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 An MPC-based current controlled for single phase grid connected inverters has been 

proposed. 

 The grid impedance variation and its effect on resonance of LCL filters has been discussed. 

 The results of the proposed controller have been compared with a classical PR controller. 

 The results showed that the proposed MPC method, in contrast with the PR controller, is 

robust  when grid impedance changes. 
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Robust MPC-based Current Controller against Grid 

Impedance Variation for Single-Phase Grid-Connected 

Inverters  

 

Abstract- Recently, LCL filters have been widely used in the output of single phase inverters. Since, the grid side 

inductor in these filters is in series with the grid impedance at the Point of Common Coupling (PCC), it may create 

new resonances. This phenomena may take the control loop toward instability. In this case, in order to have a reliable 

operation, the current controller should be insensitive to the grid impedance variation. In order to damp these 

resonances, researchers have presented some methods using active or passive damping. These methods added an extra 

loop to the control loop, an extra passive component in the filter or extra sensor in the control process. But in most of 

them, the complexity and the cost of controller have been increased. Therefore, presenting a simple control method 

without extra sensor, passive component or extra arrangement can be a promising approach. This paper presents an 

MPC-based current controller, which is simple and robust against the grid impedance variation and even the variation 

of the LCL filter parameters. In contrast to classical multi-loop controller like Proportional-Resonant (PR) controllers, 

the proposed control method does not need any parameter tuning. In the proposed controller, the switching plan and 

duty cycles are determined by a cost function and a switching table. Therefore, at the same time with any variation in 

grid impedance, the proposed controller changes the next switching state and duty cycle. Operating performance like 

look-up table, searching in all possible switching states to find the best state for the next switching period, makes the 

controller adaptive and robust against the variation of LCL filter parameters. In order to confirm the effectiveness of 

the proposed controller, simulations and experimental results of the proposed controller are compared with a classical 

PR controller. 

Keywords: Model Predictive Current Controller (MPCC), Grid-connected inverters, Grid impedance variation, 

Inductor-capacitor-inductor (LCL) filter, Proportional-Resonant (PR) controller. 

I. INTRODUCTION 

Recently, instead of the L filters, the LCL filters are widely used in the output of single phase grid-connected inverters. 

[1-2]. These filters have more advantages against the L type filters, they can attenuate higher-frequency harmonics 

and also make the inverter operate in both stand-alone and grid-connected condition. However, the resonance 

phenomena in these filters can create some instability concern [3-5]. Therefore, preventing the resonance phenomena 

in these filters has involved the researchers to work on it. In this case, some studies introduced some solutions. Authors 
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in [6] surveyed the impact of controller bandwidth on the filter resonance frequency. The results show the control 

frequency, as far as possible, should be lower than the resonance frequency of the filter. In the following, in [7-8], a 

trade-off between the control frequency and filter resonance frequency is considered to have an appropriate design for 

these filters. But, in spite of an appropriate design for the LCL filter, due to grid impedance variation in series with 

the grid side filter inductor, the resonance frequency can change during control process and this variation can goes the 

inverter control loop toward instability [9]. Therefore, In order to address this challenge, the controller should online 

damp the resonance frequency during the control process. In this case, some approaches have been presented. For 

example, in [10]-[12], notch filters are used before the modulation part, in order to filter the determined inverter 

voltage reference at the resonance frequency. In this method, by online estimating the grid impedance, the resonance 

frequency for the LCL filter is calculated and used for tuning the notch filter. In [13], authors proposed a robust H∞ 

controller to make robust the control loop against the grid impedance variation by adding an extra loop in the control 

loop. In this approach, controller exhibits high gains around the fundamental frequency, similar to the traditional 

proportional-resonant (PR) controller. In [14], a wide damping region for the LCL filter is proposed by adding a 

capacitor current feedback to the control loop. Although, all aforementioned control methods have robust and 

acceptable performance in suppression the resonance, but in these approaches, the controllers are forced to use more 

sensors or their performance are depend on processing some online condition for online-gain tuning in the control 

loop. Therefore, they made the controllers costly and complex. In this regard, a control system can be more attractive 

which no need to have an additional sensor or complex computing for control loop. Recently, due to progress in the 

industrial processors, researches on model predictive controller have been a hot field. Model predictive controllers 

have fast response, light computational and, easy implementation. These controllers are based on a cost function and 

can simultaneously track multi-object in control [15-16]. Therefore, the proposed controller in this paper is based on 

a model predictive controller (MPC) named model predictive current controller (MPCC). The proposed method does 

not require any parameter tuning and it is not sensitive to the grid impedance variation. In the proposed approach, the 

control scheme is based on a cost function and a switching table with some virtual vectors. Because of having a 

processing property like look-up table process, the proposed controller adaptively changes the switching plan and duty 

cycle in each switching period when the grid impedance changes. Simulation an experimental results will show the 

performance of proposed controller. As it is mentioned, in order to prove the performance of the proposed controller 

against the grid impedance variation, the simulation and experimental results are compared with a classical PR 

controller. 



 
The paper is organized as follow: first, the proposed method is introduced in section II; next, the robustness of the 

proposed controller is discussed in section III; then, simulation and experimental results of the proposed controller are 

compared with the classical PR controller in section IV; and finally, the conclusion part is discussed in section VI.    

II. THE PROPOSED ROBUST MODEL PREDICTIVE CONTROL  

A. Principle of MPCC 

Model predictive control design and implementation consist of the following three steps: 

 Using a model to predict the behavior of control variables for the next step time. 

 Determining a cost function includes control objectives and expected behavior of the system. 

 Extract the appropriate command to minimize the cost function value. 

B. Modeling of the power stage 

Block diagram of the proposed MPCC method is given in Fig. 1. 
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Fig. 1. Proposed MPCC control block diagram for single phase inverter. 

 

 

 

 

 



 
 

In order to track clearly the equations in the paper, the parameters have been named and listed as Table. I. 

TABLE I 

Parameter definition 

𝐿𝑓𝑖 Inverter side inductor 

𝐿𝑓𝑔 Grid side inductor 

𝐶 LCL capacitor 

𝑉𝑔(𝑡) Grid voltage 

𝑉𝑖𝑛𝑣(𝑡) Inverter output voltage  

𝑉𝑑𝑐(𝑡) Dc-link voltage 

𝑔 Cost function 

ig
∗[k + 1] Current reference (for the next switching period) 

ig[k + 1] Predicted current (for the next switching period) 

𝑉𝑔_𝑎𝑣[𝑘] The average of grid voltage over one sampling period 

𝑉𝑔_𝑎𝑣[𝑘 + 1] The average of grid voltage over one sampling period (for the 

next switching period) 

𝑉𝑔𝛼_𝑎𝑣[𝑘 + 1] The average of grid voltage over one sampling period (for the 

next switching period in α frame) 

𝑉𝑔𝛽_𝑎𝑣[𝑘 + 1] The average of grid voltage over one sampling period (for the 

switching period in β frame) 

𝑉𝑖𝑛𝑣_𝑎𝑣[𝑘] 𝑜𝑟 𝑉𝑖𝑛𝑣[𝑘]∗ The average of inverter voltage selected by cost function as 

inverter voltage reference 

(𝑆𝑎,𝑆𝑏) Switching states  

𝑇𝑠 Switching time 

𝑇𝑑 Duty cycle time 

𝑇0 Zero cycle time 

𝑛 The number of vectors 

 

 

1) The proposed MPCC controller 

In the proposed controller, the grid current reference for the next sample will be determined and the predicted current 

is calculated from the system model. Finally, the grid current is controlled by a cost function as  

          *[k 1] [k 1]g gg i i                       (1) 

where 𝑖𝑔
∗[𝑘 + 1] is the next sample of the grid current reference and 𝑖𝑔[𝑘 + 1] is calculated and predicted by the 

system model, which is presented in the next sections.   



 
2)     Calculation of the grid current reference (𝑖𝑔

∗[𝑘 + 1]) 

The current reference to achieve P∗and Q∗ is determined from (2).  
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         (2) 

where 𝑉𝑔𝛼_𝑎𝑣[𝑘 + 1]  and 𝑉𝑔𝛽_𝑎𝑣[𝑘 + 1] are the average of orthogonal components for the grid voltage, which are 

calculated by (15) and (16). 

3) Calculation of the estimated current (𝑖𝑔[𝑘 + 1]) 

In order to calculate ig[k + 1] , the inverter can be modeled by the following. 

          
(t)

(t) L (t)L
inv fi c

di
V V

dt
                               (3) 

where   

                                                   
(t)

(t) (t) L
g

c g fg

di
V V

dt
                                   (4) 

Substituting (4) in (3) 

                                              
(t)(t)

(t) (t) L L
gL

inv g fi fg

didi
V V

dt dt
                  (5) 

Assuming that the inverter works with a fixed frequency, the switching time is constant, 𝑇𝑠. Rewrite (5) in discrete-

time shape and employing the Euler equation  

                               
_av _

[k 1] [k][k 1] [k]
[k] [k] L L

g gL L
inv g av fi fg

S S

I II I
V V

T T

  
            (6) 

According to the dynamic approximation of the LCL filter in [17], the LCL filter acts like an L filter when the LCL 

filter is properly designed. In this case, the resonance frequency of the filter is higher than controller bandwidth. 

Therefore, by approximation of 𝐼𝑔 [𝑘] ≌ 𝐼𝐿 [𝑘] and 𝐼𝑔 [𝑘 + 1] ≌ 𝐼𝐿[𝑘 + 1] the predicted current can be obtained as                                                                                     

              _ _[k 1] [k] [k] [k]
(L L )

S
g inv av g av g

fi fg

T
i V V i   


             (7) 

where 𝑉𝑖𝑛𝑣_𝑎𝑣[𝑘], and 𝑉𝑔_𝑎𝑣[𝑘] are the inverter output voltage and the grid voltage, the average amount over one 

sampling period. Also, 𝐼𝐿 [𝑘] and 𝐼𝑔 [𝑘] are the inverter side and the grid side currents at the sampling point of [𝑘].  



 
By assuming the variation of the grid voltage over the switching period is linear [18], the variation of the grid voltage 

over the switching period of [𝑘, 𝑘 + 1] assume to be equal to the variation over the switching period of [𝑘 − 1, 𝑘] as 

(8). 

                    [k 1] [k] [k] [k 1]g g g gV V V V                      (8) 

Therefore, the next sample of the grid voltage can be calculated as 

                                                                    [k 1] 2 [k] [k 1]g g gV V V                            (9) 

by helping a simple linear extrapolation as  

                              
_

[k 1] [k]
[k]

2

g g

g av

V V
V

 
                          (10) 

and substituting (9) in (10), the average of the grid voltage over the sampling point of [𝑘] can be calculated as (11). 

                   
_

3 1
[k] [k] [k 1]

2 2
g av g gV V V                        (11) 

The same calculation have been done for calculating 𝑉𝑔_𝑎𝑣[𝑘 + 1]. In this case, the variation of the grid voltage over 

the switching period of [𝑘 + 1, 𝑘 + 2] assume to be equal to the variation over the switching period of [𝑘, 𝑘 + 1].                  

                   [k 2] [k 1] [k 1] [k]g g g gV V V V                     (12) 
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Therefore, (14) in αβ frame can be written as   

                              
_

5 3
[k 1] [k] [k 1]

2 2
g av g gV V V                       (15) 

                              
_

5 3
[k 1] [k] [k 1]

2 2
g av g gV V V                      (16) 

where 𝑉𝑔𝛼[𝑘]  and 𝑉𝑔𝛽[𝑘] are the orthogonal components of the grid voltage calculated by an Orthogonal Digital 

Signal Generator (ODSG) algorithm presented in [19].    



 
C. Switching plan in the proposed MPCC  

 Switching space vector in a single phase inverter can be defined as  

                                     (S aS )a bS                                            (17) 

 where 𝑆𝑎 and 𝑆𝑏  are switching states and are determined as 

                                         1 3
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where a=𝑒𝑗𝜋. Finally, the inverter output voltage is defined as equation (19).      

                                                                        
inv dcV SV                                           (19)    

1) Determining the inverter voltage reference in MPCC. 

The switching vectors in the proposed method are given in Fig. 2. The number of vectors in the proposed MPCC can 

be increased as far as THD reaches within standard zone. Vectors in MPCC are included four basic or real vectors and 

several virtual vectors. 
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Fig. 2. Voltage vectors generated by single phase inverter with virtual vectors. 

2) Determination of the inverter voltage reference (𝑉𝑖𝑛𝑣
∗) 

 The inverter voltage in each switching period can be calculated by 

                     
_ [k]in av dc

m
V V

n
                                    (20) 

where n is the number of vectors and m varies from 1 to n and implement in (20) to test all amount of 𝑉𝑖𝑛𝑣−av [𝑘] the 

in cost function. In this case, all values of 𝑉𝑖𝑛𝑣 in (20) will be placed in (7) and 𝑖𝑔[𝑘 + 1] is calculated.  

ReConverter al Vectors

Converter Virtual Vectors



 
Then, 𝑖𝑔[𝑘 + 1] is embedded in the cost function (1). Any amount of 𝑖𝑔[𝑘 + 1] minimizes the cost function, determines 

the inverter voltage reference (𝑉𝑖𝑛𝑣
∗). Finally, duty cycle time (𝑇𝑑) for the modulation part is calculated by (21).   

                
*

,or,T inv
d S d S

dc

V m
T T T

V n
                  (21) 

3) Modulation in MPCC 

After determination of 𝑉𝑖𝑛𝑣
∗ vector, this vector will be applied by switching table given in Table II. In this case, the 

selected vector by (20) will be applied during 𝑇𝑑 and then the remained time of switching time the zero vector should 

be applied, zero time (𝑇0).                            

where                                                                     
0 S dT T T                                 (22) 

One sampling period in the proposed MPCC is shown in Fig. 3. 

 

 

 

The proposed switching table for applying the vectors are listed in Table II.  

TABLE II 

 Switching table for applying vectors in the proposed MPCC 

 

Detected 

sectors 

 

Selected 

vector 

 

𝑇𝑠 

𝑇𝑑 
 

𝑇0 
 

Positive 𝑉3,𝑚 𝑉3 (1 0) 𝑉1 (0 0) 

Negative 𝑉4,𝑚 𝑉4 (0 1) 𝑉2 (1 1) 

 

Zero 
𝑉1 𝑉1 (0 0) 

𝑉2 𝑉2 (1 1) 

III. ROBUSTNESS OF THE PROPOSED METHOD  

The proposed control method is based on a switching table, where the algorithm searches the best amount of inverter 

voltage to track the current reference.  

[𝑘 − 1]𝑇 

𝑇𝑑 =
𝑚

𝑛
𝑇𝑠 𝑇0 = 𝑇𝑠 − 𝑇𝑑 

𝑇𝑠 
𝑘𝑇 

Fig. 3. Switching time in one sampling period. 
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Fig. 4. The crossing current of the line.  

 

As shown in Fig. 4, when the inductor between the inverter and the grid changes, the inverter should change the phase 

in the output voltage to compensates this variation effects in order to track the reference current.  Otherwise, the grid 

current shows the error and even instability. Therefore, the grid current can be written as 

                                            
 

 



_max _ max

sin( ) sin( )
inv v inv grid v grid

grid

L

V V
i

X
                             (23) 

where 𝑉𝑖𝑛𝑣_𝑚𝑎𝑥 sin (𝜑𝑉−𝑖𝑛𝑣) is the inverter output voltage, 𝑉𝑔𝑟𝑖𝑑_𝑚𝑎𝑥 sin (𝜑𝑉−𝑔𝑟𝑖𝑑) is the grid voltage and 𝑋𝐿 is the 

inductor impedance between the inverter and the grid. In the proposed control method, the algorithm searches to find 

the best amount for the inverter voltage to track the reference. Therefore, if the grid impedance varies, the selected 

inverter voltage average is varied to have a stable operation. In this case, the first part (
𝑇𝑠

𝐿𝑓𝑖+𝐿𝑓𝑔
) in (7) is fix when the 

inductor 𝐿𝑓𝑔 changes by grid impedance variations and the new amount of  𝐿𝑔𝑓 can’t update in 
𝑇𝑠

𝐿𝑓𝑖+𝐿𝑓𝑔
  . However, as 

the algorithm is based on switching table and cost function, this error will be compensated with another vector of the 

inverter voltage. In fact, the variation of 𝐿𝑓𝑔 cannot make an error for the controller. For example, when the 𝐿𝑔 changes, 

the measured current  𝑖𝑔[𝑘] is changed in (7) and the controller has to change the inverter output voltage (𝑉𝑖𝑛𝑣[𝑘]) in 

order to minimize the cost function as Fig. 5. Therefore, the robustness of proposed method is due to the cost function 

and the switching table nature.  
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Fig. 5. The principle of the predicted current equation. 

 

Fig. 6 shows the inverter voltage references 𝑉𝑖𝑛𝑣
∗ created by the proposed MPCC controller for different 𝐿𝑔. The grid 

impedance (𝐿𝑔) changes from 1 mH to 10 mH and the inverter voltage reference has been recorded. As it is shown, 

the proposed MPCC changes the phase of the inverter voltage reference to control the grid current when the grid 

impedance changes. This phase change is carried out by selecting the best vector in order to minimize the error of the 

current reference and the grid current based on the cost function. 

 
Fig. 6. The inverter voltage reference under different 𝑳𝒈. 

The control block diagram of the proposed MPCC is given in Fig. 7. 
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Fig. 7. The control block diagram of the proposed MPCC. 
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The control flowchart of the proposed controller is shown in Fig. 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. SIMULATION RESULTS 

The performance of the proposed control have been carried out in Matlab/Simulink using PLECS blocks. The 

parameters of the system for both simulations and experiments are listed in Table III. In order to evaluate the 

performance of the proposed controller, the results have been compared with a classical PR controller when the PR 

controller is designed in a proper condition, phase margin of 45 degrees. In this case, some case studies are conducted. 

TABLE III 

 Simulation and experimental parameters  

  Description               Value 

Grid Frequency                                               

Grid Voltage 

maximum Power 

DC-bus voltage 

Switching Frequency 

LCL-Filter capacitance 

Inverter Side  Inductance  

Grid Side  Inductance  

 

                    ω= 2  50 rad/s 

                     𝑉𝑔 = 230 V  

                     𝑃𝑛   = 1 kW 

                     𝑉𝑑𝑐 = 400 V 

                     𝐹𝑠𝑤 = 10 kHz 

                     C = 2.35µF 

                          Lfi  = 3.6 mH 

                          Lfg  = 708µH 
   

Fig. 8. The control flow chart of the proposed MPC.  
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A. Operating in Normal condition  

In this case study, in order to evaluate both controllers in normal condition (𝐿𝑔 = 1 𝑚𝐻), two steps in active and 

reactive power have been done and the results are shown in Fig. 9. As it seen in Fig. 9, the proposed controller like 

the PR controller precisely tracked the power references.  

  
Fig. 9. Grid voltage and current in injecting active and reactive power: (a) proposed MPCC, (b) PR controller. 

B. Operating condition in grid impedance variation  

Due to Table III, the amount of the grid side inductor is 1mH and due to the grid impedance is series with this inductor, 

the grid impedance (𝐿𝑔) is changed from 1 𝑚𝐻 to 5 𝑚𝐻. Fig. 10 shows the grid current for the grid impedance 

variation from 1 𝑚𝐻 to 5 𝑚𝐻. As shown in Fig. 10, when 𝐿𝑔 = 1 𝑚𝐻 (the intended amount for designing PR 

parameters) two controllers exactly track the current reference without any error. When the grid impedance increase, 

3 𝑚𝐻, 4 𝑚𝐻, and 5 𝑚𝐻, the PR controller has not an acceptable response and it is unstable for 5 𝑚𝐻, but the proposed 

MPCC remains stable without any oscillations against the grid impedance variations.   
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     Fig. 10. Grid current with variation of 𝑳𝒈 from 1 𝒎𝑯 to 5 𝒎𝑯: (a) proposed MPCC, (b) PR controller. 

 

C. Operating condition in filter parameter variation  

In order to more evaluate the robustness of the proposed controller the ratio of inverter side to grid side has been 

changed (both 𝐿𝑔𝑖 > 𝐿𝑔𝑓 and 𝐿𝑔𝑖 < 𝐿𝑔𝑓 ) and the injected current recorded as Fig. 11. As it is shown in Fig. 11, the 

injected current by the proposed controller is without any distortion and instability in all condition. 

 

     Fig. 11. Injected current by the proposed controller in different ratio of inverter side inductor and grid side inductor. 

D. Operating condition in tracking step reference 

In this case study, two controllers are forced to track a current reference when a step occurred in this reference. Fig. 

12 and Fig. 13 show the grid current for a step response reference operation from 5 A peak to 10 A peak for two 

conditions, 𝐿𝑔 = 1 𝑚𝐻 and 𝐿𝑔 = 2 𝑚𝐻. As it can be seen in Fig. 12, the proposed MPCC has a faster dynamic response 

and lower overshoot even for a normal condition compared with the PR controller. 
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Fig. 12. Step response reference and grid current with the step from 5 A to 10 A, in normal operation 𝑳𝒈 = 1 mH: (a) proposed MPCC, (b) PR 

controller. 

In Fig. 13, when the grid branch inductance is increased to 2 𝑚𝐻 (𝐿𝑔 = 2 𝑚𝐻), by adding a series inductor to the grid 

side filter inductor, the grid current oscillates for two cycles after the step instant, while the proposed MPCC does not 

show any distortion after the step instant. 

 

Fig. 13. Step response reference and grid current with the step from 5 A to 10 A in 𝑳𝒈  = 2 mH: (a) proposed MPCC, (b) PR controller. 

E. Short circuit operation 

In this case, a current reference 5 A is forced to track by both controllers and a short circuit occurs in the grid voltage 

during injection current process. Fig. 14 shows the performance of both controllers in this operation. As it can be seen 

from Fig. 14, in contrast to the PR controller, the proposed controller at the grid fault and the clean fault time and has 

a better performance without any oscillation. 

 
Fig. 14. The performance of both controllers in short circuit operation when 𝑳𝒈 is 1 𝒎𝑯, (a) Proposed MPCC, (b) PR Controller. 
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V. EXPERIMENTAL RESULTS 

The same case studies used for the simulation tests have also been implemented by the experimental setup. A single-

phase Danfoss inverter is connected to the grid through an LCL filter. The inverter is controlled by dSPACE 1007. 

DC link is supported by an adjustable DC/DC converter. The experimental configuration is shown in Fig. 15. Fig. 16 

shows the results for both controllers when the reference of the active and reactive power change from 1000 to 400 W 

and 0 to 600 Var. This case is done for 𝐿𝑔 = 1 𝑚𝐻. Fig. 17 shows the grid current against the grid impedance variations 

for two controllers. In this case, the grid impedance changes from 1 𝑚𝐻 to 3 𝑚𝐻 by adding a series inductor to the 

grid side filter inductor. As it is seen in Fig. 17, the PR controller is going to be unstable when the grid impedance is 

increased. On the other hand, the proposed controller is stable against the variation of grid impedance. Finally, Fig. 

18 shows the grid current when a step response occurs in the current reference and 𝐿𝑔 is 1 𝑚𝐻 for both controllers. 

As shown in Fig. 18, in contrast to the proposed controller, the PR controller creates a distortion when the step current 

is activated.   

 

Fig. 15. Experimental setup configuration.  
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Fig. 15. Grid voltage and current in PQ operation: (a) the proposed controller, (b) PR controller. 
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Fig. 16. Grid current in grid impedance variation: (top) PR controller, (bottom) the proposed controller, (a) 𝑳𝒈𝒓𝒊𝒅 = 0 𝒎𝑯, (b) 𝑳𝒈𝒓𝒊𝒅 = 1 𝒎𝑯 (c) 

𝑳𝒈𝒓𝒊𝒅 = 2 𝒎𝑯.   
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       Fig. 17. Grid current in step response operation with 𝑳𝒈𝒓𝒊𝒅 =  𝟐 𝒎 𝑯 : (a) the proposed controller, (b) PR controller. 

 



 

VI. CONCLUSION   

In this paper, an MPCC current controller presented, where it is simple and does not need any parameter tuning. In 

the proposed method, the final switching pulse is determined by a cost function. In order to increase the accuracy and 

adaptability of the proposed MPCC, some virtual vectors have been applied by a switching table. Against the multi-

loop controllers, which are sensitive to variation of the system parameters, the proposed MPCC controller is fully 

adaptive and acts based on the real time conditions of the system. Some case study have been done to prove the 

effectiveness of the proposed controller in different conditions. In this case, the results show: when the grid is in 

normal condition, without variation in grid impedance, the proposed controller has even more dynamic response and 

lower overshoot in tracking the step reference. When a fault occurred in the grid voltage during current injection, the 

injected current by the PR controller makes some distortion in fault time and clean fault time while the injected current 

by the proposed controller is without distortion. Also, when the grid impedance varies, in contrast the PR controller, 

the proposed controller remains stable. In future, due to the simplicity, robustness and high dynamic characteristic of 

MPC based controllers, these controllers can be a promising controller for grid-connected single-phase inverters with 

the LCL filter at the output like PV inverters. Therefore, these controllers can be engaged to control MPPT in DC/DC 

stage, DC link ripple reduction and inverter current control in a PV systems.  

 

References 

[1] Mohamed Y. Suppression of low- and high-frequency instabilities and grid-induced disturbances in distributed 

generation inverters. IEEE Trans Power Electron 2011;26(12):3790–3803.  

[2] Xingang S, Ramezani M, Sun Y, Won H. A novel direct-current vector control technique for single-phase inverter 

with L, LC and LCL filters. Electr Power Syst Res 2015;125:235-244. 

[3] Lindgren M, Svensson J. Control of a voltage-source converter connected to the grid through an LCL-filter-

application to active filtering. IEEE PESC 1998;1:229–235. 

[4] Park S, Chen C, Lai J, Moon S. Admittance compensation in current loop control for a grid-tie LCL fuel cell 

inverter. IEEE Trans Power Electron 2008;23(4):1716-1723. 

[5] Bierhoff  M, Fuchs F. Active damping for three-phase PWM rectifiers with high-order line-side filters. IEEE Trans 

Ind Electron 2009;56(2):371–379. 

[6] Dannehl J, Wessels C, Wilhelm  F. Limitations of voltage-oriented PI current control of grid-connected PWM 

rectifiers with LCL filters. IEEE Trans Ind Electron 2009;56(2):380 – 388. 

[7] Xu J, Xie S, Huang L, Ji L. Design of LCL-filter considering the control impact for grid-connected inverter with 

one current feedback only. IET Power Electron 2017;10(11):1324 – 1332. 

[8]  Liserre M, Blaabjerg F, Hansen S. Design and control of an LCL-filter-based three-phase active rectifier. IEEE 

Trans Ind Appl 2005;41(5):1281 – 1291. 



 
[9] Alemi P, Bae C, Lee D. Resonance suppression based on PR control for single-phase grid-connected inverters with 

LLCL filters. IEEE JESTPE 2016;4(2):459-467. 

[10] Alzola R, Liserre M, Blaabjerg F, Ordonez M, Kerekes T. A self-commissioning notch filter for active damping 

in a three-phase LCL -filter-based grid-tie converter. IEEE Trans Power Electron 2014;29(12):6754-6761. 

[11] Liserre M, Dell'Aquila A, Blaabjerg F. Genetic algorithm-based design of the active damping for an LCL-filter 

three-phase active rectifier. IEEE Trans Power Electron 2004;19(1):76-86. 

[12] Dannehl J, Liserre M, Fuchs F. Filter-based active damping of voltage source converters with LCL filter. IEEE 

Trans Ind Electron 2011;58(8):3623-3633. 

[13] Yang S, Peng Q, Qian Z. A robust control scheme for grid-connected voltage-source inverters. IEEE Trans Ind 

Electron 2011;58(1):202-212. 

[14] Li X, Wu X, Geng Y, Yuan X, Xia C, Zhang X. Wide damping region for LCL-type grid-connected inverter with 

an improved capacitor-current-feedback method. IEEE Trans Power Electron 2015;30(9):5247-5259. 

[15] Chai S, Wang L, Rogers E. Model predictive control of a permanent magnet synchronous motor with 

experimental validation. Control Eng Pract 2013;21 (11):1584–93. 

[16] Vesely V, Rosinova D, Foltin M. Robust model predictive control design with input constraints. ISA Trans 

2010;49:114–20. 

[17] Castello J, Garcia-Gil R, Garcera G, Figueres E. A adaptive robust predictive current control for three-phase grid-

connected inverters. IEEE Trans Ind Electron 2011;58(8):3537–3546. 

[18] Holmes D, Martin D. Implementation of a direct digital predictive current controller for single and three phase 

voltage source inverters. Ind Appl Conf 1996:906-913. 

[19] Choi J, Kim Y, Kim H. Digital PLL control for single-phase photovoltaic system. IEE Proc - Electr Power Appl 

2006;153(1):40-46. 

 

 

 

 


