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Optical third harmonic generation in black phosphorus
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1Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg Øst, Denmark

2Center for Nanostructured Graphene (CNG), DK-9220 Aalborg Øst, Denmark

(Received 22 August 2017; revised manuscript received 2 November 2017; published 22 January 2018)

We present a calculation of third harmonic generation (THG) for two-band systems using the length gauge that
avoids unphysical divergences otherwise present in the evaluation of the third-order current density response. The
calculation is applied to bulk and monolayer black phosphorus (bP) using a nonorthogonal tight-binding model.
Results show that the low-energy response is dominated by mixed inter-intraband processes and estimates of the
magnitude of THG susceptibility are comparable to recent experimental reports for bulk bP samples.

DOI: 10.1103/PhysRevB.97.035431

I. INTRODUCTION

Nonlinear light-matter interactions provide a vast field
of processes with many applications [1,2], particularly at
energies comparable to the near-IR and visible radiation.
Applications include four-wave mixing [3,4], efficient lasing
[5], and harmonic generation, more specifically third har-
monic generation (THG) [6,7] and second harmonic generation
(SHG) in noncentrosymmetric crystals, such as transition-
metal dichalcogenides (TMDs) [8–13] and hexagonal boron
nitride (hBN) [8]. Recent advances in atomically thin materials,
such as graphene, TMDs, and others have sparked interest in
two-dimensional (2D) optoelectronic devices. The isolation of
mono- and few-layer crystals of bP provides new 2D materials
with remarkable electronic properties, including thickness-
dependent gap and strong in-plane anisotropy. On its own,
the thickness-dependent gap of bP [14–17] makes it appealing
for optoelectronic devices, since its optical gap spans a wide
range of the spectrum, from infrared ∼0.3 eV in bulk samples
to visible ∼1.7 eV in monolayer [17]. Moreover, the low
energy dispersion of bP exhibits strong anisotropy, leading to
a large discrepancy in the effective masses of the valence and
conduction bands along the armchair and zigzag directions.

The low energy dispersion can be accurately captured by
anisotropic massive Dirac fermion models [18,19]. In such
systems, electrons effectively behave as light massive Dirac
fermions along the armchair direction and as heavy fermions
along the zigzag direction, consistent with ab initio results
[14,20–22] and experimental ARPES measurements of the
band structure [23]. The manifestations of anisotropy are
tightly connected to the lattice symmetry. Both bulk and
monolayer bP are orthorhombic crystals with inversion center,
with space groups D18

2h [24] and D7
2h [25], respectively. Because

of the presence of an inversion center dipole, allowed second-
order interactions are blocked [1,2], making the THG the
leading order for harmonic generation. Recent reports have
demonstrated that the electronic and transport properties of
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bP can be used for several applications, including field-effect
transistors [16,26–28]. The electronic properties of bP provide
fertile ground for opto-electronics devices, such as photode-
tectors [28,29], dichroic absorption [30] and nonlinear optics,
including THG [31–33] and high harmonic generation [19].
In addition, theoretical studies indicate that the anisotropic
characteristics of bP can be harnessed and tuned by strain
[34–36], opening a door for strain-sensitive or strain-enhanced
optoelectronic devices based in bP.

In this work, we evaluate the current density response
of two-band systems using the length gauge [19,37] and
determine the nonlinear THG conductivity tensor. Moreover,
we show that the spurious divergences, present in the straight-
forward evaluation of the nonlinear conductivity, σφλβα , of the
third-order current response [37] vanish by considering the
relevant combinations of σφλβα . We then use these results to
compute and characterize the low-energy THG in bP.

II. THEORETICAL FRAMEWORK

The aim of the present work is to characterize the THG
at the energy scale of the optical gap, h̄ω ∼ Eg . At this
energy scale, the electronic and optical properties of bP, and
those of many other materials (e.g., biased bilayer graphene
[38], hexagonal boron nitride [39], etc.) are dominated by the
dynamics of the top valence and bottom conduction bands
[14,19–22]. The present work is an extension of Ref. [19],
including extensive generalizations to accommodate purely
interband and mixed inter-intraband processes involving the
valence and conduction band of cold insulators, rather than the
purely intraband motion of doped semiconductors or metals
that typically manifests itself at a smaller energy scale. The
importance of inclusion of mixed inter-intraband processes for
an accurate description of nonlinear processes is demonstrated
for THG at this energy scale, where the response is clearly
dominated by these processes. In addition, we consider a
tight-binding (TB) model applicable to both monolayer and
bulk bP, rather than an effective model for the conduction band
in the vicinity of the � point.

We are interested in characterizing the interaction of light
with the electronic system of crystals, within the dipole
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FIG. 1. Monolayer lattice for bP (a) and the energy dispersion along high symmetry paths for bulk (b) and monolayer (c).

approximation, and therefore ignoring the position dependence
of the electromagnetic field. In this approximation, the total
Hamiltonian reads

Ĥ = Ĥ0 + V̂ (t), V̂ (t) = e r̂ · E(t), (1)

where Ĥ0 defines the unperturbed Hamiltonian for the crystal,
V̂ (t) contains the time-dependent field, and e > 0 is the
elementary charge. In addition, the electromagnetic field is
monochromatic and linearly polarized:

E(t) =
∑

α=x,y,z

[
Eα

ωe−iωt + Eα
−ωeiωt

]
eα/2, (2)

propagating along the z axis, normal to the crystal plane.
The polarization plane defined by the angle relative to the x

axis, such that Eα
ω ≡ E0

ω(cos θ, sin θ,0). The diagonalization
of the unperturbed periodic Hamiltonian defines the crystal
band dispersions εm(k) and respective eigenstates, |m,k〉,
which serve as the basis for the calculation of the linear and
nonlinear response. The calculation of the response is based on
the time-dependent density operator, ρ̂(t) ≡ ∑

mn ρmn|m〉〈n|,
that obeys the quantum Liouville equation ih̄ ∂ρ̂/∂t = [Ĥ ,ρ̂],
which lends itself to a perturbative expansion. In this paper, we
do not consider electron-electron interaction, e.g., excitonic
effects, and therefore the many-body effects arise from the
Fermi-Dirac statistics only.

A. π -electron tight binding

To characterize the low-energy properties of bP, we consider
a nonorthogonal TB model with a pz orbital per atom in the
unit cell. The Fourier transforms of the Hamiltonian and the
respective overlap matrix read

Ĥij (k) =
∑
αβ,R

t
αβ

ij (ri − rj + R)eik·(ri−rj +R), (3a)

Ŝij (k) =
∑
αβ,R

s
αβ

ij (ri − rj + R)eik·(ri−rj +R), (3b)

where ri defines the position of the ith atom in the unit cell
centered at R. Furthermore, we consider that the hopping (tαβ

ij )

and overlap (sαβ

ij ) integrals between orbitals {α,β} of atoms
{i,j} exhibit spatial dependence like that of Slater-Koster
two center integrals [40]. The above-mentioned integrals are
evaluated with density functional tight binding [19,41,42],
using the bulk parameters for bP [24] with a covalent radius
of 2.08 Å. The lattice is depicted in Fig. 1(a), where the lattice

parameters read a1 = 4.376, a2 = 3.314 and a3 = 5.209 Å and
the respective atom positions read

r1 = (−d,0,−h), (4a)

r2 = (d,0,h), (4b)

r3 = (a1/2 + d,a2/2,h), (4c)

r4 = (a1/2 − d,a2/2,−h), (4d)

with d = 0.3525 and h = 1.065 Å [24]. This parametrization
leads to energy dispersion consistent with ab initio results
[14,17,34] for monolayer but overestimates the bulk gap. For
bulk, the gap [17] can be recovered by rescaling the coupling
between different layers with a factor of ∼0.54, or conversely
by stretching the layer separation by ∼9%. The latter was used
to generate all results computed in this work. Note that we
consider normal incidence and as a result, the external field
couples solely with the in-plane motion of the electrons via
the in-plane components of the position operator which are
not affected by the stretching of layer separation. In Figs. 1(b)
and 1(c), we show the band structures along the relevant
high-symmetry paths for bulk and monolayer bP, respectively.
In both systems, the TB dispersions for the top valence and
bottom conduction bands are consistent with previous ab
initio results and experimental data [14,34]. In contrast, the
higher conduction and lower valence bands exhibit significant
deviations. The poor agreement of the latter does not affect
our results, as we restrict our analysis to photon energies
comparable with the optical gap, h̄ω ∼ Eg .

Lattice symmetry plays an important role in linear and
nonlinear processes as it reduces the number of independent
and finite tensors elements. For both bulk and monolayer
bP, the optical conductivity is limited to the diagonal com-
ponents σ (1)

αα [43]. At third order, symmetry reduces the
number of independent tensor components to nine [44], and
restricting the external electromagnetic field to normal inci-
dence further reduces the number of effective tensor com-
ponents to four, namely σ11 ≡ σxxxx , σ18 ≡ σxxyy + σxyxy +
σxyyx , σ29 ≡ σyyxx + σyxyx + σyxxy , and σ22 ≡ σyyyy ; i.e., “8”
denotes xyy and the respective permutations and “9” is xyy

and its permutations, according to the convention in Eq. (2)
of Ref. [44]. The combinations of the nondiagonal tensor
elements, σ18 and σ29, will be addressed in detail below, where
it is shown that these play a crucial role in the calculation of
the THG conductivity and susceptibility, as these combinations
ensure that all nonphysical divergences vanish.
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B. Perturbative response of two-band systems

Here, we review the current density response to an ex-
ternal electromagnetic field for two-band systems using a
perturbative expansion of the time-dependent density matrix,
ρ̂(t) in the length gauge [37,45,46] and the single-particle
velocity operator v̂ = ˙̂r ≡ h̄−1∇kĤ . The current density for
an electronic system with spin degeneracy g = 2 and volume
� reads J = −eg tr{v̂ρ̂}/�. Upon explicit evaluation of the
trace, the current density becomes

J = −eg
∑

k

[(vcc − vvv)n/2 + vvcp + vcvp
∗]/�, (5)

where we define the population difference n ≡ ρvv(t) − ρcc(t)
and the coherence p ≡ ρcv(t). In addition, we made use of
the invariance of the trace of the density matrix, i.e., ρvv(t) +
ρcc(t) = 1, together with the fact that the integral of the velocity
operator over the Brillouin zone (BZ) vanishes. The quantum
Liouville equation reduces to two dynamical equations for p

and n, namely,

−i
∂p

∂t
+ ωcvp = −iF(t) · (p);k − F(t) · Acv n, (6a)

∂n

∂t
= F(t) · ∇kn − 2iF(t) · (Avcp − p∗Acv), (6b)

with the condensed notation F ≡ −ieE(t)/(2h̄) and (Smn);kα
=

(Smn);α ≡ ∂Smn/∂kα − iSmn(Aα
mm − Aα

nn) defines the “gener-
alized derivative” (GD) as in Ref. [37]. In addition, the matrix
elements for the Berry connection read

Amn ≡ i

�

∫
�

dr u∗
mk(r)∇kunk(r), (7)

where umk are cell-periodic functions [46]. A detailed review
of the evaluation of topological quantities, including the Berry
connection, can be found in Ref. [47]. The numerical imple-
mentation of all derivatives relies on central finite-difference
approximations [48]. Since this requires multiple numerical
diagonalizations of the unperturbed Hamiltonian and the
eigenvectors have phase freedom (in the complex plane), all
eigenstates are rotated to ensure a phase that varies smoothly
in k space. In all calculations, we rotate the eigenvectors
such that the first element is real and positive. The dynamical
equations are solved by iteration, generating solutions in the
form of power series in the external electric field. The iterative
process starts with initial conditions defined by the equilibrium
density matrix for a cold insulator, i.e., absence of coherence
p(0)(t) = 0 and fully occupied valence band n(0)(t) = 1. The
process is straightforward and has been discussed in detail
in Refs. [37,46]; hence we display only results for the first-
and third-order iterations. At linear order, the difference in the
populations is identically zero, n(α)(t) = 0, and the coherence
reads p(α)(t) =p(α)

ω exp[−iω̄t] + p
(α)
−ω exp[iω̄∗t], with Fourier

coefficients

p(α)
ω = Fα

ωAα
cv/(ω̄ − ωcv), (8)

where we introduce the complex frequency ω̄ ≡ ω + iη. The
introduction of positive infinitesimal frequency η ≡ 0+ in the
external field ensures the interaction switches on adiabati-
cally [49]. At third order, the interaction with an external

monochromatic electromagnetic field generates two contri-
butions with different fundamental frequencies {3ω,ω}. The
former contributes to the THG and the latter introduces the
intensity-dependent correction to refractive index [1,2]. The
total third order p(t) and n(t) can be cast as

p(λβα)(t) = p
(λβα)
3ω e−3iω̄t + p

(λβα)
−3ω e3iω̄∗t

+p(λβα)
ω e−iω̄t + p

(λβα)
−ω eiω̄∗t , (9a)

n(λβα)(t) = n
(λβα)
3ω e−3iω̄t + n

(λβα)
−3ω e3iω̄∗t

+ n(λβα)
ω e−iω̄t + n

(λβα)
−ω eiω̄∗t . (9b)

The relevant THG coherence reads

p
(λβα)
3ω = − h̄3Fλ

ω̄F
β
ω̄ F α

ω̄

3h̄ω̄ − ε

{ Aλ
cv

2h̄ω̄

(Aβ
vcAα

cv

ε − h̄ω̄
− Aα

vcA
β
cv

ε + h̄ω̄

)

+
[

1

2h̄ω̄ − ε

( Aα
cv

h̄ω̄ − ε

)
;β

]
;λ

}
, (10a)

where we introduce the shorthand notation ε ≡ h̄ωcv . It is
important to highlight the presence of a 1/ω divergence in
the purely interband contribution. This divergence is shown
to be spurious in two steps, first by isolating the divergent
terms by means of partial fraction decomposition and then by
considering the physical observable, rather than the individual
components of the density matrix. With regards to the first step,
the coherence becomes

p
(λβα)
3ω = − h̄3Fλ

ωFβ
ω Fα

ω

3h̄ω̄ − ε

{Aλ
cv

2ε

[Aβ
vcAα

cv − Aα
vcA

β
cv

h̄ω̄

+ Aβ
vcAα

cv(ε + h̄ω̄) + Aα
vcA

β
cv(ε − h̄ω̄)

ε2 − h̄2ω̄2

]

+
[

1

2h̄ω̄ − ε

( Aα
cv

h̄ω̄ − ε

)
;β

]
;λ

}
. (10b)

In the context of light-matter interaction, the current density,
Eq. (5) (or the respective polarization density), represents
the physical observable; more specifically the THG Fourier
components read

jφ(3ω) = −eg

�

∑
k

∑
mn

vφ
nm

∑
λβα

ρ(λβα)
mn

=
∑
λβα

σφλβα(3ω)Eλ
ωEβ

ωEα
ω,

which in turn defines the rank-4 tensor. Moreover, the phys-
ically relevant elements of a general rank-4 tensor in three
dimensions can be grouped into 30 effective tensors according
to the dependence on the external field [44]. This can be
summarized in three classes according to the combinations
of indices 2, 3, and 4:

(1) σφααα: 9 individual components, 3 diagonal (α = φ) and
6 with three repeated entries (α �= φ);

(2) σφβαα + σφαβα + σφααβ : 3 × 6 = 18 combinations with
two repeated entries (α appears twice) in tensor indices 2, 3,
and 4;
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(3) σφλβα + σφλαβ + σφαλβ + σφαβλ + σφβαλ + σφβλα: 3
combinations with no repeating entries in tensor indices 2, 3,
and 4.

By considering these combinations, it becomes clear that
the divergence in the coherence [Eq. (10b)] is spurious, as the
1/ω terms add up to zero. Therefore, the divergent term can
be removed from the original definition, and thus define the
divergence-free effective density matrix 〈ρ〉, e.g., in tensors
with two repeating entries 〈ρ(βαα)〉 = ρ(βαα) + ρ(αβα) + ρ(ααβ).

With regards to n
(λβα)
3ω , the dynamical equation leads to a

rather lengthy and cumbersome expression that contains 1/ω

divergences. As in the case of p
(λβα)
3ω , these divergences are

shown to vanish for the physically relevant combinations of the
σφλβα . The process of extricating the spurious terms is made
simpler by expanding the numerator in a power series of the
photon energy, which naturally isolates the divergent terms

n
(λβα)
3ω = Fλ

ωFβ
ω Fα

ω

ih̄3 ∑5
j=0(h̄ω̄)j−1n

λβα

j

3ε2(h̄2ω̄2 − ε2)2(4h̄2ω̄2 − ε2)
, (11)

where coefficients n
λβα

j are frequency independent and retain

the tensorial nature of n
(λβα)
3ω . The respective elements are

expressed in terms of the gauge-invariant GD [37],

n
λβα

0 = 2ε5
[(
Aλ

vcAα
cv + Aα

vcAλ
cv

)
∂ε/∂kβ − (

Aβ
vcAα

cv + Aα
vcAβ

cv

)
∂ε/∂kλ

] + ε6
[(
Aβ

vcAα
cv + Aα

vcAβ
cv

)
;λ

− 2Aλ
vc

(
Aα

cv

)
;β − 2

(
Aα

vc

)
;βA

λ
cv

]
, (12a)

n
λβα

1 = −ε4[3(
Aα

vcAβ
cv − Aβ

vcAα
cv

)
∂ε/∂kλ + 8

(
Aα

vcAλ
cv − Aλ

vcAα
cv

)
∂ε/∂kβ

] + ε5{6
[(
Aα

vc

)
;βA

λ
cv − Aλ

vc

(
Aα

cv

)
;β

]
+ (

Aα
vcAβ

cv − Aβ
vcAα

cv

)
;λ

}
, (12b)

n
λβα

2 = ε3
[
10

(
Aλ

vcAα
cv + Aα

vcAλ
cv

)
∂ε/∂kβ + 8

(
Aβ

vcAα
cv + Aα

vcAβ
cv

)
∂ε/∂kλ

] − ε4
{
2
[(
Aα

vc

)
;βA

λ
cv + Aλ

vc

(
Aα

cv

)
;β

]
+ 5

(
Aβ

vcAα
cv + Aα

vcAβ
cv

)
;λ

}
, (12c)

n
λβα

3 = ε2
[
4
(
Aλ

vcAα
cv − Aα

vcAλ
cv

)
∂ε/∂kβ + 13

(
Aα

vcAβ
cv − Aβ

vcAα
cv

)
∂ε/∂kλ

] + ε3
{
6
[
Aλ

vc

(
Aα

cv

)
;β − (

Aα
vc

)
;βA

λ
cv

]
+ 5

(
Aβ

vcAα
cv − Aα

vcAβ
cv

)
;λ

}
, (12d)

n
λβα

4 = 4ε2
[(
Aα

vc

)
;βA

λ
cv + Aλ

vc

(
Aα

cv

)
;β + (

Aβ
vcAα

cv + Aα
vcAβ

cv

)
;λ

]
, (12e)

n
λβα

5 = 4ε0
(
Aβ

vcAα
cv − Aα

vcAβ
cv

)
∂ε/∂kλ − 4ε1

(
Aβ

vcAα
cv − Aα

vcAβ
cv

)
;λ; (12f)

however, several terms reduce to regular derivatives, as the
Berry connection part of the GD vanishes. Following the pro-
cedure outlined above for the coherence, it is straightforward
to show that the contributions from the effective coefficients
〈nλβα

0 〉 vanish, thus showing that the 1/ω divergence is spuri-
ous. Additional spurious contributions are found in the higher
order terms of this expansion. Discarding these contributions
allows for the simplification of several terms, namely 〈nλβα

1 〉 ≡
−ε2〈nλβα

3 〉 ≡ 6ε5[(Aα
vc);βAλ

cv − Aλ
vc(Aα

cv);β] and 〈nλβα

5 〉≡ 0.
It is worth noting that the approach to the evaluation of the

nonlinear density matrix can accommodate additional bands
and, also, be used for metals. Thus, the present formulas
still hold; however, additional contributions exist for the
response of multiband and metallic systems. These terms
concern transitions to other bands and, in case of metallic
systems, terms involving the gradient of Fermi functions,
i.e., ∂f (εn(k))/∂kα . The latter are only relevant for met-
als, because such gradients are vanishingly small for cold
insulators [37].

Based on the regularized expressions for the coherence and
population difference, we define the THG conductivity as a
combination of three terms σ

(3)
φλβα = σ

(3,A)
φλβα + σ

(3,B)
φλβα + σ

(3,C)
φλβα

separated according to the nature of the transitions involved
in each term. Contributions arising from purely interband
transitions are captured in the first term, A, whereas the
remaining terms concern mixed processes, involving one or

two intraband transitions, B and C respectively. The full form
of each contribution becomes

σ
(3,A)
φλβα (3ω)

i σ3Nd

= h̄3
∑

k

v
φ
vcv

λ
cv

3h̄ω̄ − ε

v
β
vcv

α
cv + vα

vcv
β
cv

ε3(h̄2ω̄2 − ε2)
+ (c ↔ v),

(13a)

σ
(3,B)
φλβα (3ω)

i σ3Nd

=
∑

k

v
φ
cc − vφ

vv

4h̄2ω̄2 − ε2

∑5
j=0(h̄ω̄)j−1n

λβα

j

3(h̄2ω̄2 − ε2)2
, (13b)

σ
(3,C)
φλβα (3ω)

i σ3Nd

= h̄
∑

k

(
v

φ
vc

3h̄ω̄ − ε

)
;λ

1

2h̄ω̄ − ε

(
vα

cv/ε

h̄ω̄ − ε

)
;β

+ (c ↔ v), (13c)

where the interband position matrix elements are expressed
as velocity matrix elements via Aα

mn = − ih̄ vα
mn/εmn [37,46].

Nd is a normalization constant and σ3 sets the scale of
the THG conductivity. Given that the dimensionality of the
system under consideration defines the dimensions of σ (N)

and χ (N), we choose to set the σ3 and Nd for 2D systems.
In 2D, the THG conductivity scale reads σ3 = e4a2

0/(8γ 2
0 h̄) =

3.04 × 10−25 Sm2/V2, with γ0 = 1 eV, a0 = 1 Å. The respec-
tive normalization constant N2 ≡ gγ 2

0 h̄/(a2
0A), where A ≡

ACNxNy is the total area for NxNy unit cells with area AC .
For the 3D system, the normalization constant is defined
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as N3 ≡ a3gγ 2
0 h̄/(a2

0NxNyNzVC) = N2/Nz, with unit cell
volume VC = a3AC and Nz unit cells along the z direction.
The conversion of 3D to 2D nonlinear conductivity is obtained
through the multiplication by the vertical lattice parameter
a3. Moreover, to improve numerical stability and account
for broadening in realistic spectra, we keep the adiabatic
coupling finite, h̄η = 0.05 eV, throughout all calculations. It is
worth mentioning that in case of the diagonal tensor elements,
the A and B contributions reduce to compact closed-form
expressions

σ
(3,A)
φφφφ(3ω)

i σ3Nd

= h̄3
∑

k

12h̄ω̄ |vφ
vc|4/ε3

(9h̄2ω̄2 − ε2)(h̄2ω̄2 − ε2)
, (14a)

σ
(3,B)
φφφφ(3ω)

i σ3Nd

= h̄2
∑

k

2
(
v

φ
cc − vφ

vv

)
ε2

(4h̄2ω̄2 − ε2)(h̄2ω̄2 − ε2)

×
[

6h̄ω̄
∣∣vφ

vc

∣∣2
/ε

h̄2ω̄2 − ε2

∂ε

∂kφ

+
(

v
φ
vc

ε

)
;φ

v
φ
cv(2h̄ω̄ − ε)

ε

+ v
φ
vc(2h̄ω̄ − ε)

ε

(
v

φ
cv

ε

)
;φ

]
, (14b)

that allow for a more clear understanding of the nature of each
process.

Under irradiation by an external electromagnetic field, the
linear and nonlinear optical conductivities generate currents
in the material, which in turn radiate an electromagnetic field,
E(t), that includes among other contributions the nth harmonic
field [1,2]. For a thin sheet in the interface of two media, the cur-
rents radiate a flux density I (ω) = ε0c|Eω|2/2 = μ0c|j(ω)|2/8
[50,51], that can be analyzed with a linear polarizer, such that
the flux density transmitted through the linear polarizer reads
Iζ (ω) = μ0c|j(ω) · (cos ζ, sin ζ,0)|2/8. The latter provides a
tool to analyze nth harmonic generation as it allows us to
disentangle the contributions from different tensor elements,
using exclusively optical techniques. For third order processes
in orthorhombic crystals, with the external field linearly polar-
ized at an angle θ with respect to the x axis, the intensity of
the filtered signals along x (ζ = 0) and y (ζ = π/2) read

Ix/I0 = |σ̄11|2 cos6 θ + 2	[σ̄11σ̄
∗
18] cos4 θ sin2 θ, (15a)

Iy/I0 = |σ̄22|2 sin6 θ + 2	[σ̄22σ̄
∗
29] cos2 θ sin4 θ, (15b)

where I0 = μ0cσ
2
3 E6

0/8 sets the intensity scale, with
σ̄ij ≡ σij /σ3. Equations (15) can be used to probe the
magnitudes of effective tensor elements and a couple of
relative phases from experimental data. Additional relative
phases can be determined by measuring the so-called parallel
and perpendicular intensity, i.e., analyzer synchronized with
the polarization plane such that ζ = θ and ζ = θ + π/2 for
parallel and perpendicular intensities.

III. RESULTS

We start by addressing the key properties of the energy
dispersion of the π -electron tight-binding model for bulk
and monolayer. Figure 1(b) shows the bulk energy dispersion
along a high-symmetry path in the orthorhombic BZ, with
chemical potential μ = −5.31 eV. It exhibits a direct gap,

FIG. 2. Linear response of bulk and monolayer bP h̄ω =
0.793 eV ∼ 1560 nm. The conductivity is plotted in units of 2D
conductivity σ1 = e2/4h, where the bulk conductivity is converted
into 2D conductivity by multiplying by the vertical lattice parameter
a3 = 5.209 Å.

Eg = εcv(k = Z) = 0.316 eV, at the Z = (0,0,π/a3) point,
and the second lowest resonant vertical transition is associated
with the � point and has a much larger energy separation,
�E = 3.80 eV. Therefore, the low-energy (h̄ω 
 1 eV) optical
response, including THG, should depend mostly on transitions
associated with the vicinity of the Z point. With regards to the
monolayer, the energy dispersion is shown in Fig. 1(c), with
μ = −4.75 eV. It also exhibits a direct gap, Eg = 1.95 eV
found at the BZ center �. Moreover, the relative difference to
the next resonant vertical transition, �E(k = S) = 6.58 eV is
significantly smaller than in bulk, where S = π (a−1

1 ,a−1
2 ,0).

As discussed below, transitions occurring in the vicinity of S
can play a role in THG at the energy scale of the gap, i.e.,
h̄ω ∼ Eg .

Regarding the optical properties, we start by considering
the optical conductivity, evaluated with Eq. (22) of Ref. [46].
In Fig. 2, we plot the real part of diagonal elements of the
conductivity tensor, σxx (black) and σyy (red), with solid lines
and dot-dashed lines representing the bulk and monolayer
responses. The off-diagonal conductivity elements are iden-
tically zero, as expected for crystals with inversion symmetry.
The lattice anisotropy manifests itself similarly in bulk and
monolayer systems, where the |σxx |/|σyy | ∼ 20 ratios at the
respective band gap threshold, h̄ω ∼ Eg , exhibit the dominant
nature of σxx at low energy. In spite of the clearly distinct
frequency dependence, results show (upon conversion to a
2D conductivity) that the bulk response has a magnitude
comparable to that of the monolayer and to the quantum
of conductance ∼σ1 = e2/4h̄. The presence of the finite
broadening energy, h̄η = 0.05 eV, smooths the response at
the optical gap and is responsible for the apparently finite
conductivity at zero frequency in the bulk results [14,17].
The optical conductivity of bulk is in agreement with reports
on extinction spectra [52] and with the dielectric function
computed from electron energy loss spectroscopy (EELS)
data [53]. Results for monolayer are consistent with previous
calculations in the single-particle approximation [14,20,21] but
show limitations of this approximation by not accounting for
excitonic resonances present in monolayer bP [17,52,54].

With respect to THG, Fig. 3(a) shows the magnitude of the
four effective nonlinear conductivity tensors, namely σ11, σ18,
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FIG. 3. THG of bulk bP in dimensions of 2D nonlinear conductiv-
ity σ3. In panel (a), we plot the absolute value of the effective tensor
components of σ (3)(3ω). Curves for σ18, σ29 are scaled by a factor
of 10 and σ22 by 100. Black vertical lines indicate THG resonances,
h̄ω = Eg/3,Eg/2,Eg . Panel (b) illustrates the decomposition of the
dominant term, σ11, into the components of Eqs. (13). Panel (c)
shows the magnitude (in arbitrary units) integrand (φλβα = xxxx)
of Eq. (13b) near Z with h̄ω = 0.5 eV and kz = π/a3.

σ29, and σ22 as discussed in Sec. II A. The THG is similar
to the linear response: highly anisotropic and dominated by
response along the x axis, i.e., σ11. To make the remaining
effective conductivities visible in Fig. 3(a), we amplify σ18, σ29

by a factor of 10 and σ22 by 100. Figure 3(b) is dedicated to
the analysis of the dominant term, σ11, where we compare
the magnitude with the individual contributions, as defined in
Eq. (13). Results show that the response in the low-energy
range is dominated by the mixed inter-intraband processes.
The prominence of the mixed processes arises from the fact
that, for two-band systems, these contain terms with quadratic
resonances, i.e., ∝1/η2, rather than the simple resonances, i.e.,

∝1/η, observed in the purely interband process. The higher
order resonances stem from the expansion of the generalized
derivivates such as

(
v

φ
vc

3h̄ω̄ − ε

)
;λ

=
(
v

φ
vc

)
;λ

3h̄ω̄ − ε
+ v

φ
vc

(3h̄ω̄ − ε)2

∂ε

∂kλ

.

Considering the first resonance condition, 3h̄ω ∼ ε, the
leading-order contribution to the C term reads

σ
(3,C)
φλβα (3ω)

iσ3Nd

∼ −9/2

h̄η2

∑
k

vφ
vc

∂ε

∂kλ

[(
vα

vc

)
;β

ε3
+ 5

3

vα
vc

ε4

∂ε

∂kβ

]
,

whereas the equivalent resonance in the purely interband term
reads

σ
(3,A)
φλβα (3ω)

iσ3Nd

∼ −9

8

h̄2

iη

∑
k

v
φ
vcv

λ
cv

ε2

v
β
vcv

α
cv + vα

vcv
β
cv

ε3
.

By the same token, it is possible to show that the B term
contains the highest order resonances for 2h̄ω ∼ ε and h̄ω ∼ ε.
Hence, the double intraband process, Eq. (13c), plays an
important role at very low energies and decays rapidly for
higher energies. Conversely, the single intraband process,
Eq. (13b), generates the overall largest contribution and con-
tains multiple resonances including some above the band-gap
energy. Moreover, this effect is present even with a broadening
parameter, h̄η = 50 meV, larger than the energy scale of room
temperature fluctuations, kBT 
 25 meV, thus showing that it
is robust, rather than an exclusive feature of ultraclean samples.
It is worth noticing that all resonances are blue shifted with
respect to the band-gap resonances, i.e., h̄ω = Eg/3,Eg/2,Eg .
In Fig. 3(c), we plot a map of the absolute value of the integrand
present in Eq. (13b) in the vicinity of the high symmetry point
Z at h̄ω = 0.5 eV. This behavior is common for all integrands
independently of the photon energy and leads to the blocking of
the lowest energy transitions, which in turn causes the blue shift
of the resonances. Additionally, it identifies the contributions
that generate various features in the THG response, such as the
peak at h̄ω ∼ 0.5 eV. The vanishing nature of the integrands
of Eqs. (13) at the Z point stems from three different sources
that individually exhibit this behavior. First, products of the
velocity matrix elements, such as v

β
vcv

α
cv . Second, difference

between diagonal velocity matrix, e.g., vα
cc − vα

vv . Third, all
gradients and GDs present in Eqs. (13).

Turning our attention to the monolayer, Fig. 4(a) shows the
magnitude of the four effective THG conductivities. The mono-
layer THG response exhibits several differences with respect
to the bulk response. First, all features appear at resonances
associated with a large joint density of states, including the
small resonance slightly above the band-gap energy, h̄ω =
εcv(k = S)/3 ∼ 2.19 eV. The presence of the latter shows that
the entire BZ contributes to the THG at the energy scale of
the fundamental resonance h̄ω ∼ Eg . Second, Fig. 4(b) shows
that the THG conductivity is dominated by the mixed processes
but, unlike in the bulk, each term dominates in distinct parts of
the spectrum with minimal overlap near the resonance 2h̄ω ∼
Eg . The lowest energy response is dominated by the doubly
intraband process, whereas the response in the vicinity of the
gap threshold is controlled by the single intraband process.
Moreover, the largest magnitude of the nonlinear conductivity
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FIG. 4. THG of monolayer bP. In panel (a), we plot the absolute
value of the effective tensor components of σ (3)(3ω). Curves for
σ18, σ29 are scaled by a factor of 2 and σ22 by 10. Black vertical lines
indicate THG resonances, h̄ω = Eg/3,Eg/2,Eg . Panel (b) shows the
decomposition of the dominant term into the components Eqs. (13).

is found at the lowest resonance, 3h̄ω ∼ Eg . Last, but not
least, the overall scale of the THG conductivity is significantly
smaller than that of the bulk crystal; e.g., the ratio between the
maximum THG conductivities is ∼35. This can be understood
as a consequence of the decay of the nonlinear conductivity
with the increase of the gap, as in the case of the second-order
response [46]. Yet, due to the intricate nature of Eqs. (13), it
was not possible to determine an accurate estimate for the gap
dependence of the THG conductivity in bP.

The analysis of the radiated THG signal, Eqs. (15), provides
a tool to probe the nonlinear conductivity tensor. In Figs. 5(a)
and 5(b), we plot the normalized intensity patterns for bulk
and monolayer bP. Solid black (red) curves represent Ix (Iy)
intensities at incident photon energy h̄ω = 0.793 eV, using re-
sults obtained from the evaluation of Eqs. (13). The anisotropy
of the system manifests itself clearly for both the bulk and
monolayer bP, with the patterns dominated by the contribu-
tion of Ix/I0 
 |σ̄11|2 cos6 θ . To the best of our knowledge,
experimental data on THG in bP is limited to bulk or several
layer [31–33] and results for the intensity dependence on the
polarization angle appear to be inconsistent, e.g., pattern of
total intensity presented by Ref. [32] exhibits maxima along
the crystal x direction, whereas Refs. [31,33] shows maxima
align with directions other than the primitive lattice directions,
namely θ ∼ {±π/6, ± 5π/6}. Additionally, the pattern for Iy

in Ref. [32] is not symmetric with respect to the y direction, i.e.,
θ = ±π/2, hence not compatible with the THG radiated field
by orthorhombic crystals, Eqs. (15). Notwithstanding these
differences between the experimental results, all indicate a

FIG. 5. Normalized THG intensities for bulk (a) and monolayer
(b) bP at h̄ω = 0.793 eV ∼ 1560 nm. Solid lines depict the THG
intensity pattern using the nonlinear conductivities computed with
Eq. (13). Dashed lines depict the THG intensity pattern with increased
response along y axis as described in the main text. Black and red lines
represent the THG pattern along crystal directions, ζ = {0,π/2}.

much larger response along the y direction (ζ − π/2) than that
predicted by our results. Following the spirit of Ref. [14], we
consider the effect of artificially increasing the matrix elements
along the y direction by a constant factor. Such increase can
make Iy visible in the scale of Figs. 5(a) and 5(b) at ζ = π/2
as depicted by dashed lines, where the y-direction matrix
elements are increased by factors of 4.5 and 3.25, respectively.
Nonetheless, these patterns remain inconsistent with reported
experimental data, indicating that this discrepancy should stem
from additional mechanisms. It is worth noting that recent
results of photoluminescence in high-quality samples [17]
have shown that the linear response along the y direction
is vanishingly small, indicating that the apparently higher
response along the y direction can be attributed to mechanisms
other than the intrinsic response of the system, such as disorder.
In addition, the estimate of the magnitude of χ

(3)
eff and its ratio

with regards to graphene’s χ
(3)
eff remains an open question, as

experimental reports indicate different results that span several
orders of magnitude [31–33]. Our results indicate that both
bulk and monolayer THG conductivities at h̄ω = 0.793 eV
(λ ∼ 1560 nm) have magnitudes ∼20σ3, which corresponds to
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a nonlinear susceptibility χ
(3)
eff ∼ 10 × 10−19 nm2/V2, similar

to recent reported results for bulk bP [32,33].

IV. CONCLUDING REMARKS

We studied THG in bP based on derivation of the non-
linear current density response, without the divergences that
plague the direct evaluation of j (3) even when computed in
the length gauge [37]. We show that these divergences are
spurious and can be removed by considering the effective
tensor components, i.e., physically relevant combinations of
tensor elements, rather than the individual elements σφλβα . The
resulting nonlinear conductivities, Eqs. (13), are free of diver-
gences and can be applied directly to two-band systems in the
independent particle approximation. Using a nonorthogonal
TB model to compute the energy dispersion and eigenstates
of bP, we evaluate the low-energy THG conductivity. Results
for bulk bP agree, at least qualitatively, with the experimental
reports of THG in bulk or many-layer samples bP [31–33].
Furthermore, the results show the importance of the mixed
inter-intraband processes for the nonlinear response at energy
scales comparable with the optical gap, particularly for systems
whose electronic properties are accurately captured by two
bands at this energy scale.

The present calculations ignore electron-electron interac-
tions, which can play an important role in the optical response
of a material, particularly for insulators with a large gap such
as the hexagonal boron nitride (hBN), monolayers of TMDs,
as well as mono- and few-layer bP. It has been shown that,
due to the large gap in hBN, excitonic binding plays a crucial
role in SHG [45] and nonlinear photocurrents [46]. In both
cases, the response onset is reduced significantly and most of

spectral weight is transferred to the features associated with the
fundamental exciton. First principles studies indicate that the
linear responses of single- and few-layer bP exhibit similar
behavior [20,21]. Therefore, our results for monolayer bP,
computed within the framework of single-particle approxima-
tion, should be considered as a qualitative description of the
response, rather than quantitatively. With respect to bulk bP, we
expect excitonic effects to play a small role, since the exciton
binding energy decreases with increasing number of layers
[21,55]. Experimental reports on photoluminescence [56] and
extinction spectra [52] support the results of theoretical studies
on the effects of electron-electron interactions by showing
that the excitonic resonances soften with increased number
of layers. Furthermore, the small gap of bulk bP facilitates
doping with charge carriers, which in turn will suppress the
electron-electron interactions even further. This is supported
by the smooth and steplike extinction spectra for bulk bP
reported in Ref. [52] and also by the dielectric function of bulk
bP computed from EELS data in Ref. [53]. Based on these
experimental reports and the above-mentioned arguments, we
expect that the nonlinear response of bulk bP can be accurately
characterized within the framework of the single-particle
approximation.
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