

Aalborg Universitet

Integrating Tools

Co-simulation in UPPAAL Using FMI-FMU

Nyman, Ulrik; Jensen, Peter Gjøl; Larsen, Kim Guldstrand; Legay, Axel

Published in:
Proceedings - 2017 22nd International Conference on Engineering of Complex Computer Systems, ICECCS
2017

DOI (link to publication from Publisher):
10.1109/ICECCS.2017.33

Creative Commons License
Unspecified

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Nyman, U., Jensen, P. G., Larsen, K. G., & Legay, A. (2018). Integrating Tools: Co-simulation in UPPAAL Using
FMI-FMU. In Proceedings - 2017 22nd International Conference on Engineering of Complex Computer Systems,
ICECCS 2017 (pp. 11-19). IEEE. https://doi.org/10.1109/ICECCS.2017.33

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

https://doi.org/10.1109/ICECCS.2017.33
https://vbn.aau.dk/en/publications/0e60fee9-b7eb-4d1d-a485-790198282809
https://doi.org/10.1109/ICECCS.2017.33

Integrating Tools: Co-Simulation in UPPAAL using FMI-FMU
Ulrik Nyman, Peter Gjøl Jensen, Kim Guldstrand Larsen

Computer Science, Aalborg University, Denmark
{nyman,pgj,kgl}@cs.aau.dk

Axel Legay
INRIA, Rennes, France

Computer Science, Aalborg University, Denmark
legay@inria.fr

Abstract—While standalone tools for verification and modeling have
proven useful, their chosen formalism and description-language can at
times be restrictive. We demonstrate how to use UPPAAL SMC to analyze
controller systems consisting of Function Mockup Units (FMU) modeled
in other tools, such as Matlab and Modelica. Apart from supporting FMI-
FMU modules the newly added C interface can call any external function.
The only requirement for sound analysis is statelessness and determinism
of the external function. We demonstrate the expressive power by
implementing the FMI-FMU master algorithm as a timed automata,
interfacing with external, non-native and non-trivial Function Mockup
Units (FMU). We also model two components in UPPAAL SMC exporting
one of them as an FMU while keeping the other as a native component.
Furthermore we demonstrate the first simulation environment for the
Function Mockup Units, capable of checking bounded MITL properties.

I. INTRODUCTION

Model-checking tools often come with support for a specific for-
malism, imposing restrictions on the behavior of the modeled system.
Such formalisms serve the purpose of giving the system a semantics
such that the behaviour of the system carries a sound and consistent
meaning. In particular without a semantics, investigating the accuracy
or probabilistic behavior of a system is nonsensical. At the same time,
a variety of formalisms have emerged in different domains, each well
suited for a specific task (eg. digital, mechanical or thermodynamic
modeling), but incapable of co-simulating – that is, to obtain joint
results. To remedy this, the Function Mockup Interface-standard
(FMI) [16] was proposed to enable domain-specific modeling tools
to be used side by side when encapsulated in a Function Mockup
Unit (FMU). In particular, the FMI-standard defines a protocol for
how values can be communicated between FMUs by standardizing
the interface-description and giving a common C-api.

However, while the FMI standard only specifies how values can
be communicated, it purposely does not specify the details of how
they will be communicated, calling for the development of so-called
Master Algorithms (MA) for coordinating the interaction between
several FMUs.

As previously demonstrated [5], the MA has an impact on the
semantics of the overall system, and is thus of great importance
to the overall meaning of the measures obtained. We demonstrate
that our implementation of the MA will given enough simulations
eventually explore all possible executions. This ensures that we will
also discover cases where the ordering of events has a great impact
on the outcome.

We will be implementing our approach as an extension of the
statistical model checking tool UPPAAL SMC [13], thus ensuring
that we have a formally defined semantics. We show that meaningful
probabilistic measures can be obtained, and in particular that we can
statistically verify MITL (Metric Interval Temporal Logic) properties.
The work presented here extends beyond applications within the FMI-
standard – we propose and implement an extension of UPPAAL that
allows for calling arbitrary C-libraries during the statistical simula-
tion. This effectively opens up UPPAAL SMC to a great number
of applications – and we will argue that under statelessness of the

external library, that doing so is semantically sound. By statelessness,
we do not mean that the components cannot change their state, but
that all relevant state information should be communicated through
the FMI-FMU interface such that it is controlled by the MA. This
is also required in order to retain the semantics in future settings
such as classical model checking, as demonstrated in [9]. External
FMUs can contain stochastic behavior, but they should not contain
unresolved non-determinism, as such non-determinism would not
have a meaningful interpretation when simulating the system.

Notice that for FMUs we embrace the argument of Broman et.
al. [6] – that it is sane to expect that components only can give a
maximum delay and must accept all smaller delays.

A. Interleaving Semantics

While the work of Bogolomov et. al [5] work showcased UPPAAL

as an FMU alongside SpaceEx with Ptolemy as MA, it also exposed
inconsistencies in the semantics of timed automata when recomposed
via the MA as opposed to internally in UPPAAL. Let us recall
the example provided by Bogolomov et. al; consider the four TAs
presented in Figure 1. If the four TAs communicate in a pipeline
pattern s.t. A1 outputs to A2, A2 to A3 and A3 to A4. Given that all
TAs start in their initial location (marked by double-circle) and with
clock-value x1=x2=x3=x4=0 nothing will happen until a single unit
of time has elapsed (x1 == 1, x2 == 1, x3 == 1 and x4 == 1). After
exactly one time unit (enforced by the invariants x1 <= 1, x2 <= 1,
x3 <= 1 and x4 <= 1), all the automata are able to output – however,
as TAs synchronize on channels (a, b, c, d , output marked by ! and
input by ?), it becomes important in which order the automatas
synchronize. Notice here that even though all the synchronizations
happen at the same instance of time, it is important to track the
“happened before” relationship. Keeping this in mind, we can observe
that only a single deterministic trace of the system can occur given
the pipeline communication-pattern, namely that an a! always will
be observed followed by c!, implying that on all traces, eventually
the product-state A1.A && A2.AB && A3.C && A4.CD is reached.
However, one can easily verify using UPPAAL that this is not the
case. In fact, all possible permutations with at least one winner is
possible, as UPPAAL implements interleaving semantics – which most
definitions of NTA (Networks of Timed Automata) require.

We argue that such behavior is also important in real-life models,
for instance due to a too coarse granularity on the observation of time.
In particular in a probabilistic context, such under-approximation of
the behavior of the system leads to erroneous probability estimates.
While we do not address channel-based synchronization between
FMUs in this paper, we note that similar erroneous behavior can
be achieved using only integer-valued variables. For the specifics of
channel based synchronization between FMUs, we refer the reader
to [5].

Another known problem in modeling and simulation is that of
zero-crossing; namely that it is impossible in a simulation setting to
detect the exact time when a certain value crosses a zero threshold.

Fig. 1: Four UPPAAL timed automata exemplifying the different
semantics of different Master Algorithms. An intuitive explanation
of the syntax of UPPAAL timed automata can be found in Section
V-B.

As mentioned in [10] this is also a problem in the context of FMI-
FMU models. This is a problem that we are aware of, but that our
current solution does not try to address.

B. Contributions

We demonstrate the ease with which already existing system mod-
els from Modelica can be exported as FMUs and used for verifying
statistical properties of the model in UPPAAL SMC. In particular,
the ability to specify a MA within a sound semantical framework
facilitating probabilistic and temporal reasoning is a strength of
the methods proposed in this paper. These features are essential to
modeling real-world scenarios where behavior is inherently uncertain
and time-dependent – such scenarios include signal noise, human
interaction and general natural phenomena. As we base our approach
on top of a tool that already supports the notions of time and
probabilities, we automatically gain the analytical capabilities of
this tool. While we only demonstrate the Statistical Modelchecking
features of UPPAAL SMC in this paper, our proposed method of
embedding FMUs as timed automata also enables classical model-
checking, controller synthesis and controller learning on composed
models using the more complex features of UPPAAL, UPPAAL TIGA

and UPPAAL STRATEGO under some reasonable restrictions on the
FMUs.

The contributions of the paper can be summarized as follows:
• Implementation of direct call of FMI-FMU modules from inside

a statistical model checking tool that supports time and proba-
bilities.

• Discussion on different semantics for FMI-FMU implementa-
tions.

• Flexible modeling of the master algorithm as a timed automaton
template.

• Statistical model checking of bounded reachability of temporal
logics (MITL).

C. Related Work

FMI-FMU has its origin in the European research project MOD-
ELISAR. It was created specifically for integrating a wide variety of

modeling tools. Industry tools that support the FMI-FMU standard
include: MATLAB/Simulink, MapleSim and AUTOSAR Simulation
[16].

In the following we try to cover recent and relevant related work
that take a practical approach to co-simulating industrial systems.

Pazold et. al. [22] compare different approaches for simulating a
HVAC system for a complete building. They conclude that a weak
coupling using a co-simulation strategy using sub-models exported
as FMUs is a reasonable approach. A case-study by Pedersen et. al.
[23] describes how to integrate a special purpose maritime embedded
system into an FMI-FMU co-simulation setting at the company MAN
Diesel & Turbo.

We also find that it is relevant to look at related work that considers
the semantics of the complete co-simulation system and Master
Algorithm (MA).

In [18] Guermazi et al. provide a framework for co-simulating the
UML models specified in Papyrus (the open-source UML/SysML
modeler of the Eclipse foundation) in an FMI-FMU context. The
work is build on top of the formal semantics foundation of UML
(fUML [21])

In [6] Broman et al. argue for an number of sanity conditions
for a MA. In this work we deviate by 1. allowing the order of
FMI/FMU-definition determine the outcome of the simulation and
2. not requiring an order on the input/output-relation. However, both
properties can be ensured by modifying the proposed timed automa-
ton template for a MA. At the same time, Broman et al. propose the
getMaxStepSize-extension of the FMI-FMU standard to enable
step-size negotiation between FMUs.

In [5] Bogomolov et al. argue for allowing Zero-delay step-sizes in
the doStep-procedure to enable timed automata style synchroniza-
tions across FMUs – a value which is otherwise strictly disallowed
by the FMI-FMU standard. This paper also discusses using Hybrid-
and timed automata as FMUs and the related semantic difficulties
and utilizes the step-negotiation strategy introduced in [6].

In [10] Cremona et al. introduce the concept of step revision,
similar to that presented in [6], as a method for ensuring the accuracy
of modeling a mix of continuous-time and discrete-event systems in
an attempt to address the Zero-crossing problem.

Statistical modelchecking of Priced Timed Automata and Stochas-
tic Hybrid Systems was introduced into the UPPAAL tool-chain by
Bulychev et al. in [7], [11]. In their work they present methods and
algorithms for obtaining various statistical measures over stochastic
systems using expressive logics [13], [8]. While the UPPAAL SMC
tool has been used in a number of case-studies ([17], [12], [20], [3],
[1]) it previously did not facilitate co-simulation as master-algorithm
using the FMI-FMU standard.

The PLASMA statistical model-checking tool [19] supports sta-
tistical analysis over a System of Systems composed of FMUs
[2]. However, their work does not provide a formal semantics of
the composed system or individual components, nor does it allow
C-functions to be embedded directly in the model. Furthermore,
the integration of FMUs in C allows for analysis, synthesis and
learning using the more complex features of classical UPPAAL [4]
and UPPAAL STRATEGO [13] – features that are out of the scope of
this paper.

II. SEMANTICS

We shall here describe the semantics of Timed Automata (TA),
Network Of Timed Automata (NTA), Stochastic Timed Automata
(STA) and Function Mockup Units (FMUs). We will then discuss a
semantical embedding of FMUs into the the STA framework.

2

A. Stochastic Timed Automata

Formally, a TA is a finite automaton extended with a set of
real-valued, time-progress-measuring counters (X) called clocks. In
addition, a TA allows for synchronization with other TAs over a
finite set of so-called channels (Σ). For a set of channels Σ we let
Σo = {a! | a ∈ Σ} be the set of output actions over Σ while we let
Σi = {a? | a ∈ Σ} be the set of input actions. For a set of clocks X
we call an element c ./ n where c ∈ X and n ∈ N and ./ ∈ {≤,<}
(./ ∈ {≥,>}) an upper (lower) bound over X. Let B≤(X) (B≥(X))
be the set of all upper (lower) bounds over X.

We call a mapping ν : X → R for a valuation over X and denote
all valuations over X by V(X).

Definition 1 (Timed Automaton): A Timed Automaton (TA) is a
tuple A = (L, `0,X, Σ,→, I,R), where

1) L is a finite set of control locations,
2) `0 ∈ L is the initial location,
3) X is a finite set of clocks,
4) Σ is a finite set of channels,
5) → ⊆ L × B≥(X) × (Σo ∪ Σi) × 2X × L is a set of edges.

We write ` g,a,U−→ `′ for an edge where ` is the source and `′

the target location, g ∈ B≥(X) is a guard, a ∈ Σo ∪ Σi is a
label, and U ∈ V(X)→ V(X) is a partial function giving the
discrete-clock updates,

6) I : L → B≤(X) is an invariant function, mapping locations to
a set of invariant constraints and

7) R : L → X → R assign rates to the individual clocks in each
location1.

Let ν ∈ V(X) be a valuation, R : X → R give clocks rates,
d ∈ R be a real-valued number and let U ∈ V(X) → V(X) be an
update-function ; then we let (ν + d · R) be the valuation ν′ where
ν′(x) = ν(x) + d · R(x) and we let ν′′ = U(ν). If g = c ./ n is
a clock bound over X and ν ∈ V(X) then ν satisfies g (ν � g) iff
ν(c) ./ n. This generalizes in a natural way to a set of clock bounds.

The state of TA A = (L, `0,X, Σ,→, I,R) is a tuple (`, ν) where
` ∈ L and ν ∈ V(X). From a state (`, ν) the TA may

1) do a timed transition (`, ν)
d−→ (`, ν′) if ν′ = (ν + d · R(`))

and ν′ � I(`) or
2) do a discrete transitions (`, ν)

a−→ (`′, ν′) if there exists `
g,a,U−−−→

`′ such that ν � g, ν′ = U(ν) and ν′ � I(`′).
We define a partition over the clocks of a TA into time-

independent, real-valued variables (XV) and time-dependent clocks
(XT) s.t. XV = {x ∈ X | ∀` ∈ L we have R(`)(x) =
0 and x is not restricted by I(`)} and XT = X \ XV.

We define the infix-operator valuation-join operator
X,Y
⊗ : V(X)×

V(Y)→ V(X) as

ν
X,Y
⊗ ν′ = ν′′ where ν′′(x) =

{
ν′(x) if x ∈ Y
ν(x) otherwise

We shall simply write ⊗ for this operation and let X,Y be
implicitly defined by the given valuations.

Following the compositional framework of [15] we require that a
TA for any state s is

1) input-enabled i.e. for any a! ∈ Σo there exists some s′ such
that s a!−→ s′ and

1 Allowing rates other than one is non-standard in TA semantics – in fact
this renders most classical model-checking questions undecidable. However,
as the methods presented are simulation-based, arbitrary rates on clocks are
practically feasible and semantically sane [11].

2) action-deterministic i.e. if s a−→ s′ and s a−→ s′′ then s′ = s′′.
Let us now define a Network of Timed Automata (NTA) with

shared clocks.
a) Network Of Timed Automata: Let A1,A2, . . . ,An be TA

where Ai = (Li, `
i
0, (XV

i ∪ XT
i), Σ,→i, Ii,Ri) with the implicit

indices ordering 1 < 2 < · · · < n. Let XV =
⋃
i∈1,...,n X

V
i be the

set of shared clocks, then it holds for all i ∈ 1, . . . ,n that XV = XV
i

and for all j ∈ 1, . . . ,n where i 6= j that XT
j ∩ XT

i = ∅. Also let
S(Ai) = Li × V(XT

i) × V(XV); then we define the states of the
network A1‖A2‖ . . . ‖An to be a pair 〈(s1, s2, . . . , sn), ν〉 where if
(`i, νi) = si then (`i, νi⊗ ν) ∈ S(Ai). A network may transit from
〈(s1, s2, . . . , sn), ν〉 by

• a timed transition 〈(s1, s2, . . . sn), ν〉 d−→ 〈(s′1, . . . , s′n), ν〉 if for
all i, (`i, νi⊗ ν)

d−→ (`i, ν
′
i⊗ ν) where (`i, νi) = s1, (`′i, ν

′
i) =

s2, and
• a discrete transition 〈((`1, ν1), . . . , (`n, νn)), ν〉 a!−→

i

〈((`′1, ν′1), . . . , (`′n, ν′n)), νn〉 if (assuming w.log. that i = 1)

1) (`1, ν1 ⊗ ν)
a!−→ (`′1, ν′1 ⊗ ν1), and

2) for j ∈ {2, . . . ,n} we have

(`j , νj ⊗ νj−1)
a?−→ (`′j , ν

′
j ⊗ νj)

Notice that the discrete transition-rule can be generalized beyond
i = 1 by a temporary reordering of the indices.

B. Stochastic Semantics

David et al. provides the full stochastic semantics of Stochastic
Timed Automata in [14]. Here the semantics is given as a series
of repeated races among components making up the network. In
essence, each sub-component will choose a delay in accordance with
the probability distributions defined locally to that component. The
component with the smallest delay will then win the race and gets
to do a discrete step – again chosen according to a local distribution.
However, this discrete step can synchronize with neighboring com-
ponents, possibly altering their internal state. This procedure is then
repeated over and over.

In the semantics the delays are chosen as follows: if the possible
delays are bounded, the distribution is a uniform distribution between
the minimal delay before some action is possible and the maximal
delay where a delay is still possible.

Formally, we assume there for any state (s) of any TA A exists
a delay-density δAs : R → R and a probability mass function γAs :
Σo → R. Naturally we will require these functions to be “sane”
in the sense that they do not assign probability mass (density) to
impossible actions (delays) i.e. γAs (a!) 6= 0 (δAs (a!) 6= 0) implies
s
a!−→ s′ (s d−→ s′).
Let ω = a1!a2! . . . an! be a finite sequence of output-actions: then

we define the probability of a network A1‖ . . .Am generating the
sequence from state s = (s1, . . . Sn) recursively by Equation 1.
where si

d−→ sdi , s d−→ a1!−−→
i

s′, ω1 = a2! . . . an! and base case
Fs(ε) = 1.

C. Function Mockup Unit

Similar to Broman et. al. [6], we shall here define the semantics
of a single FMU as a (timed) state machine. For simplicity, we shall
in the definition ignore the types of the variables, and assume wlog.
that they all are reals.

Definition 2: An FMU is a tuple F =
(S, init, V, set, get, doStep) where
• S is a set of states,

3

Fs(ω) =

m∑
i=0

∫
t>0

δAi
si (t) ·

∏
j 6=i

(∫
τ>t

δ
Aj
sj (t)dτ

)
· γAi

sti
(a1! · Fs′(ω1)dt

 (1)

• init ∈ S is the initial state,
• V is a set of variable names,
• set : S × RV → S is a value-setter function,
• get : S × V→ R is a value-getter function and
• doStep : S × R≥0 → S is the time-progression function.

For a given FMU F , the exact semantics is defined by the underlying
implementation, and we shall hence only focus on the interaction with
STAs.

Definition 3: A stochastic FMU is a tuple Fs =
(S, V, set, get, doStep,P) s.t.

• S, V, set, get, doStep are defined as for a regular FMU and
• P : S → [0, 1] is the probability that Fs starts in s ∈ S and we

have that 1 = Σs∈SP(s).

Let Fs be a stochastic FMU, then we let pick(Fs) =
(S, init, V, set, get, doStep) where init ∈ inits is the initial
state chosen according to P – by agreement for a non-stochastic
FMU we let pick(s) = 1 where inits = {s} and P (s′) = 0 for
all other s′ 6= s.

Notice here that our extension of FMUs with stochastic has
the probabilistic choices resolved once; this construction is both
practically and theoretically sound. In practice, such a construction
can be ensured by using seeded pseudo-random number generators.
Here the seed is chosen at random initially, leading to a subsequent
determined execution. In a theoretical setting, similar generative
constructions have been used to define the semantics of probabilistic
programs – for instance for the semantics of the IBAL language as
proposed by Pfeffer et al. in [24].

It is easy to see that the semantics of an FMU fits well within the
stochastic semantics for NTA as the standard specifies a collection
of (complex) update-functions over a state – which in turn can be
encoded as a real. However, as FMUs have no notion of discrete-
update labels, to correctly embed an FMU into an NTA, we shall in
the next section describe one way of encapsulating an FMU within a
single STA, such as to make it compatible with the NTA framework.

III. EXTENSION OF UPPAAL

To facilitate the import of FMUs in UPPAAL, we have extended
UPPAAL with a construct for loading dynamic C libraries at run-
time. External C functions in UPPAAL look and act exactly like
regular functions in UPPAAL and only their declaration differ by
the additional import environment – an example of the new syntax
can be seen in Figure 2. We shall here discuss the type-conversions
between the C-like language in UPPAAL and actual C. Furthermore
we introduced the type string for string constants and the type
ptr t for holding pointers to external data—a type with its binary
defined by, and dependent on, the hardware platform UPPAAL is
executing on and functionally equivalent to size t known from
regular C. Lastly, to facilitate single-initialization of external li-
braries, we have introduced the void ON CONSTRUCT () and
void ON DESTRUCT () – that if existing, will be called upon
model-initialization (and de-initialization respectively), but not for
each proposition given to UPPAAL. These can be defined at a global
scope as well as in the scope of each individual TA.

UPPAAL type C type By Value Return Array
bool bool
chan const char

clock double

double double

ptr t size_t

int int32_t
string const char
<type>[] <type>

TABLE I: The type-conversion between UPPAAL and C. The com-
plex types chan, string, clock and array-types are sent in C-
convention as pointers to raw memory and are thus forced to be sent
as references. All types can be sent by reference, but the immutable
types chan and string are forced const. Lastly, only single-
dimension arrays are supported, and only of mutable types; arrays of
chan and string are currently not supported.

A. Type Conversion

To maintain sanity during simulation some restrictions on the types
being transferable between UPPAAL and external functions are in
place. Currently, the types bool, chan, clock, double, ptr t, int and
string can be used in external functions, omitting complex types
constructed using the struct keyword as well as two, and more, level
arrays. A chart of the type-conversion to C and other restrictions are
given in Table I. We further emphasize some significant differences
from linking directly between C programs and working calling
external functions from UPPAAL.
• A bool variable in UPPAAL is either zero or one—as such, any

function returning bool will return 0 if the C-function called
returned 0, and 1 otherwise.

• const is enforced, implying that any variable sent as const, even
if sent as an array or by reference, will not have its value changed
in the UPPAAL environment—regardless of the behavior of the
C-function called.

• Each import-statement has a private scope, as exemplified by
Figure 2.

• Integers in UPPAAL can be given a bounded range. If this range
is violated – either when values are sent by reference or returned
– the model is said to have violated model-sanity, causing a run-
time error.

Utilizing this extension of UPPAAL and the FMI-standard, we will
implement a co-simulation-algorithm directly as a timed automaton.

IV. FMI/FMU IN UPPAAL

The FMI/FMU standard, version 2.0 is a standard for conducting
co-simulation between different simulation environments. While the
standard also supports “Model Exchange”, we shall here focus only
on co-simulation.

To conduct co-simulation using the FMI/FMU standard, one
needs only two components: (1) A master algorithm controlling
the overview and coordination of the composed simulation and
(2) one or more FMUs for the master-algorithm to coordinate and
facilitate communication between. This approach shows its strength
by outsourcing the heavy computation of the simulation to specialized
tools while maintaining a global overview and coordination of the

4

// model.xml
...
import "liby"
{

incleft = void inc_a();
getleft = int get_a();

}
...
import "liby"
{

incright = void inc_a();
getright = int get_a();
getright2 = int get_a();

}
...

//libinc.so

int a = 0;

void inc_a()
{

++a;
return a;

}

int get_a()
{

return a;
}

//libinc.so

int a = 0;

void inc_a()
{

++a;
return a;

}

int get_a()
{

return a;
}

Fig. 2: Scoping rules of external libraries when loading into UPPAAL. Each import-statement creates a new environment – this implies that
the variable a has two logical instances, aleft and aright where incleft and getleft references aleft while incright, getright
and getright2 references aright.

composed system at any time. An example of such a composed
system, using UPPAAL as a FMU for timed automata, was presented
by Bogolomov et. al [5]. In general the MA is imposed on top of
the system, enforcing a semantics particular to the given MA. In our
work, we instead embed the external FMUs as timed automata. This
allows us to reuse standard, well-defined, timed automata semantics,
allowing us to construct a shallow MA, ensuring only that the
FMI/FMU communication protocol is respected. In particular, from
this approach, we adopt the so-called Interleaving Semantics.

A. Master Algorithm and FMUs as Timed Automata

The TAs used for implementing the MA in UPPAAL and importing
FMUs into UPPAAL are shown in Figure 3a and Figure 3b respec-
tively. Let us walk through the computation of a single simulation
step in the composed model. Initially, observe that

• the state of each FMU is encoded in the comp variable,
• time is a variable tracking the time progressed since the begin-

ning of the simulation,
• x is a variable tracking the time since the last simulation step,
• step is an array containing all the proposed step-sizes and
• cnt is a variable tracking the number of FMUs that have

completed a given stage of the MA – initially set to zero.

Initially the MA (depicted in Figure 3a) and each FMU (depicted
in Figure 3b) Negotiate and Initial-states. As the MA is waiting
for ready signals from the FMUs, all the FMUs will (in random
order), call the initialize-function, abbreviating the setup function
calls specified in the FMU standard. After initialization, each FMU
will move from the OK location to the Ready location – and while
doing so, synchronize with the MA on the ready channel. This forces
the MA to wait until all FMUs have reached the Ready-location. At
this point, the MA is forced to move from Negotiate to FindMin,
synchronizing with all FMUs at once, s.t. each FMU moves from
Ready to Delay. This makes each FMU propose the step-size (which
could be computed by more complex functions, such as proposed
by Bogolomov et. al [5]), after which it will wait for the MA to
synchronize on either delay , won[id] or get . The MA will now,
stepping from FindMin to Waiting, choose the minimal proposed
step-size and let time progress by the given amount. Whenever

time has progressed exactly minstep time-units, the MA will with
even probability determine a “winner” in between FMUs proposing
exactly minstep time-units as the delay. If the delay is non-zero,
the MA will synchronize on the delay channel, in which case all
the FMUs will end up in the Delayed location, ready to receive a
synchronization on get . If the delay is zero, only the winning FMU
will progress to the Delayed location while the remaining FMUs will
await further synchronization. From the Delayed location, each FMU,
upon synchronization with the MA on get , will call the appropriate
getter-functions defined in the FMU-standard, synchronizing the data-
arrays in UPPAAL with those in the external FMU. Notice here that if
a zero-delay occurred, some FMU will have won, and all the losing
FMUs will at this point in time move from the Delay to the ZeroDelay
location – implying that data is not fetched from the losing FMUs
as it cannot have changed since the last call to GetValues(). At this
point in a simulation-step the MA has reached the Transfer location
while all the FMUs are in the Got location. Here each FMU will,
in random order according to a uniform distribution, transfer their
local values (synchronized with the external FMU) to other FMUs in
the system. The randomness here plays a key part in implementing
interleaving semantics, as two FMUs can write to the same variable
in a third FMU, effectively yielding a race-condition. Again, if we
are in the special case of a zero-delay, only the winning FMU will
transfer its values. Until all FMUs have moved to the Transferred
location, the MA will wait in the Transfer location. Eventually the
MA will be able to move from Transfer to the Negotiate location,
triggering all the FMUs to move from Transferred to OK, pushing
the updated values to the individual FMUs. This completes the cycle
of a single step in the total simulation.

While our implementation here focuses on a specific MA, one can
easily extend and test different MA algorithms within this framework.
In [5], the authors restrict their MA to impose an ordering of the
value-transfers between the FMUs – such a restriction could be
implemented by imposing an order on each FMU, and checking if
this order is respected for each FMU when synchronizing on dosync.
In a similar manner, interoperability between different versions of the
FMU/FMI standard can be achieved by adapting the general template
in Figure 3b.

5

(a) The MA as a TA. (b) The template of a single FMU.

Fig. 3: The TAs used for importing and simulating FMUs in UPPAAL.

V. CASE STUDY

To demonstrate our approach we shall construct a model of three
small houses sharing a single heating unit. Each house is composed
of two rooms which each individually can be heated. Heat can be
transferred between the two rooms, but as the houses are placed
apart, heat is not transferred between the houses. The shared heating
unit is only capable of heating a single room at any point in time –
furthermore, it takes some time for the heating unit to be transferred
from one house to another.

A. How to model one house

Each single house is modeled using OPENMODELICA and entirely
composed of standard components. The entire model of a house
can be seen in Figure 4. Here each of the rooms have a heat-
capacity of 2649600 J

K
and the wall between the rooms have a

thermal conductivity of 6.4W
K

. At the same time, each of the
rooms are affected by the outside temperature, here separated by
slightly better insulated walls but with a larger surface-area with a
thermal conductivity of 27.20W

K
in total. As it can be seen from

Figure 4, the house receives three inputs; in_room1, in_room2,
and in_outside for the influence of the heater in either of the
rooms and the influence of the (ever changing) outside temperature.
As outputs, the two temperature-converters troom1 and troom2
give us the variables out_room1 and out_room2. We will not
consider the inner dynamics of the room, but simply view a room
as a single mass with a heat-capacity. OPENMODELICA supports
the export of models as Co-Simulation FMUs – in the case of our
model from Figure 4, we get an FMU with three real-valued inputs
in_room1, in_room2 and in_outside (in Watts, Watts and
degrees Celsius respectively) as well as the two outputs in degrees
Celsius out_room1 and out_room2.

B. A Controller as a Timed Automaton

The controller is implemented using UPPAAL timed automata and
can be seen in Figure 5. Let us informally introduce the notation
used for UPPAAL timed automata; circles denote locations and arrows
denote edges. The key feature of the timed automata is the clock
construction; variables that all progress at the same rate and track
time. Each location can be labeled with an invariant, colored pur ple
– a predicate that must evaluate true when the TA is in the given
location. Locations can also be marked with U or C for urgency and
committed urgency – forcing immediacy (and prioritized immediacy),
implying that time cannot elapse when the TA is in the given location.
In Figure 5 we can see that the Heating location is marked by a
double-circle, indicating that it is the initial location. Edges can be

Fig. 4: A single house with two rooms modeled using OPENMOD-
ELICA.

labeled with select-statements (yellow), guards (green), updates
(blue) and synchronizations (turquoise) where
• select-labels duplicate the single edge into multiple instances,

one for each value possible in the declared type,
• guard-labels must evaluate to true for the edge to be admissible,
• update-labels can reset clocks and update variables declared

using the C-language,
• synchronization-labels allows two or more TAs in the same

system to move in unison when one is outputting (eg. a!) and
multiple are inputting (a?) on the channel a.

Notice here that we only use the broadcast synchronization – for a
given channel a, any TA is free to output a! (if allowed by a guard),
and all other TAs which can receive a? must do so.

Aside from standard TA features, UPPAAL supports a C-like
language for complex constructions – including variable-declarations,
function-calls and such.

The controller shown acts in a bang-bang manner; given a target-
temperature for each room (the tgt array), it randomly assigns the
heating unit (the heat array) to any room with a temperature (the
temp array) lower than or equal the target-temperature (right edge).
If all rooms have reached their target-temperature, we can take the left
edge, heating no room. When taking the right edge, if the controller

6

Fig. 5: The bang-bang controller implemented in UPPAAL. The
controller samples the values of the system each 60 time units and
chooses at random to heat a room in a house where the measured
temperature is lower than the set-temperature of the given room
(right-hand side transition). If no such exist, no room is heated
(left-hand side transition). Whenever a room and house is chosen,
if the house differs from previous choice, the controller will wait
TRANSTIME between heating one room and another.

decides to change the house being heated, a delay will incur between
turning of the heater in one house and turning on the heater in
another house. This is controlled by the variable wt which forces
our controller to let time progress in the Wait-location (due to the
combination of the invariant t <= wt and the guard t == wt) –
but only if the chosen house differs, determined by the in-line if
wt = (oh == h)?0 : TRANST IME . Here one can also see the select-
statement in action; an edge is created for each value in the type
house t (h ∈ {1, 2, 3}) and each value in room t (r ∈ {1, 2}) –
allowing for a concise description.

C. Composition of models

With the house and controller modeled, we can now focus on
composing the entire system. Our system, as illustrated by Figure 6,
aside from three houses and the controller includes the weather –
giving the outside temperature. For simulating the weather, we here
assume a simple sinus-curve with a frequency of 24 hours, oscillating
between 4 and 20 degrees Celsius. We can also see from Figure 6
that the houses have no direct interaction with each other, and are
only indirectly communicating via the temperatures they report and
the choices of the controller.

Each of these individual components (even UPPAAL models [5])
can be exported as Co-Simulation FMU’s – and thus composed into
our system from Figure 6 using existing tools. However, as our
initial controller exhibits randomness, we would like to answer the
questions: What is the expected minimal and maximal temperatures
of any room? and: If a room becomes too cold, will it become heated
again within two hours?

These questions both contain probabilistic measures over continu-
ous time – and thus are not answerable by current tools. To remedy
this, we below propose an extension of the Statistical Modelchecker
UPPAAL SMC that allows for dynamically linking and calling ar-
bitrary C-functions from inside the tool – a feature that facilitates
Co-Simulation of FMU’s.

VI. EXPERIMENTS

This section presents the experiments that we perform on our
case study when using the controller presented in Figure 5. In this
example, all the components are exported into FMUs and recomposed
in UPPAAL given the framework presented in Section IV – including

Controller

Weather

House1

House2

House3

Fig. 6: An informal overview of the composed system. The arrows
indicate the flow of information.

Fig. 7: A single simulation of the system. Each color represents the
temperature of a room. The starting temperature for the first room
in each house is 20 degrees Celcius and 4 degrees Celsius for the
second room.

the controller. We shall consider the model presented in Section V and
demonstrating three different features of UPPAAL SMC; Simulation,
Estimation and Statistical Modelchecking.

The composed model, FMUs and extended version of UP-
PAAL SMC for 64-bit Linux-systems can be found at http://people.
cs.aau.dk/∼pgj/UPPAAL FMIFMU.zip. Notice that the extended ver-
sion of UPPAAL SMC includes functionality to export timed automata
as FMUs as presented by Bogolomov et al. [5]. We also provide a
prototype tool for embedding FMUs into a UPPAAL-importable timed
automata for ease of use.

A. Simulation

In Figure 7 one can observe the results of executing following
query in UPPAAL

simulate 1 [<=3600∗24∗7]{h1 output[0], h1 output[1],
h2 output[0], h2 output[1],
h3 output[0], h3 output[1]}

This proposition monitors the temperatures of each house over a
period of seven days for a single simulation. As expected, initially
our controller rapidly heats the coldest rooms in all of the houses.
We can also observe that the temperature of the rooms after the first
day is kept within a 19 to 22 degrees window in the current setting.

B. Estimation

However, such a single simulation does not quantify over the prob-
abilistic behavior of our system – one might be interested in knowing

7

http://people.cs.aau.dk/~pgj/UPPAAL_FMIFMU.zip
http://people.cs.aau.dk/~pgj/UPPAAL_FMIFMU.zip

Fig. 8: The super-imposed probability distributions of the expected
minimal and maximal temperatures over all the rooms, over a week,
disregarding the first day, based on 100 samples. The x-axis is given
in degrees Celsius. Blue indicates minimal expectation while red
indicates maximal. The mean of the minimal expectation is 18.9 while
the mean of the maximal expectation is 21.3.

the expected maximal and minimal temperatures (disregarding the
first day as our rooms are in an abnormal state).

Such a measure can be achieved by the following propositions.

E[<=3600∗24∗7;100] (min: mintemp())
E[<=3600∗24∗7;100] (max: maxtemp())

Here mintemp and maxtemp are functions defined in UPPAAL

C computing the minimum and maximum of the temperatures of
all the rooms. The proposition computes the estimated minimal
(resp. maximal) value of the expression over the course of a weeks
simulation – and it does so on the basis of 100 simulations.

As we can see in Figure 8, the performance of our constructed
controller is fairly stable. Both the minimal and maximal temperature
of any room stays (on average) within 18.9 degrees and 21.3 degrees
Celsius. However, while the average peak temperature is stable at
21.3 degrees with less than a tenth of a degree span on the observed
values, the minimal temperature over a week was observed to vary
by more than a degree across all runs.

C. Statistical Modelcheking

While the estimation and simulation propositions provide some
quantitative measure on different metrics of the system, we can use
the statistical model-checking features of UPPAAL SMC to reason on
the probabilistic behavior of our system.

Let us try to quantify the fairness of our controller; what is the
probability that the temperature difference between the coldest room
and the hottest room is greater than two degrees Celsius after the
first day? This we can express as follows.

Pr[<=3600∗24∗7] (<>time > 3600∗24 &&
(maxtemp() − mintemp()) >= 2)

As we can observe in Figure 9, there is a fairly high chance (more
than 50%) that the temperature difference between the coldest and
hottest room will grow beyond two degrees within a week.

Fig. 9: The probability distribution of having only a two-degree
difference between the coldest and warmest room with the cumulative
probability superimposed (black line). The measure is obtained using
the statistical parameters ε = 0.05 and α = 0.05 – yielding 398
samples needed by UPPAAL SMC. With a 95% confidence the true
probability lies within [0.50, 0.60] of having a greater than 2-degrees
difference at any point within a week.

Fig. 10: The probability distribution of not recovering from a
threshold violation. The statistical parameters are ε = 0.05 and
α = 0.05 – yielding 738 samples needed by UPPAAL SMC. With
a 95% confidence the true probability lies within [0.21, 0.31] of not
recovering.

We can also construct more complex propositions using the tem-
poral MITL-logic. As we already know, the set-temperature cannot
be respected in general in our example – however, we might be able
to accept deviations as long as they are not for extended periods
of time. We therefore construct the following proposition capturing:
after the first day, can it ever happen that if the second room of the
first house has a temperature below 20 degrees for more than two
hours at a given time.

Pr (<> [86400,604800]([][0,7200] (h1 output[1] < 20)))

We can observe in Figure 10 that this property is not surely
satisfiable. Already in the second day of the simulation there is more
than 10% chance that the controller will not be able to recover from
a threshold-violation within two hours. We can also observe that this
tendency seems to be repeating every night of our simulation.

VII. CONCLUSION

In this paper we demonstrated the ease with which FMI-FMU
models exported from other tools can be integrated into the setting of

8

UPPAAL SMC. We provide the flexibility of modeling different Mas-
ter Algorithms (MAs) in a sound semantical framework facilitating
probabilistic and temporal reasoning.

We believe that the possibility of using already existing domain
models is essential in order to facilitate the use of formal methods
in industrial systems, as the correct re-modeling of entire systems is
a very time consuming exercise. The expressiveness of the modeling
language available in UPPAAL SMC allows for the efficient modeling
of real-world scenarios with inherently uncertain and time-dependent
behaviour – such as signal noise, human interaction and general
natural phenomena. Thus this paper aims to make recent advances
in statistical model checking and statistical validation of systems
available for use in an industrial setting.

VIII. FUTURE WORK

Adding the possibility of calling arbitrary C-libraries during statis-
tical simulation opens up for a number of new applications. This is
true both for UPPAAL SMC and the related tool UPPAAL STRATEGO.

We consider the option of utilizing UPPAAL STRATEGO to perform
controller synthesis for heterogeneous FMI-FMU systems as the most
promising direction. This would make it much easier to generate
optimized controllers using machine learning for systems being
developed using other modeling tools. With the current approach all
components in the system must be re-modeled in UPPAAL STRAT-
EGO.

Calling external C-libraries can also be applied within the domain
of classical model-checking in UPPAAL. Here there is the added
restriction that the external calls can only be used to update the
discrete variables and not the clock variables. On top of statelessness
we also require that the external FMUs are strictly deterministic for
the model checking to be semantically sound. For application of this
in a non FMI-FMU setting see [9].

REFERENCES

[1] W. Ahmad, M. Jongerden, M. Stoelinga, and J. v. d. Pol. Model checking
and evaluating QoS of batteries in MPSoC dataflow applications via
hybrid automata. In 2016 16th International Conference on Application
of Concurrency to System Design (ACSD), pages 114–123, June 2016.

[2] A. Arnold, M. Baleani, A. Ferrari, M. Marazza, V. Senni, A. Legay,
J. Quilbeuf, and C. Etzien. An application of SMC to continuous
validation of heterogeneous systems. In Proceedings of the 9th EAI
International Conference on Simulation Tools and Techniques, SIMU-
TOOLS’16, pages 76–85, ICST, Brussels, Belgium, Belgium, 2016.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering).

[3] D. Basile, F. Di Giandomenico, and S. Gnesi. Statistical model checking
of an energy-saving cyber-physical system in the railway domain. In
Proceedings of the Symposium on Applied Computing, SAC ’17, pages
1356–1363, New York, NY, USA, 2017. ACM.

[4] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks. UPPAAL 4.0. In Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on, pages 125–126.
IEEE, 2006.

[5] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen,
M. Mikučionis, T. Strump, and S. Tripakis. Co-simulation of hybrid
systems with SpaceEx and Uppaal. In Proceedings of the 11th Interna-
tional Modelica Conference, Versailles, France, September 21-23, 2015,
number 118, pages 159–169. Linköping University Electronic Press,
2015.

[6] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,
and M. Wetter. Determinate composition of FMUs for co-simulation.
In Proceedings of the Eleventh ACM International Conference on
Embedded Software, EMSOFT ’13, pages 2:1–2:12, Piscataway, NJ,
USA, 2013. IEEE Press.

[7] P. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. B. Poulsen,
A. Legay, and Z. Wang. UPPAAL-SMC: Statistical model checking for
priced timed automata. arXiv preprint arXiv:1207.1272, 2012.

[8] P. E. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, and D. B.
Poulsen. Rewrite-based statistical model checking of WMTL. RV,
7687:260–275, 2012.

[9] F. Cassez, P. G. de Aledo, and P. G. Jensen. WUPPAAL: Computation of
Worst-Case Execution-Time for Binary Programs with UPPAAL, pages
560–577. Springer International Publishing, Cham, 2017.

[10] F. Cremona, M. Lohstroh, D. Broman, M. D. Natale, E. A. Lee, and
S. Tripakis. Step revision in hybrid co-simulation with FMI. In 2016
ACM/IEEE International Conference on Formal Methods and Models
for System Design, MEMOCODE 2016, Kanpur, India, November 18-
20, 2016, pages 173–183. IEEE, 2016.

[11] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis, D. B.
Poulsen, and S. Sedwards. Statistical model checking for stochastic
hybrid systems. arXiv preprint arXiv:1208.3856, 2012.

[12] A. David, K. Larsen, A. Legay, M. Mikučionis, D. Poulsen, and
S. Sedwards. Runtime verification of biological systems. Leveraging
Applications of Formal Methods, Verification and Validation. Technolo-
gies for Mastering Change, pages 388–404, 2012.

[13] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen.
Uppaal SMC tutorial. International Journal on Software Tools for
Technology Transfer, 17(4):397, 2015.

[14] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. van
Vliet, and Z. Wang. Statistical model checking for networks of priced
timed automata. In FORMATS, volume 6919 of LNCS, pages 80–96,
2011.

[15] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed
I/O automata: a complete specification theory for real-time systems.
In Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2010, Stockholm, Sweden,
April 12-15, 2010, pages 91–100, 2010.

[16] FMI Standard Orginization. FMI support in tools. http://fmi-
standard.org/tools/.

[17] O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen,
and D. B. Poulsen. Modelling attack-defense trees using timed automata.
In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 35–50. Springer International Publishing, 2016.

[18] S. Guermazi, S. Dhouib, A. Cuccuru, C. Letavernier, and S. Gérard.
Integration of UML models in FMI-based co-simulation. In Proceedings
of the Symposium on Theory of Modeling & Simulation, TMS-DEVS
’16, pages 7:1–7:8, San Diego, CA, USA, 2016. Society for Computer
Simulation International.

[19] C. Jegourel, A. Legay, and S. Sedwards. A platform for high perfor-
mance statistical model checking–PLASMA. Tools and Algorithms for
the Construction and Analysis of Systems, pages 498–503, 2012.

[20] J. H. Kim, A. Boudjadar, U. Nyman, M. Mikucionis, K. G. Larsen, and
I. Lee. Quantitative schedulability analysis of continuous probability
tasks in a hierarchical context. In Component-Based Software Engineer-
ing (CBSE), 2015 18th International ACM SIGSOFT Symposium on,
pages 91–100. IEEE, 2015.

[21] Object Management Group. fUML. http://www.omg.org/spec/FUML/.
[22] M. Pazold, S. Burhenne, J. Radon, S. Herkel, and F. Antretter. Integration

of Modelica models into an existing simulation software using FMI
for co-simulation. In Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012; Munich; Germany, number 76, pages
949–954. Linkping University Electronic Press; Linkpings universitet,
2012.

[23] N. Pedersen, T. Bojsen, J. Madsen, and M. Vejlgaard-Laursen. FMI
for co-simulation of embedded control software. In The First Japanese
Modelica Conferences, May 23-24, Tokyo, Japan, number 124, pages 70–
77. Linkping University Electronic Press, Linkpings universitet, 2016.

[24] A. Pfeffer. IBAL: A probabilistic rational programming language. In In
Proc. 17th IJCAI, pages 733–740. Morgan Kaufmann Publishers, 2001.

9

	Introduction
	Interleaving Semantics
	Contributions
	Related Work

	Semantics
	Stochastic Timed Automata
	Stochastic Semantics
	Function Mockup Unit

	Extension of Uppaal
	Type Conversion

	FMI/FMU in Uppaal
	Master Algorithm and FMUs as Timed Automata

	Case Study
	How to model one house
	A Controller as a Timed Automaton
	Composition of models

	experiments
	Simulation
	Estimation
	Statistical Modelcheking

	Conclusion
	Future Work
	References

