistiske multi-agent diagnostiske model.  

Fejldetektering og tilstandsbaseret vedligeholdelse af offshore vindkomponenter kan 

reducere drifts- og vedligeholdelsesomkostninger betragteligt. Offshore vind drifts- 

og vedligeholdelsesomkostninger kan dog kun reduceres til deres minimum, hvis 

fejlene forudsiges og vedligeholdes ved tilstrækkelige prediktive 

vedligeholdelsesordrer. Dette kan gøres ved at bruge en Bayesiansk prognostisk 

model. Den prognostiske model der defineres i afhandlingen er baseret på 

nedbrydning, resterende brugbar levetid og inspektions-grænse modeller. 

Nedbrydningsmodellen, der defineres i denne afhandling er en eksponentiel 

nedbrydningsmodel med en stokastisk, normal fordelt skalafaktor. Prior modeller for 

form- og skalafaktorer i denne nedbrydningsmodel kan defineres baseret på fejlrater 

for hver komponent. Når tilstrækkelige observationer fra inspektioner eller fejl er 

tilgængelige, kan den prior modellen for form- og skalafaktorer i en eksponentiel 

nedbrydningsmodel opdateres baseret på Bayes’ regel og en normal-normal model. 

Senere bruges den bagvedliggende nedbrydningsmodel til at definere en stokastisk 

model for den resterende levetid. Ydermere diskuteres det, at den bedste trigger for 

en prediktiv inspektion er en hybrid af grænserne for nedbrydning og resterende 

levetid til at sikre falske forudsigelser er få, der er nok tid til planlægning, forberedelse 

og udførelse af prediktive arbejdsordrer er tilgængelige og at den predikterede 

vedligeholdelsesomkostning holdes på et minimum. Endeligt forklares for en case 

translationen af inspektionsudfald til et nedbrydningsniveau af en komponent ved 

brug af nedbrydningsmatricer, og der gives et forslag til validering af prediteret 

nedbrydning baseret på inspektionsudfald.  

I denne afhandlings sidste kapitel diskuteres tidsplanlægning og prioritering af alle 

vedligeholdelsesordrer, specielt tilstandsbaseret og prediktive arbejdsordrer. Inden for 

en stokastisk risikobaseret beslutningsmodel ses det, at den optimale tidsplanlægning 

og prioritering af alle indestående arbejdsordrer kan bestemmes i forhold til deres 

definerede dato og omkostningsmål. Brugen af denne model uddybes i detaljer i en 

case for arbejdsordrer til reference offshore vindmølleparker, og der fremhæves 
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væsentlige muligheder for betragtelig reduktion af drifts- og 

vedligeholdelsesomkostninger for daglig drift og vedligeholdelse af offshore 

vindmølleparker generelt. 

De omtalte risiko- og pålidelighedsmodeller for optimal kort- og langsigtet drifts- og 

vedligeholdelsesplanlægning af offshore vindmølleparker i denne afhandling udvikles 

på en sådan måde, så de nemt kan implementeres i et hvilket som helst offshore vind 

kontrolsystem. I slutningen af hvert kapitel i denne afhandling gives der klare 

anbefalinger for fremtidig forskning i dette emne. I fremtidig forskning skal det 

noteres, at en planlægningsmodel for drifts- og vedligeholdelse ikke tilføjer nogen 

øget værdi til en offshore vindmøllepark, hvis denne model ikke nemt at 

implementeres i en eksisterende infrastruktur for vindmølleparker, uanset hvor præcis 

denne planlægningsmodel måtte være. 
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CHAPTER 1. INTRODUCTION  

Offshore wind surely has passed its infancy. Nowadays offshore wind is considered 

as a solid business case for utilities and not anymore, a proof of concept demonstration 

handled by research organizations. This chapter is intended to give an introduction to 

offshore wind energy, to explain why offshore wind matters and why the operation 

and maintenance (O&M) planning of offshore wind farms is the focus of this thesis. 

Further on, the objective, approach and outline of this thesis are briefly discussed and 

a literature review on the state of the art in risk and reliability based O&M planning 

of offshore wind farms is given. 

1.1. OFFSHORE WIND ENERGY 

During the last decade, wind energy has been the fastest growing power generation 

capacity in Europe. As illustrated in Figure 1-1, wind energy with 153.7 GW installed 

capacity by the end of 2016 has already overtaken fuel oil, nuclear, hydro and coal, 

becoming the second largest power generation capacity in the European Union. The 

reason of such a fast growth of wind energy is the continuous pursuit of European 

countries for environmental friendly and sustainable energy sources. 

 

Figure 1-1 Cumulative power capacity in the European Union 2005-2016 (WindEurope, 
2017) 

The wind energy in Europe is generated from both onshore and offshore wind 

turbines. The onshore wind energy in Europe is generated from a variety of onshore 

wind farms, ranging from single-turbine wind farms owned by farmers to 50-600 MW 
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wind farms owned by large utilities. In contrary, nowadays the offshore wind energy 

in Europe is generated in form of 300-600 MW offshore wind farms owned and 

developed mainly by utilities, located 30-80 km far offshore and in 20-40 m water 

depth. 

To date, the majority (91.8%) of the installed wind energy capacity in Europe has 

been onshore and only 12.2% offshore. The reason behind this variation is that the 

installation and maintenance costs in land are much lower than offshore locations, 

which results into lower Levelized Cost of Energy (LCoE) and a better business case. 

Moreover, in the past decades there have been strong governmental subsidy schemes 

to promote onshore wind energy.  

In comparison to onshore wind, offshore wind farms have higher energy yield and 

lower environmental impact for humans such as noise or shadow disturbance. 

Additionally, in recent years the offshore wind market has seen a significant growth 

due to replacement of onshore subsidy schemes with offshore ones. The offshore wind 

industry is moving rapidly to become a subsidy-free industry. The first breakthrough 

was announced in 2017 German offshore wind tenders in which two out of three 

winning bids were with zero subsidy. A similar trend is expected to be seen in 2018 

Dutch offshore wind tenders. 

This thesis is focused only on offshore wind farms as there are yet excellent 

opportunities for innovation and cost reduction. In the next sections, first typical 

components of an offshore wind farm are described, followed by an introduction into 

offshore wind projects and costs. 

1.1.1. OFFSHORE WIND COMPONENTS 

An offshore wind farm is consisted of offshore wind turbines and infrastructural 

components known as Balance of Plant (BoP). 

1.1.1.1 Offshore Wind Turbine  

According to IEC 61400-3:2009 (Technical Committee IEC 88, 2009) an offshore 

wind turbine is a “wind turbine with a support structure which is subject to 

hydrodynamic loading” and support structure is a “part of an offshore wind turbine 

consisting of the tower, sub-structure and foundation”. In Figure 1-2, the typical 

components of a three-bladed horizontal axis bottom-fixed offshore wind turbine are 

visualized. 
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Figure 1-2 Offshore wind turbine components (Technical Committee IEC 88, 2009) 

Wind turbine manufacturers which are known as Original Equipment Manufacturers 

(OEMs) typically only supply the rotor-nacelle assembly and the tower. The rest of 

support structure (substructure such as transition piece and foundation such as 

monopiles) is normally designed for each specific site by a third-party engineering 

office according to the frequency ranges defined by OEMs. 

1.1.1.2 Offshore Wind BoP 

The second part of an offshore wind farm is balance of plant, which consists of wind 

farm electrical infrastructure, wind farm Supervisory Control And Data Acquisition 

(SCADA) as well as occasionally wind farm civil infrastructure.  

Wind farm electrical infrastructure is required to transfer the generated electricity by 

offshore wind turbines to the local onshore grid through a few steps explained in the 

followings.  

First, the array cables collect the generated medium voltage electricity from offshore 

wind turbines and transfer it to an offshore transformer station. Depending on the type 

and size of the cable a limited number of turbines can be connected to each array cable 
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string. The offshore transformer station then transforms the collected medium voltage 

electricity to high voltage electricity.  

Second, the AC export cables transfer the high voltage electricity to an offshore 

converter station, if DC is preferred transmission option. The offshore converter 

station converts the high voltage electricity from AC to DC, which is a better choice 

for long distance transfer of electricity to minimize the losses. 

Third, the DC export cables transfer the high voltage electricity from the offshore 

converter station to an onshore station. The onshore converter station converts the 

high voltage electricity from DC to AC and if required, from high voltage to medium 

voltage. Eventually, the generated electricity by offshore wind turbines reaches the 

local onshore grid. 

 

Figure 1-3 Offshore wind balance of plant components 

In Figure 1-3, the layout of a typical offshore wind balance of plant is illustrated in 

which two neighbour offshore wind farms use the same offshore converter station. It 

should be noted that a variety of different offshore wind balance of plant layouts can 

be seen in Europe. As instance, if offshore wind turbines are located near shore they 

can be connected directly to an onshore station (such as Egmond aan Zee offshore 

wind farm in The Netherlands). Furthermore, depending on the size of an offshore 

wind farm, the offshore transformer and converter stations can be combined into one 

station. 
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The focus of this thesis is all offshore wind turbine components, both wind turbines 

and balance of plant components. In the next section, a typical offshore wind project 

is described to give an overview on lifecycle challenges of offshore wind farms. 

1.1.2. OFFSHORE WIND LIFECYCLE 

Offshore wind farms are complex and dynamic projects consisting of innovative 

components located in harsh offshore locations. Similar to any other power plant, 

offshore wind farm projects consist of four main phases, which are development, 

construction, generation and decommissioning: 

• Development Phase: to plan, design and permit an offshore wind farm 

• Construction Phase: to supply and install wind farm components followed by 

commissioning tests 

• Generation Phase: to maintain the wind turbines and BoP to maximize the 

produced power and minimize operational costs 

• Decommissioning Phase: to decommission and dismantle the wind farm 

components at the end of the wind farm lifetime 

In Figure 1-4, the lifecycle breakdown of an offshore wind farm is illustrated. 

 

Figure 1-4 Lifecycle breakdown of an offshore wind project 

It should be noted that the design and manufacturing of offshore wind components is 

not discussed here and occurs in parallel to this project lifecycle. In the following 

sections, activities carried out in each phase are described in detail. 

1.1.2.1 Development Phase 

The offshore wind farms in Europe can be developed mainly through tenders initiated 

by governments. Development of an offshore wind farm is a costly and time-

consuming process which is subject to high risk and uncertainty in early stages of the 

project. Development phase of an offshore wind project typically is managed by a 

dedicated development team and consists of all activities from project initiation to 

project handover to the construction team. In Figure 1-5, breakdown of development 

steps in an offshore wind farm project is shown.  
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Figure 1-5 Breakdown of development phase of an offshore wind project 

At the end of each development step a Decision Gate (DG) is defined to make a Go 

or NoGo decision to the next development step. The feasibility study, basic design 

and detailed design steps are briefly discussed in the followings. 

Feasibility study 

After government positive decision on offshore wind development in a specific 

region, the development team initiates a feasibility study to roughly determine a 

potential business case and the suitability of the wind farm within the existing wind 

asset. The deliverable of the feasibility study is a potential business case presented to 

the steering committee of the project to make a Go or NoGo decision. This decision 

step is called Decision Gate 1 or DG1. 

Basic design 

If the DG1 is positive, the project team enters into the Basic Design step to prepare a 

bid according to the official governmental tender documents. The deliverable of this 

step is the basic design of the wind farm and a bid for LCoE. The basic design outlines 

the layout of the wind farm civil and electrical infrastructure, type of wind turbines 

and their estimated lifetime energy production within that layout and a baseline O&M 

strategy, together with an estimation of development and operational costs for LCoE 

estimation. As deliverable, the basic design document together with the LCoE bid is 

presented to the project steering committee to make a decision. This decision step is 

called DG2.  

Detailed design 

In case of positive DG2, the development team submits their bid into the tender and 

awaits a few months for the tender results. Only after winning a tender, the 

development team will move forward into the detailed design and procurement step 

of the project. If the tender result is a win, the development team enters in negotiations 

with suppliers and contractors to prepare the detailed design of the wind farm. 

The deliverable of the development step is the detailed design document in which all 

costs, suppliers, contractors, construction and commissioning steps are detailed out. 

This decision gate is called DG3 or Final Investment Decision (FID). By reaching to 

an FID, the task of the development team is finished. If the FID by the steering 

committee is positive, then a construction team takes over the project to bring it to the 

next step. 
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1.1.2.2 Construction Phase 

If the FID is positive, the project owner commits to all the project costs and by doing 

so, the project enters into the construction phase managed by a dedicated team. The 

breakdown of the construction steps of an offshore wind farm project is shown in 

Figure 1-6 and further explained in the following sections.  

 

Figure 1-6 Breakdown of construction phase of an offshore wind project 

Transport and installation 

The first step in the construction phase is transport and installation of offshore wind 

components, which is typically outsourced to one or several contractors. If only one 

contractor is in charge of the whole construction phase, then it is called a turnkey 

project meaning that the contractor will deliver a grid connected wind farm ready to 

generate electricity to the owner.  

Before transportation of wind farm components from suppliers to the location of 

offshore wind farm, several Factory Acceptance Tests (FATs) is carried out to make 

sure all components are manufactured as described in the procurement specifications 

agreed upon in the detailed design step. Typically, also after arrival of components to 

the wind farm, several Site Acceptance Tests (SATs) are carried out to verify that no 

damage has occurred during the transportation of components. 

After FATs and SATs, the construction contractors normally start with installation of 

array cables, offshore BoP stations and wind turbine foundations. Afterwards, the 

installation is concluded by installing wind turbine towers and rotor-nacelle 

assemblies. Similar to the SAT after transportation of components, another SAT can 

be carried out to verify that no damaged has occurred during the installation of 

components.  

It should be noted that lifting of heavy turbine components from a jack-up barge can 

only be done in specific weather windows in which wind speed and significant wave 

height are both below defined thresholds. Consequently, in case unfavourable weather 

conditions, the installation step can be delayed several weeks or months. In 

(Asgarpour, 2016), installation steps of offshore wind farms is discussed in more 

detail. 
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The deliverable of the installation step is the actual offshore wind farm together with 

an installation overview report presented to the steering committee for DG4. 

Commissioning 

After a positive DG4, the commissioning step is initiated. The commissioning step is 

intended to detect and mitigate defects before start of the generation phase. During 

the commissioning step, several inspections and test are carried out to make sure the 

performance of wind turbines is as expected and power quality of the wind farm 

follows the grid requirements. Typically, the following Operational Acceptance Tests 

(OATs) are carried out for each wind turbine during the commissioning step: 

• Trial Operation: to verify that each wind turbine can be in operation and grid 

connected for a given time period (e.g. 5 days) according to acceptance criteria 

defined in the commissioning contract. 

• Short Power Test: to verify that power performance of each wind turbine in a 

given time period (e.g. 20 days) is not deviating strikingly from warrantied 

performance provided by the OEM. 

Besides this short-term power performance test for each wind turbine, a long-term 

performance test campaign will be carried out only for a few wind turbines to 

investigate their performance in a longer period and in more detail. Typically, during 

these campaigns an independent meteorological equipment (such as a LiDAR) is used 

to eliminate the uncertainty of wind speed measurements by the nacelle anemometer 

of wind turbines. In (Asgarpour, 2016), commissioning steps of offshore wind farms 

is described in more detail. 

After the commissioning step, the construction team prepares a handover (HO) 

document and presents it to the project steering committee for DG5. If DG5 is 

positive, the construction phase is officially finalized and the wind farm can be handed 

over to the generation team. 

1.1.2.3 Generation Phase 

Generation phase is when an offshore wind farm is truly realized and it is ready to 

transfer the generated electricity to the onshore grid. The generation team is typically 

located onshore, in the closest harbour to the offshore wind farm.  

Generation team consists of a site manager, an O&M manager and several lead and 

specialized technicians. In the generation phase the main responsibility of the 

generation team is to maintain the wind farm in a way to maximize the production and 

minimize the operational risks such as costs. In Figure 1-7 the breakdown of the 

generation phase of an offshore wind farm is illustrated.  
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Figure 1-7 Breakdown of the generation phase of an offshore wind farm 

The warrantied O&M, in-house O&M and extended lifetime steps and end of warranty 

and end of lifetime decision gates are discussed in the followings. 

Warrantied O&M 

The first step of the generation phase is warrantied operation and maintenance phase. 

In order to reduce the financial risk of offshore wind projects, normally the early years 

of operation (e.g. first five years) is fully warrantied by the OEMs. This warranty 

includes maintenance and availability warranty.  

The term “maintenance” is defined in detail within section 1.2.1 of this chapter. 

Within the maintenance warranty period, the OEM is accountable to maintain the 

component failures and perform the scheduled service of wind turbines, and in some 

cases, balance of plant components. Next to the maintenance warranty there is 

typically an availability warranty to reduce financial risks if component failures occur 

way too often and/or resolving failures takes much more time than expected. 

In IEC 60050-191:1990 (Technical Committee IEC 1 & 56, 1990), the term 

“availability” is defined as “ability of an item to be in a state to perform a required 

function under given conditions at a given instant of time or during a given time 

interval, assuming that the required external resources are provided”. The OEM’s 

warranted availability could be time based or production based.  

In IEC 61400-26-1:2011 (Technical Committee IEC 88, 2011), time-based 

availability is defined as “fraction of a given operating period in which a WTGS is 

performing its intended services within the design specification”, given in Equation 

(1.1).  In IEC 61400-26-1:2011 (Technical Committee IEC 88, 2011), unavailability 

time calculation is described in detail. 

𝑇𝑖𝑚𝑒 𝑏𝑎𝑠𝑒𝑑 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − [𝑈𝑛𝑎𝑣𝑖𝑎𝑙. 𝑇𝑖𝑚𝑒/(𝐴𝑣𝑖𝑎𝑙. 𝑇𝑖𝑚𝑒 +
𝑈𝑛𝑎𝑣𝑖𝑙. 𝑇𝑖𝑚𝑒)]  

(1.1) 

In IEC 61400-26-2:2014 (Technical Committee IEC 88, 2014), production-based 

availability is defined as actual energy production divided by potential energy 

production, given in Equation (1.2). In IEC 61400-26-2:2014 (Technical Committee 

IEC 88, 2014), lost production calculation is described in detail. 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  1 − [𝐿𝑜𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛/
(𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)]  

(1.2) 

It goes without saying that production based availability is a better deal for wind farm 

owners since in case of time based availability, one hour of lost energy in high wind 

condition and one hour of lost energy in low wind condition are considered alike. 

However, currently the majority of availability warranty contracts are time based. 

Both availability warranties can be applied to each single turbine or to the average of 

the whole offshore wind farm.  

End of warranty 

By reaching the end of warrantied O&M period known as End of Warranty (EoW) 

decision gate, the wind farm owners have two options, to prolong the warranty period 

or to do the maintenance by themselves and accept the financial risks. In recent years 

the latter option is chosen more often since it can reduce the operational costs 

substantially. 

In-house O&M 

If the wind farm owner decides to step out of the warranty contract, then the wind 

farm enters into the in-house maintenance step, which can last for several years (e.g. 

20 years). During this period, the generation team has the full responsibility to comply 

with cost and availability targets and to maintain all offshore wind components. The 

in-house O&M step is the focus of this thesis as there are several cost reduction 

opportunities for reduction of O&M costs. 

End of lifetime 

In the past decade, offshore wind turbines were typically designed for 20 years of 

lifetime, but nowadays they are designed for 25 years and in some cases 30 years of 

lifetime. At the End of Design Lifetime (EoDL) the wind farm owners have several 

options ahead of them.  

One option is to extend the lifetime, if wind turbine structural components are still 

reliable and business case is still profitable. To date, no offshore wind turbine’s 

lifetime has been extended since this is a new practice and still no clear standard 

and/or procedure is defined for this step.  

If the wind farm owner decides to extend the lifetime of the wind farm then a 

comprehensive study should be carried out to estimate the Remaining Useful Lifetime 

(RUL) of structural components and post EoDL O&M costs. Typically, the results of 

this study should be verified by a third-party certification body to permit the wind 

farm owner for lifetime extension. 



CHAPTER 1. INTRODUCTION 

27 

1.1.2.4 Decommissioning Phase 

If the wind farm owner decides to not pursue a lifetime extension or if the End of 

Extended Lifetime (EoEL) is reached then, the offshore wind farm reaches its End of 

Lifetime (EoL) and should be decommissioned and dismantled according to 

environmental requirements agreed upon in the development phase.  

Decommissioning and dismantling 

The decommissioning phase can be considered as reverse construction phase.  First, 

turbines should be disconnected from the grid and then, nacelle-rotor assemblies and 

towers should be dismantled. The final step is take out foundations, array and export 

cables from the seabed and make sure that marine lifetime is back to its origin as it 

was before the construction of the offshore wind farm. As instance, a steel monopile 

foundation can be entirely removed from the seabed by vibration or if it is allowed in 

the decommissioning document, the monopile can be cut below the seabed. In 

(Topham & McMillan, 2017) a thorough overview on sustainable decommissioning 

and dismantling techniques for offshore wind farms is given. The dismantled 

components can be used as second-hand components or be partially recycled. 

Decommissioning and repowering 

Instead of full dismantling, the owner may opt for repowering, which means 

installation of a new wind farm at the same location and if possible, using some or all 

the balance of plant components of the previous wind farm. The repowering is an 

interesting option since the existing operational data of the old wind farm can be used 

to lower the risks and uncertainty of the business case of the new wind farm. 

Repowering is widely used in onshore wind farms, but so far it has not been applied 

to any offshore wind farm. In Figure 1-8, the breakdown of the decommissioning 

phase of an offshore wind farm is illustrated.  

 

Figure 1-8 Breakdown of the decommissioning phase of an offshore wind farm 

As discussed in the generation phase, the focus of this thesis is to reduce operational 

costs during the in-house O&M step of the offshore wind farms. Before discussing 

potential cost reduction solutions, it is important to have a clear overview of offshore 

wind costs during its lifecycle. In the next section, an overview of offshore wind 

lifecycle costs is given. 
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1.1.3. OFFSHORE WIND COSTS 

In the development phase, it was explained that nowadays offshore wind farms are 

permitted only through competitive governmental tenders based on the lowest LCoE. 

Offshore wind energy without relying on subsidies can be a profitable industry only 

if the LCoE produced by offshore wind farms is reduced substantially and a proper 

Power Purchase Agreement (PPA) is settled.  

The LCoE for an offshore wind farm can be calculated using Equation (1.3): 

𝐿𝐶𝑜𝐸 =  (𝐶𝐴𝑃𝐸𝑋×𝐶𝑅𝐹 + 𝑂𝑃𝐸𝑋)/(𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 − 𝐴𝐸𝑃𝐿𝑜𝑠𝑠)  (1.3) 

• CAPEX as initial Capital Expenditure in EUR (project development, supply, 

installation and dismantling costs) 

• CRF as Capital Recovery Factor1 calculated by Equation (1.5) 

• OPEX as the average yearly Operational Expenditure in EUR 

• 𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  as the average potential Annual Energy Production (AEP) of the 

wind farm in Watt hour (Wh) 

• 𝐴𝐸𝑃𝐿𝑜𝑠𝑠 as the average lost AEP of the wind farm due to unavailability of wind 

turbines or BoP electrical infrastructure in Watt hour (Wh) 

𝐶𝑅𝐹 = [𝑖×(1 + 𝑖)𝑛]/[(1 + 𝑖)𝑛 − 1]  (1.4) 

• 𝑖 as the interest rate 

•  𝑛 as number of wind farm operational years 

As instance, in case of 4% interest rate and 25 years of wind farm lifetime the CRF 

will be: 

𝐶𝑅𝐹 =
[𝑖×(1+𝑖)𝑛]

[(1+𝑖)𝑛−1]
=
[0.04×(1+0.04)25]

[(1+0.04)25−1]
= 0.064  (1.5) 

The LCoE is normally shown as €/kWh or €/MWh. In the following sections, the 

remaining LCoE elements are explained in more detail. 

1.1.3.1 AEP 

The potential AEP of an offshore wind farm is the energy that wind turbines of that 

wind farm can produce if both the wind turbines and BoP electrical infrastructure are 

                                                           
1 https://www.nrel.gov/analysis/tech-lcoe-documentation.html 
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100% available throughout the year. In order to calculate the potential AEP, first the 

nominal AEP should be calculated. 

Nominal AEP 

The nominal AEP of a wind farm is calculated based on the nominal AEP of each 

single wind turbine. The nominal AEP of a wind turbine can be calculated using its 

warrantied power performance and historical wind condition at its geographical 

location.  

Power performance of a wind turbine is typically presented by means of a Power 

Velocity (PV) curve. A PV curve consists of an estimated power per each wind speed 

bin (e.g. 1 m/s). In Figure 1-9, a PV curve for a reference wind turbine with total 

capacity of 8000 kW is illustrated. Every PV curve can be highlighted with several 

key wind speeds and state modes. The key wind speeds are: 

• Cut-in Wind Speed: the minimum wind speed that a wind turbine requires to 

start producing power (4 m/s in Figure 1-9) 

• Start Rated Wind Speed: the minimum wind speed that a wind turbine 

requires to operate at its maximum capacity (13 m/s in Figure 1-9) 

• End Rated Wind Speed: the maximum wind speed that a wind turbine can still 

produce at its maximum capacity (25 m/s in Figure 1-9) 

• Cut-out Wind Speed: the maximum wind speed that a wind turbine can 

operate (30 m/s in Figure 1-9) 

 

Figure 1-9 Power Velocity (PV) curve of an 8 MW offshore wind turbine 
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In wind speeds below cut-in, a wind turbine is in the idling state, waiting for preferable 

wind condition. From cut-in wind speed until start rated wind speed, a wind turbine is 

in ramping up mode by pitching its blades to maximum lift mode. When a wind 

turbine reaches the rated power, the wind turbine controller actively pitches its blades 

to minimize the loads as much as possible and make sure in higher wind speeds the 

produced power doesn’t exceeds the rated power. 

The end rated wind speed is the maximum wind speed that a wind turbine can operate 

at its rated power. Up to a few years back all existing turbines in the market would 

shut down immediately in wind speeds above the end rated wind speed. Therefore, 

the end rated wind speed would have been equal to cut-out wind speed for these 

turbines. In recent years wind turbines have been equipped with extended cut-out 

features, which allows them to have less immediate shut downs and to produce power 

in very high wind speeds.  

If a turbine is equipped with extended cut-out, for wind speeds above the end rated 

wind speed the turbine starts ramping down by pitching its blade to decrease the lift 

and thereby the loads. If the wind speed continues to increase above the cut-out wind 

speed, then the wind turbine will immediately shutdown to prevent unplanned 

structural loads. 

The historical wind speed condition at a geographical location is typically presented 

by a Weibull curve. In Figure 1-10, frequency of 11 years wind speed measurements 

of FINO3 meteorological mast (wind speed measurements at 150 m hub height in 80 

km far offshore in the North Sea) supplied by NORCOWE2 is visualized in red. 

                                                           
2 NORwegian Centre for Offshore Wind Energy (NORCOWE): https://rwf.computing.uni.no/ 
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Figure 1-10 Historical wind condition at a reference offshore wind farm location 

It is known that a two-parameter Weibull distribution generally can provide a close fit 

to wind speed measurements. As instance, the shape and scale parameters of fitted 

Weibull distribution to measurement frequencies plotted in Figure 1-10 are: 

• Shape factor α = 2.25 

• Scale factor β = 11.73 

By having the scale and shape factors, the Weibull Probability Density Function 

(PDF) can be calculated as followings (Bronshtein, Semendyayev, Musiol, & Mühlig, 

2015): 

𝑓(𝑣) =  
𝛼

𝛽
 (
𝑣

𝛽
)
𝛽−1

𝑒𝑥𝑝 [− (
𝑣

𝛽
)
𝛽

]     𝑣 ≥ 0  (1.6) 

• 𝑣 as wind speed bin 

• 𝑓(𝑣) as Weibull PDF of wind speed bin 𝑣 

In Figure 1-10, the Weibull PDF of this fit is visualized in blue. Therefore, about 

32,000 measurement points can be summarized in two parameters of a Weibull 

distribution. If both scale and shape factors are known, then the mean wind speed for 

this location and measurement height can be calculated as (Bronshtein et al., 2015): 

𝜇 =  𝛽𝛤 (1 +
1

𝛼
) = 10.39 𝑚 𝑠⁄   (1.7) 
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The nominal AEP of a wind turbine can be calculated using the PV curve and 

historical wind condition. For instance, the nominal AEP of the 8 MW reference wind 

turbine plotted in Figure 1-9 with historical wind condition as plotted in Figure 1-10 

can be estimated as: 

𝐴𝐸𝑃𝑊𝑇,𝑀𝑒𝑎𝑠. = ∑ 𝑃𝑣
𝑣=35
𝑣=0 × 356 × 24 × 𝑓𝑣  =  42.126 𝐺𝑊ℎ  

𝐴𝐸𝑃𝑊𝑇,𝑊𝑒𝑖𝑏. = ∑ 𝑃𝑣
𝑣=35
𝑣=0 × 356 × 24 × 𝑓(𝑣) =  42.000 𝐺𝑊ℎ  

(1.8) 

• 𝑣 as wind speed bin 

• 𝑃𝑣 as wind turbine warrantied power in wind speed bin 𝑣  

• 𝑓𝑣 as frequency of measurements in wind speed bin 𝑣 

• 𝑓(𝑣) as Weibull PDF of wind speed bin 𝑣 given in Equation (1.6) 

From Equation (1.8) it can be seen that the nominal wind turbine AEP calculated 

based on Weibull parameters is very close to the AEP calculated based on actual 

measurement frequencies. Assuming a fixed electricity price such as 50 €/MWh, the 

nominal AEP of this reference wind turbine can be translated roughly into M€ 2.1 

nominal revenue per year. 

It is also possible to define a Weibull fit per season, meaning four set of Weibull 

parameters for the whole year, to calculate the nominal wind turbine AEP per season 

and reduce the uncertainty. 

Now that the nominal AEP of each single turbine is known, the approximate nominal 

AEP of an 800 MW reference wind farm with 8 MW reference wind turbines based 

on the Weibull distribution shown in Figure 1-10 can be calculated: 

𝐴𝐸𝑃𝑁𝑜𝑚𝑖𝑛𝑎𝑙 = ∑ 𝐴𝐸𝑃𝑊𝑇𝑛
𝑛=𝑁
𝑛=1 = ∑ 42 𝐺𝑊ℎ100

1 = 4.2 𝑇𝑊ℎ  (1.9) 

• 𝐴𝐸𝑃𝑁𝑜𝑚𝑖𝑛𝑎𝑙  as nominal AEP of an offshore wind farm in Wh (without any 

losses) 

• 𝐴𝐸𝑃𝑊𝑇𝑛 as nominal AEP of wind turbine 𝑛 in Wh 

• 𝑁 as the total number of wind turbines in the offshore wind farm 

Potential energy production 

Now that the nominal AEP is known, the potential energy production can be estimated 

by deducting the lost production caused by the following reasons:  

• Wake (wind speed deficit in downwind turbines) 

• Performance (due to blade icing, blade degradation, turbine own consumption, 

yaw misalignment and pitch misalignment) 

• Electrical (due to energy loss in subsea transmission cables) 
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Therefore, the potential AEP of an offshore wind farm by reducing the production 

losses will be: 

𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐴𝐸𝑃𝑁𝑜𝑚𝑖𝑛𝑎𝑙(1 − 𝜁𝑊 − 𝜁𝑃 − 𝜁𝐸)  (1.10) 

• 𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  as the wind farm potential AEP by deducting wakes, 

underperformance and electrical losses in Wh 

• 𝜁𝑊 as production loss ratio due to wakes 

• 𝜁𝑃 as production loss ratio due to underperformance of turbines 

• 𝜁𝐸  as production loss ratio due to energy loss in subsea cables 

As instance, the potential AEP of this reference offshore wind farm by assuming 3% 

wake loss, 2% underperformance loss and 0.5% electrical loss is: 

𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐴𝐸𝑃𝑁𝑜𝑚𝑖𝑛𝑎𝑙(1 − 𝜁𝑊 − 𝜁𝑃 − 𝜁𝐸) = 4.2×(1 − 0.03 −
0.02 − 0.005) = 3.969 𝑇𝑊ℎ  

(1.11) 

Therefore, the potential AEP of an 800 MW reference offshore wind farm with 

considering production losses can be estimated as 3.969 TWh. 

Unavailability production loss 

As discussed earlier, the potential AEP is calculated assuming wind farm BoP 

electrical infrastructure and all wind turbines are 100% available throughout the year. 

However, due to faults or service of wind farm components occasionally wind 

turbines are shut down and/or BoP electrical infrastructure is not able to transmit the 

produced electricity onshore. This is known as unavailability production loss or 

OPEX production loss. As instance, the potential production loss by assuming 

unavailability production loss of 3% is: 

𝐴𝐸𝑃𝐿𝑜𝑠𝑠 = 𝜁𝐴𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 0.03×3.969 = 0.119 𝑇𝑊ℎ  (1.12) 

• 𝜁𝐴 as the unavailability production loss ratio 

The more accurate AEP of offshore wind farms is typically calculated using an AEP 

model such as WindPRO3 developed by EMD, WindFarmer4 developed by DNV GL 

or WAsP5 developed by DTU. 

                                                           
3 https://www.emd.dk/windpro/ 

4 https://www.dnvgl.com/energy/generation/software/windfarmer/windfarmer-analyst.html 

5 http://www.wasp.dk 
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1.1.3.2 CAPEX 

CAPEX also known as Installed Costs is the total cost of development, construction 

and decommissioning phases, which can include costs of project development, wind 

turbine supply, foundation supply, BoP supply, installation, commissioning, 

decommissioning and dismantling steps as discussed in the previous section of this 

chapter. In Figure 1-11 an approximate breakdown of CAPEX of a bottom-fixed 

offshore wind farm is visualized. 

 

Figure 1-11 Breakdown of costs of a bottom-fixed offshore wind farm 

In Figure 1-11 it can be seen that about 60% of CAPEX is due to supply of wind farm 

components, about 30% is due to construction, commissioning and decommissioning 

and about 10% is due to project development costs.  

The CAPEX of offshore wind farms and its breakdown varies from one wind farm to 

another, depending on the country, offshore location, water depth, sea bed type and 

more factors. A simplified way to estimate CAPEX is based the average CAPEX per 

MW installed. In this thesis, it is assumed that CAPEX of offshore wind farms is about 

4 M€/MW. Therefore, the CAPEX of an 800 MW reference wind farm will be: 

𝐶𝐴𝑃𝐸𝑋 = 𝐶𝐴𝑃𝐸𝑋𝑀𝑊 × 𝑃𝑊𝐹 = 4 
𝑀€ 

𝑀𝑊⁄ × 800 𝑀𝑊 = 𝐵€ 3.2  (1.13) 

• 𝐶𝐴𝑃𝐸𝑋𝑀𝑊 as CAPEX per MW turbine installed and commissioned in M€/MW 

• 𝑃𝑊𝐹  as the total installed capacity of the wind farm in MW 

Based on Equation (1.13), for an 800 MW reference offshore wind farm an initial 

investment of B€ 3.2 is required. It should be noted that this number doesn’t represent 

actual CAPEX for an 800 MW offshore wind farm and it’s only mentioned here to 
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simply demonstrate the order of magnitude of investment required for development 

and construction of such an offshore wind farm. 

1.1.3.3 OPEX 

OPEX also known as Generation Costs is the average annual cost occurred during the 

generation phase of an offshore wind farm which can include warranty fee, direct 

operation and maintenance (O&M) costs and overhead costs. The OPEX of an 

offshore wind farm during in-house O&M step can be calculated as: 

𝑂𝑃𝐸𝑋 = 𝐶𝑂𝑀.𝐷𝑖𝑟 + 𝐶𝑂𝐻   (1.14) 

• 𝐶𝑂𝑀.𝐷𝑖𝑟  as lifetime direct O&M costs such as vessels, technician and spares 

costs 

• 𝐶𝑂𝐻 as lifetime overhead costs such as staff, facilities, legal, safety and 

insurance costs 

The 𝐶𝑂𝑀.𝐷𝑖𝑟 or direct O&M costs is a significant part of OPEX and stands for costs of 

vessels, spares and technicians. As explained in section 1.1.3.1, during downtime of 

maintenance actions the wind farm suffers from production loss which can be 

translated into indirect O&M costs. Therefore, the total O&M costs can be calculated 

as: Figure 1-1 

𝐶𝑂𝑀 = 𝐶𝑂𝑀.𝐷𝑖𝑟 + 𝐶𝑂𝑀.𝐼𝑛𝑑 + 𝐶𝑂𝐻  (1.15) 

In Chapter 4, further breakdown of O&M costs of an 800 MW reference offshore wind 

farm is given in detail. 

Similar to CAPEX, the OPEX of offshore wind farms varies from one wind farm to 

another, depending on the type of wind turbines, foundations, BoP, weather condition 

and maintenance strategy. A simplified way to estimate OPEX is based on the average 

OPEX per MWh potential AEP. Based on the real OPEX of similar operational 

offshore wind farms it can be assumed that the OPEX of this reference offshore wind 

farms is about 20 €/MWh. Therefore, the OPEX of an 800 MW reference offshore 

wind farm with 3.969 TWh potential AEP can be roughly estimated as: 

𝑂𝑃𝐸𝑋 = 𝑂𝑃𝐸𝑋𝑀𝑊ℎ×𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 20
€

𝑀𝑊ℎ
×3.969 𝑇𝑊ℎ =

𝑀€ 79.38  
(1.16) 

• 𝑂𝑃𝐸𝑋𝑀𝑊ℎ is assumed OPEX per MWh potential AEP in €/MWh   

Based on Equation (1.16), total OPEX of an 800 MW offshore wind farm during its 

lifetime is about M€ 79.38. It should be noted that this number doesn’t represent actual 

OPEX for an 800 MW offshore wind farm with 8 MW wind turbines and it is just a 
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presentation of order of magnitude of the OPEX of such a wind farm. In Chapter 4, 

OPEX estimation of offshore wind farms based on a baseline O&M strategy is 

explained further in detail.  

Since for this reference offshore wind farm a rough estimation of CAPEX, CRF, 

OPEX and the AEP is available, using Equation (1.3) the LCoE produced by this 

reference offshore wind farm can be estimated: 

𝐿𝐶𝑜𝐸 =
𝐶𝐴𝑃𝐸𝑋×𝐶𝑅𝐹+𝑂𝑃𝐸𝑋

𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙−𝐴𝐸𝑃𝐿𝑜𝑠𝑠
=
(3200×0.064+79.38) 𝑀€

3.969−0.119 𝑇𝑊ℎ
= 73.8 € 𝑀𝑊ℎ⁄   (1.17) 

Therefore, the LCoE of the assumed 800 MW reference wind farm can roughly be 

estimated around 73.8 €/MWh. In Table 1-1, an overview of the LCoE elements of 

the assumed 800 MW reference wind farm and their percentage of the LCoE are 

shown. 

LCoE Elements Annual Estimation for 800 MW % of LCoE 

CAPEX x CRF M€ 204.8 72% 

OPEX M€ 79.38 28% 

AEP 3.85 TWh --- 

 

Table 1-1 LCoE estimation of an 800 MW reference offshore wind farm 

The LCoE of offshore wind farms can only be reduced if both CAPEX and OPEX are 

reduced and the AEP of the wind farm is increased. In general, the CAPEX and OPEX 

are connected, meaning that if more reliable and costly components are used then 

CAPEX and probably AEP get increased and OPEX gets decreased. The opposite 

holds true for less reliable components. The optimal reliability level of components 

can be estimated based on a balance between CAPEX, OPEX and AEP to minimize 

the LCoE. 

This thesis is only focused on OPEX and lost AEP reduction of offshore wind farms, 

which both can be related to O&M costs. In the next section of this chapter, an 

introduction into O&M of offshore wind farms is given. 

1.2. OFFSHORE WIND O&M 

No doubt that offshore wind O&M has some similarities to the O&M of other power 

plants, however, in many cases offshore wind O&M is a totally different story. In the 

section, first the terminologies used in offshore wind O&M are specified and then, 
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O&M resources required for the implementation of maintenance actions are 

discussed. 

1.2.1. O&M TERMINOLOGY 

When it comes to standard terminology, IEC 60050-191:1990 (Technical Committee 

IEC 1 & 56, 1990) is covering the majority of terms used in international and 

European standards. However, when it comes to maintenance terminology, EN 

13306:2010 (Technical Committee CEN 319, 2010) provides a better definition by 

using IEC 60050-191:1990 (Technical Committee IEC 1 & 56, 1990) as basis. Hence, 

moving forward, EN 13306:2010 (Technical Committee CEN 319, 2010) is mainly 

used for definition of maintenance terms in this thesis. 

1.2.1.1 Maintenance 

The term “O&M” stands for all operation and maintenance activities intended to 

maintain failures, detect/predict/avoid faults and reduce degradation. In EN 

13306:2010 (Technical Committee CEN 319, 2010), the term “maintenance” is 

defined as “combination of all technical and administrative actions, including 

supervisory actions, intended to retain an item in, or restore it to, a state in which it 

can perform a required function”.  

From this definition two type of maintenance can be derived. First, maintenance 

activities “intended to restore an item to a state in which it can perform a required 

function”, this type of maintenance is known as “corrective maintenance”. Second, 

maintenance activities “intended to retain an item in a state in which it can perform a 

required function”, this type of maintenance is known as “preventive maintenance”. 

In Figure 1-12, the maintenance categories according to EN 13306:2010 (Technical 

Committee CEN 319, 2010) are illustrated. 

 

Figure 1-12 Maintenance categories according to EN 13306:2010 (Technical Committee 
CEN 319, 2010) 
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1.2.1.2 Corrective Maintenance 

As illustrated in Figure 1-12, the EN 13306:2010 (Technical Committee CEN 319, 

2010) defines corrective maintenance categories as followings: 

• Corrective Maintenance: “maintenance carried out after fault recognition and 

intended to put an item into a state in which it can perform a required function” 

• Remote Maintenance: “maintenance of an item carried out without physical 

access by the personnel to the item” 

• Immediate Maintenance: “corrective maintenance that is carried out without 

delay after a fault has been detected to avoid unacceptable consequences” 

• Deferred Maintenance: “corrective maintenance which is not immediately 

carried out after a fault detection but is delayed in accordance with given 

rules” 

In other words, after occurrence of a failure, a corrective maintenance is done to repair 

or replace the failed component(s). The corrective maintenance can be done remotely 

(remote maintenance), or immediately after the failure (immediate maintenance) or at 

a later time (deferred maintenance).  

The majority of maintenance actions nowadays in the wind industry are corrective. 

From failure statistics, it can be observed that each wind turbine on average 

experiences 10 corrective actions per year, of which 5 of them are immediate or 

deferred corrective actions and 5 of them are remote corrective actions. The remote 

corrective actions or remote resets require no resources and lead only to a few hours 

of downtime. However, immediate and deferred corrective actions require 

preparation, proper logistics, several inspections, repair or replacement together with 

significant downtime. In section 5.1 of this thesis corrective maintenance is discussed 

in more detail. 

According to this assumption, the reference 800 MW offshore wind farm with 100 

wind turbines defined earlier, on average experiences 500 remote corrective actions 

and 500 immediate or deferred corrective actions per year. It means that maintenance 

technicians on average repair 1.4 wind turbines per day during the whole 25 years 

lifetime of the wind farm, assuming the wind farm is accessible throughout the year. 

It shows that due to the current amount of corrective maintenance actions, the 

maintenance of such an offshore wind farm is a non-stop job. This challenge 

highlights the importance of preventive maintenance actions to reduce the amount of 

corrective actions to a much lower number. 
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1.2.1.3 Preventive Maintenance 

Similarly as illustrated in Figure 1-12, EN 13306:2010 (Technical Committee CEN 

319, 2010) defines preventive maintenance categories as followings: 

• Preventive Maintenance: “maintenance carried out at predetermined intervals 

or according to prescribed criteria and intended to reduce the probability of 

failure or the degradation of the functioning of an item”  

• Scheduled Maintenance: “maintenance carried out in accordance with an 

established time schedule or established number of units of use” 

• Predetermined Maintenance: “preventive maintenance carried out in 

accordance with established intervals of time or number of units of use but 

without previous condition investigation” assuming “Intervals of times or 

number of unit of use may be established from knowledge of the failure 

mechanisms of the item” 

• Condition based Maintenance: “preventive maintenance which include a 

combination of condition monitoring and/or inspection and/or testing, analysis 

and the ensuing maintenance actions” 

• Predictive Maintenance: “condition based maintenance carried out following 

a forecast derived from repeated analysis or known characteristics and 

evaluation of the significant parameters of the degradation of the item” 

In other words, preventive maintenance is intended to avoid faults and/or reduce 

degradation. The preventive maintenance can be time-based (scheduled maintenance), 

usage-based (predetermined maintenance), diagnosis-based (condition based 

maintenance) or prognosis-based (predictive maintenance). In section 5.2 condition 

based maintenance and in section 5.3 predictive maintenance is discussed further in 

detail. 

Implementation of both corrective and preventive maintenance actions require proper 

O&M facilities and resources. These topics are discussed in the following sections. 

1.2.2. O&M FACILITIES 

The O&M consists of both operation related and maintenance related actions. The 

operation related activities of an offshore wind farm are typically handled by an 

operation hub and the maintenance related activities of an offshore wind farm are 

handled by a maintenance hub, both further explained in the followings. 



RISK AND RELIABILITY BASED O&M PLANNING OF OFFSHORE WIND FARMS 

40
 

1.2.2.1 Operation Hub 

Offshore wind farms are typically monitored 24/7 by an operation hub, also known as 

control room or surveillance centre. An operation hub is responsible for monitoring 

of one or several offshore wind farms. The operation hub is not necessarily located in 

the vicinity of wind farms as all operations can be performed remotely. The main 

responsibility of an operation hub is to control and monitor offshore wind farms via a 

Supervisory Control and Data Acquisition (SCADA) system. 

Control Activities 

The control responsibilities of an operation hub are: 

• Remote Restart of down turbines when it can be handled remotely (remote 

maintenance) 

• Remote Shutdown of turbines in case of a severe fault detection 

• Remote Curtailment of some turbines or the whole wind farm according to a 

defined production set point. Curtailments can be requested by the grid operator 

(to balance the grid), by the electricity traders (to optimize the sales) or by the 

maintenance hub (to delay a known failure). 

Monitoring Activities 

The monitoring responsibility of an operation hub is mainly information or error 

handling of the SCADA system. Each SCADA error consists of three parts: 

• Error Code: a unique identifier number defined by the OEM for each specific 

turbine type 

• Error Description: a short text to explain the error 

• Error Type: the error type could be warning or alarm. Warning is when the 

SCADA system detects an anomaly (the wind turbine is still in operation) and 

alarm is when a turbine is not in operation due to failures or other reasons (the 

wind turbine is shut down). 

Each wind turbine OEM has a different definition of errors for each specific turbine 

platform. This becomes problematic when a utility owns several different turbine 

types. A solution to this problem is to categories all different OEM errors into a limited 

number of error categories. Some utilities have their own defined error categorization, 

but majority of utilities nowadays use an adoption of the IEC 61400-26 information 

categories. 

In order to classify error codes in the wind industry, IEC 61400-26-1:2011 (Technical 

Committee IEC 88, 2011) and IEC 61400-26-2:2014 (Technical Committee IEC 88, 

2014) can be used for classification of wind turbine errors and IEC 61400-26-3:2016 

(Technical Committee IEC 88, 2016) can be used for classification of wind farm 
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errors. The IEC 61400-26-2:2014 (Technical Committee IEC 88, 2014) information 

categories for wind turbines are: 

• Operative 

o In Service 

1. Full Performance 

2. Partial Performance (derated or degraded) 

o Out of Service 

3. Technical Standby 

4. Out of Environmental Specification (calm wind or other 

environmental) 

5. Requested Shutdown 

6. Out of Electrical Specification 

• Non-Operative 

7. Scheduled Maintenance 

8. Planned Corrective Maintenance (retrofit, upgrade or other corrective 

actions) 

9. Forced Outage (response, diagnostic, logistic, failure repair) 

10. Suspended (scheduled maintenance, planned corrective maintenance, 

forced outage) 

• 11. Force Majeure 

There is also a 12th information category for when no information is available. The 

categories of IEC 61400-26-3:2016 (Technical Committee IEC 88, 2016) for wind 

farms are similar to wind turbines, except one additional in service category called 

“Ready Standby”. In Figure 1-13 the wind turbine information categories are also 

visualized. 
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Figure 1-13 Wind turbine information categories according to IEC 61400-26-1:2011 
(Technical Committee IEC 88, 2011) and IEC 61400-26-2:2014 (Technical Committee IEC 
88, 2014) 

By using IEC information categories, thousands of the OEM define error codes can 

be categorized by the operation hub into a few IEC defined alarm categories. This 

allows a less complex dialogue between the wind farm owners and OEMs during the 

warranty period and facilitates the analysis of offshore wind farm errors. 

When a wind turbine fails, an alarm is triggered via the SCADA system. Afterwards, 

the operators of the operation hub should investigate the alarm as soon as possible to 

minimize the downtime and lost revenue. If the alarm is not related to a component 

failure or a scheduled maintenance action, most likely the turbine can be restarted 

remotely.  

If the alarm is related to a component failure, then a maintenance Work Order (WO) 

should be created in a Computerized Maintenance Management System (CMMS) 

such as SAP6. The WO created by the operation hub, will be added to back-log of 

maintenance activities of the maintenance hub technicians. In the next section, the 

maintenance hub and O&M work orders are described in more detail. 

                                                           
6 https://www.sap.com/products/predictive-maintenance.html 
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1.2.2.2 Maintenance Hub 

A maintenance hub, also known as service centre or service hub, is an onshore and/or 

offshore facility responsible for execution and logistics of O&M work orders. 

Offshore wind maintenance hubs are typically located in the closet harbour to a wind 

farm in which technicians are centralized, spare parts are stored and WOs are 

scheduled. In case of far offshore wind farms, it is beneficial to have also a secondary 

bottom-fixed or floating offshore maintenance hub to reduce the access time to the 

wind farm.  

The main purpose of a maintenance hub is the execution of WOs as efficient as 

possible. As explained in the previous section, a WO is a maintenance task defined in 

a CMMS and typically created by an operation hub. When it comes to maintenance 

WOs, the maintenance categories defined in EN 13306:2010 (Technical Committee 

CEN 319, 2010) and visualized in Figure 1-12 can be translated directly into five 

different categories of maintenance WOs: 

• Corrective: corrective unplanned WOs (immediate or deferred) 

• Scheduled: preventive WOs for planned service of wind turbine components or 

BoP components (time based or usage based) 

• Condition based: preventive WOs created when a fault is detected to avoid 

immediate failures (diagnosis based in which early sign of fault exists)  

• Predictive: preventive WO created when a fault is predicted to decrease 

degradation rate and/or avoid future failures (prognosis based in which no sign 

of fault exists yet) 

• Upgrades: upgrade WO to enhance the production of the wind turbines by 

means of aerodynamics upgrade (blade enhancements), rated power boost 

(controller update), extended cut-out (controller update) or blade de-icing. 

The upgrade as the fifth WO category is not defined in EN 13306:2010 (Technical 

Committee CEN 319, 2010) since this standard is focused mainly on the maintenance 

and not enhancement of the production. In Figure 1-14, these five WO categories are 

illustrated. 
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Figure 1-14 Categories of offshore wind maintenance work orders 

A maintenance WO can only be successfully executed if the necessary O&M 

resources are available in the right time. In the next section, an overview of O&M 

resources is given. 

1.2.3. O&M RESOURCES 

Maintenance resources are all the necessary logistics that a maintenance hub requires 

to successfully execute maintenance WOs. In case of offshore wind, O&M resources 

are typically spares, vessels and technicians, all further explained in the followings. 

1.2.3.1 Spare Parts 

Spare part is an interchangeable component used for repair or replacement of failed 

units. According to EN 13306:2010 (Technical Committee CEN 319, 2010) spare part 

is an “item intended to replace a corresponding item in order to retain or maintain 

the original required function of the item”. They are two type of spares, repairable 

components and consumables, both defined in EN 13306:2010 (Technical Committee 

CEN 319, 2010): 

• Repairable Item: “item which may be restored under given conditions, and 

after a failure to a state in which it can perform a required function” 

• Consumable Item: “item or material which is expendable, may be regularly 

replaced and generally is not item specific” 

The repair cost of a repairable component is considerably higher than price of a new 

component (e.g. main bearing). However, consumables are not repairable or the repair 

cost is higher than the price of a new component (e.g. sensors). 
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When a component fails it is crucial to resolve the failure as soon as possible to reduce 

the downtime and revenue loss. Spare parts are an important part of every maintenance 

WO. Therefore, it is common to have an inventory of both critical repairable and 

consumable spare parts in the maintenance hub to reduce the waiting time when a 

component fails. 

1.2.3.2 Vessels 

Offshore wind vessels are mainly used for access to the wind farm components and/or 

support to specific maintenance activities. Offshore wind vessels can be categorized 

as access or support vessels. 

Access Vessels 

Access vessels are used for transfer of technicians and/or spare parts from 

maintenance hubs to offshore wind farms. Transfer of technicians and small spare 

parts is typically done using a Crew Transfer Vessel (CTV), a Service Operation 

Vessel (SOV) or a helicopter.  

CTVs can be monohull or multihull vessels. The two most common offshore wind 

multihull CTV types are Catamaran and SWATH. They have both parallel hulls, but 

with different waterlines. The catamaran vessels have higher speeds, but less stability 

compared to SWATH vessels. Typically, CTVs have no dedicated access solution and 

after direct boat landing technicians must climb the support structure ladder to reach 

the turbine or BoP substation platforms. This is known as bump and jump, which is 

associated with high safety risk for technicians. A typical CTV can transfer around 10 

technicians with 20-30 knots speed when wind speed is lower than 15 m/s and 

significant wave height is lower than 1.5 meters. An example of a CTV with boat 

landing access is shown in Figure 1-15. 
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Figure 1-15 Example of access vessels: CTV top left, helicopter top right and SOV in bottom 
(offshorewind.biz) 

For far and/or large offshore wind farms Service Operation Vessels or SOVs are a 

more suitable option. A typical SOV can transfer around 40 technicians with 10-20 

knots speed when wind speed is lower than 20 m/s and significant wave height is 

lower than 2 meters. SOVs normally have their own dedicated access gangway on the 

deck of the vessel. The access gangway acts as a bridge between the deck of the vessel 

and platform of the turbines or BoP substations. Using an access gangway technicians 

and sometimes spare parts up to 1 ton can be transferred safely to the platform. An 

example of a SOV with an access gang way is shown in Figure 1-15. 

As explained above, both CTV and SOV are slow and can operate in low significant 

wave heights. Helicopters can be used to transfer around 5 technicians with 120 km/h 
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speed when the wind speed is lower than 20 m/s with no significant wave height 

restriction. Helicopters can transfer technicians directly to the top of the nacelle of 

wind turbines or platforms of the BoP substations. Helicopters can also be used for 

rescue of injured technicians as the short transfer time becomes very crucial. In Figure 

1-15, an example of a helicopter for transferring technicians to the wind turbine 

nacelle is shown. 

It should be noted that helicopters can’t transfer any heavy spare part, only tool boxes 

or very small spare parts. CTVs and SOVs both can transfer spare parts to a certain 

weight, limited to two lifting capacities. First, the spare part should be transferred 

from the vessel’s deck to the turbine platform. This can be done using the turbine 

platform crane or using the vessel’s crane (if available). Second, if failure has occurred 

in the nacelle then the spare part should be lifted to the nacelle. This can be done using 

the nacelle crane. Transport and lifting of heavier spare parts should be done using a 

support vessel. 

Support Vessels 

Support vessels are used for specific maintenance activities, such as transfer and 

lifting of heavy spares parts or major underwater maintenance actions. Support vessels 

are not typically owned by wind farms since their ownership costs are too high for a 

single offshore wind farm. Instead, support vessels are chartered once required, which 

is subject to long lead times. 

If the weight of spare part is above the lifting capacity of turbine platform or nacelle 

cranes, then a jack-up barge is required. Nowadays, depending on the oil and gas 

market demand, on average it takes a few weeks to charter and mobilize a jack up 

barge for offshore wind and it costs around 100-200 K€ per day. Typically, the lifting 

of heavy spares can only be done if wind speed is lower than 10 m/s. In Figure 1-16 

an example of a jack-up barge for offshore wind maintenance is shown. 

  

Figure 1-16 Example of support vessels: jack-up barge in left and cable laying vessel in right 
(offshorewind.biz) 
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Minor maintenance of subsea cables and foundations can be done by divers, however 

major repair or replacement of subsea cables is typically done by a cable laying vessel 

equipped with an ROV. Nowadays, similar to jack up barges on average it takes a few 

weeks to charter and mobilize a cable laying vessel for offshore wind and it costs 

around 100-200 K€ per day. A cable laying vessel can typically operate when 

significant wave height is less than 1.5 meter. An example of a cable laying vessel for 

offshore wind is shown in Figure 1-16.  

1.2.3.3 Technicians 

Offshore wind technicians are the human factor side of the resources. Offshore wind 

technicians should pass at least two set of trainings, a basic safety training and a basic 

offshore wind maintenance training. 

Global Wind Organization (GWO7) has developed a standard package for basic safety 

training. At least in Europe, all offshore wind technicians should be GWO certified, 

meaning they should pass the first aid, manual handling, fire awareness, working at 

heights and sea survival trainings. The GWO safety certificates are valid for maximum 

of two years and they should be renewed to ensure the highest level of safety at all 

time. 

In addition to safety, offshore wind technicians should attend several maintenance 

trainings. Majority of known OEMs like Vestas8 or Siemens9 have developed their 

own maintenance training modules in which technicians get specialized in a specific 

turbine platform. There also several third-party trainings which technicians can get 

specialized in specific type of components (such as mechanical, electrical or 

structural) or specific access solution (such as rope access for blades or diving for 

foundations and subsea cables).  

In contrary to installation technicians who work 24/7 in two or three working shifts, 

O&M technicians typically work in one working shift. The only exception to this is 

when an expensive support vessel is required for the maintenance. In such a scenario, 

O&M technicians work 24/7 in two or three working shifts to finalize the WO as soon 

as possible. 

In the following section, an introduction into O&M planning of offshore wind farms 

is given. 

                                                           
7 http://www.globalwindsafety.org/ 

8 https://www.vestas.com/ 

9 https://www.siemens.com/global/en/home/markets/wind.html 
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1.2.4. O&M PLANNING 

The O&M planning of offshore wind farms can be long-term (e.g. yearly) or short-

term (e.g. weekly or daily). The long-term O&M planning is used during both 

development and generation phases of an offshore wind farm: 

• Development phase: for baseline O&M cost calculation used in the LCoE 

estimation of the tender bid based on an optimal O&M strategy 

• Generation phase: for optimal EoW (to continue OEM warranty or to do the 

maintenance in-house) and EoL (to do lifetime extension, repowering or full 

dismantling) decision making and for optimization of shared O&M resources of 

the maintenance hub based on the available historical maintenance data 

Within short-term planning, the scheduling, prioritization and estimated costs of 

outstanding WOs can be determined and optimal preventive WOs to reduce future 

corrective failures can be defined.  

In Chapter 4 of this thesis long-term O&M planning and in Chapter 5 short-term O&M 

planning within several illustrative case studies are further explained. 

1.3. THESIS STATEMENT 

Now that a thorough introduction into current status of offshore wind O&M and its 

challenges is presented, the thesis statement can be defined. In the followings, first 

the objective of the thesis and thesis approach for achieving this objective are 

explained and then, a literature review on the state of the art of the thesis approach is 

given. In the last part, the outline of the following chapters of this thesis is briefly 

described. 

1.3.1. OBJECTIVE 

As explained in the introductory sections 1.1 and 1.2 of this chapter, the offshore wind 

can be a subsidy free and solid business case only if its LCoE is reduced to its 

minimum. The objective of this thesis is: 

“to define and demonstrate rational and applied solutions for reducing 

direct and indirect O&M costs of an offshore wind farm based on all 

available information and system criteria, given its reliability and 

performance” 

It was discussed that LCoE can be optimized by balancing the CAPEX, OPEX and 

AEP. In other words, this thesis aims to provide applied methods for reducing OPEX 

(by reducing direct O&M costs) and increasing AEP (by reducing production loss due 

to unavailability or i.e. by reducing in-direct O&M costs) of an offshore wind farm, 
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based on all available information, decision rules and targets, assuming more reliable 

offshore wind components cannot be used and power production performance of wind 

turbines cannot be increased. 

1.3.2. APPROACH 

The direct and indirect O&M costs of an offshore wind farm can be significantly 

reduced if both short-term and long-term O&M planning are optimized. As already 

discussed in 1.2.4, by optimized long-term O&M planning, optimal EoW and EoL 

decisions can be made and shared O&M resources of the maintenance hub can be 

optimized. Furthermore, by optimized short-term O&M planning, sufficient condition 

based and predictive WOs can be introduced to avoid future corrective failures and 

scheduling and prioritization models can be used to execute outstanding WOs as 

efficient as possible, leading to minimum direct and indirect O&M costs. 

Optimization of long-term and short-term O&M planning can be done by modelling 

wind farm components based on their reliability and by making optimal decisions 

using risk based models. Therefore, the approach of this thesis for achieving its goal 

can be summarised into: 

“to optimize both long-term and short-term O&M planning of an offshore 

wind farm, using risk and reliability models based on all available 

information and system criteria” 

In the past decades, O&M planning of offshore wind farms based on risk or reliability 

models is discussed in several academic studies. In the following section, a literature 

review on the past studies on this subject is given.  

1.3.3. STATE OF THE ART 

To date, the majority of offshore wind O&M literatures are focused on lifetime O&M 

cost estimation methods and/or theoretical O&M planning models, which are not 

applicable for large scale offshore wind farms with high level of complexity. On the 

other hands, only a handful of studies exist, in which an applied method for optimal 

O&M planning of complex offshore wind farms based on all available information 

and system criteria is introduced and uncertainties of unknown or stochastic variables 

are taken into account.  

In (Shafiee & Sørensen, 2017) a systematic literature study on 246 publications 

focused in maintenance optimization of wind energy assets is given. The publication 

classification framework used in this study is based on the wind asset type, planning 

horizon, failure model, maintenance policy, solution technique and solution 

effectiveness of publications. The authors in (Shafiee & Sørensen, 2017) have 

concluded that for O&M planning of large wind farms a shift from theoretical research 
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to applied research applicable for the industry is required, in which all available 

information regarding system reliability, failure mechanisms, methods of failure 

detection, and inspection and maintenance costs can be incorporated into one model.  

As discussed in thesis approach, the optimal long-term and short-term solutions in this 

thesis are based on risk and reliability models. In (Welte & Wang, 2013), an overview 

on classical reliability models for lifetime estimation of wind turbine components is 

given. The authors in (Welte & Wang, 2013), have classified wind turbine reliability 

models into stochastic, physical, data-driven or combined models, all based on time 

to failure principle and applicable mainly for mechanical and electrical components 

of wind turbine drivetrain. In (Bagheri, Alizadeh, Nadarajah, & Deiri, 2016), (Gray & 

Watson, 2010) and (Guo, Watson, Tavner, & Xiang, 2009) stochastic reliability 

models based on Weibull distribution, Gamma distribution and Poisson process are 

discussed. In (Ber & Sørensen, 2016), (Escobet, Sanchez, Sankararaman, & Escobet, 

2016), (J. J. Nielsen & Sørensen, 2011) and (Nijssen, 2006) the application of physics 

based reliability models based on Pars’ law, S-N curves and fracture mechanics 

models is discussed. In (Le & Andrews, 2016) and (Garcia, Sanz-Bobi, & del Pico, 

2006) examples of data-driven and artificial intelligence reliability models for wind 

turbine components are given. Furthermore, in (An, Choi, Kim, & Pattabhiraman, 

2011), (J. J. Nielsen & Sørensen, 2011), (Straub, 2009) and (Shafaghi, 2008) Bayesian 

updating of stochastic and physics based reliability models based on inspection and 

monitoring data is discussed. 

Similarly, several studies on probabilistic reliability modelling of offshore wind 

structural components are done, in which failure modes of structural components in 

terms of detailed limit state equations are defined and stochastic models for uncertain 

load and strength parameters are stablished. In (Stensgaard Toft, Branner, Nijssen, 

Lekou, & Pueyo, 2013) ultimate, fatigue, buckling and deflection limit states of wind 

turbine blades are defined and reliability estimation by structural reliability methods 

such as First Order Reliability Methods (FORM), Second Order Reliability Methods 

(SORM) and simulation techniques (e.g. Monte Carlo) is discussed. In (Sørensen, 

2017) application of structural reliability models for O&M planning of offshore wind 

blades is presented. In (Thöns, 2012) a framework for probabilistic reliability 

assessment of offshore wind structures is defined and discussed in detail. 

The cost estimation of offshore wind O&M is discussed within several academic 

studies, however, limited academic attention is paid into scheduling and prioritization 

of maintenance work orders. In (Asgarpour & Sørensen, 2015) and (Hofmann, 2011) 

an overview of existing offshore wind O&M cost models is given. In (Dinwoodie, 

Endrerud, Hofmann, Martin, & Sperstad, 2015) a comparison between different 

offshore wind O&M costs models based on several case studies is given.  

The diagnostic, prognostic, condition based and predictive maintenance of offshore 

wind farms are also discussed within several studies. In (Coronado & Fischer, 2015) 
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and (Tchakoua et al., 2014) an overview of the state of the art, new trends and future 

challenges of diagnostic techniques and condition monitoring of wind turbines is 

given. In (El-Thalji & Jantunen, 2012) requirements for development condition base 

maintenance strategies for offshore wind farms are discussed. In (Novaes, Leite, 

Maurício, André, & Rosas, 2018) a review on prognostic techniques applicable for 

maintenance of wind turbines is given. In (Canizo, Onieva, Conde, Charramendieta, 

& Trujillo, 2017) and (Yildirim, Gebraeel, & Sun, 2017) application of predictive 

maintenance for short-term O&M planning of offshore wind farms within case studies 

is discussed. 

As briefly explained in section 1.3.2, in this thesis, Bayesian based reliability models 

and applied risk based decision models are used for optimal long-term and short-term 

O&M planning of offshore wind farms. In the next section, the outline of the thesis is 

briefly discussed.  

1.3.4. OUTLINE 

In Chapter 2 and Chapter 3 of this thesis several risk and reliability models are defined 

and then, in Chapter 4 and Chapter 5 the optimization of long-term and short-term 

O&M planning based on the developed risk and reliability models is explained. In 

Figure 1-17, an overview of the thesis’ structure is given. 

In Chapter 2, first failure and degradation mechanisms of offshore wind components 

are discussed then, applied failure, degradation and remaining useful lifetime models 

are developed. Additionally, several methods based on Bayes’ rule for updating the 

initial reliability models using observations are proposed. 

In Chapter 3, risk based cost, scheduling and prioritization models for optimization of 

long-term and short-term O&M planning are proposed. The scheduling model is based 

on resource and maintenance matrices and can be used to schedule any given list of 

maintenance work orders. The work order expected costs can be estimated using 

developed cost model. The prioritization model is based on defined time or cost targets 

and can be used to optimize the execution of a given list of outstanding work orders. 
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Figure 1-17 Outline of the thesis 

In Chapter 4, first long-term O&M planning of offshore wind farms is further 

described and then, within a case study the baseline O&M strategy of a reference 

offshore wind farm is determined. Furthermore, updating the O&M strategy based on 

available maintenance history during operational years of an offshore wind farm is 

explained. 

In Chapter 5, first short-term O&M planning is discussed in detail and then, short-

term planning of corrective, condition based and predictive maintenance work orders 

within several illustrative examples is explained.  

In Chapter 6, conclusions on the implemented approach for achieving the thesis’ 

objective are given and several recommendations for future studies on this topic are 

proposed. In Appendix A, Appendix B, Appendix C and Appendix D the abstracts of 

papers enclosed to this thesis are given. 

 

 





55 

CHAPTER 2. RELIABILITY MODELS 

In an O&M planning model, the offshore wind components are presented by their 

reliability. According to EN 13306:2010 (Technical Committee CEN 319, 2010) 

reliability is “ability of an item to perform a required function under given conditions 

for a given time interval”. Reliability of wind farm components can be modelled using 

failure or degradation models. The failure models (also known as black box models) 

can only identify the probability of a component being in healthy or failed states, at a 

given time. However, the degradation models (also known as glass or white box 

models) can identify the degradation level of a component at any given time. 

Furthermore, once degradation of a component is known, the component lifetime and 

RUL can be estimated. In the followings, failure and degradation reliability models 

are discussed in detail. 

2.1. FAILURE MODEL 

According to EN 13306:2010 (Technical Committee CEN 319, 2010), failure is 

“termination of the ability of an item to perform a required function” and can be 

categorized based on its cause, mode, mechanism, severity or criticality: 

• Failure cause: “circumstances during specification, design, manufacture, 

installation, use or maintenance that result in failure” 

• Failure mode: “manner in which the inability of an item to perform a required 

function occurs” 

• Failure mechanism: “physical, chemical or other processes which may lead or 

have led to failure” 

• Severity: “potential or actual detrimental consequences of a failure or a fault”. 

Also, it is noted that “the severity of a failure may be related to safety, 

availability, costs, quality, environment, etc” 

• Criticality: “numerical index of the severity of a failure or a fault combined 

with the probability or frequency of its occurrence”. Also, it is noted that “the 

numerical index in this context may be defined, for example, as an area in the 

frequency of failure occurrence - severity matrix diagram” 

2.1.1. FAILURE MODELLING 

The failure modelling of a component depends on the component type. Similar to 

spare part types discussed in section 1.2.3.1 of the previous chapter, main wind farm 

components can be categorized as non-repairable and repairable. 
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2.1.1.1 Non-repairable Components 

Non-repairable components are components which cannot be repaired and are 

discarded upon a failure, such as sensors. In Figure 2-1, an example of failure of four 

identical non-repairable components is shown. 

 

Figure 2-1 Example of failure of non-repairable components 

In Figure 2-1 it can be seen that Time To Failure (TTF) or survival time of each 

component is a random variable. The Mean TTF or MTTF of a non-repairable 

component can be calculated by several run to failure tests on identical components. 

Then, the MTTF can be calculated as: 

𝑀𝑇𝑇𝐹 =
1

𝑛
∑ 𝑇𝑇𝐹𝑖
𝑖=𝑛
𝑖=1   (2.1) 

• 𝑀𝑇𝑇𝐹(𝑡) as the mean time to failure of a non-repairable component  

• 𝑇𝑇𝐹𝑖  as the survival time or time to failure of component 𝑖 

• 𝑛 as the total number of identical non-repairable components in the run to 

failure test 

The average failure rate (λ) of non-repairable components is: 

𝜆 = 1 𝑀𝑇𝑇𝐹⁄   (2.2) 

2.1.1.2 Repairable Components 

Repairable components are components which can be repaired and reused upon a 

failure, such as a drivetrain bearing. In Figure 2-2, an example of failures of a 

repairable component is shown. 
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Figure 2-2 Example of failures of a repairable component 

As shown in Figure 2-2, it can be seen that Time Between Failure (TBF) and Time To 

Repair (TTR) of failures of a repairable component is a random variable. The Mean 

TTR and Mean TBF of a repairable component can be calculated based on operational 

data of one or several identical components: 

𝑀𝑇𝐵𝐹 =
1

𝑛
∑ 𝑇𝐵𝐹𝑖
𝑖=𝑛
𝑖=1   (2.3) 

• 𝑀𝑇𝐵𝐹 as the mean time between failures of a repairable component 

• 𝑇𝐵𝐹𝑖  as the time between occurrence of failure 𝑖 and previous failure (or 

beginning of lifetime) 

• 𝑛 as the total number of failures occurred in one or several identical repairable 

components 

For repairable components, the average failure rate can be calculated as: 

𝜆 = 1 𝑀𝑇𝐵𝐹⁄   (2.4) 

The wind farm components in this thesis are modelled as repairable components. The 

uncertainty of the failure rate of a repairable component can be modelled by a Weibull 

or Gamma distribution. As instance, the PDF of a Gamma distributed failure rate 

model is (Bronshtein et al., 2015): 

𝑓(𝜆) =
𝛽𝛼

𝛤(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆 =

𝛽𝛼

𝛤(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆 =

𝛽𝛼

(𝛼−1)!
𝜆𝛼−1𝑒−𝛽𝜆  (2.5) 

• 𝑓(𝜆) as PDF of Gamma distributed failure rate 

• 𝛼 as Gamma distribution shape factor 

• 𝛽 as Gamma distribution scale factor 

Then, the mean and standard deviation of failure rate can be calculated as: 
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𝜇𝜆 =
𝛼
𝛽⁄ = 1 𝑀𝑇𝐵𝐹⁄   

 𝜎𝜆 =
𝛼
𝛽2⁄  

(2.6) 

Now that the failure rate of wind farm component as a stochastic variable is defined, 

the probability of component failure at a given time can be calculated. The probability 

of a component failure can be modelled using several stochastic distributions such as 

exponential, Gamma or Weibull distributions. In (Welte & Wang, 2013), an overview 

of stochastic models for probability of failure modelling of wind turbine components 

is given. 

In this thesis, probability of a component failure is modelled using Cumulative 

Distribution Function (CDF) of an exponential distribution (Bronshtein et al., 2015): 

𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑡) = 1 − 𝑒−𝜆(𝛼,𝛽)×𝑡   (2.7) 

• 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑡) as probability of a component failure at time 𝑡 

• 𝜆(𝛼, 𝛽) as the stochastic failure rate of the component modelled by a Gamma 

distribution with 𝛼 and 𝛽 as its shape and scale factors 

In Figure 2-3, an example of the probability of failure at four different quantiles of a 

failure rate model of a component based on Equation (2.7) is illustrated. 

 

Figure 2-3 Example of probability of a component failure at four quantiles 
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The probability of failure of wind farm components varies from one failure type to 

another. According to EN 13306:2010 (Technical Committee CEN 319, 2010) they 

are three types of failures: 

• Wear-out failure: “failure whose probability of occurrence increases with the 

operating time or the number of operations of the item and the associated 

applied stresses” 

• Ageing failure: “failure whose probability of occurrence increases with the 

passage of calendar time”. Also, it is noted that “this time is independent of the 

operating time of the item” 

• Sudden failure: “failure that could not be anticipated by prior examination or 

monitoring” 

In other words, probability of occurrence of a failure can increase with the operating 

time/level of a component (wear-out failure) and/or simply the age of a component 

(ageing failure) or without any relation to the age or operating time/level of a 

component (sudden failure).  

Failures of wind farm components could be wear-out failures, sudden/random failures 

or infant mortality failures. The latter is not described in EN 13306:2010 (Technical 

Committee CEN 319, 2010). Infant mortality failures are typically caused by 

manufacturing or installation flaws and by time their failure rate gets decreased. In 

Figure 2-4, the three failure types of wind turbine components and variation of their 

probability of occurrence by time are illustrated.  

 

Figure 2-4 Failure types and their probability of occurrence of wind farm components 
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In Figure 2-4 also a fourth plot named “Bathtub Curve” is plotted in red. The bathtub 

curve is the summation of all average failure rates in any time stamp. The bathtub 

curve has a bathtub shape, meaning that during early years of a wind farm lifetime 

(e.g. first 5 years) the total averaged failure rate of wind farm components is 

decreasing, then during mid-years of a wind farm lifetime (years 5 to 20), the total 

averaged failure rate is almost constant and at last, during the last years of a wind farm 

lifetime (e.g. last 5 years), the total averaged failure rate of wind farm components is 

increasing. 

2.1.2. UPDATING FAILURE MODEL 

The failure rates of wind farm components initially are taken from O&M data of 

similar operational offshore wind farms. Once the offshore wind farm starts the 

operation and enough O&M data are gathered, the initial assumed failure rates can be 

updated. 

The posterior failure rate model of a prior Gamma distributed failure rate model is 

also Gamma distributed. The shape and scale factors of the posterior failure rate model 

given some failure observation based on Bayes’ rule (Shafaghi, 2008) are: 

𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑛  

𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛽𝑝𝑟𝑖𝑜𝑟 + 𝑡  
(2.8) 

• 𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  as shape factor of posterior Gamma distributed failure rate model 

• 𝛼𝑝𝑟𝑖𝑜𝑟  as shape factor of prior Gamma distributed failure rate model 

• 𝑛 as number of failures observed in time period 𝑡 

• 𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  as scale factor of posterior Gamma distributed failure rate model 

• 𝛽𝑝𝑟𝑖𝑜𝑟  as shape factor of prior Gamma distributed failure rate model 

Furthermore, based on Equation (2.6) the posterior mean and standard deviation of 

the failure rate model of a component is: 

𝜇𝜆𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
⁄   

𝜎𝜆𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄   

(2.9) 

In Figure 2-5, an example of quantiles of the prior and posterior failure rate models of 

a component together with their average failure rates are visualized. 
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Figure 2-5 Example of prior and posterior Gamma distributed failure rate quantiles 

2.1.3. FAILURE BASED RELIABILITY 

Now that stochastic probability of a component failure at a given time is known, 

reliability of the component can be written as: 

𝑅(𝑡) = 1 − 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑡) = 𝑒−𝜆(𝛼,𝛽)×𝑡  (2.10) 

• 𝑅(𝑡) as failure based reliability of a component at time 𝑡 

In Figure 2-6, an example of failure based reliability of a wind farm component at 

four different quantiles is shown.  
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Figure 2-6 Example of failure based reliability of a component failure at three quantiles 

In the following section, degradation modelling and degradation based reliability 

together with component lifetime and RUL estimations are discussed. 

2.2. DEGARDATION MODEL 

As discussed in the previous section, the failure based reliability models known as 

black box models can only determine the failure probability of a component at a given 

time. However, degradation based reliability models known as glass or white box 

models can determine discrete or continuous degradation level of a component at any 

given time. In the followings, first degradation modelling is discussed and then, a 

model for Bayesian updating of initial degradation model is proposed.  

2.2.1. DEGRADATION MODELLING 

According to EN 13306:2010 (Technical Committee CEN 319, 2010) degradation is 

“detrimental change in physical condition, with time, use or external cause”. If a 

component’s degradation is gradual, observable and measurable, then its reliability 

based on a degradation model can be determined. In (Welte & Wang, 2013), an 

overview of stochastic, physical and data-driven models for degradation modelling of 

wind turbine components is given. In this thesis, degradation of a component is 

modelled using an exponential function: 

𝐷(𝑡) = 𝛽(𝜇, 𝜎)×𝑒𝛼𝑡   (2.11) 
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• 𝐷(𝑡) as degradation level of a component at time 𝑡 

• β as the stochastic scale factor modelled by a normal distribution β(𝜇, 𝜎) 

• α as the shape factor 

The initial shape factor of an exponential degradation model can be assumed. The 

shape factor of an exponential degradation model of a component determines how 

gradual the degradation of a component is and how much initial degradation due to 

manufacturing or installation flaws a new component has. 

The smaller shape factors are associated with more gradual degradation process of a 

component and bigger shape factors are associated with less gradual degradation 

process. In Figure 2-7, an example of exponential degradation model of a component 

base on three different shape factors is shown. 

 

Figure 2-7 Example of degradation model of a component based on different shape factors 

Now that initial shape factor is known, the mean and standard deviation of initial 

normal distributed scale factor can be calculated as: 

𝐷 (𝑡 ≈ 1 𝜆(𝜇, 𝜎)⁄ ) = 1
   𝑡ℎ𝑒𝑛   
→    𝛽(𝜇, 𝜎) = 1

𝑒
𝛼
𝜆(𝜇,𝜎)⁄⁄

               
→      

𝜇𝛽 =
1
𝑒
𝛼
𝜇𝜆⁄

⁄   

(2.12) 
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 𝜎𝛽 = 1
𝑒
𝛼
𝜎𝜆⁄

⁄  

• 𝜆 as the Gamma distributed failure rate model of a component 

Now that exponential degradation model of a component is known, the component 

lifetime and remaining useful lifetime based on the component degradation model 

can be estimated. 

2.2.2. COMPONENT LIFETIME 

By assuming degradation level of 1.0 once a component fails, the lifetime of a 

component based on its exponential degradation model is: 

𝐷(𝑡) = 𝛽(𝜇, 𝜎)𝑒𝛼𝑡 = 1
  𝑡ℎ𝑒𝑛  
→     𝐿𝑇 =

−𝑙𝑛 𝛽(𝜇, 𝜎)
𝛼⁄   (2.13) 

• 𝐿𝑇 as the component lifetime 

2.2.3. COMPONENT RUL 

Similarly, a component Remaining Useful Lifetime (RUL) based on its degradation 

model can be calculated as: 

𝑅𝑈𝐿(𝑡) = 𝐿𝑇 − 𝑡 = [
−𝑙𝑛 𝛽(𝜇, 𝜎)

𝛼⁄ ] − 𝑡  (2.14) 

In (J. S. Nielsen & Sørensen, 2017), a more accurate Bayesian based model for RUL 

estimation of wind turbine blades is presented. 

2.2.4. UPDATING DEGRADATION MODEL 

The initial scale factor of exponential degradation model of a component can be 

updated once observations on degradation level or failures of that component are 

known. In the followings, updating of the shape and scale factors for each observation 

type is discussed in detail. 

2.2.4.1 Observed Degradation 

The degradation level of a component can be observed by using a Degradation Matrix 

to translate the inspection outcome into discrete degradation levels of that component. 

In Table 2-1, an example of such a degradation matrix for a wind turbine main bearing 

is given. 
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Component Observed Damage 
Estimated 

Degradation 

Bearing   

 No damage 0 - 0.2 

 Micro pitting 0.2 - 0.4 

 Debris damage 0.4 - 0.6 

 Edge loading 0.6 - 0.8 

 Cage damage 0.8 - 1.0 

 

Table 2-1 Example of degradation matrix for inspection of bearings (Asgarpour & Sørensen, 
2017) 

As instance, the degradation observation associated with edge loading of a main 

bearing reported by three individual technicians can be assumed as 0.65, 0.8 and 0.6. 

Then, assuming shape factor of 0.4 for main bearing degradation model, the mean 

observed scale factor associated with each observation is: 

𝜇𝛽,𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 1 =
𝐷
𝑒𝛼⁄ = 0.65 𝑒0.4⁄ = 0.436  

𝜇𝛽,𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 2 =
𝐷
𝑒𝛼⁄ = 0.8 𝑒0.4⁄ = 0.536  

𝜇𝛽,𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 3 =
𝐷
𝑒𝛼⁄ = 0.6 𝑒0.4⁄ = 0.402  

(2.15) 

Thus, the observed mean and standard deviation of these normal distributed scale 

factors can be determined as: 

𝛽(𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , 𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = 𝛽(0.458,0.0696)  (2.16) 

Now that the mean and standard deviation of the observed scale factor are known, 

using the Bayes’ rule and Normal-Normal model (Jacobs, 2008), the posterior scale 

factor of the degradation model of this component can be calculated as: 

1
𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄ = 1

𝜎𝑝𝑟𝑖𝑜𝑟
2⁄ + 1

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2⁄   (2.17) 
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𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

1
𝜎𝑝𝑟𝑖𝑜𝑟
2⁄

1
𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄

×𝜇𝑃𝑟𝑖𝑜𝑟 +

1
𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2⁄

1
𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2⁄

×𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑   

• σPosterior as the standard deviation of the posterior scale factor 

• μPosterior as the mean of the posterior scale factor 

• σPrior as the standard deviation of the prior scale factor given in Equation (2.12) 

• μPrior as the mean of the prior scale factor shown in Equation  (2.12) 

• σObserved as the standard deviation of the observed scale factor given in 

Equation (2.16) 

• μObserved as the mean of the observed scale factor given in Equation (2.16) 

Now that posterior scale factor is known, the updated shape factor of this degradation 

model can be calculated as: 

𝐷 (𝑡 ≈ 1 𝜆(𝜇, 𝜎)⁄ ) = 𝛽(𝜇, 𝜎)𝑒𝛼𝑡 = 1
   𝑡ℎ𝑒𝑛   
→      

𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = −𝜇𝜆 𝑙𝑛 𝜇𝛽,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟   

(2.18) 

Therefore, the Bayesian updated posterior exponential degradation model of this 

component is formulated as: 

𝛽(𝜇𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , 𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)×𝑒
𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑡   (2.19) 

Instead of observed degradation, the observed failures of a component can be used to 

update its exponential degradation model. 

2.2.4.2 Observed Failures 

As discussed in section 2.1.2, once observations on component failures are available, 

the Gamma distributed failure rate model can be update. Then, using updated failure 

rate model given in Equation (2.9), the posterior mean and standard deviation of the 

scale factor based on Equation (2.12) becomes: 

𝜇𝛽,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
1
𝑒
𝛼
𝜇𝜆,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟⁄⁄   

𝜎𝛽,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
1
𝑒
𝛼
𝜎𝜆,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟⁄⁄   

(2.20) 

Similar to Equation (2.18), the updated shape factor of degradation model of this 

component becomes: 
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𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = −𝜇𝜆,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑙𝑛 𝜇𝛽,𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟   (2.21) 

2.2.5. DEGRADATION BASED RELIABILITY 

Now that degradation of a component at a given time is known, reliability of that 

component can be written as: 

𝑅(𝑡) = 1 − 𝐷(𝑡)  (2.22) 

• 𝑅(𝑡) as degradation based reliability of a component at time 𝑡 

It should be noted in Equation (2.22) it is assumed that reliability of a component is 

directly related to its degradation, which is not entirely true for some component types.  

In Paper IV (Asgarpour & Sørensen, 2017) of this thesis, within a case study the 

application of exponential degradation models for fault prediction of offshore wind 

components is discussed in detail. 
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CHAPTER 3. RISK MODELS 

The associated risk of O&M planning models is presented by risk models. Relevant 

risk types associated with O&M planning of offshore wind farms are financial, 

environmental, health and safety risks. In this thesis, financial risks (e.g. O&M costs) 

are modelled using a cost model and other risk types are presented by user defined 

decision rules in scheduling and prioritization models (e.g. no wind turbine access if 

significant wave height is higher than 1.5 meter to reduce health and safety risks and 

no subsea cable maintenance in migration period of marine mammals to reduce 

environmental risk). In Figure 3-1, an overview of risk based cost, scheduling and 

prioritization models defined in this chapter is given. 

 

Figure 3-1 Overview of risk based models defined in this chapter 

As shown in Figure 3-1, all three risk based models developed in this chapter are 

interconnected. The O&M cost model is used into the O&M scheduling model and 

the O&M scheduling model is used into the O&M prioritization model.  

3.1. COST MODEL 

During the development phase of an offshore wind farm it is required to estimate the 

lifetime O&M costs as part LCoE calculation. Moreover, during the generation phase 

of an offshore wind farm for scheduling and prioritization of maintenance WOs, the 

expected costs of each WO should be known. In  Figure 3-2 framework of a risk based 

cost model is given, which can be used for estimation of both long-term O&M costs 

and short-term WO costs. 
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Figure 3-2 Framework of a risk based O&M cost model 

In the followings first, WO costs are discussed and then, an overview into total long-

term and short-term O&M costs of an offshore wind farm is given. 

3.1.1. WO COSTS 

The costs of a WO can be direct or indirect. The direct WO costs are associated with 

required resources of a WO and indirect WO costs are associated with its duration. 

Therefore, a WO costs can be formulated as: 

𝐶𝑊𝑂 = 𝐶𝑊𝑂.𝐷𝑖𝑟 + 𝐶𝑊𝑂.𝐼𝑛𝑑    (3.1) 

Once the estimated required resources and duration of a WO are known, the direct 

and indirect WO costs can be calculated. 

3.1.1.1 Direct WO Costs 

Besides spares and shared O&M resources available in the maintenance hub, each 

WO might require specific technicians or support vessels. The summation of WO 

spares cost and associated costs of WO specific resources is known as direct WO costs 

and can be calculated as: 

𝐶𝑊𝑂.𝐷𝑖𝑟 = 𝐶𝑉 + 𝐶𝑇 + 𝐶𝑆   (3.2) 

• 𝐶𝑉 as cost of WO specific vessels such as jack up barge or cable laying vessel 
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• 𝐶𝑇 as cost of WO specific technicians such as access or reliability specialists   

• 𝐶𝑆 as cost of spares used in a WO 

3.1.1.2 Indirect WO Costs 

Indirect WO cost is the revenue loss due to the production loss of wind turbine(s) 

affected by that WO. Indirect WO cost is the product of lost energy and cost of 

electricity during downtime period of a WO: 

𝐶𝑊𝑂.𝐼𝑛𝑑 = 𝐸𝐿𝑜𝑠𝑠×(𝐶𝐸 + 𝑆𝐸)   (3.3) 

• 𝐸𝐿𝑜𝑠𝑠 as energy loss during downtime period of a WO 

• 𝐶𝐸 as daily market electricity price during downtime period a WO in 

currency/Wh 

• 𝑆𝐸 as wind farm specific subsidy in currency/Wh to match a promised 

electricity price 

Normally the governmental offshore wind subsidies are only paid out in early years 

of a wind farm’s lifetime (e.g. first 5 years). After end of the subsidy scheme, the 

subsidy parameter in Equation (3.3) can be set to zero. 

If a WO is wind turbine based then only power of one wind turbine is lost. However, 

if a WO is BoP based, then several or all wind turbines are shut down and therefore, 

the lost energy is much higher. If the wind speed measurements at hub height during 

the downtime of a WO is known, then using wind turbine PV curve (such as the one 

given in Figure 1-9) the WO lost power and subsequent WO lost energy can be simply 

calculated. 

The main key to 𝐸𝐿𝑜𝑠𝑠 calculation is to estimate the WO downtime as accurate as 

possible. From the moment that a wind turbine is shut down for maintenance 

(automated by alarms or manually by operation hub) until the moment that the WO is 

finalized the wind farm suffers from lost production. This time interval is known as 

downtime and can be calculated as: 

𝑇𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 + 𝑇𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝑆ℎ𝑖𝑓𝑡 + 𝑇𝑊𝑒𝑎𝑡ℎ𝑒𝑟 +

𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑇𝑊𝑂    
(3.4) 

• 𝑇𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 as the time required to identify the maintenance type and required 

resources 

• 𝑇𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 as the waiting time for WO specific resources as defined by Equation 

(3.5) 

• 𝑇𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝑆ℎ𝑖𝑓𝑡  as the waiting time for start of the next working shift 
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• 𝑇𝑊𝑒𝑎𝑡ℎ𝑒𝑟  as the waiting time for a suitable weather window when all vessels can 

operate and all exterior maintenance activities such as rope access can be 

performed 

• 𝑇𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟  as the transfer time from the onshore or offshore maintenance hub to 

the WO location or vice versa 

• 𝑇𝑊𝑂 as the WO duration which is the time spent to access and maintain a 

component 

𝑇𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = 𝑚𝑎𝑥 ( 𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑉𝑒𝑠𝑠𝑒𝑙 ,  𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑆𝑝𝑎𝑟𝑒𝑠 ,  𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛)  (3.5) 

• 𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑉𝑒𝑠𝑠𝑒𝑙  as the waiting time for required access and/or support vessels to 

become available 

• 𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑆𝑝𝑎𝑟𝑒𝑠  as the waiting time for required spares to become available if 

they are not available in the inventory 

• 𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 as the waiting time for required number of technicians to 

become available if all technicians are occupied 

In Figure 3-3, the downtime of a corrective maintenance WO based on Equation (3.4) 

is illustrated. 

 

Figure 3-3 Downtime of a corrective maintenance work order 

In Figure 3-3 it is assumed that the WO can be finalized in one attempt. However, if 

WO duration 𝑇𝑊𝑂 is bigger than the available weather window in a working shift, then 

the WO should be executed in parts within several different working shifts. 

It should be noted that Equation (3.4) holds true only for corrective WOs and not for 

preventive or upgrade WOs. In case of preventive WOs, preparation, waiting for 

resources, waiting for suitable weather windows and transfer can be done in advance 

and the wind turbine is set off manually only when the technicians want to access the 

maintenance location. Therefore, the Equation (3.4) can be simplified to: 

𝑇𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑊𝑂   (3.6) 

In  Figure 3-4, the downtime of a preventive maintenance WO based on Equation (3.6) 

is shown. 
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Figure 3-4 Downtime of a preventive maintenance work order 

It can be easily seen that the overall costs of preventive WOs are considerably lower 

than corrective ones since the wind turbine downtime is much lower. 

3.1.2. SHORT-TERM O&M COSTS 

Now that WO costs are known, the short-term O&M costs for a given set of known 

maintenance WOs can be easily calculated. As discussed in section 1.1.3.3 and 

visualized in Figure 3-2, the total O&M cost is a summation of direct, indirect and 

overhead costs: 

𝐶𝑂𝑀 = 𝐶𝑂𝑀.𝐷𝑖𝑟 + 𝐶𝑂𝑀.𝐼𝑛𝑑 + 𝐶𝑂𝐻  (3.7) 

The direct O&M costs is the summation of direct WOs’ costs and fixed costs of shared 

O&M resources: 

𝐶𝑂𝑀.𝐷𝑖𝑟 = ∑ 𝐶𝑊𝑂.𝐷𝑖𝑟𝑖
𝑖=𝑁
𝑖=1 + 𝐶𝑂𝑀.𝑅𝑒𝑠   (3.8) 

• CWO.Diri as direct WO costs of WO number i 

• 𝑁 as total number of executed WOs  

• C𝑂𝑀.𝑅𝑒𝑠 as fixed costs of shared O&M resources such as technicians, access 

vessels and spare part inventory 

Similarly, the indirect O&M costs is equivalent to indirect WOs’ costs: 

𝐶𝑂𝑀.𝐼𝑛𝑑 = ∑ 𝐶𝑊𝑂.𝐼𝑛𝑑𝑖
𝑖=𝑁
𝑖=1   (3.9) 

As explained before, overhead costs are staff, facilities, legal, safety and insurance 

costs of both operation and maintenance hubs. 

3.1.3. LONG-TERM O&M COSTS 

During the development phase of an offshore wind farm for LCoE estimation or 

during the generation phase for EoW or EoDL decisions, long-term O&M costs 

should be calculated. In order to calculate the long-term O&M costs first the 

occurrence of random unknown WOs should be modelled. The long-term O&M cost 

calculation is typically done using an O&M cost model.  
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During past decades, several O&M cost models for long-term O&M cost estimation 

of offshore wind farms have been developed. The main core of any offshore wind 

O&M cost model is the way that stochastic corrective maintenance WOs and their 

subsequent downtime are modelled, assuming the average failure rate or average 

number of corrective WOs per year for each wind farm component is known.  

In Paper II (Asgarpour & Sørensen, 2015) an overview of existing models for long-

term O&M cost estimation of offshore wind farms is given. In the followings of this 

section, the two most common O&M cost model types are explained. 

3.1.3.1 Polynomial Cost Model 

In a polynomial offshore wind cost model, instead of WO specific costs, the average 

O&M costs during the whole design lifetime of the wind farm is calculated. In 

polynomial models, the occurrence of corrective WOs or failures are not distributed 

randomly in the time domain. Instead, first a polynomial relation between the duration 

of a WO and the weather waiting time associated with that WO is found and then, 

O&M costs are simply calculated. 

The most industry known polynomial offshore wind O&M cost model is ECN O&M 

Tool (Obdam & Braam, 2014), a Microsoft Excel based cost model developed by 

Energy Centre of the Netherlands. In ECN O&M Tool it is assumed that similar to 

Weibull approximation of wind speed condition for AEP calculation, there should be 

a similar approximation for weather waiting time and lost power of O&M work orders. 

In the ECN O&M Tool it is shown that a second or third order polynomial curve is 

the best fit for the average weather waiting time and lost power plotted against the 

WO duration. 

As an example, in Figure 3-5 based on 11 years of wind speed and significant wave 

height measurements, the mean weather waiting time for various WO durations is 

plotted in red dots. The assumed weather restriction for this WO is maximum 15 m/s 

wind speed measured at 10 m height (equivalent to platform height of an offshore 

wind turbine) and maximum 1.5 significant wave height (equivalent to weather 

restriction of a CTV). It can be seen that based on this weather data and defined 

weather restrictions, on average only about 55% of the time or 200 days per a year 

technicians can access the turbine. 

In Figure 3-5, the restriction caused by workings shift hours is not considered and it 

is assumed that technicians are ready to sail out at any time during the day. Clearly, 

applying working shift restriction will increase the mean weather waiting time for 

each WO duration. 
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Figure 3-5 Mean weather waiting time and two polynomial fits for work order scenario 
durations with 15 m/s wind speed and 1.5 m significant wave height restrictions 

In Figure 3-5, a second order and a third order polynomial curves are also plotted in 

green and blue lines. It can be seen that in this example, a third order polynomial curve 

is a better fit. The coefficients of this third order polynomial fit are: 

𝑓(𝑡) = 0.0003068𝑡3 − 0.05588𝑡3 + 6.71𝑡 − 31.76  (3.10) 

• 𝑓(𝑡) as the mean weather waiting time of a WO with duration 𝑡 (in hours) and 

15 m/s wind speed and 1.5 m significant wave height weather restriction based 

on sample 11 years of measurement data 

Therefore, similar to Weibull estimation for AEP calculation, it can be seen that by 

having the four coefficients of a third order polynomial curve, the mean weather 

waiting time for any WO duration can be estimated. As instance, based on Equation 

(3.10) for an 18-hour WO with the aforementioned weather restriction on average 72.7 

hours weather waiting time should be expected. Similarly, a polynomial fit for lost 

power during waiting time and lost power during WO duration can be found. 

For every given WO duration and weather restriction, similar polynomial fits for mean 

weather waiting time and lost power can found. Since now weather waiting time and 

lost power are known, energy loss for a WO according to the ECN O&M Tool can be 

calculated as: 

𝐸𝐿𝑜𝑠𝑠 = (𝑃𝑊𝑎𝑖𝑡𝑖𝑛𝑔×𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔) + (𝑃𝑊𝑂×𝑇𝑊𝑂)  (3.11) 
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• 𝑃𝑊𝑎𝑖𝑡𝑖𝑛𝑔 as lost power during waiting time estimated from polynomial fits for 

𝑇𝑊𝑂 

• 𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔 as weather and working shift waiting time according to Equation (3.5) 

estimated from polynomial fits for 𝑇𝑊𝑂 

• 𝑃𝑊𝑂  as lost power during the WO duration estimated from polynomial fits for 

𝑇𝑊𝑂 

Now the energy loss during a work order is known, Equation (3.3) for indirect O&M 

costs of each WO can be rewritten as: 

𝐶𝑂𝑀.𝐼𝑛𝑑 = ∑ [(𝑃𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑊𝑎𝑖𝑡𝑖𝑛𝑔 + 𝑃𝑊𝑂𝑇𝑊𝑂)𝑖
×(𝐶𝐸, 𝑊𝑂𝑖 + 𝑆𝐸)]

𝑖=𝐼
𝑖=1   (3.12) 

In order to simplify the Equation (3.12) for total O&M cost calculation, in the ECN 

O&M Tool work orders are categorized into a few limited scenarios, depending on 

their duration, required resources and maintenance types. By doing so, Equation 

(3.12) can be simply calculated, assuming component failure rate per each scenario is 

known.  

In Paper I (Asgarpour & Sørensen, 2015) of this thesis, ECN O&M Tool is described 

further and a detailed case study for O&M cost calculation of an 800 MW reference 

offshore wind farm is presented. 

3.1.3.2 Monte Carlo Cost Model 

On the contrary to polynomial cost models discussed in the previous section, in Monte 

Carlo cost models component failures are distributed randomly in the time domain. 

The Monte Carlo method is based on repeated random sampling of stochastic 

variables. Based on the Monte Carlo simulation, the expected value of a function with 

random variable 𝑥 is: 

𝐸[𝑓(𝑥)] =
1

𝑛
∑ 𝑓(𝑋𝑖)
𝑖=𝑛
𝑖=1   (3.13) 

• 𝐸[𝑓(𝑥)] as the expected value of 𝑓(𝑥) function with random variable 𝑥 

• 𝑓(𝑋𝑖) as the value of 𝑓(𝑥) based on random sampling 𝑋𝑖 of variable 𝑥 

• 𝑛 as the total number of experiments or repetitions 

The key stochastic variable of Monte Carlo based O&M cost models is the time stamp 

of a component’s failures. The time to failure of offshore wind components can be 

modelled by a stochastic model such as Weibull distribution, Power law process, 

Gamma/Markov process or Poisson process. Since in Equation (2.7) of the previous 

chapter, probability of a failure is modelled using an exponential CDF model, a 
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Poisson process is the right choice for time to failure modelling of a Monte Carlo 

based O&M cost model. 

In Figure 3-6 application of a Poisson process for modelling the occurrence of random 

failures is illustrated. The Poisson process is random occurrence of individual events 

with an average occurrence rate per unit of time. In this example, it is assumed that 

this wind turbine component has 0.25 failure rate or corrective WO per year, which 

means on average one failure every four years. 

 

Figure 3-6 Poisson process to model occurrence of random failures 

In order to distribute several component failures in a time domain, instead of 

probability of failure within a time period the elapsed time between failures should be 

calculated. The elapsed time between failures can be calculated using the inverse of 

Equation (2.7) for failure probability: 

𝑡 =
− 𝑙𝑛[1−𝑃(𝑡)]

𝜆
  (3.14) 

• 𝑡 as the elapsed time to the next failure as illustrated in Figure 3-6 

• 𝑃(𝑡) as the probability of failure within time 𝑡, which can be substituted by a 

uniformed random variable between (0,1) 

In order to test the accuracy of Equation (3.14), the average elapsed time for one 

million occurrences can be calculated. The results of the first five one-million trials 

are 3.995584, 4.000428, 3.997285, 4.003863 and 4.001004, all very close to our 

failure rate assumption of one failure every four years. 

Using Equation (3.14) elapsed time between failures as stochastic variable of Monte 

Carlo simulations can be easily calculated. In each Monte Carlo simulation, first the 

occurrence of all failures of each component of each wind turbine or BoP system are 

randomly estimated and then, based on the O&M cost equations described in section 

3.1.2 of this chapter the direct and indirect O&M costs are calculated. In Figure 3-7, 

an example of Monte Carlo simulations in the time domain for O&M cost calculation 

is illustrated. 
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Figure 3-7 Monte Carlo simulations in the time domain for O&M cost calculation 

As seen in Figure 3-7, beside random failures, scheduled WOs occurring at a fixed 

time every year (e.g. 1st of April) are also illustrated. Based on Equation (3.13), the 

total O&M costs of an offshore wind farm can be calculated as average of O&M costs 

of all simulations.  

During the past decades, several Monte Carlo based cost models have been developed. 

In Paper II (Asgarpour & Sørensen, 2016) of this thesis, an overview of several Monte 

Carlo based offshore wind O&M cost models such as ECN O&M Calculator is given. 

The ECN O&M Calculator (Asgarpour & Pieterman, 2014) is a MATLAB based 

Monte Carlo simulation tool developed by Energy Centre of the Netherlands. In Paper 

II (Asgarpour & Sørensen, 2016) of this thesis, a case study for O&M cost calculation 

of a 400 MW reference offshore wind farm based on ECN O&M Calculator is 

demonstrated. 

Now that risk based cost models for short-term and long-term O&M cost estimations 

are described, scheduling of the outstanding WOs of an offshore wind farm within a 

scheduling model can be discussed. 

3.1. SCHEDULING MODEL 

As discussed in section 1.2.1.2, an offshore wind farm with 100 wind turbines has 

about 500 corrective WOs per year, which can be translated into 10 WOs per week. 

The schedule, required resources and associated lost revenue of each outstanding WO 

can be estimated with a scheduling mode. In Figure 3-8, framework of a risk based 

O&M scheduling model is shown. 
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Figure 3-8 Framework for risk based O&M scheduling model 

The outlined scheduling model requires inputs from CMMS, resource demand, 

resource matrix and decision rules. Then, based on all available information, the 

schedule of outstanding WOs in the CMMS is determined and using the cost model 

described in 3.1.1, the lost revenue and resources costs of each WO are calculated. At 

the end, all scheduling and cost results are given in a maintenance matrix. In the 

followings, first the inputs of the scheduling model are described and then, an example 

of the scheduling results in form of a maintenance matrix is given. 

3.1.1. CMMS 

As described in 1.2.2, CMMS is a maintenance management system to control the 

process and information flow of maintenance WOs. In Table 3-1, an example of a 

CMMS for an offshore wind farm is given. 

ID 
Alarm  

Date 

Notification 

Date 
Status Asset Component Cat. 

1 
2017-11-01 

12:10:00 

2017-11-01 

14:00:00 
Finalized WT01 Oil pump Corr. 

2 
2017-11-02 

04:30:00 

2017-11-02 

04:50:00 

In-

progress 
WT04 Converter Corr. 

3 
2017-11-04 

23:00:00 

2017-11-05 

07:00:00 

Out-

standing 
WT31 Transformer Corr. 

4 --- 
2017-11-06 

07:00:00 

Out-

standing 
WT12 Yaw drive Sch. 

5 --- 
2017-11-06 

07:00:00 

Out-

standing 
WT08 Pitch Motor Pred. 

 

Table 3-1 Example of CMMS of an offshore wind farm 
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As seen in Table 3-1, the corrective WOs are associated with an alarm date, however, 

preventive or upgrade WOs have only a notification date since turbines linked to these 

WOs are not stopped by an alarm. 

3.1.2. RESOURCE DEMAND 

The Resource Demand is estimated required resources for each WO type of each 

component. At beginning of lifetime, resource demand of WOs should be estimated. 

In Table 3-2, an example of assumed resource demand for two WO types of two 

components is shown. 

Maintenance 

Type 
Component Duration (h) Vessels Technicians Spares 

Corrective      

 Converter 8 SOV 2 K€ 10 

 Main shaft 30 Jack-up 4 K€ 500 

Scheduled      

 Converter 4 SOV 2 K€ 1 

 Main shaft 8 SOV 2 K€ 20 

 

Table 3-2 Example of resource demand for execution of outstanding WOs of an offshore wind 
farm 

Once sufficient O&M history is available, the resource demand of outstanding WOs 

can be taken from average resource demand of similar finalized WOs in the CMMS. 

3.1.3. RESOURCES MATRIX 

The Resources Matrix is intended to keep track of usage of O&M resources such as 

vessels or technicians. Furthermore, the resources matrix contains the weather data, 

which can be used for possible power estimation of wind turbines or accessibility 

check of access vessels. In Table 3-3, an example of resource matrix for O&M of an 

offshore wind farm is given. 
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Date Time 
WS 

(m/s) 

WH 

(m) 

Power 

(kW) 

Access 

SOV 

Avail. 

SOV 

No. 

Technicians 

2017-11-01 

10:00:00 
10.8 2.1 7940 False Ture 12 

2017-11-01 

10:030:00 
9.8 1.9 7860 True False 9 

2017-11-01 

11:00:00 
8.5 1.8 7450 True False 9 

 

Table 3-3 Example of resource matrix for an offshore wind farm 

The weather data used in the resource matrix can be based on short-term weather 

forecast or long-term averaged historical weather data. As seen in Table 3-3, at the 

first time slot the significant wave height is higher than weather restriction of the SOV 

and for that reason, the accessibility of SOV is set to false. In the next time stamp, 

once the significant wave height goes below 2 meters, the SOV becomes accessible 

and can be used for execution of WOs. Once the SOV is used to transfer three 

technicians to a WO location, its availability becomes false and number of technicians 

is reduced by three. 

3.1.4. DECISION RULES 

Decision rules can be used to reflect wind farm owner’s targets on the O&M planning 

or to reduce or mitigate risks. As instance, the following decision rules can be applied 

for scheduling of outstanding WOs: 

• The costs of preventive WOs shouldn’t exceed K€ 10 (financial risk) 

• The condition based or predictive WOs should be done at least one week prior to 

their estimated failure date (financial risk) 

• The maintenance of subsea cables shouldn’t be done in month of June 

(environmental risk) 

• The access from CTVs to the wind turbine platform should be done only if 

significant wave height is lower than 1.5 meters (health and safety risk) 

The defined decision rules can be stationary or time dependent, as the scheduling 

model is able to incorporate both types. 

3.1.5. MAINTENANCE MATRIX 

Once all inputs are given and the decision rules are defined, the scheduling of 

outstanding WOs can be done. As result of scheduling, the schedule (start and end 

time) and costs (spares, specific technician or support vessel and lost revenue) of each 

outstanding WO is determined. In Table 3-4, an example of scheduled maintenance 

matrix of the outstanding WOs of the CMMS shown in Table 3-1 is given. 
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ID 
Start 

Date 

End 

Date 

Res. 

Costs 
Duration 

Lost 

Time 

Lost 

Revenue 

2 
2017-11-06 

07:30:00 

2017-11-06 

15:30:00 
K€ 10 8 59 K€ 23.6 

3 
2017-11-06 

08:00:00 

2017-11-08 

13:00:00 

K€ 40 
14.5 38 K€ 15.2 

4 
2017-11-08 

13:00:00 

2017-11-08 

17:00:00 

K€ 1 
4 4 

K€ 1.6 

5 
2017-11-08 

13:30:00 

2017-11-08 

15:30:00 

K€ 5 
2 2 

K€ 0.8 

 

Table 3-4 Example of maintenance matrix based on scheduling of the CMMS shown in Table 
3-1 

In Table 3-4 it can be seen that lost time of preventive WOs based on Equation (3.6) 

is equal to their WO duration. Now the total direct and indirect WO costs of these four 

WOs can be easily calculated: 

𝐶𝑊𝑂.𝐷𝑖𝑟 = ∑ 𝐶𝑊𝑂.𝐷𝑖𝑟𝑖
𝑖=4
𝑖=1 = 𝐾€ 56  

 𝐶𝑊𝑂.𝐼𝑛𝑑 = ∑ 𝐶𝑊𝑂.𝐼𝑛𝑑𝑖
𝑖=4
𝑖=1 = 𝐾€ 41.1 

𝐶𝑊𝑂 = 𝐶𝑊𝑂.𝐷𝑖𝑟 + 𝐶𝑊𝑂.𝐼𝑛𝑑 = 56 + 41.1 = 𝐾€ 97.1  

(3.15) 

The calculated K€ 97.1 of WO costs is associated with scheduling of outstanding WOs 

in order of their ID. A different order of WO execution will result into a different total 

WO costs. The optimal (minimum) WO costs can be achieved by scheduling 

outstanding WOs in their optimal order. The optimal prioritization order of 

outstanding WOs is discussed in the following section within a prioritization model. 

3.2. PRIORITIZATION MODEL 

Nowadays WO scheduling is typically done by a “scheduler”. The scheduler engineer 

normally every day looks at several availability and forecast charts and then, select 

and prioritize a list of WOs for the next working shift. Depending of the size and 

complexity of a wind farm this task can be very challenging since it is very 

cumbersome to digest all this information quickly and come up with an optimal 

schedule.  

As an alternative, optimal prioritization of any given outstanding WOs can be 

calculated. In Figure 3-9, a framework for risk based prioritization of outstanding 

WOs is shown. 
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Figure 3-9 Framework of a risk based O&M prioritization model 

In Figure 3-9, it can be seen that the cost and scheduling models discussed in the 

previous sections are incorporated into this O&M prioritization model. The inputs of 

this prioritization model are similar to the scheduling model, with addition of a 

prioritization input, which is the execution order of outstanding WOs. 

Within this model, based on the all available information and defined decision rules, 

the WO costs based on every possible prioritization of WOs are calculated and then, 

the prioritization order associated with minimum WO costs is reported back as the 

optimal prioritization order, which maintenance hub technicians should follow in their 

next working shift. 

The risk and reliability based models developed in this and previous chapter are coded 

using R10, which is a free software environment for statistical computing and graphics. 

Based on the developed reliability and risk models, in Chapter 4 long-term O&M 

planning and in Chapter 5 short-term O&M planning of offshore wind farms within 

several illustrative case studies are discussed. 

 

 

                                                           
10 https://cran.r-project.org 
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CHAPTER 4. LONG-TERM O&M 

PLANNING 

As discussed briefly in Chapter 1, at the beginning of the wind farm lifetime the long-

term O&M planning can be used to determine the baseline O&M costs and optimal 

shared O&M resources. Furthermore, during the operational years of the wind farm 

lifetime, the long-term O&M planning can be used to update the baseline O&M costs 

and assumed shared O&M resources. In Figure 4-1, a framework of optimal long-term 

O&M planning of offshore wind farms is shown. 

 

Figure 4-1 Framework for optimal long-term O&M planning of offshore wind farms 

As seen in Figure 4-1, reliability models discussed in Chapter 2 and scheduling and 

cost models discussed in Chapter 3 are incorporated into this long-term O&M 

planning framework. In the followings, first baseline and updated long-term O&M 

strategies are discussed further and then, a case study for long-term O&M planning of 

a reference offshore wind farm is given. 

4.1. BASELINE STRATEGY 

During development phase of an offshore wind farm, long-term O&M planning is 

used to determine a baseline O&M strategy. Within a baseline O&M strategy firs 

several scenarios for shared O&M resources are defined and then, lifetime O&M costs 

for each scenario is determined. Then, the shared O&M resources scenario leading to 

minimum lifetime O&M costs is selected as the baseline O&M strategy. 

In section 4.3 of this chapter, baseline O&M strategy is further explained within a 

case study. Furthermore, in Paper I (Asgarpour & Sørensen, 2016) and Paper II 
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(Asgarpour & Sørensen, 2015) within several illustrative examples, long-term O&M 

planning and baseline O&M strategy are discussed. 

4.2. UPDATED STRATEGY 

Once an offshore wind farm is in operation for some years, the existing operational 

data can be used to update the assumptions made for baseline O&M strategy. In the 

followings, two use cases of the updated O&M strategy are explained. 

4.2.1. UPDATED O&M COSTS 

For several decisions during the generation phase of an offshore wind farm, the long-

term O&M costs should be recalculated. As instance, when an offshore wind farm 

reaches its end of warranty, based on the existing operational data, the reliability 

assumptions shown in Figure 4-1 should be updated and then, updated long-term 

O&M costs for post end of warranty period should be calculated. Once updated long-

term O&M costs are known, an informed decision on extension of warranty contract 

can be made. 

Similarly, once an offshore wind farm reaches its end of design lifetime, using all 

historical operational data the reliability assumptions should be updated and then, 

long-term O&M costs for post end of design lifetime should be calculated. Once, 

remaining useful lifetime of structural components and updated long-term O&M costs 

are known, an informed decision on lifetime extension can be made.  

4.2.2. UPDATED O&M RESOURCES 

The shared O&M resources of an offshore wind farm influence direct and indirect 

O&M costs. Therefore, it is advised that every five years, based on the experience 

gained so far, a new set of scenarios for shared O&M resources be defined and then, 

long-term O&M costs for each scenario be calculated. Then, the shared O&M 

resources scenario with minimum long-term O&M costs can replace the existing 

shared O&M resource strategy of the wind farm. 

4.3. CASE STUDY 

In the followings, first the layout of a reference offshore wind farm and then, based 

on the framework shown in Figure 4-1, baseline O&M costs of this reference offshore 

wind farm are calculated. 

4.3.1. REFERENCE WIND FARM 

The reference offshore wind farm defined in this thesis is an adaption of 800 MW 

NORCOWE reference wind farm (Bak et al., 2017), but with hundred 8 MW wind 
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turbines installed on monopile foundations in 30 m water depth. The power curve of 

8 MW reference turbines is given in Figure 1-9.  

As discussed in section 1.1.3.1, assuming 3% production loss due to wakes, 2% 

production loss due to underperformance and 0.5% production loss due to electrical 

cables, the potential AEP of this wind farm is estimated as 3.969 TWh. The production 

loss due to unavailability is calculated more accurately in this case study. 

Furthermore, as discussed in Chapter 1, the installed cost or CAPEX of this wind farm 

is assumed to be 4 M€/MW or B€ 3.2 in total. The O&M overhead costs are assumed 

to be M€ 10 per year.  

This reference offshore wind farm is assumed to be commissioned on 1st January 2020 

and to operate for 25 years until 31st of December 2044. It is assumed that this wind 

farm is subsidy free meaning that no governmental subsidy is provided for produced 

electricity. 

In Figure 4-2, the layout of the described reference offshore wind farm is illustrated. 

The wind farm consists of two 400 MW sections. Each wind farm section consists of 

50 wind turbines, 5 array cables and one offshore transformer station. The two 

sections of this reference offshore wind farm can also be considered as two neighbour 

wind farms operated by the same maintenance hub. 

 

Figure 4-2 Layout of an 800 MW reference offshore wind farm with two 400 MW sections 

Each string of subsea array cable is designed to collect power from 10 wind turbines 

with maximum load capacity of 80 MW. The high voltage electricity power from two 
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offshore transformer stations is transmitted to an offshore converter station to convert 

it from AC to DC for long distance offshore transmission.  

It is assumed that this wind farm has no warranty period and the wind farm is 

maintained by its maintenance hubs. As shown in Figure 4-2, it is assumed that the 

wind farm has two maintenance hubs, one onshore maintenance hub located in the 

closet harbour and one offshore maintenance hub placed between two wind farm 

sections on a jacket foundation. The onshore maintenance hub is 80 km far from the 

onshore maintenance hub. 

4.3.1.1 O&M Resources 

As discussed in section 3.1.2, besides shared O&M resources some WOs require 

specific resources to finalize. In the followings assumed O&M resources for this 

reference offshore wind farm are described. 

O&M Spares 

In an offshore wind farm several different types of spare parts are used. However, for 

this reference wind farm spare parts are categorized based on their costs and lead time. 

The costs of spare parts are assumed as a percentage (0.01%, 0.1%, 0.5% or 10%) of 

one wind turbine supply cost. Similar to Chapter 1, it is assumed that wind turbine 

supply cost is 30% of total CAPEX, which can be translated into M€ 9.6 as supply 

cost of one 8 MW reference offshore wind turbine. 

For less expansive spare parts (costing equal or less than 0.5% of wind turbine price) 

it is assumed that the spare part is available in the inventory. The inventory costs per 

year it is assumed to be equal to 1% of one wind turbine supply cost (K€ 96 per year).  

For more expensive spare parts (10% of one wind turbine supply cost) a lead time of 

two weeks is assumed. The lead time of a spare part is the waiting time between the 

spare part request and spare part delivery. 

O&M Vessels 

As explained in section 1.2.3.2, CTVs, SOVs or helicopters can be used as access 

vessel. For this reference offshore wind farm, it is assumed that one SOV and one 

helicopter are available throughout the lifetime of the wind farm. The ownership of 

the SOV costs M€ 5 per year and the ownership of the helicopter costs M€ 1 per year. 

The SOV transfers technicians from the offshore maintenance hub to WO locations 

and vice versa. It is assumed that each transfer of this SOV takes 30 minutes. The 

SOV only leaves the offshore maintenance hub if a minimum one hour suitable 

weather window is forecasted.  
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The helicopter is only used for emergency rescues or if the SOV is not available to 

pick up technicians at the end of their working shift. Furthermore, transfer of 

technicians between onshore and offshore maintenance hubs is done by the helicopter. 

If the weight of a component is higher than the lifting capacity of the turbine or SOV, 

then a jack-up barge should be chartered for replacement of that component. Similarly, 

for major underwater maintenance of subsea cables a cable laying vessel should be 

chartered.  

The weather restrictions defined in section 1.2.3.2 holds true for vessels of this 

reference wind farm. Both jack up barge and cable laying vessel costs K€ 120 per day, 

with K€ 200 mobilization and demobilization costs and two weeks lead time once 

chartered.  

O&M Technicians 

This reference wind farm employs 40 technicians with averaged K€ 100 yearly salary, 

ranging from GWO certified technicians to component or access specialists. 

Technicians of this reference wind farm work two weeks at the offshore maintenance 

hub and have two weeks off. Therefore, only 20 technicians are available for 

execution of maintenance activities in one 12 hour working shift from 07:00 until 

19:00. 

The duration of a work order is the time that technicians spend in the WO location to 

inspect, repair or replace a wind farm component. The WO duration can vary from a 

few hours to a few days. For this reference wind farm, it is assumed that minimum 

WO duration is 4 hours and maximum WO duration is 40 hours. 
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Figure 4-3 Maintenance resources for baseline O&M strategy of the reference wind farm 

The described maintenance resources for the baseline O&M strategy of the reference 

offshore wind farm are translated into several decision rules for the scheduling model 

of the framework shown in Figure 4-1. An overview of the assumed O&M resources 

for this reference offshore wind farm is also given in Figure 4-3. 

In order to simplify the baseline O&M strategy, condition based and predictive 

maintenance are skipped. Therefore, in the baseline model only corrective and 

mandatory scheduled maintenance WOs are considered. 

Furthermore, based on the discussed O&M resources in the previous section, 

corrective and scheduled maintenance are categorized in 6 different scenarios. In 

Table 4-1, depending on the maintenance category, the resource demand of 6 different 

maintenance scenarios are defined. 
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Maintenance # Duration (h) Vessels Technicians Spares 

Corrective      

 1 4 SOV 2 0.01% 

 2 8 SOV 2 0.1% 

 3 12 SOV 3 0.5% 

 4 40 Jack up Barge 0 10% 

 5 40 Cable Laying 0 10% 

Scheduled      

 6 8 SOV 2 0.1% 

 

Table 4-1 Resource demand for execution of WOs of the reference offshore wind farm 

In resource demand of Table 4-1, it is assumed that corrective WOs take from 4 to 40 

hours and scheduled WOs take 8 hours to finalize. All maintenance scenarios except 

40 hours corrective maintenance can be carried out using the in-house SOV and 

helicopter.  

In case of 40 hours corrective scenarios using a support vessel (scenarios 5 and 6), no 

SOV or wind farm technician is required as it is assumed that the support vessel crew 

are responsible for the whole maintenance process. 

4.3.1.2 Component Reliability 

Now that shared O&M resources and resource demand of maintenance scenarios of 

the reference wind farm are known, it is necessary to define the wind farm components 

and their reliability.  

For purpose of O&M modelling of this reference offshore wind farm only 13 first 

level components of the wind farm are considered. In Table 4-2, eleven first level 

wind turbine components and two BoP components are shown. Each of these 

components consist of several other component levels which are skipped here. In 

Table 4-2, the BoP transformer and converter stations are considered alike and 

categorized as substation. 
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Main System Components RDS-PP Code 

Wind Turbine  MD 

 Rotor System MDA 

 Drivetrain System MDK 

 Yaw System MDL 

 Hydraulic System MDX 

 Control System MDY 

 Generation System MKA 

 Converter System MSE 

 Transformer System MST 

 Cooling System MUR 

 Nacelle System MUD 

 Tower System UMD 

Balance of Plant   

 Subsea Cables W 

 Substations ATA 

 

Table 4-2 Components of the reference offshore wind farm 

In the past couple of years, the wind industry has aimed to define a naming convention 

for wind farm components to avoid random naming conventions across different 

OEMs and utilities. The most successful initiative is RDS-PP classification code 

coordinated by VGB (VGB PowerTech Service GmbH, 2013). As instance, in the last 

column of Table 4-2, the RDS-PP classification codes of wind farm components are 

given. 

During the development phase of an offshore wind farm very few information on the 

reliability level of wind farm components is known. Therefore, failure frequencies of 

similar operational components are typically taken as reliability model of baseline 
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O&M strategies. If the turbine platform is new and no operational data exists, then 

operational data of similar turbine platforms should be used. As instance, in (Carroll, 

McDonald, & McMillan, 2016) a study on observed failure rates of offshore wind 

turbine components is given. In Figure 4-4, based on this study an overview of failure 

rates of offshore wind turbines is shown. 

 

Figure 4-4 Failure frequency of offshore wind turbine components (Carroll et al., 2016) 

In Table 4-3, a summary of assumed WO frequencies of this reference offshore wind 

farm is given. 

Main System Maintenance WO/year/System 

MD  5.0 

 Corrective 4.0 

 Scheduled 1.0 

ATA  1.0 

 Scheduled 1.0 

W  0.1 

 Corrective 0.1 

 

Table 4-3 Assumed WO frequency for corrective and scheduled maintenance of the reference 
offshore wind farm 
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According to Table 4-3, each wind turbine has 5 WOs per year (4 corrective and 1 

scheduled), each substation has one scheduled WO per year and each string of array 

cable has 0.1 corrective WO per year. During the scheduled maintenance of wind 

turbines, it is assumed that wind turbines are shut down, which results into lost power. 

However, during the scheduled maintenance of substations it is assumed that they are 

in operation. In case of array cable failure, it is assumed that half of the wind turbines 

connected to that cable string are affected. 

The four wind turbine failures and 0.1 subsea cable failure given in Table 4-3 can be 

broken down into individual components and maintenance scenarios. In Table 4-4, 

failure rate of each wind farm component per each corrective maintenance scenario is 

given. 
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Components WO/year/Component (λ) 
Maintenance 

Scenario 
Probability 

MDA 0.4   

  Corrective (1) 30% 

  Corrective (2) 40% 

  Corrective (3) 30% 

MDK 0.2   

  Corrective (3) 90% 

  Corrective (4) 10% 

MDL 0.4   

  Corrective (1) 20% 

  Corrective (2) 40% 

  Corrective (3) 40% 

MDX 0.5   

  Corrective (1) 40% 

  Corrective (2) 60% 

MDY 0.6   

  Corrective (1) 70% 

  Corrective (2) 30% 

MKA 0.4   

  Corrective (2) 40% 

  Corrective (3) 60% 

MSE 0.8   

  Corrective (1) 80% 

  Corrective (2) 20% 

MST 0.2   

  Corrective (2) 40% 

  Corrective (3) 60% 

MUR 0.3   

  Corrective (1) 70% 

  Corrective (2) 30% 

MUD 0.1   

  Corrective (1)  80% 

  Corrective (2) 20% 

UMD 0.1   

  Corrective (1) 70% 

  Corrective (2) 30% 

W 0.1   

  Corrective (5) 100% 
 

Table 4-4 Summary of work order frequencies per component and corrective scenario 
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The failure rates given in Table 4-4 can be summarized for each wind farm main 

system and maintenance scenario. In Table 4-5, summary of WO frequencies per main 

system and maintenance scenario is shown. 

Main System Number 
Maintenance 

Scenario 
WO/year/System WO/year 

MD 100  5.0 500 

  Corrective (1) 1.82 182 

  Corrective (2) 1.34 134 

  Corrective (3) 0.82 82 

  Corrective (4) 0.02 2 

  Preventive (6) 1.00 100 

ATA 3  1.0 3 

  Preventive (6) 1.00 3 

W 10  0.1 1 

  Corrective (5) 0.10 1 

 

Table 4-5 Summary of work order frequencies per main system and maintenance scenario 

As shown in Table 4-5, this reference wind farm on average every year experiences 

401 corrective and 103 scheduled WOs, which sums up to 504 WOs in total. This 

number can be translated into approximately one and half WOs per day during the 

wind farm lifetime, which demonstrates the challenging nature of maintenance of 

large offshore wind farms.  

In the followings, based on the assumptions given in this section, lifetime O&M costs 

of the reference offshore wind farm using the framework shown in Figure 4-1 are 

calculated. 

4.3.2. BASELINE O&M COSTS 

Now that O&M resources and reliability assumptions of this reference offshore wind 

farm are known, based on the framework shown in Figure 4-1, the baseline lifetime 

O&M costs of this reference offshore wind farm can be calculated. In the followings, 
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first resource and maintenance matrices of the scheduling model are defined and then, 

the scheduling model is used to estimate the lifetime O&M costs. 

4.3.2.1 Resource Matrix 

As discussed in 3.1.3, the baseline O&M resources can be summarized into a resource 

matrix. The resource matrix of this reference offshore wind farm contains the 

following information in each row: 

• Date and time with 30 minutes resolution 

• Vessel’s weather window based on defined weather restriction of the vessels 

and historical weather data (e.g. 48 ½ hours meaning that for the next 48 ½ 

hours a suitable weather window for SOV operation exists) 

• Vessel’s availability defined as logical true if the vessel is available or false if 

the vessel is occupied for another WO 

• Technicians’ availability as number of available technicians out of total 20 

• Power possible to be produced by one offshore wind turbine in that time period 

in kW 

 

Figure 4-5 Resource matrix for scheduling model of the reference offshore wind farm 

The generated resource matrix can be used to keep track of availability and usage of 

resources during the lifetime of the wind farm. In Figure 4-5, the first rows of such a 

resources matrix is shown. 

4.3.2.2 CMMS  

As described in 3.1.3.2, a Poisson process is used to translate the component reliability 

assumptions of this reference offshore wind farm (given in Table 4-5) into outstanding 

corrective WOs. In Figure 4-6, notification dates of 401 corrective WOs generated 

randomly by the Poisson process and 103 scheduled WOs for 100 wind turbines 

(MD), 10 subsea array cables (W) and 3 substations (ATA) are shown. 
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Figure 4-6 Example of yearly randomly generated WOs in the CMMS 

In Figure 4-6 it can be seen that every year the defined reference wind farm 

experiences 401 corrective WOs (scenarios 1 to 5) and 103 scheduled WOs (scenario 

6, all initiated on 1st of April). Furthermore, in Figure 4-6 two wind turbine drivetrain 

failures (scenario 4) and one subsea array cable failure (scenario 5) can be easily 

spotted. 

4.3.2.3 Maintenance Matrix 

The discussed CMMS matrix of this reference offshore wind farm is directly 

incorporated into its maintenance matrix. The maintenance matrix of this reference 

offshore wind farm contains the following information: 

• Work order ID, which is an auto generated number for each maintenance WO. 

As shown in Table 4-5 for the reference offshore wind farm 504 WOs per year 

should be generated. 

• Alarm date, generated randomly based on Equation (3.14) for corrective 

maintenance actions. For preventive scheduled actions, no alarm date is 

necessary. 

• Notification date is the time that a WO is added to the CMMS backlog of 

outstanding WOs. In case of corrective WOs, an average alarm processing time 

of 3 hours is assumed (done by operation hub as explained in section 1.2.2.1). 

In case of scheduled WOs, notification date is set automatically to 1st of April of 

each year. 
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• Status of WO, which is by default outstanding for new WOs. The status later on 

can be changed to ongoing or complete once the WO is processed and finalized. 

• System that a WO is intended for defined by its RDS-PP code 

• Category of a WO defined based on the maintenance scenarios given in Table 

4-1 

• Duration of a WO in hours based on Table 4-1 

• Number of technicians required for a WO based on Table 4-1 

• Spares required for the WO based on Table 4-1 in Euro 

• Start date of a WO, which the first moment that resources become available or 

the first moment that a suitable weather window is found 

• End date of a WO is when the WO is finalized and the component can be set 

back to operation 

• Lost time is the downtime associated with a WO in hours 

• Lost energy is the electricity lost during the downtime of a WO in kWh, taken 

from calculated power in the Resources Matrix 

In Figure 4-7, a few rows of such a randomly generated maintenance matrix is shown. 

It can be seen that the notification date of scheduled WOs is set as 1st of April and 

notification date of the corrective WOs is three hours after their alarm date and time. 

 

Figure 4-7 Example of maintenance matrix used in the scheduling model 

4.3.2.4 WO Scheduling 

As illustrated in Figure 3-8, both resources and maintenance matrices are used into a 

scheduler. Based on the defined baseline O&M strategy rules in section 4.3.1of this 

chapter, the scheduling model processes the outstanding WOs in the maintenance 
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matrix one by one and calculates their start date, end time, lost time and lost energy. 

In Figure 4-8 the scheduling results for the WOs shown in Figure 4-6 are given. 

 

Figure 4-8 Scheduling results of the maintenance matrix given in Figure 4-7 

In Figure 4-8 it can be seen that according to Equation (3.6), the lost time of scheduled 

WOs of wind turbines (system MD, scenario 6) is equal to their WO duration. 

However, the lost time and lost energy of scheduled WOs of substations (System 

ATA, scenario 1) is zero, since in the baseline O&M strategy of this reference wind 

farm it is assumed that during the scheduled maintenance of substations wind turbines 

can be in operation.  

In Figure 4-8 it can also be seen that the lost time of corrective WOs is way beyond 

their WO duration due to the waiting time for weather and/or resources. For example, 

4 hours duration of the WO 140 in Figure 4-8 has led to 26 hours of lost time and 

approximately 170 MWh of lost energy. In Figure 4-9, the resource matrix at the time 

of WO 130 is shown. 

 

Figure 4-9 Status of the resource matrix at the time of WO 130 of the maintenance matrix 
given in Figure 4-8 
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In Figure 4-9 it can be seen that at the time of WO 130 notification (2020-03-30 

11:00:00) the significant wave height is higher than 2 meters and the SOV cannot 

access the wind turbines. It goes the same until 6.5 hours after (2020-03-30 16:30:00) 

once the wave height goes equal or below 2 meters and technicians can be transferred 

to the wind turbine to start this WO, just for one and half hour of work. In Figure 4-10, 

the breakdown of WO 130 from the alarm date until the finalization of the WO (2020-

03-31 10:00:00) is illustrated. 

 

Figure 4-10 Breakdown of WO 127 of the maintenance matrix given in Figure 4-8 

In Figure 4-10, it can be seen that this 4 hours long WO is executed within two steps, 

with 17.5 hours of weather and working shift waiting time in between.  

Besides updating the maintenance matrix with start date, end time, lost time and lost 

revenue of WOs, the scheduler also updates the resource matrix with usage history of 

technicians and vessels. In Figure 4-11, the usage history of O&M vessels for WOs 

given in Figure 4-6 is illustrated. 
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Figure 4-11 Usage history of O&M vessels for WOs given in Figure 4-6 

As shown in Figure 4-11, the SOV is actively used, especially around the spring and 

summer seasons once scheduled WOs are initiated. The helicopter is used only in 

three occasions when the SOV hasn’t been available to pick up the technicians at the 

end of their working shift (also for bi-weekly transfer of technicians from the onshore 

maintenance hub to offshore maintenance hub. 

In Figure 4-11 it can also be seen that the jack up barge is chartered two times for two 

drivetrain replacements (scenario 4). It can also be seen that the cable laying vessel is 

only chartered once in mid-February for a subsea cable replacement (scenario 5). 

Similarly, in Figure 4-12 the usage history of technicians for WOs given in Figure 4-6 

is illustrated. 
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Figure 4-12 Usage history of O&M technicians for WOs given in Figure 4-6 

As illustrated in Figure 4-12, only in 13 occasions all 20 offshore based technicians 

are occupied. Once all technicians are occupied, the remaining WOs get delayed until 

required technicians become available again. 

4.3.2.5 O&M Costs 

Once all WOs are scheduled, according to the equations given in 1.1.3 and 3.1.2 the 

total O&M costs for WOs shown in Figure 4-6 can be calculated as: 

𝐶𝑂𝑀.𝐷𝑖𝑟 = ∑ 𝐶𝑊𝑂.𝐷𝑖𝑟𝑖
𝑖=𝑁
𝑖=1 + 𝐶𝑂𝑀.𝑅𝑒𝑠 = 𝐶𝑉 + 𝐶𝑇 + 𝐶𝑆 = (7.4 + 4 +

9.4) = 𝑀€ 20.8  
(4.1) 

• 𝐶𝑉 = ownership costs of the SOV (M€ 5) and helicopter (M€ 1) plus WO 

specific support vessels costs (M€ 1.4) according to the scheduling results 

• 𝐶𝑇 = salaries for 40 technicians (M€ 4) 

• 𝐶𝑆 = spare part inventory costs (K€ 96) and cost of WO specific spares (M€ 9.3) 

according to the scheduling results 

𝑂𝑃𝐸𝑋 = 𝐶𝑂𝑀.𝐷𝑖𝑟 + 𝐶𝑂𝐻 = 20.8 + 10 = 𝑀€ 30.8  (4.2) 

Moreover, according to the scheduling results the energy loss for all WOs is: 

𝐸𝐿𝑜𝑠𝑠 = 284.5 𝐺𝑊ℎ  (4.3) 
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Now that both OPEX and energy loss due to WOs are known, the LCoE can be 

calculated: 

𝐿𝐶𝑜𝐸 =
𝐶𝐴𝑃𝐸𝑋×𝐶𝑅𝐹+𝑂𝑃𝐸𝑋

𝐴𝐸𝑃𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙−𝐴𝐸𝑃𝐿𝑜𝑠𝑠
=
(3200×0.064+30.8) 𝑀€

3.969−0.284 𝑇𝑊ℎ
= 63.9 € 𝑀𝑊ℎ⁄   (4.4) 

Now the calculated LCoE can be used as averaged market electricity price for 

calculation of indirect O&M costs: 

𝐶𝑂𝑀.𝐼𝑛𝑑 = 𝐸𝐿𝑜𝑠𝑠×(𝐶𝐸 + 𝑆𝐸) = 284.5 𝐺𝑊ℎ ×(63.9 
€
𝑀𝑊ℎ⁄ + 0) =

𝑀€ 18.2  
(4.5) 

At last, the total O&M costs is: 

𝐶𝑂𝑀 = 𝐶𝑂𝑀.𝐷𝑖𝑟 + 𝐶𝑂𝑀.𝐼𝑛𝑑 + 𝐶𝑂𝐻 = (20.8 + 18.2 + 10) = 𝑀€ 49  (4.6) 

In Table 4-6, the yearly and lifetime O&M costs of the reference offshore wind farm 

based WOs shown in Figure 4-6 are shown. 

O&M Costs Cost Element Yearly Costs (M€) Lifetime Costs (B€) 

Direct costs  20.8 0.520 

 Vessels 7.4 0.185 

 Spares 9.4 0.235 

 Technicians 4.0 0.100 

Indirect costs  18.2 0.454 

Overhead costs  10.0 0.25 

Total   49.0 1.22 

 

Table 4-6 O&M costs of the reference wind farm based on distribution of WOs given in 
Figure 4-6 

Furthermore, in Table 4-7 a summary of the calculated LCoE elements based on WOs 

given in Figure 4-6 is given. 
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LCoE Elements Annual Estimation  % of LCoE 

CAPEX x CRF M€ 204.8 87% 

OPEX M€ 30.8 13% 

AEP 3.684 TWh --- 

 

Table 4-7 LCoE of the reference wind farm based on WOs given in Figure 4-6 

Moreover, it can be seen that 19.3% of total LCoE is due to M€ 49 yearly O&M costs 

as shown in Figure 4-6 (part of it as OPEX and part of it as lost energy). 

The O&M costs and LCoE elements given in Table 4-6 and Table 4-7 are heavily 

influenced by the assumed distribution of WOs as shown in Figure 4-6. Repeating the 

O&M cost calculation based on another WO distribution will result most likely into 

different O&M costs and LCoE estimation. In order to reduce this uncertainty, as 

described in 3.1.3.2 the aforementioned process should be repeated for several Monte 

Carlo simulations and then, average O&M costs of all simulations should be taken as 

the O&M costs of this reference offshore wind farm. As an example, in Figure 4-13 

the convergence of averaged O&M costs based on repeated Monte Carlo simulations 

is shown. 

 

Figure 4-13 Convergence of LCoE based on 100 Monte Carlo simulations 
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In Figure 4-13 it can be seen that just after 50 simulations the averaged LCoE is 99% 

converged. Now that the O&M costs are no longer influenced by the occurrence time 

of WOs, the O&M costs can be recalculated. In Table 4-8, the average yearly and 

lifetime O&M costs of the reference offshore wind farm are shown. 

O&M Costs Cost Element Yearly Costs (M€) Lifetime Costs (B€) 

Direct Costs  22.2 0.555 

 Vessels 8.8 0.22 

 Spares 9.4 0.235 

 Technicians 4.0 0.100 

Indirect Costs  14.9 0.372 

Overhead costs  10.0 0.25 

Total   47.1 1.18 

 

Table 4-8 Averaged O&M costs of the reference wind farm 

According to the O&M cost shown in Table 4-8, the averaged LCoE is recalculated 

to 63.3 €/MWh. In Table 4-9 a summary of the this LCoE elements is given. 

LCoE Elements Annual Estimation  % of LCoE 

CAPEX x CRF M€ 204.8 86.4% 

OPEX M€ 32.2 13.6% 

AEP 3.746 TWh --- 

 

Table 4-9 Averaged LCoE of the reference wind farm 

Furthermore, it can be seen that 18.4% of total LCoE is due to M€ 47.1 yearly O&M 

costs as shown in Table 4-8 (part of it as OPEX and part of it as lost energy). 

As shown in Table 4-8, the lost revenue during the downtime of WOs contributes to 

40% of total O&M costs (excluding overhead costs). Therefore, for this baseline 

O&M strategy several sensitivity analyses (such as 2 SOVs instead of one or 24/7 

working shifts) should be performed to optimize the baseline O&M strategy and 
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reduce the downtime and associated lost revenue. The optimization of the shared 

O&M resources is not further discussed in this thesis.  

In Paper I (Asgarpour & Sørensen, 2016) and Paper II (Asgarpour & Sørensen, 2015) 

more case studies on lifetime O&M cost calculation based on baseline O&M strategy 

are given. Furthermore, in (Asgarpour & Pieterman, 2014) updating of baseline O&M 

strategy based on available O&M data during the operational years of an offshore 

wind farm is further discussed and several examples are provided. 
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CHAPTER 5. SHORT-TERM O&M 

PLANNING 

Besides long-term optimization of O&M planning, the O&M costs of offshore wind 

farms can be significantly reduced if existing corrective actions are performed as 

efficient as possible and if future corrective failures are avoided by performing 

sufficient preventive actions. In Figure 5-1, a framework of short-term O&M planning 

of offshore wind farms is given. 

 

Figure 5-1 Framework for optimal short-term O&M planning of offshore wind farms 

As seen in Figure 5-1, within this framework, the updated resource demand of 

corrective WOs is identified and optimal condition based and predictive WOs based 

on diagnostic and prognostic models are created. Then, using the optimal long-term 

O&M planning discussed in Chapter 4 and risk based models discussed in Chapter 3, 

the scheduling, costs and optimal prioritization of outstanding WOs in the CMMS are 

identified. The resulted optimal short-term O&M planning can directly be used in the 

next working shifts of maintenance hub to finalize outstanding corrective WOs as 

efficient as possible and to avoid future corrective WOs by implementing defined 

condition based and predictive WOs.  
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In the followings, first updating the resource demand and diagnostic and prognostic 

models are briefly discussed and then, two case studies for short-term O&M 

planning of the reference offshore wind farm are given. 

5.1. CORRECTIVE MAINTENANCE 

The existing corrective WOs can be optimized only if all available information from 

existing finalized WOs available in the maintenance history is used to update the 

resource demand.  

5.1.1. UPDATING RESOURCE DEMAND 

As discussed, during development phase of an offshore wind the resource demand of 

corrective WOs is not known and should be assumed. However, during the generation 

phase of an offshore wind farm the existing maintenance data can be used to update 

the baseline resource demand made during the development phase of an offshore wind 

farm. In Figure 5-2, a framework for updating the resource demand based on finalized 

corrective WOs in the CMMS is illustrated. 

 

Figure 5-2 Framework for updating the resource demand based on maintenance history 

As visualized in Figure 5-2, first the finalized corrective WOs should be grouped per 

component type and failure mode and then, the average duration and resource demand 

of each component failure mode group should be used to update the existing resource 

demand used in the scheduling model. In section 5.4.1 of this chapter a case study for 

scheduling and prioritization of outstanding corrective WOs based on the updated 

resource demands is given. 
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5.2. CONDITION BASED MAINTENANCE 

As discussed already, the majority of O&M costs of offshore wind farms is due to 

unplanned failure of wind farm components. The O&M costs can be reduced 

significantly if the faults of wind farm components can be detected as soon as they 

occur and before they lead to a failure. The fault prediction of offshore wind 

components can be achieved within a diagnostic model. 

5.2.1. DIAGNOSTIC MODEL 

In Paper III (Asgarpour & Sørensen, 2017) a holistic Bayesian based diagnostic model 

based on several diagnostic agents or fault detection methods is introduced. In Figure 

5-3, the framework of this diagnostic model is visualized. Within this diagnostic 

model a confidence matrix or Probability of Detection (PoD) model is defined, in 

which relevance or capability of each diagnostic agent for fault detection of each 

component or component failure mode is determined.  

 

Figure 5-3 Framework of a holistic diagnostic model with Bayesian updating for offshore 
wind farms (Asgarpour & Sørensen, 2017) 

Furthermore, in Figure 5-3 it can be seen that diagnosis of each diagnostic agent is 

given into a diagnosis matrix. Then, based on the defined confidence and diagnosis 

matrices, the holistic probability of fault for each component or component failure 

mode is calculated. Once the probability of fault for a given component or component 

failure mode is above a given threshold, an inspection should be done to verify the 

diagnosis. If the fault detection is verified by an inspection, then a condition based 
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WO should be created to avoid upcoming failures of that component. Additionally, 

based on Bayes’ rule, the verified fault detection results can be used to update the 

initial confidence matrix.  

In Paper III (Asgarpour & Sørensen, 2017) of this thesis, the diagnostic model 

discussed here is further explained in detail. In section 5.4.2 of this chapter, a case 

study for scheduling and prioritization of condition based WOs is presented. 

5.3. PREDICTIVE MAINTENANCE 

Corrective effort of offshore wind farms can be reduced to its minimum only if instead 

of failure probability, the reliability of wind farm components is defined by their 

degradation models and once their degradation goes above a given threshold (or their 

RUL goes below a given threshold), a predictive WO is executed to maintain the 

components. The degradation monitoring and fault prediction of wind farm 

components can be achieved with a prognostic model. 

5.3.1. PROGNOSTIC MODEL 

In Paper IV (Asgarpour & Sørensen, 2017) a hybrid prognostic model based on 

degradation and RUL models of offshore wind components is introduced. In Figure 

5-4, the framework of this prognostic model is visualized. According to this 

framework and based on the degradation models defined in Chapter 2, initial 

degradation and RUL models of offshore wind components can be defined. Then, 

once degradation level of a component goes beyond a threshold, or once the RUL of 

a component goes below a given threshold, an inspection should be done to verify the 

predicted degradation level.  

If based on the observed degradation level during inspection (determined by using a 

degradation matrix as explained in 2.2.4.1), the predicted degradation level of a 

component is verified, then a predictive WO should be defined to decrease the 

degradation level of that component or to prevent its future faults and failures. 

Additionally, if based on an inspection it is proved that the predicted degradation level 

of a component is not correct, then based on Bayes’ rule and Normal-Normal model 

(Jacobs, 2008), the observed degradation level can be used to update the prior 

degradation model. 
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Figure 5-4 Framework of a prognostic model with Bayesian updating for offshore wind farms 
(Asgarpour & Sørensen, 2017) 

In In Paper IV (Asgarpour & Sørensen, 2017) this prognostic model is discussed in 

detail. Furthermore, in section 5.4.2 of this chapter, a case study for scheduling and 

prioritization of predictive WOs is presented. 

5.4. CASE STUDY 

Similar to the case study presented in Chapter 4 for long-term O&M planning, in this 

section two case studies for short-term O&M planning of offshore wind farms based 

on the defined 800 MW reference offshore wind farm are presented. 

5.4.1. CORRECTIVE PLANNING 

In this case study, scheduling and prioritization of outstanding corrective WOs based 

on updated resource demand is presented. First, updated resource demand for the 

reference offshore wind farm is determined and then, based on the framework shown 

in Figure 5-1 hypothetical outstanding corrective WOs of the reference offshore wind 

farm are scheduled and prioritized in a way to lead into minimum operational costs. 

5.4.1.1 Updated Resource Demand 

In the followings, it is assumed the reference offshore wind farm defined in Chapter 

4 is in operation for a bit more than five years and maintenance history for the 

following wind turbine components shown in Table 5-1 is available. 
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Main System Components RDS-PP Code 

Wind Turbine  MD 

 Rotor System MDA 

 Drivetrain System MDK 

 Yaw System MDL 

 Hydraulic System MDX 

 Control System MDY 

 Generation System MKA 

 Converter System MSE 

 Transformer System MST 

 Cooling System MUR 

 Nacelle System MUD 

 Tower System UMD 

 

Table 5-1 List of reference wind farm components with available O&M history 

Based on the available historical maintenance data and updating resource demand 

model shown in  Figure 5-2, the resource demand for corrective maintenance of each 

wind turbine component shown in Table 5-1 can be estimated.  

In Table 5-2, the calculated resource demand matrix for corrective WOs of each wind 

turbine component based on averaged maintenance history data from 1st of January 

2020 until 31st of March 2025 is shown. As seen in Table 5-2, the resource demand 

estimated from O&M history could be different from assumptions made for the 

baseline O&M planning. 
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Component Duration (h) Technicians Spares (K€) 

MDA 14 3 30 

MDK 30 3 100 

MDL 18 3 40 

MDX 6 2 5 

MDY 8 2 5 

MKA 24 3 60 

MSE 10 2 8 

MST 18 3 30 

MUR 12 2 4 

MUD 14 3 8 

UMD 20 3 10 

 

Table 5-2 Updated resource demand for corrective WOs of wind turbine components based 
on the maintenance history 

In Table 5-2, only resource demand of main component systems for only one 

hypothetical failure mode is shown. Similarly, resource demand of all component 

levels for all their failure modes can be estimated. 

Moreover, it is assumed that during execution of WOs during the first five operational 

years of reference offshore wind farm the SOV could access the wind turbines only 

when the wind speed has been less than 18 m/s and the significant wave height has 

been less than 1.9 meters. Additionally, it is assumed that the required spare for 

corrective WOs (based on spares usage history) are available in the spare part 

inventory. 

Now that required O&M resources for corrective WOs based on historical 

maintenance data are known, the outstanding corrective WOs can be scheduled and 

their O&M costs can be estimated. In this case study, it is assumed that by 31st of 

March 2025, there are six wind turbines down due to unplanned corrective failures. 

In Figure 5-5, the status of the reference offshore wind farm at this time is shown 
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(green wind turbines are in operation and red wind turbines are down due to unplanned 

failures). 

 

Figure 5-5 Status of wind turbines of the reference offshore wind farm by 31st of March 2025 

If none of the wind turbine failures shown in Figure 5-5 can be resolved remotely, six 

outstanding corrective WOs should exist in the CMMS of the maintenance hub. In 

Figure 5-6, these six hypothetical outstanding WOs are shown. 

 

Figure 5-6 Outstanding corrective WOs in the CMMS of the reference offshore wind farm by 
31st of March 2025 
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As seen in Figure 5-6, a few hours after the wind turbine alarm, a WO notification is 

created in the CMMS. The response time of alarm handling varies from only 1 hour 

to 9 hours. Each WO is identified by a unique ID and is associated with a unique wind 

turbine and component. 

5.4.1.2 WO Scheduling 

In order to schedule the WOs given in Figure 5-6, first their required O&M resources 

should be known. In Figure 5-7 the updated resource demand of these six WOs based 

on the updated resource demand given in Table 5-2 is shown. 

 

Figure 5-7 Updated resource demand of outstanding corrective WOs 

As discussed in 3.1, besides resource demand of WOs, short-term weather and market 

forecasts are required for scheduling of outstanding WOs. The weather forecast is 

used to calculate the SOV accessibility and potential energy production of wind 

turbines at each time step. The market forecast is used to calculate lost revenue 

associated with potential energy production. 

In this case study, the historical weather data for the same time period is used as short-

term weather forecast and a Weibull distribution with scale of 57.14 and shape of 1.5 

as illustrated in Figure 5-8 is used as daily market forecast. 
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Figure 5-8 Market electricity price during 25 years of reference wind farm lifetime modelled 
as a Weibull PDF 

In Figure 5-8 it is assumed that the daily market electricity price is never negative, 

which is not always true. The shape factor of this Weibull distribution is assumed to 

be 1.5 and its scale factor is found in a way that the average market electricity price 

be equal to the LCoE of reference offshore wind farm calculated in 4.3.2.5. Therefore, 

based on Equation (1.7) the scale factor of this Weibull distribution is calculated as: 

𝛽 =
𝜇

𝛤 (1 +
1

𝛼
)⁄ = 63.3

𝛤 (1 +
1

1.5
)⁄ = 57.14 €/𝑀𝑊ℎ  

(5.1) 

Now that outstanding corrective WOs, their resource demand and weather and market 

forecasts are known, the start date, the end date, lost time and lost revenue associated 

with each WO can be calculated. This can be done using the scheduling model 

discussed in Chapter 3. 

The key of optimal WO scheduling is the right prioritization of outstanding WOs. As 

the baseline, it is assumed that the WOs are executed in their notification date order. 

In Figure 5-9, the scheduling results of corrective outstanding WOs of this case study 

executed based on their notification date order is shown. 
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Figure 5-9 Scheduling of outstanding corrective WOs by their notification date order 

As shown in Figure 5-9, the first WO has started on 2025-04-01 07:30 and the last 

WO is finalized at 2025-04-03 12:30. The total lost time and revenue associated with 

this scheduling can be calculated as: 

𝑇𝐿𝑜𝑠𝑠 = ∑ 𝑇𝐿𝑜𝑠𝑠,𝑖
𝑖=6
𝑖=1 = 1674.5 ℎ  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐿𝑜𝑠𝑠 = ∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐿𝑜𝑠𝑠,𝑖
𝑖=6
𝑖=1 = 𝐾€ 266  

(5.2) 

Moreover, in Figure 5-10 the availability or usage history of the access vessel and 

technicians during the execution of these WOs are visualized. 

 

Figure 5-10 Usage history of the access vessel and technicians for execution of outstanding 
corrective WOs 

In Figure 5-10, it can be seen that on the 2nd of April more than 20 technicians are 

required to finalize the outstanding WOs. The maintenance hub can request extra 

technicians for that day or rerun the scheduler with a limit on total available 

technicians. 
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5.4.1.3 WO Prioritization 

In the previous section it was seen that execution of the outstanding WOs shown in 

Figure 5-7 based on their notification date order results into K€ 266 of lost revenue. 

Based on the prioritization model discussed in Chapter 3, the optimal prioritization of 

WOs can be found and total revenue loss due to WOs can be reduced. The optimal 

prioritization within this framework is based on the minimum lost revenue for 

execution of given WOs. In Figure 5-11, an overview of associate lost revenue of 

WOs given in Figure 5-7 based on all possible WO prioritization scenarios is shown. 

 

Figure 5-11 Lost revenue of different prioritization scenarios for WOs shown in Figure 5-7 

In Figure 5-11 it can be seen that WOs order of ID(1, 6, 3, 4, 5, 2) and ID(4, 3, 1, 6, 

5, 2) result into K€ 256.3, which is the minimum total lost revenue. Furthermore, it 

can be seen that associated lost revenue according to the baseline execution order of 

WOs, ID(1, 2, 3, 4, 5, 6), is very close to the maximum K€ 266.11 of lost revenue. In 

this example, by choosing the optimal prioritization, K€ 12.5 of total lost revenue can 

be saved. Similar lost revenue reductions can be achieved in every working shift if 

offshore wind corrective WOs are executed in their optimal order. 

In addition to scheduling and prioritization of corrective WOs, a similar approach can 

be used for scheduling and prioritization of all outstanding WOs such as scheduled, 

condition based or predictive ones. In following case study, planning and 

prioritization of condition based and predictive WOs is presented. 
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5.4.2. PREVENTIVE PLANNING 

During the lifetime of an offshore wind farm several preventive WOs can be created 

to minimize the associated costs of unplanned corrective failures. In section 5.2 of this 

chapter it was shown that based on a holistic diagnostic model, condition based WOs 

can be created efficiently once a component fault is detected. Similarly, in section 5.3 

of this chapter it was shown that based on a hybrid prognostic model, predictive WOs 

can be created efficiently to avoid future faults or reduced the degradation of critical 

components. Once the condition based and predictive WOs are created, they should 

be optimally scheduled and prioritized to minimize their associated maintenance 

costs.  

In this section, a case study based on the reference offshore wind farm for scheduling 

and prioritization of condition based and predictive WOs is presented. As instance in 

Table 5-3, two assumed condition based WOs and one assumed predictive WOs for 

wind turbine drivetrain and generator of three wind turbines of the reference offshore 

wind farm are shown. 

Wind Turbine Component Type 
Estimated Time to 

Failure (days) 

WG054 MDK Condition based 5 

WG072 MDK Condition based 45 

WG039 MKA Predictive 120 

 

Table 5-3 Assumed detected faults for the reference offshore wind farm 

As seen in Table 5-3, next to the detected or predicted faults of components an 

estimation of the remaining time to their failure is given. The remaining time to failure 

for condition based WOs can be estimated by combining experts’ judgement on 

inspection outcome with diagnostic model results. The estimated remaining time to 

failure of predictive WOs can be taken directly from their RUL models. 

The scheduling of these condition based and predictive WOs is demonstrated through 

a case study based on the reference offshore wind farm. As shown in Figure 5-12, it 

is assumed that three wind turbines highlighted in red are down due to unplanned 

failures and three other turbines highlighted in amber are in operation with detected 

or predicted faults (based on WOs in Table 5-3). 
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Figure 5-12 Status of wind turbines of the reference offshore wind farm by 1st of April 2025 

It is assumed that all three condition based and predictive WOs have been added to 

the CMMS of the offshore wind farm by 1st of April 2025. In Figure 5-13 an overview 

of all outstanding WOs of the reference offshore wind farm by 1st of April 2025 is 

shown. 

 

Figure 5-13 Outstanding corrective, condition based and predictive WOs of the reference 
offshore wind farm by 1st of April 2025 

Similar to the case study presented in 5.4.1, the resources of corrective WOs are 

determined by using the updated resource demand. For both condition based and 

predictive WOs it is assumed that two technicians for 18 hours and K€ 20 worth of 

spares are required to finalize a WO. As seen in Figure 5-13, for condition based and 

predictive WOs target end date and target lost revenue values as decision rules of the 
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scheduling and prioritization models are also defined. The target end date is defined 

based on the estimated time to failure values of Table 5-3. Target lost revenue is the 

maximum allowed lost revenue to make sure that execution costs of condition based 

and predictive WOs don’t exceed their benefits.  

Since the duration of all condition based and predictive WOs is assumed to be 18 

hours, the target lost revenue is only dependent on stochastic daily electricity price 

shown in Figure 5-8. Therefore, the condition based and predictive WOs only should 

be executed when market electricity price is negative or very low to minimize their 

associated lost revenue. In this case study, the maximum lost revenue caused by 

condition based and predictive WOs is assumed to be K€ 5. The end date target can 

also be defined for corrective WOs with high priorities to make sure they are finalized 

before a certain date. 

5.4.2.1 WO Scheduling 

Similar to previous case study, as the baseline it is assumed that the WOs are executed 

in their notification date order. In Figure 5-14, the scheduling results of outstanding 

WOs executed based on their notification date order is shown. 

 

Figure 5-14 Scheduling of outstanding corrective, condition based and predictive WOs by 
their notification date order 

As shown in Figure 5-14, it can be seen that both target end date and target lost 

revenue of condition based and predictive WOs are met. The total lost time and 

revenue associated with this order of WO execution can be calculated as: 

𝑇𝐿𝑜𝑠𝑠 = ∑ 𝑇𝐿𝑜𝑠𝑠,𝑖
𝑖=6
𝑖=1 = 1129.5 ℎ  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐿𝑜𝑠𝑠 = ∑ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝐿𝑜𝑠𝑠,𝑖
𝑖=6
𝑖=1 = 𝐾€ 177.96  

(5.3) 

Moreover, in Figure 5-15 the availability or usage history of the access vessel and 

technicians during execution of these WOs are visualized. 
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Figure 5-15 Usage history of the access vessel and technicians for execution of outstanding 
corrective, condition based and predictive WOs 

In Figure 5-15, it can be seen that on 1st of April more than 20 technicians are required 

to finalize the outstanding WOs. The maintenance hub can request extra technicians 

for that day or rerun the scheduler with a limit on total available technicians. 

5.4.2.2 WO Prioritization 

Similar to prioritization of corrective WOs in the previous case study, the corrective, 

condition based and predictive WOs shown in this case study can be prioritized to 

make sure that their end date and lost revenue targets are met and at the same time, 

the total lost revenue associated with execution of these WOs is kept to its minimum. 

In the previous section it was seen that execution of the outstanding WOs shown in 

Figure 5-13 based on their notification date order will result into K€ 177.96 of revenue 

loss.  

Based on the prioritization model discussed in section 3.2, the optimal prioritization 

of WOs can be found and total revenue loss due to WOs can be reduced while both 

end date and lost revenue targets are met. In Figure 5-16, an overview of associated 

lost revenue of these six WOs based on all possible WO prioritization scenarios is 

shown. 
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Figure 5-16 Lost revenue of different prioritization scenarios for WOs shown in Figure 5-13 

In Figure 5-16 it can be seen that six prioritization scenarios of WOs such as ID(2, 3, 

4, 1, 5, 6) result into the minimum total lost revenue K€ 173.76. It can be seen that 

original order of WOs ID(1, 2, 3, 4, 5, 6) is close to the minimum calculated lost 

revenue. Similarly, twelve prioritization of scenarios such as ID(4, 5, 6, 2, 1, 3) result 

into the maximum lost revenue K€ 191.42 since corrective WOs are delayed by 

condition based and predictive WOs. 

In this example, prioritization of WOs can save K€ 17.66 of total lost revenue. Similar 

lost revenue reductions can be achieved in every working shift if the short-term O&M 

planning model shown in Figure 5-1 is used for optimal scheduling and optimization 

of all outstanding offshore wind WOs. 

 

 





127 

CHAPTER 6. DISCUSSION 

In this thesis, rational and applied solutions for reducing direct and indirect O&M 

costs of an offshore wind farm based on risk and reliability models are defined and 

within several illustrative case studies are demonstrated. In this chapter, first 

conclusions on the thesis’ approach to achieve its objective are given and then, several 

recommendations for future studies on this subject are proposed. 

6.1. CONCLUSIONS 

In this thesis, generic risk and reliability models are defined which can be used for 

both short- and long-term O&M planning of offshore wind farms. In Chapter 2, 

stochastic failure, degradation and remaining useful lifetime reliability models for 

offshore wind components are defined. The uncertainty of defined reliability models 

is taken into account by distribution of each variable. Furthermore, the Bayesian 

updating of prior failure and degradation reliability models based on all available 

information is demonstrated.  

In Chapter 3, based on all available information and decision criteria, applied risk 

based cost, scheduling and prioritization models are defined. In the defined risk based 

O&M cost model, the failure model defined in Chapter 2 is used as reliability of wind 

farm components. In the scheduling model, a method for scheduling and cost 

estimation of each maintenance work order is proposed. Furthermore, in the 

prioritization model, a solution for cost reduction of implementation of outstanding 

maintenance work orders is introduced. The developed risk based models in Chapter 

3 are interconnected, in which output of one model can be easily used as input into 

another model. 

In Chapter 4 and Chapter 5, the application of developed risk and reliability models 

for O&M cost reduction of offshore wind farms within long-term and short-term 

O&M planning frameworks is presented. In Chapter 4, a long-term O&M planning 

framework is defined, in which lifetime O&M costs based on a given O&M strategy 

can be calculated. In operational years of an offshore wind farm, the long-term O&M 

planning framework can be used to optimize the shared O&M resources and hence, 

reduce lifetime direct and indirect O&M costs. Furthermore, the long-term O&M 

planning framework can be used to make informed decisions during end of warranty 

and end of design lifetime phases, which can result into significant O&M cost 

reductions. In the followings of Chapter 4, the discussed long-term O&M planning 

framework is used to demonstrate lifetime O&M costs of a reference 800 MW 

offshore wind farm. Furthermore, in Paper I (Asgarpour & Sørensen, 2016) and Paper 

II (Asgarpour & Sørensen, 2015) of this thesis and (Asgarpour & Pieterman, 2014), 

more examples on O&M cost reduction by long-term O&M planning of offshore wind 

farms are given. 
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In Chapter 5, a short-term O&M planning framework for optimal scheduling and 

prioritization of maintenance work order is introduced. Within this framework, the 

updated resource demand of corrective maintenance work orders can be identified. In 

a case study for scheduling and prioritization of outstanding maintenance work orders 

based on their updated resource demand, it was demonstrated that indirect O&M costs 

of only six corrective work orders of the reference offshore wind farm can be reduced 

by K€ 12.5. Similar cost reductions within each working shift of offshore wind farms 

can be achieved. 

Furthermore, in Chapter 5, based on Paper III (Asgarpour & Sørensen, 2017) a 

diagnostic model and based on Paper IV (Asgarpour & Sørensen, 2017) a prognostic 

model for fault detection, degradation monitoring and fault prediction of offshore 

wind components are introduced. The condition based and predictive maintenance 

work orders created by discussed diagnostic and prognostic models, can avoid future 

corrective failures and therefore, reduce O&M costs. Moreover, within a case study 

for the reference offshore wind farm it was shown that using the proposed short-term 

O&M planning framework, the associated costs of condition based and predictive 

maintenance work orders can be reduced to their minimum. Within this case study it 

was shown that indirect O&M costs of only six corrective, condition based and 

predicative maintenance work orders can be redubbed by K€ 17.66 if the scheduling 

and prioritization model for their short-term planning is used. Similar cost reductions 

can be achieved in every working shift of an offshore wind farm if all outstanding 

maintenance work orders are scheduled and prioritized based on the discussed short-

term O&M planning framework. 

In this thesis, it was shown that direct and indirect O&M costs of offshore wind farms 

can be reduced to their minimum only if by using a risk and reliability based O&M 

planning model, optimal long-term and short-term decisions are made. The discussed 

risk and reliability models in this thesis are generic enough to be used for both short-

term and long-term O&M planning models, can take into account all available 

information and are developed in a way to be easily implemented into any offshore 

wind asset management system.  

6.2. FUTURE WORK 

In future studies on this subject, the risk and reliability models developed in this thesis 

can be replaced with more accurate models. Instead of the exponential degradation 

reliability model defined in Chapter 2, a physical or data-driven degradation model 

can be used. Relevant physical models for degradation modelling of wind farm 

components are Paris’ law for crack growth development (applied typically for 

degradation modelling of wind turbine blades), S-N curves and the Palmgren-Miner’s 

rule for fatigue assessment (applied typically for degradation modelling of 

foundations or drivetrain mechanical components) and fracture mechanics models. 

Furthermore, for structural components, instead of classical reliability models 
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discussed here, more accurate probabilistic reliability models based on their limit state 

equations can be formulated. 

The risk based prioritization model in Chapter 3 can be optimized to reduce the 

processing time once many (e.g. more than six) outstanding work orders should be 

prioritized in one working shift of an offshore wind farm. 

The diagnostic model defined in Chapter 5 can be further developed by introducing 

more accurate diagnostic agents for each failure mode of each wind farm component. 

Similarly, the prognostic model defined in Chapter 5 can be based on a more accurate 

physical or data-driven degradation model. 

Last but not least, the developed short-term and long-term O&M planning models in 

this thesis can be incorporated into a pre-posterior risk based decision model, in which 

O&M planning is updated once new information is available and optimal O&M 

decisions based on unknown outcome of inspection and monitoring are made to 

maximize the total benefit. As instance, in Figure 6-1 a framework for risk based 

O&M planning of offshore wind turbines based on a pre-posterior decision model is 

shown (Sørensen, 2009).  

 

Figure 6-1 Pre-posterior decision tree for risk based O&M planning (Sørensen, 2009) 

In Figure 6-1 it can be seen that first, during the development phase of a new offshore 

wind farm (or during the generation phase of existing offshore wind farms), an initial 

optimal decision (z) on inspection, service and monitoring plan should be made. Then, 

during the operational years of the wind farm, at each time step, an updated decision 

(e) on times and types of inspection, service and monitoring actions for the rest of the 

lifetime should be made, while the unknown outcome of the next inspection and 

monitoring (S) should be used in a decision model, d(S), to make optimal operation 

and maintenance decisions. Examples of the decision model d(S) could be “to do a 



RISK AND RELIABILITY BASED O&M PLANNING OF OFFSHORE WIND FARMS 

130
 

maintenance if damage level higher than a certain threshold is observed” or “to stop 

the wind turbine if large vibrations are measured”. It should be noted that the decisions 

on future inspection, service and monitoring plans (e) should be updated once new 

information is available. The total benefit (W) of the model is the total benefit gained 

minus total costs in the remaining part of the lifetime after the time of the decision. 

In (J. S. Nielsen & Sørensen, 2014) an overview of several methods for risk based 

O&M planning of wind turbines is given. Besides the decision tree and crude Monte 

Carlo simulation techniques, in (J. S. Nielsen & Sørensen, 2014) the application of 

Bayesian Network (BN) and Markov Chain Monte Carlo (MCMC) simulation for risk 

based O&M planning with stationary strategies and application of LImited Memory 

Influence Diagram (LIMID) and Observable Markov Decision Process (OMDP) for 

risk based O&M planning with time-variant strategies is discussed in detail. 

As the final note, in future studies on this topic it should be considered that an O&M 

planning model brings no added value to an offshore wind farm if it cannot be easily 

implemented into the existing infrastructure of offshore wind farms, no matter how 

accurate that O&M model is. 
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Appendix A. Paper I 

Asgarpour, M., & Sørensen, J. D. (2016). O&M Modeling of Offshore Wind Farms – 

State of the Art and Future Developments. In Reliability and Maintainability 

Symposium (RAMS). Tucson: IEEE. https://doi.org/10.1109/RAMS.2016.7448057. 

Abstract 
In this paper the state of the art in O&M models for O&M cost estimation of offshore 

wind farms is discussed and then, a case study for O&M cost estimation of an 800 

MW reference offshore wind farm is given. Moreover, a framework for an ideal O&M 

strategy optimizer to achieve the maximum possible O&M costs reduction during 

operational years of an offshore wind farm is described and recommendations are 

given. 
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Appendix B. Paper II 

Asgarpour, M., & Sørensen, J. D. (2015). State of the Art in Operation and 

Maintenance Planning of Offshore Wind Farms. In European Safety & Reliability 

Conference (ESREL) (pp. 1119–1125). London. https://doi.org/10.1201/b17399-157. 

Abstract 
Operation and Maintenance (O&M) costs of offshore wind farms are large 

contributors to the cost of energy. During last decades, methods have been developed 

for assessing the corrective maintenance costs, and many studies have been published 

for planning of preventive maintenance, but yet maintenance is not planned using 

advanced methods by taking all available information into account in a consistent 

manner. In this paper first a short literature review in O&M models for cost calculation 

of corrective maintenance and planning of preventive maintenance is given. 

Furthermore, an O&M study for a reference offshore wind farm is presented to 

illustrate the average costs and downtime for a typical offshore wind farm and to 

justify the necessity and potential of further development of current O&M models. At 

the end, a discussion on optimal O&M planning of offshore wind farms is given. 
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Appendix C. Paper III 

Asgarpour, M., & Sørensen, J. D. (2017a). Bayesian based Diagnostic Model for 

Condition based Maintenance of Offshore Wind Farms. Energies, (under review). 

Abstract 
The operation and maintenance costs of offshore wind farms can be significantly 

reduced if existing corrective actions are performed as efficient as possible and if 

future corrective actions are avoided by performing sufficient preventive actions. In 

this paper a holistic multi-agent diagnostic model for fault detection and condition 

based maintenance of offshore wind components is presented. The diagnostic model 

presented is based on a probabilistic confidence matrix, which based on Bayes’ rule 

can be updated once observations on the state of components are available. The 

presented diagnostic model defined in this paper is further explained within a case 

study for three wind turbine drivetrain components and based on information on 

vibrations, temperature and oil particles as diagnostic agents. 

 



RISK AND RELIABILITY BASED O&M PLANNING OF OFFSHORE WIND FARMS 

140
 

Appendix D. Paper IV 

Asgarpour, M., & Sørensen, J. D. (2017b). Bayesian based Prognostic Model for 

Predictive Maintenance of Offshore Wind Farms. International Journal of Prognostics 

and Health Management (IJPHM), (under review). 

Abstract 
The operation and maintenance costs of offshore wind farms can be significantly 

reduced if existing corrective actions are performed as efficient as possible and if 

future corrective actions are avoided by performing sufficient preventive actions. In 

this paper a prognostic model for degradation monitoring, fault detection and 

predictive maintenance of offshore wind components is defined. The diagnostic model 

defined in this paper is based on degradation, remaining useful lifetime and hybrid 

inspection threshold models. The defined degradation model is based on an 

exponential distribution with stochastic scale factor modelled by normal distribution. 

Once based on an inspection outcome sufficient information on the actual degradation 

state of a component is available, the exponential parameters of the degradation model 

can be updated based on the Bayes’ rule and Normal-Normal model. The components 

of the diagnostic model defined in this paper are further explained within several 

illustrative examples. At the end, a discussion and several recommendations for future 

studies on this topics are given. 
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