

Aalborg Universitet

Polynomials in the Bernstein Basis and Their Use in Stability Analysis

Leth, Tobias

DOI (link to publication from Publisher):
10.5278/vbn.phd.tech.00024

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Leth, T. (2017). Polynomials in the Bernstein Basis and Their Use in Stability Analysis. Aalborg
Universitetsforlag. Ph.d.-serien for Det Tekniske Fakultet for IT og Design, Aalborg Universitet
https://doi.org/10.5278/vbn.phd.tech.00024

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

https://doi.org/10.5278/vbn.phd.tech.00024
https://vbn.aau.dk/en/publications/d855746c-ea60-493e-8a87-83dd0cb6ce7c
https://doi.org/10.5278/vbn.phd.tech.00024

TO
B

IA
S LETH

PO
LYN

O
M

IA
LS IN

 TH
E B

ER
N

STEIN
 B

A
SIS A

N
D

 TH
EIR

 U
SE IN

 STA
B

ILITY A
N

A
LYSIS

POLYNOMIALS IN THE BERNSTEIN
BASIS AND THEIR USE IN

STABILITY ANALYSIS

BY
TOBIAS LETH

DISSERTATION SUBMITTED 2017

Polynomials in the Bernstein
Basis and Their Use in

Stability Analysis

PhD Dissertation
Tobias Leth

Dissertation submitted October 13, 2017

Dissertation submitted:	 October 13, 2017

PhD supervisor: 	 Prof. Rafał Wisniewski
			 Aalborg University

Assistant PhD supervisor:	 Assoc. Prof. Christoffer Sloth
			 Aalborg University

PhD committee: 	 Associate Professor Henrik Schiøler (chairman)
			 Aalborg University

			 Associate Professor Raphaël Jungers
			 UCLouvain

			 Software Engineer Joachim Dahl
			 Mosek ApS

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-087-6

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Tobias Leth

Printed in Denmark by Rosendahls, 2017

Abstract

This Thesis considers stability analysis of polynomial dynamical systems us-
ing formulations in the Bernstein basis. The thesis is split into two parts, one
considering the simplicial Bernstein basis and one considering its utilisation
in stability analysis.

The first three chapters cover the notation and definitions needed to in-
troduce the Bernstein basis polynomials, how polynomials are described in
the basis, conventions for numbering simplices and vertices, some properties
of the basis polynomials, and the arithmetic needed in part two. The last
chapter of part one considers a utilisation of the Bernstein basis to certify
positivity of positive polynomials.

Part two is dedicated to stability analysis in the sense of Lyapunov. The
first chapter considers polynomial Lyapunov functions described in the Bern-
stein basis and how the conditions on the functions translates into conditions
on the coefficients when described in the basis. The remaining chapters de-
velop algorithms for the automated generation of Lyapunov functions and
focuses on convergence, solvability, and strategies for modification of un-
solvable linear programming problems.

iii

Resumé

I denne afhandling benyttes beskrivelser i Bernstein basen til at analysere sta-
bilitet af dynamiske systemer med polynomiel karakteristik. Afhandlingen
er i to dele, den ene handler om den simplicielle Bernstein base og den anden
anvender basen til stabilitets analyse.

De første tre kapitler omhandler notation og definitioner nødvendige til
indførelsen af Bernstein basis polynomierne, hvordan polynomier er beskre-
vet i basen, konventioner til nummerering af simplekser og vertekser, nogle
egenskaber ved base polynomierne og arimetik der skal bruges i del to. Det
sidste kapitel i del et behandler anvendelsen af Bernstein basen til at certifi-
cerer positive polynomier positive.

Del to betragter stabilites analyse i henhold til Lyapunov. Det første kapi-
tel omhandler polynomielle Lyapunov funktioner beskrevet i Bernstein basen
og hvordan betingelserne på funktionerne kan oversættes til betingelser på
koefficienterne. De resterende kapitler udvikler algoritmer til automatisk
genereing af Lyapunov funktioner og fokuserer på konvergens, løselighed og
strategier til modifikationen af uløselige lineære programmerings problemer.

v

Acknowledgements

Several individuals and institutions deserve acknowledgement for their con-
tributions to my studies and time as a PhD student.

First and foremost, my gratitude goes to my supervisors, Rafał Wisniewski
and Christoffer Sloth. They initiated the process of funding the project long
before I finished my master studies, and when time came, they accepted my
application for the position. During the PhD, they continuously challenged
my theoretic understanding and they aided and guided my work in what-
ever direction I found it interesting or necessary to proceed. I feel honoured
to have been allowed to submerge into the depths that are scientific research.

During regular workdays, the atmosphere at my department was pre-
dominantly friendly and easy going. When I needed help, advise, or simply
a break, I often sought out colleagues and I was rarely turned away. Espe-
cially my workout buddy Rasmus Pedersen and the members of my lunch
club John-Josef Leth, Henrik Schiøler, Jesper Dejgaard Pedersen, and Simon
Jensen, deserve to be mentioned by name. They provided an often much
needed break from the studies. Also the section administrator, Susanne Nør-
revang, has been invaluable. She knows the ins and outs of the bureaucracy
and was always quick to provide whatever document or connection needed
to resolve any and all problems I had during the past three years.

My appreciation goes to Jan Østergaard who spent hours pondering and
discussing my questions regarding information hidden in unsolvable lin-
ear problems. Without his help, I am not sure I would have found Farkas’
Lemma.

Outside Aalborg University, Sriram Sankaranarayanan deserves praise.
He hosted me during my exchange visit at the University of Colorado at
Boulder. We had numerous fruitful discussions expanding my understand-
ing of both his and my own work. During my exchange visit, Lieven Vanden-
berghe invited me to the University of California at Los Angeles and Kathryn
Johnson invited me to the National Renewable Energy Laboratory. I extend
my gratitude to the both of them.

The last persons to thank are the fourth person involved in the CodeMe
project, Marie-Françoise Roy and her husband Michel Coste. I thank them

vii

for their valuable inputs to the more mathematical aspects of my Thesis.

Regarding institutions, I would like to thank the following three founda-
tions for financial support at various occasions during my studies: Augusti-
nus Fonden, Otto Mønsted, and Fabrikant P. A. Fiskers Fond.

Finally, I thank Klitgården Refugium for hosting me during the final phase
of writing my Thesis.

Tobias Leth
Klitgården, September 18, 2017

Contents

Abstract iii

Resumé v

Acknowledgements vii

Preface xiii

Introduction 1

I Polynomials in the Bernstein Basis 5

Bernstein Basis Introduction 7
1 Definitions . 7

1.1 Barycentric Coordinates 8
1.2 Simplex & Collection of Simplices 8
1.3 Triangulation . 11
1.4 Basis Polynomials . 12

2 Polynomials in the Bernstein Basis 16
2.1 Basis Transformation and Additional Notation 18

3 Polynomials on Collection of Simplices 21
4 Software . 32

Bernstein Basis Properties 35

Arithmetic 39
5 Multiplication . 39
6 Degree Elevation . 40
7 Addition . 41
8 Differentiation . 41
9 Software . 44

ix

Contents

Positivity Certification 45
10 By Degree Elevation . 46
11 By Sub-Division . 47
12 Vertex Placement . 50

12.1 Pre-Defined Vertex Placement 51
12.2 Adaptive Vertex Placement 52

13 By Dimension Elevation . 58
14 Gap Between Positive Definite and Bernstein Basis Certifiable . 59
15 Software . 60

II Stability Analysis 61

Stability Introduction 63
16 Definitions . 63

16.1 Comparison Function . 63
16.2 Vector Field . 64
16.3 Equilibrium Point . 64

17 Lyapunov Stability . 64
17.1 Lyapunov Function . 65
17.2 Lyapunov Functions in the Bernstein Basis 66
17.3 Continuous Piecewise Lyapunov Functions 67

18 Existence of Structured Lyapunov Functions 69
18.1 Exponential Stability . 70
18.2 Rational Stability . 70
18.3 Structured Lyapunov Functions 71

Stability Certification 75
19 Linear Program for Synthesising 75
20 Infeasibility . 82

20.1 Regular Sub-Division . 83
20.2 Irregular Sub-Division . 89

21 Software . 97
22 Design Using the Basis Polynomials 99

Instability Certification 101
23 Modifying the Linear Program 101
24 Unstable Systems . 102
25 Software . 105

References 107

A Selected Basis Polynomials I

x

Contents

B Basis Transformation Derivation III

C Positivity Certification By Dimension Elevation IX

D Investigation of Counterexample XIII

E Polynomial Lyapunov Functions for Rationally Stable Systems XVII

F Software Tutorial XXV

xi

Contents

xii

Preface

This Thesis is submitted as a monograph in partial fulfilment for the degree of
Doctor of Philosophy at the Section of Automation and Control, Department
of Electronic Systems, Aalborg University, Denmark. The work has been con-
ducted from October 15th, 2014 to October 13th, 2017 under the supervision
of Professor Rafał Wisniewski and Associate Professor Christoffer Sloth. The
work was supported by the Danish Council for Independent Research under
grant number DFF - 4005-00452 in the project CodeMe. From September 6th,
2016 to January 14th, 2017 I lived in Boulder, Colorado, USA and studied un-
der the supervision of Associate Professor Sriram Sankaranarayanan.

During my studies, I felt like I tried to answer a question that I did not
know how to ask. As I dug deeper into the subject, the quantities of inter-
est revealed themselves and the formulation of the right questions started to
take place. The notation had to be changed a couple of times to accommodate
this. The notation presented in the first few chapters is perhaps not intuitive
at first glance, but as you read on, dear reader, I am comfortable it will make
sense to you.

This Thesis is atypical in the sense that I will take the reader on a journey
through the entirety of my studies; my results, my failures, and the as-of-
yet unanswered questions. While studying, I did sometimes ponder quite a
lot on the questions which did not allow for a clean mathematical answer. I
allowed for much of this pondering to find its way into the thesis as I find it
interesting and necessary to fully convey my considerations and explorations
into the subjects.

Tobias Leth
Klitgården, September 18, 2017

xiii

Preface

xiv

Introduction

This Chapter is included to serve as short introduction into why the content
of my PhD study is interesting. It also presents an overview of my contribu-
tions in the field of stability analysis, outreach to related work, and an outline
of the content.

Motivation

The study presented in this Thesis is motivated by the simple goal of fur-
ther automating the application of Lyapunov theory. Linear systems are well
understood and their analysis is accompanied by software tools for stability
investigation and controller derivation. The next natural step is to attack the
non-linear case. This has shown itself to be significantly more involved than
the linear counterpart.

Arguably, the softest non-linearity is the class of polynomials. This is
why the vast majority, if not all, of the existing material on the subject is
restricted to polynomial non-linearities. Most of the existing software tools
rely on semi-definite programming which suffers from scalability issues. In
addition, the existing software tools are predominantly academic in the sense
that they require a user with significant insight and theoretical knowledge.
Compared to the results obtained for linear systems, the work on polynomial
systems has just begun and there is a difficult and long road ahead.

To take a step in that direction, the project CodeMe set out to utilise spe-
cific properties of the Bernstein basis. By understanding the basis and linking
it to Lyapunov theory, a technique for stability analysis relying on linear pro-
gramming could potentially be obtained. It was expected to be able to derive
linear algorithms to aid the analysis and design of complex systems. It was
also expected to devise a software tool applicable in the industry by users
without expert knowledge on the subject.

It is left to the reader to pass judgement on whether or not these goals
have been reached.

1

Introduction

Contributions

My studies can be divided into three areas.
First, I tackled a case study on the use of positive and sum-of-squares

polynomials to prove stability in a drinking water distribution network. This
was useful to familiarise myself with state-of-the-art tools and techniques.
The work was published in [30].

Secondly, I worked on understanding the Bernstein basis, particularly its
advantages and drawbacks in relation to stability analysis. It initially resulted
in [27] including an algorithm for synthesising Lyapunov functions. After-
wards, the results were improved and extended into [29] where the algorithm
was modified to efficiently handle infeasibility.

Thirdly, I considered termination criteria for the algorithm. I was es-
pecially interested in the circumstances under which termination could be
compromised even when the algorithm was applied to a stable system. This
called for the resurrection of the notion of rational stability and resulted in
[28].

Throughout my studies, I implemented functions to execute various cal-
culations. The functions have been composed into a MATLAB toolbox ac-
companied by a tutorial and it is freely available. It can be downloaded from
the project web page: http://kom.aau.dk/project/CodeMe/software.html

Related Work

Being a monograph, the thesis does not contain an explicit state-of-the-art
section. Readers interested in related work are referred to the following sec-
tions and external references on various topics.

This Thesis solely focuses on the simplicial Bernstein basis. Readers in-
terested in the tensorial description are referred to e.g. [8] or [15]. Readers
interested in the description of general convex polytopes using the Handel-
man basis are referred to [21].

The Bernstein basis has found its use in other applications. See e.g. [35]
or [36] for applications in optimisation, [50] for applications in reachability,
or [51] for applications in polynomial evaluation.

The introduction in Chapter Positivity Certification contains references to
other techniques for positivity certification.

Section 17.3 contains references to work regarding weakening the require-
ments on Lyapunov functions and using the Dini derivative.

Section 18.3 contains a collection of results regarding existence of struc-
tured Lyapunov functions.

2

http://kom.aau.dk/project/CodeMe/software.html

Introduction

Section 22 presents an alternative utilisation of the Bernstein basis for
synthesising Lyapunov functions presented in [42]. The perhaps most widely
known approach for synthesising Lyapunov functions is the sum-of-squares
realisation. It first appeared in [37] and is accompanied by the toolbox SOS-
TOOLS [40]. The toolbox GloptiPoly [19] is another option which uses the
moment approach to formulate the optimisation.

Outline

The thesis is divided into two parts. The first part is concerned with the
description of polynomials in the simplicial Bernstein basis. It collects infor-
mation from throughout the literature and provides a uniform and coherent
presentation of known and new results. Especially the extension to work-
ing on more than one simplex is novel, and needed in part two. Part two
considers the use of the Bernstein basis in stability analysis using Lyapunov
functions. It derives theory and algorithms for the synthesis of Lyapunov
functions and particular emphasis is placed on handling infeasibility effi-
ciently.

Chapters presenting mathematical operations terminate with a section
covering software, implemented in MATLAB, to perform the operations. A
tutorial to the toolbox is given in the last appendix.

3

Introduction

4

Part I

Polynomials in the Bernstein
Basis

5

Bernstein Basis Introduction

This Chapter introduces all basic concepts needed to present the Bernstein
basis polynomials. Afterwards, polynomials are described on one simplex
and what is later introduced as a collection of simplices.

1 Definitions

Let N, Z, Q, and R denote the natural, integer, rational, and real numbers,
N0 denotes N∪ {0}, and R>0 (R≥0) denotes the positive (non-negative) real
numbers.

R[x] denotes the ring of polynomials with real coefficients, R>0[x] and
R≥0[x] are the positive (semi-)definite polynomials, and Σ[x] are the polyno-
mials which can be represented as a sum of squares. Polynomials will be in
n variables, with n obvious from context.

Let p ∈ R[x]. Then both p(x̂) and p|x̂ denote the evaluation of p at the
point x̂.

Define the interior of a ball in Rn of radius r by Br = {x ∈ Rn : ||x||2 < r},
where Rn is the standard n-dimensional Euclidean space. The closure of the
ball is written B̄r = {x ∈ Rn : ||x||2 ≤ r}. The ball of radius r = 1, termed
the unit ball, is written simply as B (B̄).

Define the unit cube in Rn by B∞ = {x ∈ Rn : ||x||∞ ≤ 1}.
Define unit vectors ej as vectors of length n + 1 with zeros on all entries

except the (j + 1)th like

ej = [0, . . . , 0︸ ︷︷ ︸
j 0s

, 1, 0, . . . , 0] ∀ j ∈ {0, 1, . . . , n}. (1)

If A is an n × m matrix, AT denotes its m × n transpose. Vectors will
usually be column vectors, but sometimes explicitly expressed as row vectors.
This is to avoid excessive use of the transpose operator.

7

Bernstein Basis Introduction

1.1 Barycentric Coordinates

The Bernstein basis polynomials used in this thesis are defined on simplices,
which in turn are described by their barycentric coordinates.

Let σ0, σ1, . . . , σn ∈ Rn be n + 1 affinely independent points and let λ0, λ1,
. . . , λn ∈ R[x] be affine polynomials. Then, if

x = λ0(x)σ0 + λ1(x)σ1 + · · ·+ λn(x)σn ∀ x ∈ Rn (2)

λi(x) are the barycentric coordinates associated to σi. Henceforth I denote
λi = λi(x) and omit the dependency on the variables. Note that barycentric
coordinates are not unique. If, in addition

n

∑
i=0

λi = 1, (3)

λi are unique, and are sometimes referred to as absolute barycentric coordi-
nates. In the rest of the thesis, only the unique version is used, and it will be
referred to as barycentric coordinates. Combining the above yields

x1
x2
· · ·
xn
1

 =


σ0(1) σ1(1) · · · σn(1)
σ0(2) σ1(2) · · · σn(2)
· · · · · · · · · · · ·

σ0(n) σ1(n) · · · σn(n)
1 1 · · · 1




λ0
λ1
· · ·
λn

 . (4)

Example

Consider the points σ0 = (0, 0), σ1 = (4, 0), and σ2 = (0, 2). If a point P1 in R2

has Cartesian coordinates P1(x1, x2) = (1, 1), it has barycentric coordinates
P1(λ0, λ1, λ2) = (0.25, 0.25, 0.5) associated to σi.

Similarly, the points P2(x1, x2) = (0, 0.5) and P3(x1, x2) = (3, 2) have
barycentric coordinates P2(λ0, λ1, λ2) = (0.75, 0, 0.25) and P3(λ0, λ1, λ2) =
(−0.75, 0.75, 1) associated to σi. The points are shown in Figure 1.

�

1.2 Simplex & Collection of Simplices

With the definition of barycentric coordinates in place, I can now introduce
the notion of a simplex.

Let σ0, σ1, . . . , σn ∈ Rn be n+ 1 affinely independent vertices with ordering
< such that σi < σj if i < j. A non-degenerate n-simplex (a simplex of
dimension n) σ ≡ [σ0, σ1, . . . , σn] is the convex hull created by n + 1 affinely

8

1. Definitions

0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

σ0 σ1

σ2

P1

P2

P3

Figure 1: Example of barycentric coordinates for the points P1, P2, and P3 associated with σ0, σ1,
and σ2. Note that the σi’s are affinely independent whereas the Pi’s are not.

independent vertices σi such that

σ =

{
n

∑
i=0

λiσi|λi ≥ 0, i = 1, . . . , n

}
⊂ Rn, (5)

where the λi’s are the barycentric coordinates for σ. Comparing to barycen-
tric coordinates, the σi’s are now not just points, but vertices, which can be
thought of as corners of something. This is intuitive, since a simplex is the
convex hull of its defining vertices, which is also seen in Equation (5) from
the λi ≥ 0 requirement. Again, comparing to barycentric coordinates and the
above example, it is seen that the point P2 is located on the boundary of the
simplex defined by σ0, σ1, and σ2 since one of its coordinates is zero. The
point P3 has a negative barycentric coordinate showing that the point does
not belong to the simplex.

A simplex is degenerate if it is defined by n + 1 vertices but is not of
dimension n. This happens when the vertices are not affinely independent
and thus span a lower dimensional space. In the rest of the thesis only non-
degenerate simplices are used, and they will be referred to as simplices.

An l-face of a n-simplex σ1 = [σ1
0 , σ1

1 , . . . , σ1
n], with l ≤ n, is any l-simplex

σ2 = [σ2
0 , σ2

1 , . . . , σ2
l] with ordering <, such that

{σ2
0 , σ2

1 , . . . , σ2
l } ⊆ {σ

1
0 , σ1

1 , . . . , σ1
n}. (6)

The n-face of an n-simplex is the simplex itself, (n− 1)-faces of an n-simplex
are called facets and 0-faces are simply the vertices. Some authors call 1-faces
edges, but the term edge is not used in this Thesis.

Frequently, I will need to refer to different facets and faces of simplices.
Defining a face operator as

∂n+1
i ◦ σ = [σ0, . . . , σi−1, σi+1, . . . , σn] (7)

9

Bernstein Basis Introduction

σ

σ0 = ∂1∂2σ = ∂1∂1σ σ1 = ∂0∂2σ = ∂1∂0σ

σ2 = ∂0∂0σ = ∂0∂1σ

∂0σ
∂1σ

∂2σ

Figure 2: Simplex σ defined by the vertices σ0, σ1, and σ2. The face operator ∂ can be used to
identify the faces of σ.

and writing ∂n+1
i σ = ∂n+1

i ◦ σ the facets of σ can be identified. Consecutive
application of ∂ will identify the lower dimensional faces and, if applied n
times, the vertices. In the rest of the thesis, the superscript of ∂n+1

i is dropped
and the dimension, of the simplex on which ∂ operates, will be obvious from
context. Figure 2 shows the vertices, the simplex, and how the face operator
can be used to identify the faces. Note that the numbering of the vertices is
arbitrary. Also note the ambiguity in the way the low dimension faces can
be obtained through different sequencing of applying ∂i. This effect becomes
increasingly more involved when n grows, but care will be taken to ensure
unambiguity when needed.

Later in the thesis, I will often need to work on more than one simplex.
The familiar reader will recognise the object called a simplicial complex as
suited for this purpose, see [7] for details, but actually a simplicial complex
contains too much information since I do not need the simplices of dimension
lower than n. For this reason I define the following.

Definition 1 (Collection of Simplices) Let K = {σ1, σ2, . . . , σm} be a finite set of
m non-overlapping (except for faces) n-simplices, and let them be ordered by < such
that σi < σj if i < j. Then K is called a collection of simplices.

Figure 3 shows two collections of simplices. The non-overlapping part in
Definition 1 can be seen on Figure 3(a) where K = {σ1, σ2} and σ1 and σ2

share the facet ∂0σ1 = ∂2σ2, and nothing more. On Figure 3(b) σ2 has been
split in into two simplices resulting in the collection K = {σ1, σ3, σ4}. This
results in a non-proper collection of simplices. A collection of simplices K is
termed non-proper if any l-face of σi overlaps with any k-face of σj where
{σi, σj} ⊆ K and l 6= k. This is the case on Figure 3(b) for ∂0σ1 and σ3

0 .

10

1. Definitions

σ
1

σ
2

σ
1

0

σ
1

2
= σ

2

1
σ
2

2

σ
1

1
= σ

2

0

∂0σ
1
= ∂2σ

2

(a) Proper collection of simplices.

σ
1

σ
3

σ
4

σ
1

0

σ
1

2
= σ

4

1
σ
3

2
= σ

4

2

σ
1

1
= σ

3

1

σ
3

0
= σ

4

0

(b) Non-proper collection of simplices.

Figure 3: Proper and non-proper collections of simplices. Non-overlapping except on the faces.

Only rarely will I utilise non-proper collections of simplices. Thus, in the
rest of the thesis the property of being proper is assumed for all collections
of simplices and not mentioned explicitly.

For completeness, Figure 4 shows two instances of simplices which can-
not constitute a collection of simplices. In Figure 4(a) the two simplices are
overlapping with more than just faces. In Figure 4(b) the simplices are not
connected. This situation is uninteresting when it comes to stability analysis
and it will never occur in this thesis.

Occasionally, the size of a simplex or the size of simplices in a collection
of simplices is of interest. This size is captured by the diameter of a simplex.

Definition 2 Let the diameter of a simplex σ be the maximal distance between any
two points in the simplex, and denote the diameter of σ by h(σ). For the collection
K = {σ1, σ2, . . . , σm} define

h(K) = max
σ∈K

h(σ) (8)

to be the maximal diameter of any simplex in K.

1.3 Triangulation

Later on I will need to define polynomials on box polytopes. The mathe-
matics revolving triangulation of polytopes is rich and involved, but for my
purpose I only need the most simple and intuitive concepts. The interested
reader is referred to [7], but a triangulation of a polytope can be thought

11

Bernstein Basis Introduction

(a) Overlapping simplices. (b) Disconected simplices.

Figure 4: Two cases of simplices which cannot constitude a collecection of simplices.

of as chopping the polytope into simplices, which then together constitute a
collection of simplices. To this end, I use the so-called Kuhn’s triangulation.

Definition 3 (Kuhn’s Triangulation [26]) Let Θn be the set of all permutations of n
elements, and note that there are m = n! permutations in Θn. For any permutation
θ ∈ Θn define the simplex

σθ = {(x1, x2, . . . , xn) ∈ Rn| − 1 ≤ xθ(n) ≤ xθ(n−1) ≤ · · · ≤ xθ(1) ≤ 1}. (9)

Then the collection of simplices K = {σ1, σ2, . . . , σm} is a triangulation of the n-
dimensional unit cube B∞ called Kuhn’s Triangulation.

For reasons which will become evident later in Chapter Bernstein Ba-
sis Properties and Chapter Stability Introduction am I interested in the case
where the origin is in the interior of the polytope, and I need a vertex to be
placed at the origin. To obtain this, Kuhn’s triangulation can be used on the
2n facets of B∞ resulting in 2n! (n− 1)-simplices. Adding the origin to all of
the simplices results in 2n! n-simplices. In this case I say that the collection
K covers B∞. Figure 5 shows this in the 3 dimensional case where six of the
resulting simplices are omitted and the remaining six simplices are exploded
for clarification.

1.4 Basis Polynomials

Having thoroughly introduced the notion of a simplex and collection of sim-
plices, and how to obtain them, it is time to present the core element in this
thesis; the Bernstein basis. I assume the reader to be familiar with the mono-
mial basis for describing polynomials. I will, however, briefly refresh the

12

1. Definitions

Figure 5: Six of the 12 simplices obtained from applying Kuhn’s triangulation on the facets of a
3 dimensional cube and adding the origin to each of them. The view is exploded for clarity.

monomial basis to make the transition to the Bernstein basis more easy and
to present a convention on the representation of polynomials in the monomial
basis for later transformation between the bases.

For x ∈ R the monomials {x0, x1, x2} constitute a basis for describing
polynomials in one variable of degree two or less. A polynomial of degree
two or less is then a linear combination of the elements in the basis. E.g.
the coefficients [c0, c1, c2] = [−1, 0, 6] defines the polynomial p(x) = 6x2 − 1.
Writing c = [−1, 6] and γ = [0, 2], p can be defined as

p(x) =
2

∑
i=1

cixγi . (10)

In general, for x ∈ Rn polynomials in the monomial basis will be defined as

p(x) =
K

∑
k=1

ckxγk (11)

where c = [c1, c2, . . . , cK] is the coefficient vector and

γ =


γ1(1) γ2(1) · · · γK(1)
γ1(2) γ2(2) · · · γK(2)
· · · · · · · · · · · ·

γ1(n) γ2(n) · · · γK(n)

 (12)

xγk = xγk(1)
1 xγk(2)

2 · · · xγk(n)
n . (13)

13

Bernstein Basis Introduction

The monomial basis is the most intuitive basis for polynomials since the
elements of the basis are as simple as they can be. The elements in the
Bernstein basis are significantly more involved, but the Bernstein basis offers
properties which the monomial basis does not possess. These properties are
covered in the next chapter, and they are the main argument behind working
in the Bernstein basis.

Define a multi-index α ∈Nn+1
0 and let

|α| =
n

∑
i=0

αi, λα =
n

∏
i=0

λ
αi
i ,

(
D
α

)
=

D!
α0!α1! · · · αn!

, (14)

where λi are the barycentric coordinates to simplex σ.

Definition 4 (Bernstein Basis Polynomials [26]) The Bernstein basis polynomials
of degree D on simplex σ are defined as

BD
α (σ) =

(
D
α

)
λα, ∀|α| = D, (15)

and BD(σ) is a column vector containing all the Bernstein basis polynomials of
degree D on σ.

Note that the barycentric coordinates λ are defined by the vertices of σ, which
in turn define σ. This explains the choice of writing the basis polynomials
as dependent on σ. I will alternate between BD and BD(σ) throughout the
thesis whenever simplicity of notation does not interfere with clarity.

Later, the order of appearance of the possible multi-index combinations in
|α| = D will become important. For this reason, I impose the Lexicographic
order on the numbering of the vertices according to > which then also applies
to the different α combinations. As an example consider n = 2 and D = 2 for
which the possible combinations are

α
=

(2,0,0)

α
=

(1,1,0)

α
=

(1,0,1)

α
=

(0,2,0)

α
=

(0,1,1)

α
=

(0,0,2)

σ0
σ1
σ2

 2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

 ,

(16)

where, as a result of the Lexicographic order and > on the vertices, α =
(2, 0, 0) > α = (1, 1, 0) > α = (1, 0, 1) and so on. The matrix in Equation (16)
will be referred to as the α-matrix. Denote the number of possible combina-
tions as

ND =

(
n + D

n

)
. (17)

14

1. Definitions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

B
2

(2,0)
B
2

(0,2)

B
2

(1,1)

(a) One dimensional Bernstein basis polyno-
mials of degree 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

B
3

(3,0)
B
3

(0,3)

B
3

(2,1)
B
3

(1,2)

(b) One dimensional Bernstein basis polyno-
mials of degree 3.

Figure 6: One dimensional Bernstein basis polynomials on the simplex σ = [0, 1].

The choice of having the barycentric coordinates sum to one carries over to
the basis polynomials which also sum to one. This can be seen by expanding
using the multinomial theorem as

1 = 1D =

(
n

∑
i=0

λi

)D

= ∑
|α|=D

(
D
α

) n

∏
i=0

λ
αi
i = ∑

|α|=D
BD

α . (18)

Example

In one dimension, on the simplex σ = [0, 1] the barycentric coordinates are
λ0 = (1− x) and λ1 = x. The Bernstein basis polynomials of degree 2 are

B2
(2,0) = (1− x)2, B2

(1,1) = 2x(1− x), B2
(0,2) = x2. (19)

On the same simplex, the Bernstein basis polynomials of degree 3 are

B3
(3,0) = (1− x)3, B3

(2,1) = 3x(1− x)2, (20)

B3
(1,2) = 3x2(1− x), B3

(0,3) = x3. (21)

Figure 6 shows the basis polynomials plotted on their defining simplex.
Let x = (x1, x2) ∈ R2. In 2 dimensions, on the simplex σ = [σ0, σ1, σ2]

with σ0 = [0, 0]T , σ1 = [1, 0]T , and σ2 = [0, 1]T , the barycentric coordinates
are λ0 = (1− x1− x2), λ1 = x1, and λ2 = x2. The Bernstein basis polynomials
of degree 2 are

B2
(2,0,0) = (1− x1 − x2)

2, B2
(1,1,0) = 2x1(1− x1 − x2), (22)

B2
(1,0,1) = 2x2(1− x1 − x2), B2

(0,2,0) = x2
1, (23)

B2
(0,1,1) = 2x1x2, B2

(0,0,2) = x2
2. (24)

15

Bernstein Basis Introduction

0

0.2

1

0.4

0.6

0.8

1

B
3

(1,2,0)

1
0.5 0.5

0 0

Figure 7: The Bernstein basis polynomial B3
(1,2,0). See Figure A.2 for the remaining 9 basis

polynomials for n = 2, D = 3. The shaded area is the simplex.

In a given dimension n, for a given degree D there are ND basis polynomials.
In Appendix A the basis polynomials for n = 2, D = 2 and n = 2, D = 3
are plotted. Figure 7 shows one of the Bernstein basis polynomial in two
dimensions of degree 3.

�
In the example, both σ = [0, 1] in one dimension and σ = [σ0, σ1, σ2] with

σ0 = [0, 0]T , σ1 = [1, 0]T , and σ2 = [0, 1]T in two dimensions are the one
dimensional and two dimensional standard simplex, respectively. In general,
the standard simplex is given as

[0n×1, In×n] . (25)

2 Polynomials in the Bernstein Basis

Completely analogous to the monomial basis, any polynomial p of degree d
in n variables can be described in the Bernstein basis on simplex σ of degree
D ≥ d as a linear combination of the elements in the basis as

p(x) = ∑
|α|=D

bα(p, D, σ)BD
α = b(p, D, σ)BD. (26)

The vector b(p, D, σ) is a row vector and it contains the Bernstein coefficients
of p described in degree D on simplex σ, and it uniquely describes p(x). The
dependencies on p, D, and σ in bα(p, D, σ) will be dropped for notational
simplicity whenever clarity allows.

16

2. Polynomials in the Bernstein Basis

For each coefficient bα(p, D, σ) a corresponding grid point is defined as

∆α(D, σ) =
α0σ0 + α1σ1 + · · ·+ αnσn

D
. (27)

The grid points are equally distributed linear combinations of the vertices
normalised by the degree. Thus every coefficient is located somewhere in
the simplex. Note that the grid point is not dependent on p. This is because
the grid points are defined solely by which simplex they belong to, and the
degree of the basis polynomials. The pair (∆α(D, σ), bα(p, D, σ)) is the control
point associated to α.

The transformation from monomial basis to the Bernstein basis is a linear
transformation and can be characterised by a matrix A defined from

BD = ATX , (28)

where X = {xD
1 , xD−1

1 x2, . . . , xn, 1} is the monomial basis of degree D. The
entries in A can be found by expanding the equation, collecting terms of X ,
and setting coefficients equal to zero. In general, this gives N2

D unknowns in
N2

D equations grouped together in ND equations each in ND variables, where
ND = (n+D

n). Having determined A, the Bernstein basis coefficients are then
given as

bT(p, D, σ) = AcT , (29)

where c is the coefficient vector of p in the monomial basis. However, deter-
mining A in this manner can be tedious and another method for transforming
from a description in the monomial basis to a description in the Bernstein ba-
sis on a given simplex is derived in Appendix B. It requires arithmetic for
multiplying polynomials in the Bernstein basis and the so-called degree ele-
vation. These operations are covered in Chapter Arithmetic.

The transformation between a description in the Bernstein basis on a given
simplex to a description in the monomial basis is straight forward by simply
expanding the expression and collecting terms of the elements in the mono-
mial basis. This is show in the following example.

Example

The polynomial p(x) = 6x2− 1 from above is described in the Bernstein basis
of degree 2 on the simplex σ = [0, 1] by b(p, 2, [0, 1]) = [−1,−1, 5]. Expanding
the description in the Bernstein basis reveals the description in the monomial
basis as

p(x) = ∑
|α|=2

bα(p, 2, [0, 1])B2
α = −(1− x)2 − 2x(1− x) + 5x2 = 6x2 − 1. (30)

17

Bernstein Basis Introduction

0 0.5 1
x

-1

0

1

2

3

4

5
p
(
x
)

(∆(2,0), b(2,0)) (∆(1,1), b(1,1))

(∆(0,2), b(0,2))

∆(2,0) ∆(1,1) ∆(0,2)

p

(a) The polynomial p with the grid points ∆α

and the coefficients in b(p, 2, σ).

0 0.5 1
x

-1

0

1

2

3

4

5

p
(
x
)

(∆(3,0), b(3,0)) (∆(2,1), b(2,1))

(∆(1,2), b(1,2))

(∆(0,3), b(0,3))

∆(3,0)

∆(2,1)

∆(1,2) ∆(0,3)

p

(b) The polynomial p with the grid points ∆α

and the coefficients in b(p, 3, σ).

Figure 8: The polynomial p(x) = 6x2 − 1 described in the Bernstein basis of degree 2 and 3 on
the simplex σ = [0, 1].

If instead p(x) = 6x2− 1 is described in the Bernstein basis of degree 3 on the
same simplex, the coefficient vector is b(p, 3, [0, 1]) = [−1,−1, 1, 5]. Again, by
expanding

p(x) = ∑
|α|=3

bα(p, 3, [0, 1])B3
α

= −(1− x)3 − 3x(1− x)2 + 3x2(1− x) + 5x3 = 6x2 − 1.
(31)

This expansion reveals an inherent feature of the Bernstein basis. The actual
degree of a polynomial is not directly evident by looking at the coefficients.
This is in contrast to the monomial basis where the degree is directly evident
from the highest power of monomials with a non-zero coefficient.

Figure 8 shows p, the grid points, and the control points for the descrip-
tions in degrees 2 and 3.

�

2.1 Basis Transformation and Additional Notation

A polynomial p defined in the Bernstein basis BD(σi) on one simplex σi could
be defined equally well on another simplex σj using BD(σj). Generally, this
makes b(p, D, σi) 6= b(p, D, σj) and the change in basis is linear, thus

bT(p, D, σi) = iBjbT(p, D, σj) (32)

18

2. Polynomials in the Bernstein Basis

where iBj = I if i = j. Since the numbering of the vertices in a simplex is
arbitrary, the order of the entries in b are not fixed until a choice is made
on the numbering. Thus iBj cannot be determined without knowing the
numbering of the vertices in both σi and σj.

The matrix iBj is characterised similarly to A from the transformation
from monomial basis to the Bernstein basis. The entries of iBj can be deter-
mined from

BD(σi) = iBT
j BD(σj) (33)

by expanding the equation, collecting terms of X , and setting coefficients
equal to zero. Again this results in N2

D equations in N2
D unknowns. As be-

fore, determining iBj in this manner can be tedious and another method for
transforming between descriptions in the Bernstein basis on different sim-
plices is derived in Appendix B.

Occasionally, it is convenient to identify the coefficients in b(p, D, σ) which
are restricted to a given face or often facet. By abuse of notation, I will reuse
the face operator ∂ such that

∂kb(p, D, σ) = {bα(p, D, σ)|α(k + 1) = 0} , (34)

for coefficients located on the facet ∂kσ and

∂k1 ∂k2 b(p, D, σ) = {bα(p, D, σ)|α(k1 + 1) = 0, α(k2 + 1) = 0} , (35)

for coefficients located on the (n− 2)-face ∂k1 ∂k2 σ, and so on.

Example

Consider Figure 9, where two simplices are shown with vertex numbering
and the grid points for polynomials of degree 3. In this case the α-matrix is 3 2 2 1 1 1 0 0 0 0

0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3

 , (36)

with the lexicographic order on the vertices imposed by >.
Since the simplices overlap on the facets ∂0σ1 and ∂2σ2 the grid points

on ∂0σ1 and ∂2σ2 are defined by the same point in space, but the chosen
numbering of the vertices makes the grid points coincide for different α-
subscripts in the following pattern

∆(0,0,3)(σ
1) = ∆(0,3,0)(σ

2), ∆(0,1,2)(σ
1) = ∆(1,2,0)(σ

2), (37)

∆(0,2,1)(σ
1) = ∆(2,1,0)(σ

2), ∆(0,3,0)(σ
1) = ∆(3,0,0)(σ

2). (38)

19

Bernstein Basis Introduction

0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

σ
1

σ
2

σ
1

0

σ
1

2
= σ

2

1
σ
2

2

σ
1

1
= σ

2

0

∆(3,0,0)

∆(2,0,1)

∆(1,0,2)

∆(0,0,3)

∆(2,1,0) ∆(1,2,0) ∆(0,3,0)

∆(0,2,1)

∆(0,1,2)

∆(1,1,1)

∆(3,0,0)

∆(2,0,1)

∆(1,0,2)

∆(0,0,3)

∆(2,1,0)

∆(1,2,0)

∆(0,3,0)

∆(0,2,1) ∆(0,1,2)

∆(1,1,1)

Figure 9: Collection of simplices K = {σ1, σ2} with grid points ∆α(σi) for polynomials of degree
3. Note that the vertices are marked with a diamond coloured black and the grid points are
marked with a circle coloured blue.

Now, consider the polynomial p(x1, x2) = 6x2
1 + 6x2

2 − 1 in the Bernstein
basis of degree 3 on the simplex σ1 = [σ1

0 , σ1
1 , σ1

2] with σ1
0 = [0, 0]T , σ1

1 =
[1, 0]T , and σ1

2 = [0, 1]T . It is described by the coefficient vector

b(p, 3, σ1) = [−1,−1,−1, 1,−1, 1, 5, 1, 1, 5]. (39)

Similarly, if defined on the simplex σ2 = [σ2
0 , σ2

1 , σ2
2] with σ2

0 = [1, 0]T , σ2
1 =

[0, 1]T , and σ2
2 = [1, 1]T , p is described by the coefficient vector

b(p, 3, σ2) = [5, 1, 5, 1, 3, 7, 5, 5, 7, 11], (40)

with the transformation matrix from σ1 to σ2 as

2B1 =



0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 −1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 1 1 0
0 1 0 −2 −2 0 1 2 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 1 1
0 0 1 0 −2 −2 0 1 2 1
−1 3 3 −3 −6 −3 1 3 3 1


. (41)

The coefficients on the shared facet are identified as

∂0b(σ1) = [b(0,3,0)(σ
1), b(0,2,1)(σ

1), b(0,1,2)(σ
1), b(0,0,3)(σ

1)] = [5, 1, 1, 5] (42)

20

3. Polynomials on Collection of Simplices

and

∂2b(σ2) = [b(3,0,0)(σ
2), b(2,1,0)(σ

2), b(1,2,0)(σ
2), b(0,3,0)(σ

2)] = [5, 1, 1, 5], (43)

where the dependency on p and D = 3 has been omitted.
Note that

∂2b(σ1) = [b(3,0,0)(σ
1), b(2,1,0)(σ

1), b(1,2,0)(σ
1), b(0,3,0)(σ

1)] = [−1,−1, 1, 5],
(44)

which is the same coefficient vector which defined p(x) = 6x2 − 1 in the one
dimensional example from above. This is due to the fact that a polynomial
restricted to one of its faces is defined by the coefficients on that face.

�

3 Polynomials on Collection of Simplices

With the description of polynomials on a single simplex in place, I can now
introduce polynomials defined on a collection of simplices. However, as indi-
cated by the example above, there are a number of redundant grid points in a
collection of simplices, simply because every simplex gives rise to grid points
which may already be determined from other simplices. This results in a lot
of flexibility in terms of numbering and ordering. To streamline the process
of working with polynomials defined in the Bernstein basis on collections
of simplices, I introduce a few conventions for numbering and ordering (in
addition to the > on vertices and simplices from above).

In the following n = 2 and D = 2 is used to exemplify the process, but
the conventions are stated general.

Consider the 2-dimensional unit cube B∞ covered by the collection of
simplices K = {σ1, σ2, σ3, σ4} shown in Figure 10(a). With m the number
of simplices in a collection, the numbering of the simplices are such that
∀ i ∈ {1, . . . , m − 1} simplices σi and σi+1 always overlap with one facet.
Which simplex to label as number 1 is still arbitrary.

In Figure 10(a) the 5 vertices defining the 4 simplices are labelled 1 to 5
such that the vertex at the origin is number 1. The remaining vertices are
labelled arbitrarily. Labelling the origin as vertex 1 results in the following
relation on the first grid point of all simplices which have a vertex at the
origin

∆(D,0,0)(σ
i) = ∆(D,0,0)(σ

j) ∀ i, j ∈ I , (45)

where I is an index set of all simplices with the origin as a vertex. This
relation is highly relevant for later algorithmic implementation.

21

Bernstein Basis Introduction

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ
1

σ
2

σ
3

σ
4

1

2 3

4 5

(a) Unit cube covered by collection of sim-
plices K = {σ1, σ2, σ3, σ4}.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ
1

σ
2

σ
3

σ
4 ∆1

∆2 ∆3

∆4 ∆5

(b) The numbering of vertices determines the
numbering of the first grid points.

Figure 10: Unit cube covered by collection of simplices and the numbering of the grid points at
the vertices.

In Figure 10(a) the chosen numbering results in the following additional
overlap between grid points:

∆(0,2,0)(σ
1) = ∆(0,2,0)(σ

4) ∆(0,0,2)(σ
1) = ∆(0,2,0)(σ

2) (46)

∆(0,0,2)(σ
4) = ∆(0,2,0)(σ

3) ∆(0,0,2)(σ
3) = ∆(0,0,2)(σ

2) (47)

∆(1,1,0)(σ
1) = ∆(1,1,0)(σ

4) ∆(1,0,1)(σ
1) = ∆(1,1,0)(σ

2) (48)

∆(1,0,1)(σ
2) = ∆(1,0,1)(σ

3) ∆(1,1,0)(σ
3) = ∆(1,0,1)(σ

4). (49)

Thus for n = 2, D = 2, and m = 4 there are already 11 redundant grid
points out of a total number of NDm = 24 grid points. Remember that ND is
the number of grid points in one simplex and m is the number of simplices
in the collection. This effect gets more pronounced with higher dimension
and degree.

The convention to label the unique grid points in a collection of simplices
is as follows. By abuse of notation, let ∆ be a list of all unique grid points.
First, the numbering of the vertices carries over to the numbering of the grid
points at the vertices. For Figure 10(a) this gives

∆ = [∆1, ∆2, ∆3, ∆4, ∆5], (50)

as shown on Figure 10(b). Next, run through the simplices i = 1 → m
and append ∆α(σi) to ∆ if the point has not already been defined. In a
given simplex, the order on the α’s is by the Lexicographic order imposed by
Equation (16).

22

3. Polynomials on Collection of Simplices

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ
1

σ
2

σ
3

σ
4 ∆1

∆2 ∆3

∆4 ∆5

∆6 ∆7

∆8

(a) Unit cube covered by collection of sim-
plices and the numbering of the grid points
in the first simplex.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

σ
1

σ
2

σ
3

σ
4 ∆1

∆2 ∆3

∆4 ∆5

∆6 ∆7

∆8

∆9

∆10

∆11

∆12

∆13

(b) Unit cube covered by collection of sim-
plices and the numbering of all grid points.

Figure 11: Example of the convention for labelling grid points in a collection of simplices.

In this example for σ1, ∆(2,0,0)(σ
1) is already ∆1. Grid point ∆(1,1,0)(σ

1)
is not defined and thus appended as ∆6 as seen in Figure 11(a). Next,
∆(1,0,1)(σ

1) is also not defined and is appended as ∆7. Continuing this way,
∆(0,2,0)(σ

1) is already ∆2, ∆(0,1,1)(σ
1) is appended as ∆8 and ∆(0,0,2)(σ

1) is
already ∆3. Moving to σ2, ∆(2,0,0)(σ

2) is already ∆1 and ∆(1,1,0)(σ
2) is al-

ready ∆7 as defined by ∆(1,0,1)(σ
1). Grid point ∆(1,0,1)(σ

2) is not defined and
appended as ∆9, and ∆(0,2,0)(σ

2) was already ∆3. Finally, ∆(0,1,1)(σ
2) is ap-

pended as ∆10, and ∆(0,0,2)(σ
2) was already ∆5. This is shown in Figure 11(b)

where the process of labelling the unique grid points has been carried out for
all four simplices.

This leaves

∆ = [∆1, ∆2, . . . , ∆13], (51)

and by denoting grid points in σi by ∆i

∆1 = [∆1, ∆6, ∆7, ∆2, ∆8, ∆3], ∆2 = [∆1, ∆7, ∆9, ∆3, ∆10, ∆5], (52)

∆3 = [∆1, ∆11, ∆9, ∆4, ∆12, ∆5], ∆4 = [∆1, ∆6, ∆11, ∆2, ∆13, ∆4], (53)

where the ordering from Equation (16) is enforced.

I am now ready to define polynomials on collections of simplices as fol-
lows.

23

Bernstein Basis Introduction

Definition 5 (Polynomials on Collection of Simplices) A polynomial p of degree d
in n variables is described on the collection of simplices K = {σ1, σ2, . . . , σm} in the
Bernstein basis of degree D ≥ d as

p(x) =


∑|α|=D bα(p, D, σ1)BD

α (σ1) = b(p, D, σ1)BD(σ1) ∀x ∈ σ1

∑|α|=D bα(p, D, σ2)BD
α (σ2) = b(p, D, σ2)BD(σ2) ∀x ∈ σ2

· · ·
∑|α|=D bα(p, D, σm)BD

α (σm) = b(p, D, σm)BD(σm) ∀x ∈ σm

,

(54)

with

bT(p, D, σi) = iBjbT(p, D, σj) ∀ i, j ∈ {1, . . . , m}. (55)

Similarly to the grid points, the Bernstein coefficients located on faces
of the simplices in the collection will be duplicates of each other since they
define the same polynomial at the same point in space. That is, the control
points abide equality relations in the same manner as the grid points do. This
was also seen in the example above, regarding the basis transformation ma-
trix. Seeing as each grid point corresponds to one coefficient, the convention
for labelling grid points can conveniently be adapted to label coefficients as
well.

Let C denote all coefficients in the collection. Then coefficients on σi are
given as

b(p, D, σi) = C(∆i), (56)

and I will often shorten the notation to Ci = C(∆i). This allows a more
convenient definition.

Definition 6 (Polynomials on Collection of Simplices with Unique Coefficients)
With the conventions above, a polynomial p of degree d in n variables is described
on the collection of simplices K = {σ1, σ2, . . . , σm} in the Bernstein basis of degree
D ≥ d as

p(x) =


C1BD(σ1) ∀x ∈ σ1

C2BD(σ2) ∀x ∈ σ2

· · ·
CmBD(σm) ∀x ∈ σm

, (57)

with

CiT
= iBjCjT ∀ i, j ∈ {1, . . . , m}. (58)

The Bernstein basis offers a natural way of extending the class of functions
from polynomials to continuous piecewise-polynomials.

24

3. Polynomials on Collection of Simplices

Definition 7 (Continuous Piecewise-Polynomial on Collection of Simplices) With
the conventions above, a continuous piecewise-polynomial p of degree d in n variables
is described on the collection of simplices K = {σ1, σ2, . . . , σm} in the Bernstein basis
of degree D ≥ d as

p(x) =
p1(x) = ∑|α|=D bα(p1, D, σ1)BD

α (σ1) = b(p1, D, σ1)BD(σ1) ∀x ∈ σ1

p2(x) = ∑|α|=D bα(p2, D, σ2)BD
α (σ2) = b(p2, D, σ2)BD(σ2) ∀x ∈ σ2

· · ·
pm(x) = ∑|α|=D bα(pm, D, σm)BD

α (σm) = b(pm, D, σm)BD(σm) ∀x ∈ σm

,

(59)

with

∂kb(pi, D, σi) = ∂lb(pj, D, σj) ∀
{
(k, i, l, j)|∂kσi = ∂lσ

j
}

. (60)

All coefficients in the collection are denoted C, and coefficients on σi are identified as
b(pi, D, σi) = Ci.

Here the pi’s are each a polynomial on σi, and by the constraint Equation (60)
they are continuous across the facets. The degree in the Bernstein represen-
tation of pi is intentionally equal to D, regardless of the actual degree of pi.
This is to simplify both the representation and the constraint Equation (60).
Throughout the thesis, continuous piecewise-polynomials defined on collec-
tions of simplices will always be described in the Bernstein basis of degree D
on all simplices in the collection, such that

D ≥ max
i∈{1,...,m}

di, (61)

where di is the actual degree of pi.
In Part II, I will need another type of polynomial, the discontinuous piece-

wise-polynomials.

Definition 8 (Discontinuous Piecewise-Polynomial on Collection of Simplices)
With the conventions above, a discontinuous piecewise-polynomial p of degree d in
n variables is described on the collection of simplices K = {σ1, σ2, . . . , σm} in the
Bernstein basis of degree D ≥ d as

p(x) =
p1(x) = ∑|α|=D bα(p1, D, σ1)BD

α (σ1) = b(p1, D, σ1)BD(σ1) ∀x ∈ σ1

p2(x) = ∑|α|=D bα(p2, D, σ2)BD
α (σ2) = b(p2, D, σ2)BD(σ2) ∀x ∈ σ2

· · ·
pm(x) = ∑|α|=D bα(pm, D, σm)BD

α (σm) = b(pm, D, σm)BD(σm) ∀x ∈ σm

.

(62)

25

Bernstein Basis Introduction

Here the pi’s are each a polynomial on σi, and the lack of a constraint equa-
tion allows for them to be discontinuous across the facets. Thus there is noth-
ing which ties (part of) b(pi, D, σi) to (part of) b(pj, D, σj). This also changes
the convention about collecting all coefficients on the collection and then
mapping them to different simplices. This cannot be done when simplices
sharing a face do not share coefficients on said face. Instead, discontinuous
piecewise-polynomials have a coefficient vector for each simplex. This makes
discontinuous piecewise-polynomials set-valued on the facets.

The interest in (dis)continuous piecewise-polynomials will become evi-
dent in Part II once I tie the Bernstein basis to stability analysis. Except for
some of the examples below, the rest of Part I does not consider (dis)con-
tinuous piecewise-polynomials.

Example

Consider the polynomial

p(x) =0.875x3
1 − 10.125x2

1x2 + 7.5x2
1 − 1.875x1x2

2+

3x1x2 + 7.5x1 + 9.125x3
2 − 4.5x2

2 + 10.5x2.
(63)

which is shown in Figure 12 on the collection of simplices K = {σ1, σ2, σ3, σ4}
with the same vertices and numbering as the collection shown in Figure 11.
The graph of p is the coloured surface, the solid lines are the facets of the
simplices and the red, blue, and green crosses are the control points. The
colour of the crosses indicate whether the coefficient is negative (red), positive
(green), or equal to zero (blue).

Describing p in the Bernstein basis of degree 3 results in the 25 coefficients
shown in Figure 12, and they are given as

C = [0,−10,−3, 3, 22,−6,−1,−10,−11,−2,−30,

− 30, 6, 9, 14, 26, 10, 1, 2, 3, 14, 18,−1, 10,−10].
(64)

By the convention for numbering, the coefficients belong to the different sim-
plices as

b(p, 3, σ1) =C1 = [0,−6,−1,−10,−11,−2,−10,−30,−30,−3] (65)

b(p, 3, σ2) =C2 = [0,−1, 6,−2, 9, 16,−3, 26, 10, 22] (66)

b(p, 3, σ3) =C3 = [0, 1, 6, 2, 3, 14, 3, 14, 18, 22] (67)

b(p, 3, σ4) =C4 = [0,−6, 1,−10,−1, 2,−10, 10,−10, 3]. (68)

�

26

3. Polynomials on Collection of Simplices

Figure 12: Polynomial on collection of simplices.

Example

Consider the continuous piecewise-polynomial

p(x) =


p1(x) ∀x ∈ σ1

p2(x) ∀x ∈ σ2

p3(x) ∀x ∈ σ3

p4(x) ∀x ∈ σ4

, (69)

with

p1(x) =6.375x3
1 − 1.875x2

1x2 − 6.75x2
1 − 9.375x1x2

2+

1.5x1x2 + 9x1 + 2.875x3
2 + 11.25x2

2 + 9x2
(70)

p2(x) =11.125x3
1 − 4.125x2

1x2 − 14.25x2
1 − 13.125x1x2

2−
1.5x1x2 + 3x1 + 6.125x3

2 + 15.75x2
2 + 3x2

(71)

p3(x) =1.5x1 + 4.5x2 (72)

p4(x) =0.875x3
1 − 10.125x2

1x2 + 7.5x2
1 − 1.875x1x2

2+

3x1x2 + 7.5x1 + 9.125x3
2 − 4.5x2

2 + 10.5x2,
(73)

which is shown in Figure 13 on the collection of simplices K = {σ1, σ2, σ3, σ4}
with the same vertices and numbering as the collection shown in Figure 11.

The fact that p is continuous across facets is not evident from the descrip-
tion in the monomial basis, but in the Bernstein basis it is directly evident

27

Bernstein Basis Introduction

Figure 13: Continuous piecewise-polynomial on collection of simplices.

from the equality of coefficients on the facets. (Obviously, that is how I de-
signed the example in the first place.) In the Bernstein basis of degree 3 the
25 coefficients are

C = [0,−10,−1, 3, 6,−6, 0,−10, 0, 1, 8,−6, 2,

− 8, 4, 6,−8, 1, 2, 3, 4, 5,−1, 10,−10].
(74)

By the convention for numbering, the coefficients belong to the different sim-
plices as

b(p1, 3, σ1) =C1 = [0,−6, 0,−10, 0, 1,−10, 8,−6,−1] (75)

b(p2, 3, σ2) =C2 = [0, 0, 2, 1,−8, 4,−1, 6,−8, 6] (76)

b(p3, 3, σ3) =C3 = [0, 1, 2, 2, 3, 4, 3, 4, 5, 6] (77)

b(p4, 3, σ4) =C4 = [0,−6, 1,−10,−1, 2,−10, 10,−10, 3]. (78)

Note that the actual degree of p3 is 1, but since it is described in the Bernstein
basis of degree 3 it has the same number of coefficients as p2 and p4, which
makes the fulfilment of Equation (60) on the facets ∂1σ3 and ∂2σ3 straightfor-
ward. On σ1 the coefficients on the shared facets are given as

∂2C1 =[C1, C6, C8, C2] = ∂2b(p1, 3, σ1)

=[b(3,0,0)(p1, 3, σ1), b(2,1,0)(p1, 3, σ1), b(1,2,0)(p1, 3, σ1), b(0,3,0)(p1, 3, σ1)]

=[0,−6,−10,−10],

28

3. Polynomials on Collection of Simplices

and

∂1C1 =[C1, C7, C10, C3] = ∂1b(p1, 3, σ1)

=[b(3,0,0)(p1, 3, σ1), b(2,0,1)(p1, 3, σ1), b(1,0,2)(p1, 3, σ1), b(0,0,3)(p1, 3, σ1)]

=[0, 0, 1,−1].

On σ2 the coefficients on the shared facets are given as

∂2C2 =[C1, C7, C10, C3] = ∂2b(p2, 3, σ2)

=[b(3,0,0)(p2, 3, σ2), b(2,1,0)(p2, 3, σ2), b(1,2,0)(p2, 3, σ2), b(0,3,0)(p2, 3, σ2)]

=[0, 0, 1,−1],

and

∂1C2 =[C1, C13, C15, C5] = ∂1b(p2, 3, σ2)

=[b(3,0,0)(p2, 3, σ2), b(2,0,1)(p2, 3, σ2), b(1,0,2)(p2, 3, σ2), b(0,0,3)(p2, 3, σ2)]

=[0, 2, 4, 6].

On σ3 the coefficients on the shared facets are given as

∂1C3 =[C1, C13, C15, C5] = ∂1b(p3, 3, σ3)

=[b(3,0,0)(p3, 3, σ3), b(2,0,1)(p3, 3, σ3), b(1,0,2)(p3, 3, σ3), b(0,0,3)(p3, 3, σ3)]

=[0, 2, 4, 6],

and

∂2C3 =[C1, C18, C19, C4] = ∂2b(p3, 3, σ3)

=[b(3,0,0)(p3, 3, σ3), b(2,1,0)(p3, 3, σ3), b(1,2,0)(p3, 3, σ3), b(0,3,0)(p3, 3, σ3)]

=[0, 1, 2, 3].

Finally, the coefficients on the shared facets of σ4 are given as

∂1C4 =[C1, C18, C19, C4] = ∂1b(p4, 3, σ4)

=[b(3,0,0)(p4, 3, σ4), b(2,0,1)(p4, 3, σ4), b(1,0,2)(p4, 3, σ4), b(0,0,3)(p4, 3, σ4)]

=[0, 1, 2, 3],

and

∂2C4 =[C1, C6, C8, C4] = ∂2b(p4, 3, σ4)

=[b(3,0,0)(p4, 3, σ4), b(2,1,0)(p4, 3, σ4), b(1,2,0)(p4, 3, σ4), b(0,3,0)(p4, 3, σ4)]

=[0,−6,−10,−10].

�

29

Bernstein Basis Introduction

Example

Consider the discontinuous piecewise-polynomial

p(x) =


p1(x) ∀x ∈ σ1

p2(x) ∀x ∈ σ2

p3(x) ∀x ∈ σ3

p4(x) ∀x ∈ σ4

, (79)

with

p1(x) =− 1.5x3
1 + 1.5x2

1x2 + 0.75x2
1 + 16.5x1x2

2 + 31.5x1x2

+ 12x1 + 18.5x3
2 + 24.75x2

2 + 3x2
(80)

p2(x) =48.875x3
1 − 19.875x2

1x2 − 76.5x2
1 − 6.375x1x2

2 + 15x1x2+

31.5x1 + 1.375x3
2 + 4.5x2

2 + 1.5x2
(81)

p3(x) =3.875x3
1 + 1.875x2

1x2 − 0.375x1x2
2 + 1.625x3

2 (82)

p4(x) =− 4.5x3
1 − 12x2

1x2 + 1.5x2
1 − 7.5x1x2

2

− 15x1x2 + 6x1 − 7.5x2
2 − 3x2,

(83)

which is shown in Figure 14 on the collection of simplices K = {σ1, σ2, σ3, σ4}
with the same vertices and numbering as the collection shown in Figure 11.

The fact that p is discontinuous across facets is not evident from the de-
scription in the monomial basis, but in the Bernstein basis it is directly evi-
dent from the coefficients on the facets. In the Bernstein basis of degree 3, the
coefficients are

b(p1, 3, σ1) =[0,−5, 3, 9, 6, 4, 7, 3, 4,−2] (84)

b(p2, 3, σ2) =[0, 10, 11,−9,−6, 3, 4, 7, 2, 0] (85)

b(p3, 3, σ3) =[0, 0, 0, 0, 0, 0, 0, 5,−3, 7] (86)

b(p4, 3, σ4) =[0,−1,−3,−9,−1,−3, 0, 0, 0, 0]. (87)

On σ1 the coefficients on the shared facets are given as

∂2b(p1, 3, σ1) =[0,−5, 9, 7] ∂1b(p1, 3, σ1) =[0, 3, 4,−2]. (88)

On σ2 the coefficients on the shared facets are given as

∂2b(p2, 3, σ2) =[0, 10,−9, 4], ∂1b(p2, 3, σ2) =[0, 11, 3, 0]. (89)

On σ3 the coefficients on the shared facets are given as

∂1b(p3, 3, σ3) =[0, 0, 0, 7], ∂2b(p3, 3, σ3) =[0, 0, 0, 0]. (90)

30

3. Polynomials on Collection of Simplices

Figure 14: Discontinuous piecewise-polynomial on collection of simplices.

The coefficients on the shared facets of σ4 are given as

∂1b(p4, 3, σ4) =[0,−3,−3, 0], ∂2b(p4, 3, σ4) =[0,−1,−9, 0]. (91)

�
This concludes the material presented in this Chapter. The next section

will cover the implementation of all the mathematical operations presented
in the above; how to define polynomials in the Bernstein basis directly on
collections of simplices, how to transform between descriptions on different
simplices, how to convert from monomial basis to Bernstein basis, how to
obtain a triangulation, and more.

31

Bernstein Basis Introduction

4 Software

In this section, I will cover the implementation of the operations presented in
this Chapter. The present software section will be significantly longer than
the following software sections, since many basic operation are covered. I will
start out by introducing the structure of how all following functions handle
collections of simplices.

To construct a collection of simplices, two matrices are needed. One
named vex which contains all the vertices in the collection and one named
simplex which contains the combinations of vertices to define the simplices.
As an example, the collection of simplices in Figure 10(a) is defined by

vex =

[
0 −1 1 −1 1
0 −1 −1 1 1

]
, simplex =


1 2 3
1 3 5
1 4 5
1 2 4

 , (92)

such that e.g. σ3 is identified as

vex(:, simplex(3, :)) =
[

0 −1 1
0 1 1

]
(93)

with σ3
0 = [0, 0]T , σ3

1 = [−1, 1]T , and σ3
2 = [1, 1]T .

The function getBarycentricCoordinates takes one simplex as an input and
returns the barycentric coordinates for the simplex, according to Equation
(4).

The function getInitialPartition takes an n× 2 matrix with minimum and
maximum values in each variable defining an arbitrary n-dimensional box,
and returns vex and simplex. This is done by performing Kuhn’s triangula-
tion on each facet by running through all the possible permutations of ver-
tices on each facet and creating initial simplices. Adding the origin to vex and
shifting the index of all vertices in simplex by one, the desired collection is
obtained. The collection covers the box, and if the origin is not in the interior
of the box, the function returns an error.

The function getSimplexSorted takes one input, a matrix simplex, and re-
turns the same matrix after sorting the rows such that the simplices are or-
dered according to the convention that ∀ i ∈ {1, . . . , m− 1} simplices σi and
σi+1 overlaps with one facet.

The function genpow takes two inputs, n and D, and returns the α-matrix
of different α-combinations according to Equation (16). genpow is part of the
GloptiPoly toolbox for polynomial manipulation and optimisation using the
moment approach, see [19].

The function binomCoef takes two inputs, a scalar D and vector alpha, and
returns the binomial coefficient according to Equation (14).

32

4. Software

The function getBernsteinBasisPolynomials takes two inputs, D and vex, and
returns the Bernstein basis polynomials of degree D on the simplex defined
by the vertices in vex according to Equation (15).

The function getMon2BernSimplex is used to transform the description of
a polynomial in the monomial basis to a description in the Bernstein basis
on one simplex σ. getMon2BernSimplex takes two inputs, gamma and vex,
where gamma is the exponent matrix in Equation (12) and vex is a matrix
with vertices defining the simplex. It returns a matrix M2B, as derived in
Appendix B, the α-matrix, and the degree d of the polynomial. The matrix
M2B can then be used to transform the coefficients in the monomial basis to
the coefficients in the Bernstein basis by

bT(p, d, σ) = M2B cT (94)

where the ordering of the rows in M2B is in accordance with the convention
of the numbering of the vertices in vex. This ensures that

b(p, d, σ) = [b(d,0,...,0)(p, d, σ), b(d−1,1,...,0)(p, d, σ), . . . , b(0,0,...,d)(p, d, σ)]. (95)

Note that getMon2BernSimplex utilises two functions, getProduct and elevate-
Degree, which have not been introduced yet. They are introduced in Section
9 after multiplication and degree elevation have been introduced.

The function setCoef is used to alter an entry in a vector. It takes the inputs
n, d, C, alpha, and Cval. They are the number of variables, the degree, the
vector, the α-combination, and the new value respectively. It uses the function
getCoefIndex which returns the index of a given α-combination. The output of
setCoef is the vector C, now with the new value.

The function getMon2BernTrans is used to transform the description of
a polynomial in the monomial basis to a description in the Bernstein basis
on a collection of simplices K. getMon2BernTrans takes four inputs, n and
the exponent matrix gamma form Equation (12), as well as vex and simplex
defining the collection. First, all control points in the collection are deter-
mined according to the convention presented in Section 3, using the function
getControlPoints. getControlPoints also bookkeeps the maps ∆i as shown in
Equations (52) and (53) in the matrix simplexCtrlPointsVF. Then the matrix
M2B is created and the first rows are defined using getMon2BernSimplex. Fi-
nally, the remaining rows in M2B are calculated similarly to how it is done in
getMon2BernSimplex, but with the ordering given by all control points in the
collection. getMon2BernTrans returns the matrix M2B, the α-matrix, the de-
gree d of the polynomial, and the matrix simplexCtrlPointsVF. The Bernstein
basis coefficients on the collection can then be calculated by

CT = M2B cT (96)

33

Bernstein Basis Introduction

and the coefficients on simplex σi are given by

b(p, d, σi) = Ci = C(simplexCtrlPointsVF(i, :)). (97)

The function returns an error if the numbering of the simplices is not done in
accordance with the convention from above.

The function getPoly takes five inputs, b, n, d, alpha, and vex, and returns
a polynomial p in the monomial basis. b is the Bernstein basis coefficients
of p in degree d on the simplex defined by the vertices in vex. alpha is the
α-matrix.

The function getCtrlPointBernTrans is used to obtain the matrix for trans-
forming between descriptions of a polynomial on different simplices. It takes
four inputs; n, d, and the collection defined by vex and simplex. First, all
control points in the collection are determined according to the convention
presented in Section 3, using the function getControlPoints. Then the matrix
B2C is created as derived in Appendix B and the last simplex in the col-
lection, σm, is assumed to be the simplex on which p is initially described.
The remaining rows in B2C are calculated similarly to how it is done in get-
Mon2BernSimplex, but with the ordering given by all control points in the
collection. getCtrlPointBernTrans returns the matrix B2C, the α-matrix, the de-
gree d of the polynomial, and the matrix simplexCtrlPointsVF. The Bernstein
basis coefficients on the collection can then be calculated from the Bernstein
basis coefficients on σm by

CT = B2C bT(p, D, σm) (98)

and the coefficients on simplex σi are given by

b(p, d, σi) = Ci = C(simplexCtrlPointsVF(i, :)). (99)

The function returns an error if the numbering of the simplices is not done in
accordance with the convention from above.

The function plotCollection can be used for an easy visualisation of a two
or three dimensional collection of simplices. The inputs are the collection vex
and simplex and produces a figure, there is no output.

34

Bernstein Basis Properties

The Bernstein basis offers several unique properties which have made the ba-
sis interesting for various reasons. In this Chapter, I introduce the properties
which are relevant for later use in stability analysis. The properties are from
[14] and the interested reader can consult [14] for a thorough treatment of all
properties of the basis.

To aid the presentation of the properties, Figure 15 shows the polynomial

p(x) = 10x3 − 27x2 + 18x + 5 (100)

on the collection of simplices K = {σ1, σ2}. At the bottom of the figure,
the simplices σi, the vertices σi

j (black diamonds), and the grid points ∆α(σi)

(blue circles) are shown. The graph of p is shown in red and the control
points (∆α(σi), bα(σi)) are shown using black crosses where the dependency
on σi has been omitted from the figure. These quantities were all introduced
in the previous chapter.

The solid lines in black outline the convex hull of the control points on
each simplex and exemplify the convex hull property.

Convex Hull Property:

On a given simplex, the graph of a polynomial is contained in the convex hull
of its control points when described in the Bernstein basis on the simplex.

On σi, all control points together constitute the control net of p on σi. The
so-called discrete graph of p is shown using blue stars. The discrete graph
consists of the points

(∆α(σ
i), p(∆α(σ

i))), (101)

and the dependency on σi has been omitted from the figure. Also, only some
of the discrete graph is labelled due to clarity. In particular,

(∆(3,0)(σ
1), p(∆(3,0)(σ

1))), (∆(0,3)(σ
1), p(∆(0,3)(σ

1))), (102)

(∆(3,0)(σ
2), p(∆(3,0)(σ

2))), (∆(2,1)(σ
2), p(∆(2,1)(σ

2))), (103)

35

Bernstein Basis Properties

0
0.

5
1

1.
5

2
x

02468101214
p(x)

σ
1 0

σ
1

σ
1 1
=

σ
2 0

σ
2

σ
2 1

∆
(
3
,0
)
(
σ
1
)

∆
(
2
,1
)
(
σ
1
)

∆
(
1
,2
)
(
σ
1
)
∆

(
0
,3
)
(
σ
1
)
=

∆
(
3
,0
)
(
σ
2
)
∆

(
2
,1
)
(
σ
2
)

∆
(
1
,2
)
(
σ
2
)

∆
(
0
,3
)
(
σ
2
)

(
∆

(
3
,0
)
,
b
(
3
,0
)
)

(
∆

(
2
,1
)
,
b
(
2
,1
)
)

(
∆

(
1
,2
)
,
b
(
1
,2
)
)

(
∆

(
0
,3
)
,
b
(
0
,3
)
)

(
∆

(
3
,0
)
,
b
(
3
,0
)
)

(
∆

(
2
,1
)
,
b
(
2
,1
)
)

(
∆

(
1
,2
)
,
b
(
1
,2
)
)

(
∆

(
0
,3
)
,
b
(
0
,3
)
)

(
∆

(
2
,1
)
,
p
(
∆

(
2
,1
)
)
)

(
∆

(
1
,2
)
,
p
(
∆

(
1
,2
)
)
)

(
∆

(
1
,2
)
,
p
(
∆

(
1
,2
)
)
)

(
∆

(
0
,3
)
,
p
(
∆

(
0
,3
)
)
)

p

p

Figure 15: Graph of p, vertices, grid points, control points, convex hull, and discrete graph of p.

36

Bernstein Basis Properties

are missing on the figure. Each point in the discrete graph is placed on the
(continuous) graph of p. In contrast, only some of the points in the control
net are on the (continuous) graph. This happens for the grid points at the
vertices, and this is in fact the result of the end-point value property.

End-Point Value Property:

The value of a polynomial p of degree d when evaluated at a vertex is equal
to the coefficient at the vertex. Thus on any simplex σ, for j ∈ {0, 1, . . . , n}
the following relation holds:

p
(

∆(Dej)
(D, σ)

)
= b(Dej)

(p, D, σ), (104)

where D ≥ d.

In [26] it is shown that the control net converges to the discrete graph
under either degree elevation or sub-division.

Degree elevation is the process of converting the description of a polyno-
mial p of degree d in the Bernstein basis of degree D1 ≥ d to a description in
the Bernstein basis of degree D2 > D1. This procedure is covered in Chapter
Arithmetic. For now, note that the number of control points grows when the
degree of the description is elevated and that the gap between the control net
and the discrete graph diminishes, and for D → ∞ vanishes.

Sub-division is the process of splitting a simplex into a collection of m
(smaller) simplices. This procedure is covered in Chapter Positivity Certifi-
cation. In a manner similar to degree elevation, this increases the number of
control points and the gap between the control net and the discrete graph di-
minishes, and for m → ∞ vanishes. It will later become of great importance
how to split simplices into smaller simplices.

Non-Negativity:

Directly evident from the definition of the basis polynomials, Equation (15),
is the non-negativity of B(σ) for x ∈ σ.

A direct result of the non-negativity of the basis polynomials is that the
sign of the Bernstein coefficients bα(p, D, σ) of a polynomial p can determine
the sign of p on σ. If all coefficients are non-negative, then so is p. The same
holds for positivity, non-positivity, and negativity.

In the same line of thought, the convex hull property yields (crude) lower
and upper bounds on p.

37

Bernstein Basis Properties

Lower And Upper Bounds:

For a polynomial p, for x ∈ σ the following relation holds

min
|α|=D

bα ≤ p(x) ≤ max
|α|=D

bα, (105)

where equality only happens if either extrema occurs for α = Dej by the end-
point value property. This is the case on Figure 15 for the minimum of p on
σ1 equal to b(3,0) and the maximum of p on σ2 equal to b(0,3).

The last property of interest is the fact that the basis polynomials are
unimodal.

Unimodality:

For x ∈ σ, the basis polynomial BD
ᾱ (σ) has a unique maximum at ∆ᾱ(D, σ).

Also, for x = ∆ᾱ the following relation holds

BD
ᾱ > BD

α , ∀α ∈ α̂ (106)

where α̂ is the α-matrix with the combination ᾱ removed.

A consequence of the unimodality of the basis polynomials, is that at ∆α̂

the coefficient bα̂ contributes more to the graph of p than any other coefficient.

38

Arithmetic

This Chapter presents of a few but essential mathematical operations on poly-
nomials described in the simplicial Bernstein basis. The results for multipli-
cation, degree elevation, and differentiation can be found in [9]. The result
for addition can be found in e.g. [15] although presented for the tensorial
Bernstein basis. The material presented in this Chapter includes thorough
derivations behind the results. The implementation of the operations is cov-
ered in the final section of this Chapter.

Throughout the chapter, I need two polynomials in the derivations. They
are defined as

p1 = ∑
|α|=D1

bα(p1, D1, σ)BD1
α , p2 = ∑

|β|=D2

bβ(p2, D2, σ)BD2
β , (107)

and to shorten the notation, I define the coefficient vector of p1 as b1 =
b(p1, D1, σ) and the coefficient vector of p2 as b2 = b(p2, D2, σ). Note that any
arithmetic performed on polynomials defined on collections of simplices, is
simply performed on each simplex individually. For this reason, the depen-
dency on σ is left out henceforth in this Chapter.

5 Multiplication

Let the polynomial h be the product of p1 and p2 as h = p1 p2 and write

h = ∑
|γ|=Dh

bγ(h, Dh)B
Dh
γ = bhBDh . (108)

Note that Dh = D1 + D2 and |γ| = |α + β|.
Writing out p1 p2 and identifying the Bernstein basis of degree Dh, the

39

Arithmetic

coefficients bh
γ can be identified as

h = ∑
|α|=D1

∑
|β|=D2

b1
αb2

βB
D1
α BD2

β (109)

= ∑
|α|=D1

∑
|β|=D2

b1
αb2

β

(
D1

α

)
λα

(
D2

β

)
λβ (110)

= ∑
|α|=D1

∑
|β|=D2

b1
αb2

β

(
D1

α

)(
D2

β

)
λα+β (111)

= ∑
|α|=D1

∑
|β|=D2

b1
αb2

β

(D1
α)(

D2
β)

(Dh
γ)

(
Dh
γ

)
λα+β︸ ︷︷ ︸

BDh
γ

(112)

= ∑
|γ|=Dh

bh
γB

Dh
γ (113)

where the coefficients of h are

bh
γ = ∑

|γ−α|=D2
γ−α≥0

b1
αb2

γ−α

(D1
α)(

D2
γ−α)

(Dh
γ)

, ∀|γ| = Dh (114)

with α being the summation variable.

6 Degree Elevation

The polynomial p1 described in the Bernstein basis of degree D1 can be de-
scribed equally well in a Bernstein basis of degree D = D1 + r where r ∈ N

determines how much the degree is elevated. Thus

p1 = ∑
|α|=D1

bα(p1, D1)BD1
α = ∑

|γ|=D
bγ(p1, D)BD

γ (115)

where the coefficients are related as

bγ(p1, D) = ∑
|γ−α|=r
γ−α≥0

bα(p1, D1)
(D1

α)(
r

γ−α)

(D
γ)

, ∀|γ| = D (116)

with α as the summation variable. This relation is obtained in the same way
as the derivation of the multiplication, except that p2 is fixed to the unit poly-
nomial and described in the Bernstein basis of degree D2 = r. From Equation
(18) it is easily seen that the unit polynomial described in any degree is ob-
tained with a coefficient vector b2 of all ones.

40

7. Addition

7 Addition

Let the polynomial g be the sum of p1 and p2 as g = p1 + p2 and write

g = ∑
|γ|=Dg

bγ(g, Dg)B
Dg
γ = bgBDg . (117)

If D1 = D2 the degree of g is also Dg = D1 = D2 and the coefficients of g are
then easily determined as

bα(g, Dg) = bα(p1, D1) + bα(p2, D2), ∀|α| = Dg. (118)

If e.g. D1 > D2 the degree of g is Dg = D1 and the degree of p2 must be
elevated by r = D1 − D2 before the coefficients can be added.

8 Differentiation

This Section covers the derivation of how to compute the partial derivative
of a polynomial defined in the Bernstein basis. This is done in three steps,
where first the partial derivative of the basis polynomials with respect to the
barycentric coordinates is derived. Then the partial derivative of the basis
polynomials with respect to the variables is covered, and finally, the partial
derivative of polynomials in the Bernstein basis with respect to the variables
is derived.

Partial Derivative of Basis Polynomials with Respect to Barycentric Coor-
dinates

By Equations (14) and (15) the basis polynomials are

BD
α =

(
D
α

)
λα =

D!
α0!α1! · · · αn!

n

∏
i=0

λ
αi
i . (119)

Differentiating with respect to λj yields

∂BD
α

∂λj
= αj

D!
α0!α1! · · · αn!

 n

∏
i=0
i 6=j

λ
αi
i

 λ
αj−1
j = αj

D!
α0!α1! · · · αn!

λα−ej , (120)

which can be rearranged, assuming αj ≥ 1, into

∂BD
α

∂λj
= D

(D− 1)!
α0! · · · αj−1!(αj − 1)!αj+1 · · · αn!

λα−ej = D
(

D− 1
α− ej

)
λα−ej = DBD−1

α−ej
.

(121)

41

Arithmetic

If αj = 0, the partial derivative equals zero, and αj − ej = −1 /∈ N0. To
overcome this, I use the convention

BD
α ≡ 0, ∀α /∈Nn+1

0 , (122)

such that the results combine to

∂BD
α

∂λj
= DBD−1

α−ej
(123)

for αj ≥ 0 and j ∈ {0, 1, . . . , n}.

Partial Derivative of Basis Polynomials with Respect to Variables

By Equation (4) the barycentric coordinates are defined by
x1
· · ·
xn
1

 =


σ0(1) · · · σn(1)
· · · · · · · · ·

σ0(n) · · · σn(n)
1 · · · 1


 λ0
· · ·
λn

 (124)

which, when differentiated with respect to the variables, yields

[
In×n
01×n

]
=


σ0(1) · · · σn(1)
· · · · · · · · ·

σ0(n) · · · σn(n)
1 · · · 1




∂λ0
∂x1

· · · ∂λ0
∂xn

· · · · · · · · ·
∂λn
∂x1

· · · ∂λn
∂xn

 , (125)

with In×n the identity matrix, and 01×n a row vector of zeros. As the vertices
σi are affinely independent, the derivative of the barycentric coordinates can
be described as

∂λ

∂x
=


∂λ0
∂x1

· · · ∂λ0
∂xn

· · · · · · · · ·
∂λn
∂x1

· · · ∂λn
∂xn

 =


σ0(1) · · · σn(1)
· · · · · · · · ·

σ0(n) · · · σn(n)
1 · · · 1


−1 [

In×n
01×n

]
, (126)

and for compact notation define

ς =


σ0(1) · · · σn(1)
· · · · · · · · ·

σ0(n) · · · σn(n)
1 · · · 1


−1 [

In×n
01×n

]
, (127)

making ς ∈ Rn+1×n. Finally, using the chain rule and Equation (123)

∂BD
α

∂x
=

∂BD
α

∂λ

∂λ

∂x
= D[BD−1

α−e0
, . . . ,BD−1

α−en
]ς. (128)

42

8. Differentiation

Partial Derivative of Polynomials in the Bernstein Basis

Let a polynomial p be described by

p = ∑
|α|=D

bα(p, D)BD
α , (129)

and denote its derivative by

p′ =
∂p
∂x

= ∑
|α̃|=D−1

bα̃(p′, D− 1)BD−1
α̃ (130)

with bα̃(p′, D − 1) ∈ R1×n. Then the relationship between bα(p, D) and
bα̃(p′, D− 1) is derived as

∂p
∂x

= ∑
|α|=D

bα(p, D)
∂BD

α

∂x
(131)

= ∑
|α|=D

Dbα(p, D)[BD−1
α−e0

, . . . ,BD−1
α−en

]ς (132)

= ∑
|α|=D

D[bα(p, D)BD−1
α−e0

, . . . , bα(p, D)BD−1
α−en

]ς. (133)

Defining a new summation variable by α = α̃ + ej ∀ j ∈ {0, 1, . . . , n} gives

∂p
∂x

= ∑
|α̃|=D−1

D[bα̃+e0(p, D), . . . , bα̃+en(p, D)]ςBD−1
α̃ (134)

which, by comparing to Equation (130) identifies

bα̃(p′, D− 1) = D[bα̃+e0(p, D), . . . , bα̃+en(p, D)]ς, ∀|α̃| = D− 1, (135)

with bα̃(p′, D− 1) ∈ R1×n.

43

Arithmetic

9 Software

The function getProduct takes seven inputs, defining two polynomials, and
returns the product of them. C f , alpha f , and d f are the coefficient vector, the
α-matrix, and the degree of the first polynomial and Cg, alphag, and dg are
the coefficient vector, the α-matrix, and the degree of the second polynomial.
Note that alphag is actually not used in the function. Finally, n is the dimen-
sion of the polynomials. The output polynomial is defined by C, alpha, and d
which are the coefficient vector, the α-matrix, and the degree of the product.

The function elevateDegree takes five inputs, defining one polynomial, and
returns the representation of the same polynomial in a higher degree. r is
how much the degree is to be elevated. Cd, Alpha, d, and n are the coeffi-
cient vector, the α-matrix, the degree, and the dimension of the polynomial,
respectively. The output is Cr, Gamma, and dr as the coefficient vector, the
α-matrix, and the degree of the elevated representation.

The function getSum takes seven inputs, defining two polynomials, and
returns the sum of them. C f , alpha f , and d f are the coefficient vector, the
α-matrix, and the degree of the first polynomial and Cg, alphag, and dg are
the coefficient vector, the α-matrix, and the degree of the second polynomial,
and n is the dimension. The output polynomial is defined by C, alpha, and d
which are the coefficient vector, the α-matrix, and the degree of the sum.

Note that there is no implementation of the differentiation. In what fol-
lows, differentiation is not needed as a standalone function, but the equa-
tion is incorporated in a bigger function in the stability part. The function
getLieDerivativeTrans utilises the above, as explained in Section 21.

44

Positivity Certification

With the introduction to the Bernstein basis thoroughly covered, including
some properties and arithmetic, the time has now come to actually start using
the basis for something. This Chapter covers a straightforward utilization of
the basis for positivity certification.

In general, positivity certification is the process of certifying the positivity
of a function. It can be either over the entire domain of definition or on
sub-domains. This is referred to as either certifying global or local positivity.

Certifying the positivity of a polynomial can be done in many ways, but
the common denominator is that the positivity is certified by the existence
of some certificate of positivity. A certificate of positivity can be thought of as
a one-line proof of positivity. It could be the existence of a certain algebraic
relation, the existence of a certain matrix with positive eigenvalues, or the
existence of a certain vector with positive entries.

Some of the theoretical results regarding algebraic relations are the cele-
brated Stellensatze, be it Hilbert’s Nullstellensatz [39], Stengle’s Positivestel-
lensatz [49], Putinar’s Positivestellensatz [25], or variations hereof. They go
far beyond positivity certification, but can be used for it. Another relation
is the straightforward utilising of sum-of-squares polynomials, Σ[X], where
the reasoning is that if a polynomial can be expressed as a sum of squares,
it must necessarily be at least non-negative. Further inspection of the min-
ima of the squares can assess if the polynomial is positive definite or even
positive. See Appendix D for an example of this.

Certifying polynomial positivity using the Bernstein basis is obtained di-
rectly by the sign of the coefficients. This is thanks to the convex hull property
and the derived lower bounds. If all coefficients are positive, then so is the
polynomial. If one or more coefficients are zero, while the rest are positive,
then the polynomial is either positive or non-negative, depending on which
coefficients are equal to zero. This is by the end-point value property. If all
coefficients are equal to zero, the polynomial is the zero polynomial, and if
the sign of the coefficients are mixed, nothing can be said (directly) about the
sign of the polynomial. If the coefficients at the vertices are of mixed sign,
then so is the polynomial. When certifying positivity of polynomials using

45

Positivity Certification

the Bernstein basis, the certificate will inherently be a local certificate, due to
the fact that the basis polynomials are defined on simplices.

If a polynomial is to be investigated for positivity on a given simplex and
the initial description in the Bernstein basis results in a coefficient vector of
mixed sign, the polynomial may still be positive. Sub-dividing into smaller
simplices, or raising the degree of the representation, could result in a vector
of positive coefficients. This is covered in the following, where the so-called
Bernstein’s Theorem constitutes the theoretical foundation for the search for
a certificate of positivity.

10 By Degree Elevation

The motivation for investigating positivity of polynomials by degree eleva-
tion, is Bernstein’s Theorem.

Theorem 9 (Bernstein’s Theorem: Degree Elevation [26]) Let the polynomial p, of
actual degree d, be positive on the simplex σ. Then there exists a degree D ≥ d such
that all entries of b(p, D, σ) are positive.

Bernstein’s Theorem ensures the ability to certify the positivity of positive
polynomials by degree elevation, and the (local) certificate of positivity is the
coefficient vector b(p, D, σ). A theoretical bound on the degree D is derived
in [26]. Unfortunately, it relies on the minimum of the polynomial on the
simplex. However, in a practical setting, it is comfortable to know that there
is a bound on D.

Except for the following example, certification by degree elevation will
not be considered any further in this Thesis. While working on the subject,
it became evident to me that the certification process using degree elevation
is outperformed by the certification process using sub-division. This is in
alignment with the findings of other authors, see e.g. [10].

Example

Consider the polynomial p(x) = 5x2 − 4x + 1. It is wished to investigate the
local positivity of p on the simplex σ = [−1, 1]. Described on σ in the Bern-
stein basis of degree 2, the coefficient vector is b(p, 2, [−1, 1]) = [10,−4, 2].
Since the coefficients vector has a negative element, b(p, 2, [−1, 1]) is not a
certificate of positivity.

Raising the degree of the description to D = 21 the (rounded) coefficient
vector is

b(p, 21, [−1, 1]) =[10, 8.7, 7.4, 6.3, 5.2, 4.3, 3.4, 2.7, 2, 1.4,

1.0, 0.6, 0.3, 0.1, 0, 0, 0.1, 0.3, 0.6, 1.0, 1.4, 2.0].
(136)

46

11. By Sub-Division

-1 -0.5 0 0.5 1
x

-4

-2

0

2

4

6

8

10
p
(
x
)

(a) The polynomial p described in the Bern-
stein basis of degree 2.

-1 -0.5 0 0.5 1
x

-4

-2

0

2

4

6

8

10

p
(
x
)

(b) The polynomial p described in the Bern-
stein basis of degree 21.

Figure 16: The polynomial p(x) = 5x2 − 4x + 1 described in the Bernstein basis of degree 2 and
21 on the simplex σ = [−1, 1]. A green cross indicates a positive coefficient, a red cross indicates
a negative coefficient, and a blue cross indicates a coefficient equal to zero. Note how the control
points are converging to the graph of p.

The minimum value of the entries is exactly equal to zero, for both b(7,14) and
b(6,15). Since neither of these are at a vertex, b(p, 21, [−1, 1]) is a (local) certifi-
cate of positivity for p. The polynomial in the two descriptions is shown in
Figure 16. A green cross indicates a positive coefficient, a red cross indicates
a negative coefficient, and a blue cross indicates a coefficient equal to zero.

�

11 By Sub-Division

The process of splitting a simplex into two or more smaller simplices, is called
sub-division. This is obtained by placing a new vertex on the original simplex
and then considering the original simplex as a collection of simplices. The
new vertex can be placed either on a lower dimensional face or in the interior
of the original simplex. These variations are shown in Figure 17.

In Figure 17(a), a 3-simplex is shown with a new vertex (indicated by
the black ball) placed on the 1-face at the bottom. Figure 17(b) shows the
resulting two 3-simplices in an exploded view for clarity.

In Figure 17(c), the 3-simplex is shown with the new vertex (the black
ball) placed on the 2-face, coloured in red. Note that since n = 3, the 2-
face is actually a facet of the simplex. Figure 17(d) shows the resulting three
3-simplices in an exploded view for clarity.

The case where the new vertex is placed in the interior of the original sim-
plex does not allow for a clear presentation, and is thus omitted. In general,
sub-dividing by placing the new vertex in the interior of an n-simplex results

47

Positivity Certification

(a) Three dimensional simplex with the new
vertex placed on the 1-face at the bottom.

(b) The resulting collection of (two) simplices
after sub-divison at the new vertex.

(c) Three dimensional simplex with the new
vertex placed on the red facet in the front.

(d) The resulting collection of (three) sim-
plices after sub-divison at the new vertex.

Figure 17: Simplices before and after sub-division. Observe that placing a new vertex on a 1-face
results in two simplices, and that placing a new vertex on a 2-face results in three simplices.

in n + 1 simplices in the resulting collection.
As was the case for degree elevation, the motivation for investigating pos-

itivity of polynomials by sub-division is Bernstein’s Theorem.

Theorem 10 (Bernstein’s Theorem: Sub-division [26]) Let the polynomial p, of ac-
tual degree d, be positive on the simplex σ. Then there exists a sub-division of σ into
a collection of simplices K = {σ1, σ2, . . . , σm} containing finitely many simplices
such that C > 0, where C is the vector of all coefficients in the collection, e.g.

Ci = b(p, d, σi) > 0 ∀σi ∈ K. (137)

Bernstein’s Theorem ensures the ability to certify the positivity of positive
polynomials by sub-division, and the (local) certificate of positivity is the
coefficient vector C. A theoretical bound on the number of simplices m in
the collection is derived in [26]. The bound relies of the minimum of the
polynomial on the original simplex, and on the way one chooses to place new

48

11. By Sub-Division

-1 -0.5 0 0.5 1
x

-4

-2

0

2

4

6

8

10
p
(
x
)

σ
1

σ
2

(a) Simplex σ after the first sub-division into
the collection of simplices K = {σ1, σ2}.

-1 -0.5 0 0.5 1
x

-4

-2

0

2

4

6

8

10

p
(
x
)

σ
1

σ
2

σ
3

(b) Simplex σ after the second sub-divsion
into the collection of simplices K =
{σ1, σ2, σ3}.

Figure 18: Positivity certification of p(x) = 5x2 − 4x + 1 on the simplex σ = [−1, 1] using sub-
division. The colours used for the control points indicates a positive, negative or zero coefficient.

vertices. This choice is of tremendous interest, as it offers a way of tweaking
the certification process. After the following example, different strategies for
vertex placement are presented in the next section, which composes most of
the remainder of this Chapter.

Example

Revisiting the polynomial p(x) = 5x2− 4x + 1 from above, it is still wished to
investigate the local positivity of p on the simplex σ = [−1, 1]. The coefficient
vector b(p, 2, [−1, 1]) = [10,−4, 2] could not be a certificate of positivity, and
to show the (local) positivity of p, sub-division is used. To place new vertices,
the chosen strategy is simply to half the line segments. This is in fact the case
of one dimensional binary splitting, see below.

Figure 18 shows the process. First, on Figure 18(a), the original simplex σ
is sub-divided into collection of simplices K = {σ1, σ2}. Since b(p, 2, [−1, 0])
= [10, 3, 1] it is a certificate of positivity of p on σ1. Since b(p, 2, [0, 1]) has a
negative element, σ2 needs further sub-division. On Figure 18(b) σ2 has been
sub-divided, resulting in the collection of simplices K = {σ1, σ2, σ3}. The
minimum of b(p, 2, [0, 0.5]) = [1, 0, 0.25] is zero at a grid point not located at
a vertex, and b(p, 2, [0.5, 1]) = [0.25, 0.5, 2]. Thus the three coefficient vectors
b(p, 2, σi) are certificates of positivity of p on their respected simplices. To-
gether, C = [10, 1, 0.25, 2, 3, 0, 0.5] is a (local) certificate of positivity of p on
σ.

�

49

Positivity Certification

This example shows one of the features of sub-division which makes it
favourable compared to degree elevation. Once b(p, d, σi) certifies the posi-
tivity of p on σi, σi is removed from the remaining certification process. This
allows for a concentrated process, compared to degree elevation, where the
entire original simplex continues to be investigated until it is certified.

12 Vertex Placement

This section considers the choice of where to place new vertices when certify-
ing positivity of polynomials using sub-division. Any such choice will result
in a sub-division routine. There are two types of sub-division routines.

The first type of sub-division routine is to determine a pre-defined pattern
and apply it on a given simplex, until the certificate of positivity is obtained.
Using a pre-defined pattern offers the advantage of ensuring convergence
properties of the sub-division. This is, for instance, needed in proving the
bound on the number of simplices m in the collection mentioned above.

The other way is adaptive by determining a way of analysing the given
polynomial, and figuring out a way to incorporate the information to guide
the choice of where to place the next vertex. Analysing the polynomial at
hand offers the advantage of being able to obtain a certificate of positivity
using fewer sub-divisions than a pre-defined pattern would have to use, but
with limited or perhaps even no insurance that the chosen way of incorpo-
rating the information will result in a certificate at all.

Shrinking Factor

For sub-division routines using a pre-defined pattern, there is a measure of
"how much" smaller the simplices are after one sub-division. This is related
to the diameter of simplices in a collection, see Definition 2. With this, the
shrinking factor is as follows.

Notation 11 Let σ be a simplex and K be the collection of simplices after applying
a sub-division routine once. Then the shrinking factor C ∈ (0, 1] of the sub-division
routine is given by

Ch(σ) = h(K). (138)

Thus C is a measure of how much the diameters of the simplices in a col-
lection shrinks by applying the routine once. I will refer to any sub-division
routine with a constant C with 0 < C < 1 as a regular sub-division routine.
This is the case for all sub-division routines utilising a pre-defined pattern,
and two such routines are the standard triangulation and the binary splitting,
see below.

50

12. Vertex Placement

For routines which utilise information from an analysis of the given poly-
nomial, the shrinking factor may vary from one sub-division to the next.
Also, the routine may occasionally sub-divide without changing the diame-
ter or it may leave some simplices in the collection undivided, resulting in a
shrinking factor of C = 1. This is highly dependent on which information is
obtained, and how it is used in the routine.

12.1 Pre-Defined Vertex Placement

In the following, two strategies using a pre-defined pattern for sub-division
are presented.

Standard Triangulation

Standard triangulation1 [17] is perhaps the most regular sub-division rou-
tine one can imagine. It consists of placing a new vertex in the middle of
each 1-face. In general, this results in one simplex being sub-divided into
2n simplices. Besides the easy determination of new vertices, this approach
offers the feature that the volume of the resulting simplices are 2−n times the
volume of the original simplex.

On Figure 19, the standard triangulation is performed on the three di-
mensional standard simplex, see Equation (25). In [26] the shrinking factor
of the standard triangulation applied to the standard simplex is shown to be
C ≤

√
n

2
√

2
.

Binary Splitting

Binary splitting [26] is even simpler than standard triangulation. It consists
of placing one new vertex in the middle of the longest 1-face of the original
simplex. This is not necessarily unique, and in the case of two or more longest
1-faces, one of them is chosen arbitrarily. This always results in one simplex
being sub-divided into 2 simplices.

Binary splitting of a three dimensional simplex was already shown on
Figure 17. In [26] the shrinking factor is show to be C = 1

2 after n(n+1)
2

applications of the binary splitting. Since the shrinking factor after one ap-
plication of the binary splitting depends on the second longest 1-face the
shrinking factor is in fact not constant. However, considering the use of the
binary splitting n(n+1)

2 times as one application, the shrinking factor has a
constant upper bound. This enabled the use in the convergence analysis.

1In this Thesis, triangulation is the splitting of a box into simplices, but earlier works consid-
ered the word triangulation for both that, and for what I call sub-division. Should the naming
be aligned to my conventions, standard triangulation should be named standard sub-division.
However, the name is kept for historical reasons.

51

Positivity Certification

0
0

0
0.2

0.5

0.5 0.4
0.6

0.8
1

1

1

Figure 19: Standard triangulation of the standard simplex in three dimensions.

12.2 Adaptive Vertex Placement

At the offset of my PhD studies, the insight about how to obtain informa-
tion from a given polynomial was limited. I set out to investigate this, and
to familiarise myself with the mechanisms governing different strategies for
vertex placement. On a somewhat philosophical level, it was always my be-
lief that there had to be some "optimal" way of utilising the given polynomial,
that the polynomial wanted to be certified positive. I worked with "optimal"
meaning either having a fast run-time, which is implementation dependent,
or needing the fewest simplices in the collection, which is implementation
independent.

The sub-division routines presented in the following, are most of the
strategies I considered for vertex placement in the beginning of my stud-
ies. Most of them are variations of each other, with different advantages and
drawbacks.

Grid Point Triangulation

The strategy of grid point triangulation is thanks to Christoffer Sloth. He
presented it to me at the beginning of my studies and he had been using
it without considering its possible improvement. The strategy is to place the
next vertex at the grid point with the most negative coefficient. The strategy is
derived based on a simple heuristic. It is fair to assume that the minimum of

52

12. Vertex Placement

the polynomial is "close" to the grid point with the most negative coefficient.
Then, by the end-point value property, placing a vertex at the grid point of
the most negative coefficient offers an easy way of obtaining an evaluation of
the polynomial at that point. If the coefficient at the vertex in the description
on the new collection is negative, then the certification process can stop and
return an explicit point at which the polynomial is in fact negative. This offers
a natural stopping criterion and is another advantage compared to certifying
using degree elevation.

Scaled Grid Point Triangulation

Since the basis polynomials are unimodal (see Chapter Bernstein Basis Prop-
erties), I investigated a possible improvement of the grid point triangula-
tion. The maximal value of the basis polynomials differ according to their
α-index. By scaling the entries of the coefficient vector accordingly, the coeffi-
cient which, together with the basis polynomial, contributes most negatively
to the graph of the polynomial, can be identified. This is shown in the next
example, which also exemplifies grid point triangulation.

Example

On Figure 20, the polynomial

p(x) = 67.6x5 − 190.4x4 + 195.4x3 − 71.8x2 − 10x + 10 (139)

is shown. It is wished to investigate p for local positivity on the simplex
σ = [0, 1]. When described in the Bernstein basis of degree D = d = 5 the
coefficient vector is b(p, 5, [0, 1]) = [10, 8,−1.18, 2,−1, 0.8]. The most negative
coefficient is b(3,2) = −1.18. Using grid point triangulation will thus put
the new vertex at ∆(3,2) = 0.4. This is shown in Figure 20(b). As seen, one
application of the grid point triangulation does not certify the positivity of
p on σ as b(p, 5, [0.4, 1]) still contains a negative entry, b(1,4)(p, 5, [0.4, 1]) =

−0.28. Applying grid point triangulation on σ2 at ∆(1,4) = 0.88 yields Figure
20(d) where p is certified positive on σ.

Instead, if scaled grid point triangulation is used, the negative elements
of b(p, 5, [0, 1]) are scaled according to the corresponding basis polynomial.
By the unimodality property, the maximal values of the basis polynomials
are obtained at the corresponding grid points. Thus

B5
(3,2)([0, 1])|∆(3,2)(5,[0,1]) = 0.3456, (140)

B5
(1,4)([0, 1])|∆(1,4)(5,[0,1]) = 0.4096. (141)

53

Positivity Certification

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

10

σ

(a) Initial description of p on σ.

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

10

σ
1

σ
2

(b) Description after one application of grid
point trinagulation.

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

10

σ
1

σ
2

(c) To certify the positivity of p only one ap-
plication of the scaled grid point triangula-
tion is needed.

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

10

σ
1

σ
2

σ
3

(d) Description after another application of
grid point trinagulation of σ2 in Figure (b).

Figure 20: The polynomial p under two strategies for positivify certification. Figure (b) shows
the result after one application of the grid point triangulation. Directly below it, Figure (d)
shows the result after another application. Figure (c) shows the result of the scaled grid point
triangulation.

Since

b(3,2)(p, 5, [0, 1])B5
(3,2)([0, 1])|∆(3,2)(5,[0,1])

> b(1,4)(p, 5, [0, 1])B5
(1,4)([0, 1])|∆(1,4)(5,[0,1]),

(142)

the scaled grid point triangulation will select the new vertex to be placed at
∆(1,4) = 0.8. This is shown in Figure 20(c). As seen, the scaled grid point
triangulation certifies the positivity of p using one sub-division, resulting in
two simplices. Since grid point triangulation used three simplices, the scaled
grid point triangulation performed better in this example.

�

54

12. Vertex Placement

Experience from working with the scaled grid point triangulation revealed
that the strategy only rarely altered which grid point to place a new vertex
at, compared to grid point triangulation. When it did do so, the number of
needed simplices before a certificate was obtained was not necessarily im-
proved.

Extremums Placement

An inherent feature of (scaled) grid point triangulation is the fact that the
new vertex can only be placed at a finite set of points defined by the grid
points. In general there are

ND − (n + 1) (143)

possible points, where ND = (n+D
n) is the number of grid points and n + 1

is the number of vertices. In an attempt to overcome this and be able to
place the new vertex more freely, I developed the following strategy, coined
extremums placement.

Presented with a coefficient vector with more than one negative entry,
define the polynomial

pneg = ∑
α∈I

bα(p, D, σ)BD
α (σ) (144)

where I = {α|bα(p, D, σ) < 0}. Thus pneg is composed of all the negative
contributions to p. Then find the minimum of pneg on σ and use the corre-
sponding point as a new vertex.

Although extremums placement successfully improved the placement of
the new vertex and often resulted in a decrease in the number of needed
simplices in small examples, the strategy suffers from another issue. The task
of certifying positivity of one polynomial is transformed into determining the
minimum of another polynomial. Regardless of which technique is chosen
to determine the minimum of pneg, one could just as well determine the
minimum of p directly and obtain the wanted certificate of positivity in that
way. Note that pneg is of the same degree and dimension as p. Thus the task
of determining the minimum of them are of similar difficulty.

Newton Guess Correction

Inspired from optimisation, it was attempted to consider the grid point of the
most negative coefficient as a hot start in a minimisation. It was tried with
both the polynomial and its derivative as objective function, and different
search direction and step size determination methods were considered. No
combination of them were particularly obvious based on the mathematics in-
volved, and none of them really stood out as particularly useful. In addition,

55

Positivity Certification

they all require symbolic manipulation of high degree and high dimensional
polynomials, causing the strategy to run slow, if at all.

The Newton guess correction is named after classical and modified New-
ton’s methods from optimisation, see e.g. [5]. For the reasons above, the
Newton guess correction was abandoned, but the work was not wasted. It
brought to my attention that the negativity of some coefficients contains more
information than the negativity of other coefficients does. This resulted in the
next strategy.

Information Exhaustion

This strategy relies on the fact that a polynomial restricted to a face is de-
fined by the coefficients on that face. This was seen in the example in Section
2.1. This results in the following observation: A polynomial with negative
coefficients on one of its faces will continue to have negative coefficients on
that face, until that face is sub-divided. Hence, a sub-division which does not
sub-divide all faces containing at least one negative coefficient can never re-
sult in a certificate of positivity, and there will always be a need for additional
sub-division. For this reason the most negative coefficient is not necessarily
the most interesting coefficient.

Where the grid point triangulation would eventually sub-divide all faces
containing negative coefficients, this strategy simply sub-divides all faces
containing a negative coefficient right away. If a face has more than one
negative coefficient, the most negative of those coefficients is used. Thus this
strategy exhausts all the information given in one coefficient vector, hence the
name.

For simplices of dimension 3 or higher, an interesting effect occurs for this
strategy. If there are negative coefficients on faces of different dimensions, the
order in which the faces are sub-divided starts to play a role. To see this, con-
sider Figure 17. On Figure 17(b), the sub-division is performed on a face of
dimension 1, but the sub-division also divides the red face of dimension 2.
On Figure 17(d), the sub-division is performed on the red face of dimension
2, but this time the sub-division does not divide the face of dimension 1 at
the bottom. This calls for a choice of whether to sub-divide low-dimensional
faces first, or to place vertices at the grid points with the most negative coef-
ficient, and then proceed to sub-divide until all faces (of the original simplex)
containing a negative coefficient have been sub-divided.

Some initial examples did not reveal a clear preference regarding this
choice, but the strategy of information exhaustion was a great improvement
compared to grid point triangulation, both on run-times and on the number
of needed simplices to obtain the certificate of positivity. In the implemen-
tation which followed, the grid point with the most negative coefficient is
used to place the first new vertex. Then, the grid point with the second most

56

12. Vertex Placement

negative coefficient is used to place the next new vertex, given that the face of
this grid point has not already been sub-divided. The implementation then
proceeds through all negative coefficients until all faces of interest have been
sub-divided.

Equal to Zero Approach

Although information exhaustion was chosen as the strategy for positivity
certification in the rest of my work, one more strategy deserves to be men-
tioned in this context. Where the strategies above all abide to some level of
"let us see what happens" by (intelligently) placing one or more new ver-
tices and then analysing the coefficient vector of the resulting collection, this
strategy flips the certification process entirely.

In one dimension, the equal to zero approach aims at designing a collec-
tion of simplices where the simplices are as big as they can be. This is done
by extracting the equation of the most negative coefficient, and then allowing
for one vertex to be a variable in the equation. Equating to zero then reveals
where to place the vertex such that the most negative coefficient (in the orig-
inal simplex) becomes equal to zero (in the new simplex). In one dimension,
this strategy naturally outperforms all other strategies when comparing by
the number of needed simplices. However, when the dimension is two or
higher, one equation to equate to zero no longer suffices to determine the
place to put a new vertex. The vertex used as a variable now has two or more
components, one for each dimension, and additional equations are needed
to obtain a solvable system of equations. Despite my best efforts, have I not
been able to identify any equations suitable to govern the vertex placement
which scale with dimension.

Example

Consider the polynomial p(x) = 5x2 − 4x + 1 which was investigated for
positivity above, using both degree elevation and as the introductory exam-
ple to sub-division. The simplex of interest was σ = [−1, 1] and the initial
coefficient vector was b(p, 2, [−1, 1]) = [10,−4, 2]. In Appendix B, equations
for basis transformation between monomial and Bernstein bases are derived.
Using Equation (B.17) reduced to one dimension yields

b(1,1)(p, 2, [σ0, σ1]) = 5σ0σ1 − 4
(

σ0
1
2
+ σ1

1
2

)
+ 1. (145)

Choosing the variable as σ1 from the original simplex σ gives

b(1,1)(p, 2, [−1, σ1]) = 0⇒ σ1 =
3
7

, (146)

57

Positivity Certification

-1 -0.5 0 0.5 1
x

-2

0

2

4

6

8

10
p
(
x
)

σ
1

σ
2

(a) Sub-division obtained by treating σ1 as a
variable. Maximises the resulting σ1.

-1 -0.5 0 0.5 1
x

-2

0

2

4

6

8

10

p
(
x
)

σ
1

σ
2

(b) Sub-division obtained by treating σ0 as a
variable. Maximises the resulting σ2.

Figure 21: Collection of simplices obtained from the equal to zero approach. Either vertex σ1 or
vertex σ0 in the original simplex is treated as a variable.

such that

b(p, 2, [−1, 3
7]) = [10, 0, 0.2041] (147)

b(p, 2, [3
7 , 1]) = [0.2041, 0.2857, 2]. (148)

Choosing the variable as σ0 from the original simplex σ gives

b(1,1)(p, 2, [σ0, 1]) = 0⇒ σ0 =
1
3

, (149)

such that

b(p, 2, [−1, 1
3]) = [10, 0.667, 0.2222] (150)

b(p, 2, [1
3 , 1]) = [0.2222, 0, 2]. (151)

As seen, the strategy does indeed maximise the resulting simplex. In fact,
choosing any point in the interval [1

3 , 3
7] as the new vertex will result in a sub-

division of σ into two simplices where neither description contains negative
coefficients. It is interesting to observe that the derivative changes sign at
x = 2

5 , which is inside the interval as well. The situation is shown in Figure
21.

�

13 By Dimension Elevation

During my stay in Colorado in 2016, my host Sriram Sankaranarayanan came
up with the idea that there perhaps was a third way of obtaining positivity

58

14. Gap Between Positive Definite and Bernstein Basis Certifiable

certificates. By artificially expanding the dimension of a given polynomial,
the resulting coefficient vector would contain more entries corresponding to
the extra control points in the control net. I agreed that it would be of interest
to investigate whether there was any information to be obtained from the
extra coefficients.

After a few iterations, including presenting the idea to Rafał and Christof-
fer upon my return to Aalborg, the final result revealed itself. The informa-
tion obtained by elevating the degree is in some sense equivalent to the infor-
mation obtained from sub-division. This equivalence is derived in Appendix
C, and dimension elevation is not considered any further.

14 Gap Between Positive Definite and Bernstein
Basis Certifiable

In the coming stability analysis, it is of interest to certify non-negativity and
positive definiteness, but the Bernstein Theorem does not encompass this sit-
uation completely. Polynomials can be positive definite without any degree
or sub-division to show it. An explicit example of this is treated in Appendix
D. This is an inherent drawback of using the Bernstein basis in stability anal-
ysis. However, as shall be evident in Part II, the Bernstein basis still offers
some highly desired advantages compared to the monomial basis. The most
obvious advantage is that the implication of the Bernstein Theorem holds, i.e.
a polynomial defined on a collection of simplices with one vertex coefficient
equal to zero, the other vertex coefficients positive, and the remaining coeffi-
cients non-negative, will be positive definite. To distinguish, I introduce the
following notion.

Notation 12 (Bernstein Basis Certifiable) Let p : U → R, with U ⊂ Rn a closed
polytope, be a positive definite polynomial (p ∈ R>0[x]) with one point x∗ ∈ U
such that p(x∗) = 0. If there exists a collection of simplices K = {σ1, σ2, . . . , σm}
covering U such that Ci ≥ 0 for all i ∈ {1, 2, . . . , m}, when p is described on K, then
p is said to be Bernstein basis certifiable. Such a collection is said to be a Bernstein
basis certifying collection for p.

As a natural consequence, the point x∗ needs to be at a vertex in K.

For completeness, I mention that there is a difference between a polyno-
mial being positive definite and a sum of squares, in the sense that a poly-
nomial can be positive definite without being able to be expressed as a sum
of squares. This difference was first proved in 1888 by Hilbert, but not un-
til 1967 did an explicit example occur in the literature, thanks to Motzkin
[43]. However, on compact domains, positive definite polynomials can be ap-
proximated to arbitrary precision by sum-of-squares polynomials of higher

59

Positivity Certification

degree. This is due to the density of sum-of-square polynomials, a result
given by Lasserre in [25].

15 Software

The function getPositivityCertificate takes five inputs defining a polynomial in
the monomial basis and returns a certificate of positivity. C, gamma, vex,
and simplex define the polynomial and the initial collection of simplices on
which the positivity is wished to be investigated. Due to numerical issues,
is it sometimes of interest to specify a tolerance on the coefficient evaluation.
This can be done with the tol argument. If left unspecified, the default is
zero tolerance. The function then proceeds to investigate the positivity of
the polynomial on each simplex in the collection. If the certificate cannot
be obtained on the current simplex, it is sub-divided according to the grid
point triangulation and the information exhaustion strategies. The function
continues sub-dividing until a certificate is obtained, or an explicit point at
which the polynomial is negative is identified. The output CB is the coef-
ficient vector of the polynomial when described on the resulting (Bernstein
basis certifying) collection, defined by vex and simplex. The α-matrix, the
degree, and the dimension are alpha, d, and n respectively.

The function GPT_ExhaustingInfo takes eight inputs defining a collection
of simplices, and returns a collection of simplices where one simplex has
been sub-divided according to the grid point triangulation and information
exhaustion strategies. The inputs are: alpha is the α-matrix, I is the index
of the most negative coefficient, d is the degree, n is the dimension, vex and
simplex define the collection of simplices, i is the number of the simplex in
the collection which is to be sub-divided, and CB is the coefficient vector of
the polynomial on the ith simplex. The outputs are vex and simplex which
define the new collection of simplices.

60

Part II

Stability Analysis

61

Stability Introduction

The second part of this Thesis is concerned with dynamical systems, in par-
ticular their equilibrium points and the (in)stability of them. The notion of
stability offers several interpretations and, depending on the setting, they all
have their merit. This Thesis solely focuses on continuous time polynomial
dynamical systems and stability in the sense of Lyapunov. This will be spec-
ified later in this Chapter, but first some definitions are needed.

16 Definitions

Besides the definitions from Part I, the following well-known definitions are
needed in this Part.

16.1 Comparison Function

For later definition and classification of different stability notions, the concept
of comparison functions greatly simplify the notation. A function α : R≥0 →
R≥0 is said to be of class K if it is continuous, zero at zero, and strictly in-
creasing. A function σ : R≥0 → R≥0 is said to be of class L if it is continuous,
strictly decreasing, and limt→∞ σ(t) = 0. A function β : R≥0 ×R≥0 → R≥0
is said to be of class KL if it is class K in its first argument and class L in its
second argument.

Combined with any p-norm, class K comparison functions can be ex-
tended to n variables in what is termed a monotone aggregation function
µ : Rn

≥0 → R≥0, such that µ(x) = α(||x||). Similarly, class KL compar-
ison functions can be extended to n variables in the first argument to θ :
Rn
≥0 ×R≥0 → R≥0, such that θ(x, t) = β(||x||, t). Throughout the Thesis,

I shall solely use the α(||x||) and β(||x||, t) constructions, and reference to
both as comparison functions. See [22] for a detailed exposition of compari-
son functions.

63

Stability Introduction

16.2 Vector Field

Let f : U → Rn with U ⊆ Rn. Then, for

Σ : ẋ = f (x), (152)

Σ is termed a dynamical system and f is termed the vector field. The vector
of variables x will commonly be referred to as the state or the state variables
and U is the state space. Given a set of initial conditions x0 at some initial
time t0, the solution to the differential equation (152) is noted x(t). The path
followed in state space of a solution x(t) for t ≥ t0 is called the solution
trajectory, or simply trajectory. Henceforth, the initial time will be assumed
to be t0 = 0.

As I only consider polynomial vector fields, f ∈ R[x] throughout, where
R[x] is the ring of polynomials. The familiar reader will recognise Σ as an
unforced system, or a system consisting solely of a drift term. In this Thesis,
only the uncontrolled case is considered, or at least the case of a known
controller where the system has already been simplified to a pure drift term.

16.3 Equilibrium Point

An equilibrium point is a state x∗ satisfying

f (x∗) = 0 (153)

meaning that the vector field vanishes at x∗. This also indicates that the
dynamics of Σ does not evolve, should the equilibrium point ever be reached.

Without loss of generality, if nothing else is mentioned, it will be assumed
that all equilibrium points are located at the origin, x∗ = 0. By a linear change
of variables, equilibrium points can be translated to an arbitrary location
without changing the stability properties of the equilibrium, see e.g. [30] for
an example of this.

17 Lyapunov Stability

Remembering the ball of radius r being Br, the notion of stability in the sense
of Lyapunov can be expressed as follows.

Definition 13 (Stability in the Sense of Lyapunov [47]) The equilibrium point x =
0 is said to be stable if, for any R > 0, there exists r > 0, such that if x0 ∈ Br, then
x(t) ∈ BR for all t ≥ 0. Otherwise, the equilibrium point is unstable.

In words, the definition reads that if the initial state is sufficiently close
to the origin in terms of Euclidean distance, the solution trajectories will stay
within a maximal Euclidean distance from the origin for all future time. But

64

17. Lyapunov Stability

staying close to the origin is generally not a sufficiently satisfying condi-
tion; convergence (of some sort) of the state variables to the equilibrium is
required.

Definition 14 (Asymptotic Stability [47]) A stable equilibrium point is said to be
asymptotically stable if the trajectories for x0 ∈ Br also implies that x(t) → 0 for
t→ ∞.

Asymptotic stability is arguably the weakest form of stability, since the
convergence rate can be infinitely slow. Later, this Chapter presents two other
types of stability with faster convergence rates, but first an essential tool for
determining (asymptotic) stability is presented.

17.1 Lyapunov Function

If a function V : U → R is positive definite with continuous partial deriva-
tives and has a negative semi-definite time derivative V̇(x) along the solution
trajectories of Equation (152), then V(x) is called a Lyapunov function. By
the chain rule

V̇(x) =
dV(x)

dt
=

∂V(x)
∂x

ẋ =
∂V(x)

∂x
f (x) (154)

which gives rise to the term derivative along trajectories. In fact, the Lie
derivative of V(x) with respect to f (x) is LV(f) = ∂V(x)

∂x f (x) which is why
V̇(x) will often also be referred to simply as the Lie derivative.

Theorem 15 (Lyapunov Function for (Asymptotic) Stability [47]) Let the origin be
an equilibrium point of the dynamical system Σ. If there exists a Lyapunov function
V(x) the equilibrium is stable. Asymptotic stability is obtained if the Lie derivative
is negative definite.

An equivalent theorem for asymptotic stability can be given using com-
parison functions as follows.

Theorem 16 (Asymptotic Stability using Comparison Functions [23]) Let the ori-
gin be an equilibrium point of the dynamical system Σ. If there exists a function
V : U → R such that

α1(||x||) ≤ V(x) ≤ α2(||x||)
V̇(x) ≤− α3(||x||),

(155)

where αi(||x||) are class K comparison functions, then the origin is asymptotically
stable.

65

Stability Introduction

The decay of the trajectories to the origin is evident from the inequality

||x(t)||2 ≤β(||x0||, t) (156)

which can be obtained by manipulating (155) and using the comparison
lemma for comparison functions ([23]). Here β(||x0||, t) is a class KL func-
tion. The equivalence between the Lyapunov function in Theorem 15 and the
function V in Theorem 16 should be evident.

This result is part of Alexandr Lyapunov’s original work from 1892. Later
on, the work on converse Lyapunov theory affirmatively answered the ques-
tion on the necessity of the existence of a Lyapunov function for an equilib-
rium to be asymptotically stable. See e.g. [18] or [34].

In modern notation, and fitted to the use in this Thesis, a converse theo-
rem taken from [6] reads as follows.

Theorem 17 (Converse Lyapunov Result for Asymptotic Stability [6]) Let the ori-
gin be an equilibrium point of the dynamical system Σ, and let it be asymptotically
stable. Then there exists a C∞ Lyapunov function with a negative definite Lie deriva-
tive.

Here C∞ is the class of infinitely differentiable functions.
With the existence of a Lyapunov function established as a necessary and

sufficient condition for asymptotic stability, the next natural question is how
to obtain such a function for a given system. The vigilant reader will by now
have realised that this Thesis is a humble attempt at answering that question.

17.2 Lyapunov Functions in the Bernstein Basis

This section introduces the link between the properties of the Bernstein basis
and Lyapunov functions. Showing positive definiteness of general non-linear
multivariate functions is a difficult problem. However, besides only consid-
ering polynomial dynamical systems, restricting the Lyapunov function to
be polynomial, V(x) ∈ R[x], allows for an easy use of the Bernstein basis
properties to show positive definiteness of V(x) and negative definiteness of
V̇(x). How to do this was covered in Chapter Positivity Certification.

Before I initiated my studies, Rafał and Christoffer had already translated
the Lyapunov criteria from above to conditions on the Bernstein coefficients.
With the notation introduced in Part I, the result reads as follows.

Lemma 18 ([46]) Let V(x) be a polynomial of degree dV defined on the collection of
simplices K = {σ1, σ2, . . . , σm} according to Definition 6 as

V(x) = CViBdV (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}, (157)

CViT
= iBj CV jT ∀ i, j ∈ {1, . . . , m}, (158)

66

17. Lyapunov Stability

where CV is the row vector of all coefficients in the collection and CVi denotes the
coefficients on the ith simplex. For some dynamical system Equation (152), also
described on the collection K, let V̇(x) be the Lie derivative. It is a polynomial of
degree dL defined on K according to Definition 6 as

V̇(x) = CLiBdL(σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}, (159)

CLiT
= iBj CLjT ∀ i, j ∈ {1, . . . , m}. (160)

Assume, without loss of generality, that the simplices are numbered such that the
origin is a vertex of the first m̄ simplices. If

CV ≥ 0 (161a)

CVi
dV e0

= 0 ∀i ∈ {1, . . . , m̄} (161b)

CVi
dV ej

> 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (161c)

CVi
dV ej

> 0 ∀i ∈ {m̄ + 1, . . . , m}, ∀j ∈ {0, . . . , n} (161d)

CL ≤ 0 (161e)

CLi
dLe0

= 0 ∀i ∈ {1, . . . , m̄} (161f)

CLi
dLej

< 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (161g)

CLi
dLej

< 0 ∀i ∈ {m̄ + 1, . . . , m}, ∀j ∈ {0, . . . , n}, (161h)

then x = 0 is a local asymptotically stable equilibrium point.

Note the necessity of the dynamical system Equation (152) to be described
on the collection K. This is always possible, since I only consider polynomial
vector fields. This is also why the methods presented in this Thesis cannot
be extended to more general non-linear vector field.

As with the positivity certification, which is based solely on the sign of the
coefficients, the positive definiteness of the Lyapunov function is embedded
completely in its coefficient vector by the convex hull property and the end-
point value property. By Equations (161c) and (161d) coefficients at vertices
not placed at the origin are positive. By Equation (161b) the coefficient at the
vertex at the origin is equal to zero and by Equation (161a) the remaining
coefficients are non-negative. The negative definiteness of the Lie derivative
is ensured in a similar manner.

17.3 Continuous Piecewise Lyapunov Functions

In the previous sections, Lyapunov functions were considered as functions
with continuous partial derivatives. This classification is unnecessarily strict
as both Theorem 15 and Theorem 17 can be proven under weaker conditions.

67

Stability Introduction

Different manuscripts develop different versions depending on their fo-
cus. As the description of polynomials in the Bernstein basis naturally allows
for continuous piecewise-polynomials, it was interesting to investigate how
to use them as Lyapunov functions. This requires Lyapunov functions which
are continuous, but not everywhere differentiable in the usual sense. This
situation has been covered in e.g. [18] or [24]. For a modern and thorough
treatment developed for the use of continuous piecewise-affine Lyapunov
functions see [33].

Allowing for continuous piecewise-polynomials, the limit for the usual
derivative does not exist on the facets. Instead, using the formulation of the
Dini derivative (see [48]) the use of the supremum (infimum) ensures that
the limit always exists. With the definition of a Lyapunov function expanded
from "with continuous partial derivatives" to "locally Lipschitz continuous",
Theorem 15 still apply. In this case, asymptotic stability is obtained if the
Dini derivative is negative definite [33].

When combined with polynomials described in the Bernstein basis, the
negative definiteness of the Dini derivative simply amounts to all coefficients
being negative. By the Lie derivative, I will refer to both the usual derivative
and the Dini derivative in the rest of the thesis. This allows for a natural
extension of Lemma 18 to continuous piecewise-polynomial Lyapunov func-
tions as follows.

Lemma 19 ([46]) Let V(x) be a continuous piecewise-polynomial of degree dV de-
fined on the collection of simplices K = {σ1, σ2, . . . , σm} according to Definition 7
as

V(x) = CViBdV (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}, (162)

∂kCVi = ∂lCV j ∀
{
(k, i, l, j)|∂kσi = ∂lσ

j
}

. (163)

For some dynamical system Equation (152), also described on the collection K, let
V̇(x) be the Lie derivative. It is a discontinuous piecewise-polynomial of degree dL
defined on K according to Definition 8 as

V̇(x) =


V̇1(x) = b(V̇1, dL, σ1)BdL(σ1) ∀x ∈ σ1

V̇2(x) = b(V̇2, dL, σ2)BdL(σ2) ∀x ∈ σ2

· · ·
V̇m(x) = b(V̇m, dL, σm)BdL(σm) ∀x ∈ σm

. (164)

Assume, without loss of generality, that the simplices are numbered such that the

68

18. Existence of Structured Lyapunov Functions

origin is a vertex of the first m̄ simplices. If

CV ≥ 0 (165a)

CVi
dV e0

= 0 ∀i ∈ {1, . . . , m̄} (165b)

CVi
dV ej

> 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (165c)

CVi
dV ej

> 0 ∀i ∈ {m̄ + 1, . . . , m}, ∀j ∈ {0, . . . , n} (165d)

b(V̇i, dL, σi) ≤ 0 ∀i ∈ {1, . . . , m} (165e)

bdLe0(V̇i, dL, σi) = 0 ∀i ∈ {1, . . . , m̄} (165f)

bdLej
(V̇i, dL, σi) < 0 ∀i ∈ {1, . . . , m̄}, ∀j ∈ {1, . . . , n} (165g)

bdLej
(V̇i, dL, σi) < 0 ∀i ∈ {m̄ + 1, . . . , m}, ∀j ∈ {0, . . . , n}, (165h)

then x = 0 is a local asymptotically stable equilibrium point.

In Chapter Stability Certification, Lemma 18 and Lemma 19 are used to syn-
thesise Lyapunov functions. At that point, it will become evident why having
the option of allowing for a larger class of Lyapunov functions (continuous
piecewise-polynomial versus polynomial) is interesting. Before that, the last
section of this Chapter covers what is known about the existence of Lyapunov
functions with certain specific structures.

18 Existence of Structured Lyapunov Functions

Theorem 17 tells us that for asymptotic stability, the existence of a C∞ Lya-
punov function is a necessary and sufficient condition. However, it does not
tell us whether or not we can expect that a polynomial Lyapunov function
exists. As it turns out, to sufficiently answer that question, the question needs
specification.

So far, I have deliberately avoided specifying the difference between local
and global stability. They are quite intuitive. Global asymptotic stability of an
equilibrium point is obtained if the initial condition x0 can be arbitrary and
still converge to the origin. In definitions 13 and 14, this amounts to r > 0
being arbitrary. Local asymptotic stability of an equilibrium point is obtained
if the initial condition x0 cannot be arbitrary. In this case, convergence to the
origin only happens if x0 ∈ Br, for some r > 0 depending on the system.
In accordance with [47] Br is referred to as a domain of attraction, while the
largest set of initial conditions which converge is referred to as the domain of
attraction. Since the boundary of the domain of attraction of a given system
in general will be an algebraic curve, the description of polynomials in the
Bernstein basis is not suited to analyse domains of attraction. This stems
from the barycentric coordinates being defined as affine polynomials.

69

Stability Introduction

Another specification is the type of stability under investigation. So far,
only asymptotic stability has been presented. Specific choices of comparison
functions in Theorem 16 results in more restrictive stability types in which
the trajectories decay to the origin with quantifiable rates. One such choice
gives exponential stability.

18.1 Exponential Stability

Definition 20 (Exponential Stability [47]) A stable equilibrium point is said to be
exponentially stable if the trajectories for x0 ∈ Br implies that

||x(t)||2 ≤ k||x0||2e−λt, (166)

for some constants k, λ > 0.

As for asymptotic stability, exponential stability can be asserted by the
existence of a Lyapunov function.

Theorem 21 (Exponential Stability using Comparison Functions [23]) Let the ori-
gin be an equilibrium point of the dynamical system Σ. If there exists a function
V : U → R such that

α||x||c2 ≤ V(x) ≤ β||x||c2
V̇(x) ≤− γ||x||c2,

(167)

with α, β, γ, and c constants > 0, then the origin is exponentially stable.

The exponential decay rate can be shown by manipulating (167) using the
comparison lemma for differential inequalities ([23]), and results in

||x(t)||2 ≤
c

√
β

α
||x0||2e−

γ
βc t, (168)

which obviously fulfils Equation (166)
Lastly, a converse theorem for exponential stability reads as follows.

Theorem 22 (Converse Lyapunov Result for Exponential Stability [47]) Let the ori-
gin be an equilibrium point of the dynamical system Σ, and let it be exponentially
stable. Then there exists a Lyapunov function fulfilling Equation (167).

Another choice of comparison functions yields rational stability.

18.2 Rational Stability

Definition 23 (Rational Stability [6]) A stable equilibrium point is said to be ratio-
nally stable if the trajectories for x0 ∈ Br implies that

||x(t)||2 ≤ M(1 + ||x0||k2t)−1/k||x0||
η
2 , (169)

for some constants M, k > 0 and η ∈ (0, 1].

70

18. Existence of Structured Lyapunov Functions

In [6] the characterisation of Lyapunov function and the converse result
are given in a single theorem as follows.

Theorem 24 (Converse Lyapunov Result for Rational Stability [6]) The origin of
the dynamical system Σ is rationally stable if and only if there exists a Lyapunov
functions such that

α||x||r1
2 ≤ V(x) ≤ β||x||r2

2

V̇(x) ≤− γ||x||r3
2 ,

(170)

where α, β, γ, r1, r2, r3 ∈ R>0 are constants with r3 > r2.

The decay rate in Equation (169) is shown in [6] where k = r1

(
r3
r2
− 1
)

, η =
r2
r1

, and M > 0 depends non-trivially on α, β, γ, r1, r2, and r3.
Note that the key difference between rational and exponential stability

resides with the constants r2 and r3 from Equation (170) and c from Equation
(167).

18.3 Structured Lyapunov Functions

In order to efficiently search for Lyapunov functions, it is natural to assign a
template structure to the Lyapunov function and then perform an optimisa-
tion over the parameters. The structure chosen in this Thesis is for the Lya-
punov functions to be polynomials and continuous piecewise-polynomials.
This choice is not novel and the (non-)existence results presented below are,
with one exception, all for polynomial Lyapunov functions.

First, a result by [1] states that there exist globally asymptotically sta-
ble polynomial vector fields without any polynomial Lyapunov function to
prove it. In [1] they prove this with an explicit, surprisingly simple, two-
dimensional system given as

ẋ = −x + xy

ẏ = −y.
(171)

They then show that the system cannot admit to a polynomial Lyapunov
function. They prove the stability property with a non-linear, non-polynomial
C∞ Lyapunov function, which then still is in accordance with Theorem 17.
Interestingly, this example has a non-trivial Jacobian with negative eigenval-
ues. Thus the linearised system is exponentially stable and by Theorem 4.15
in [23] this is a necessary and sufficient condition for the equilibrium of the
non-linear system to be locally exponentially stable. By the solution to the
Lyapunov equation ([23]) there exists a local polynomial Lyapunov function
showing the local exponential stability of the non-linear system (171).

71

Stability Introduction

Similar to the result above, [6] constructs a globally asymptotically stable
polynomial vector field without any polynomial Lyapunov function to prove
it. The difference however, is that this system has a trivial Jacobian. Thus
linearising the system does not offer any insight into the stability properties.
The proof of the non-existence hinges on the fact that the constructed vector
field has algebraic irrational coefficients, and restricting the analysis to lo-
cal asymptotic stability does not alleviate the non-existence of a polynomial
Lyapunov function.

Considering local exponential stability, [38] proves that the existence of
a polynomial Lyapunov function fulfilling Equation (167) is a necessary and
sufficient condition for (sufficiently smooth) non-linear vector fields to be lo-
cally exponentially stable. The smoothness criterion is trivially fulfilled for
polynomial vector fields. As such, when analysing for local exponential sta-
bility, limiting the search to polynomial Lyapunov functions is not conserva-
tive. This proof uses the Weierstrass approximation theorem which naturally
disables a generalisation to global analysis.

Still considering local exponential stability, [16] proves that the existence
of a continuous piecewise-affine Lyapunov function fulfilling Equation (167)
is a necessary and sufficient condition for (sufficiently smooth) non-linear
vector fields to be locally exponentially stable. The smoothness criterion
is trivially fulfilled for polynomial vector fields. This result is interesting,
since continuous piecewise-affine functions are a specific choice of continu-
ous piecewise-polynomials.

During my PhD studies, I proved that the existence of a polynomial Lya-
punov function fulfilling Equation (170) is a necessary and sufficient condi-
tion for (sufficiently smooth) non-linear vector fields to be locally rationally
stable. The smoothness criterion is trivially fulfilled for polynomial vector
fields. As such, when analysing for local rational stability, limiting the search
to polynomial Lyapunov functions is not conservative. This result was re-
ported in [28] and Appendix E contains the proof. It is inspired by the proof
in [38] and once again the use of the Weierstrass approximation theorem dis-
ables a global analysis.

The interest in these negative and affirmative results is sparked by the
effort to move the current state of Lyapunov theory from "existence is nec-
essary and sufficient" to "if stable, this algorithm will show it". Numerical
methods found their way into stability analysis as a way to overcome the ne-
cessity of experience and trial-and-error, and to aid the analysis of systems
too comprehensive for hand calculations. However, so far all implementa-
tions suffer from only being sufficient, and if an algorithm fails it does not
indicate instability. In Chapter Instability Certification, this issue is addressed
further.

In light of the results above, local rational and exponential stability will

72

18. Existence of Structured Lyapunov Functions

always admit to polynomial Lyapunov functions. For systems with irra-
tional coefficients, local asymptotic stability can require a non-polynomial
Lyapunov function as seen above. The difference between local asymptotic
and local rational stability seems to be anchored somewhere between either
allowing for vector fields with irrational coefficients, allowing for analytic
vector fields, or only allowing for rational coefficient, see proposition 5.2 and
5.4 in [6]. It is beyond the scope of this Thesis to try to characterise the
difference, and since the object is to devise numerical methods, these sub-
tle differences could not be taken into account anyway. When analysing an
unknown polynomial vector field, this provides a solid foundation for the
choice of using polynomial Lyapunov functions.

Finally, I will add that by nature of the local description in the Bernstein
basis, stability analysis using Lemma 18 and Lemma 19 can never address
the question of global stability. While some authors seem to favour global
analysis, I will argue for the contrary. When analysing a dynamical system
with unknown stability properties, the number of equilibrium points will
also be unknown. Should there be more than one equilibrium point, none of
them can be globally asymptotically stable and thus applying global analysis
will inherently fail.

73

Stability Introduction

74

Stability Certification

This Chapter contains the culmination of my studies. It transforms Lemma 18
and Lemma 19 to a linear feasibility problem, the solution of which is a Lya-
punov function. When faced with infeasibility, I searched for an intelligent
way to modify the problem. Although stability analysis differs from positiv-
ity certification, the insight obtained in Section 12.2 aided my search quite
a lot. The solution turned out to be a specific utilisation of the information
obtained from Farkas’ Lemma.

For completeness, this Chapter concludes with a section covering an al-
ternative method of utilising the Bernstein basis for synthesising Lyapunov
functions. This method relies on some more properties of the basis polyno-
mials, instead of the sign on the coefficients.

19 Linear Program for Synthesising

Lemma 18 enables the possibility of checking whether or not a known func-
tion V(x) can certify the stability of an equilibrium of a known polynomial
vector field f (x) as given in Equation (152).

In this Section, the reverse question is considered: Design or synthesise a
Lyapunov function showing the stability of a known polynomial vector field.
To be consistent with the notion of a certificate of positivity, I shall reference
the existence of a Lyapunov function as a certificate of stability.

Written explicitly in the Bernstein basis on a collection of simplices K =
{σ1, σ2, . . . , σm} a vector field reads

f (x) =


f1(x) = ∑|α|=D b(f1, D, σi)BD

α (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}
f2(x) = ∑|α|=D b(f2, D, σi)BD

α (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}
· · ·

fn(x) = ∑|α|=D b(fn, D, σi)BD
α (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}

 ,

(172)

75

Stability Certification

where the degree in the description of fi is D such that

D ≥ max
i∈{1,...,n}

di, (173)

where di is the actual degree of fi. In the rest of this Thesis D is chosen to be
D = maxi∈{1,...,n} di.

Considering V(x) and V̇(x) in Lemma 18 as unknown, there are two
vectors of unknown coefficients, CV and CL. They are linked in such a way
that CL are the coefficients after differentiation along trajectories of f (x).
To derive their relation, define the polynomial Lyapunov function V(x) of
degree dV on the collection of simplices K = {σ1, σ2, . . . , σm} according to
Definition 6 as

V(x) = CViBdV (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}, (174)

CViT
= iBj CV jT ∀ i, j ∈ {1, . . . , m}. (175)

To obtain the Lie derivative, first the partial derivative of V(x) is needed. By
Equation (135)

∂V
∂x

= ∑
|α̃|=dV−1

dV [CVi
α̃+e0

, . . . , CVi
α̃+en]ς

iBdV−1
α̃ (σi) ∀x ∈ σi, i ∈ {1, 2, . . . , m}

(176)

where ςi is the derivative of the barycentric coordinates of the ith simplex, see
Equation (127). The coefficients of the jth partial derivative are then identified
as

b

(
∂V
∂xj

, dV − 1, σi

)
=


dV [CVi

α̃1+e0
, · · · , CVi

α̃1+en
]ςi(:, j)

dV [CVi
α̃2+e0

, · · · , CVi
α̃2+en

]ςi(:, j)
· · ·

dV [CVi
α̃NdV−1

+e0
, · · · , CVi

α̃NdV−1
+en

]ςi(:, j)


T

, (177)

where NdV−1 is the number of α-combinations according to Equation (17) and
ςi(:, j) is the jth column of ςi.

The Lie derivative is obtained according to Equation (154) by multiply-
ing the vector field Equation (172) with the partial derivative Equation (176).
Multiplication is done according to Equation (114). For ∂V

∂xj
and f j(x) this

gives

bα̂

(
∂V
∂xj

f j(x), dL, σi

)
=

∑
|α̂−α|=dL

α̂−α≥0

bα(f j, D, σi)bα̂−α

(
∂V
∂xj

, dV − 1, σi

)
(D

α)(
dV−1
α̂−α)

(dL
α̂)

, ∀|α̂| = dL

(178)

76

19. Linear Program for Synthesising

and since the degree of ∂V
∂xj

f j(x) is dL = dV − 1+ D for all j, the coefficients of
the Lie derivative are obtained directly by adding the coefficients according
to Equation (118) as

bα̂

(
V̇, dL, σi

)
=

n

∑
j=1

bα̂

(
∂V
∂xj

f j(x), dL, σi

)
, ∀|α̂| = dL, ∀i ∈ {1, 2, . . . , m}.

(179)

Since both the vector field and the Lyapunov function are polynomials, then
so is the Lie derivative. Following the discussion between Definition 5 and
Definition 6, the coefficients can be collected in a single vector CL as

CLi = b
(

V̇, dL, σi
)

. (180)

This eliminates duplicate coefficients on the faces in the description of the
Lie derivative, and since all manipulations performed in this derivation are
linear, the final relation is

CLT = A CVT . (181)

Here, A is a matrix with entries determined by the degree of the Lyapunov
function, by the conventions for numbering simplices and vertices from Sec-
tion 3, the coefficients of the vector field being analysed, and the specific
collection of simplices K on which all the polynomials involved are described
on.

With this derivation, the synthesis problem becomes a linear feasibility
problem as

min
CV

s.t. lx ≤ CVT ≤ ux

lc ≤ A CVT ≤ uc

(182)

where lx, ux, lc, and uc are lower bound on design variable, upper bound on
design variable, lover bound on constraints, and upper bound on constraints
respectively.

The lower and upper bounds on the design variables are determined by
Equations (161a) to (161d) such that lx

i ∈ {0, 1} and ux
i ∈ {0, ∞} depending

on whether the ith entry of CV corresponds to a coefficient at the vertex at the
origin, to a coefficient at a vertex not at the origin, or to one of the remaining
coefficients in the collection of simplices. This translates > 0 to ≥ 1. Since
any positive scaling of a Lyapunov function remains a Lyapunov function,
this does not change the feasibility of Equation (182).

77

Stability Certification

Similarly, the lower and upper bounds on the constraints are determined
by Equations (161e) to (161h) such that lc

i ∈ {−∞, 0} and uc
i ∈ {−1, 0} de-

pending on whether the ith entry of CL corresponds to a coefficient at the
vertex at the origin, to a coefficient at a vertex not at the origin, or to one of
the remaining coefficients in the collection of simplices. This translates < 0
to ≤ −1 which again does not affect the feasibility.

The existence of a solution to Equation 182 is unaffected by the choice
of an objective function. Throughout the rest of this Chapter, it is chosen to
minimise the sum of the design variables, e.g. the 1-norm. Although this is
a well-known heuristic for obtaining a spares solution, it is chosen simply to
improve visual representation in the coming examples.

Completely analogously, a relation between CV and b(V̇i, dL, σi) can be
obtained if instead the Lyapunov function is defined as a continuous piece-
wise-polynomial, according to Definition 7. This renders the Lie derivative a
discontinuous piecewise-polynomial, as given in Definition 8. As mentioned
after the definition, there are no duplicate coefficients on the faces, thus no
apparent reason to combine the coefficient vectors b(V̇i, dL, σi) into one vector.
This makes the relation read

bT(V̇i, dL, σi) = Ai CVT ∀i ∈ {1, 2, . . . , m}. (183)

Here Ai is a matrix with entries determined by the degree of the Lyapunov
function, by the conventions for numbering simplices and vertices from Sec-
tion 3, the coefficients of the vector field being analysed, and the ith simplex.

By abuse of notation, to obtain a relation like in Equation (181), let the
vector of all coefficients defining the Lie derivative be denoted

CL = [b(V̇1, dL, σ1), b(V̇2, dL, σ2), . . . , b(V̇m, dL, σm)]. (184)

This enables a linear feasibility program identical to Equation (182) with

CLT = A CVT , (185)

where

A =


A1
A2
. . .
Am

 . (186)

In this case, the upper and lower bounds on design variables and constraints
are determined according to Equations (165a) to (165h) in Lemma 19.

Henceforth, I will refer to the feasibility problem of both polynomial and
continuous piecewise-polynomial Lyapunov functions by Equation (182) re-
gardless of CL and A being defined by Equations (180) and (181) or by Equa-
tions (184) and (185). To ease the notation, I introduce the following.

78

19. Linear Program for Synthesising

Notation 25 Let f : U → Rn, where U ⊆ Rn and U0 ⊆ U is a closed hypercube,
be a polynomial vector field defining the dynamical system Σ : ẋ = f (x). The
linear feasibility problem defined by (182) for Σ on a collection of simplices K =
{σ1, σ2, . . . , σm} which covers U0, is written LP(Σ, K). To be read as "The linear
synthesis problem for Σ, when V and f are defined on K".

Here, the equilibrium point is assumed to be the origin and the collection
of simplices K covering U0 is obtained by applying Kuhn’s triangulation on
the facets of U0 and adding the origin as a vertex to the simplices, see Def-
inition 3. Whether LP(Σ, K) synthesises a polynomial Lyapunov function or
a continuous piecewise-polynomial Lyapunov function will be evident from
context.

Notation 26 A vector of coefficients CV is called feasible if it fulfils (182), and
LP(Σ, K) is called solvable if a feasible CV exists. Otherwise, it is called unsolvable.

If, for a given vector field f (x), LP(Σ, K) is solvable, then CV is a certifi-
cate of stability, which proves that the system is at least locally asymptotically
stable. Further analysis of the synthesised Lyapunov function can assess if
the Lyapunov function proves rational or exponential stability, or just asymp-
totic stability. This analysis is not considered in this Thesis. On the other
hand, if LP(Σ, K) is unsolvable, no information of the stability properties of
the origin can be inferred. This situation is the focus of the rest of this Chap-
ter. Later, an algorithm to refine the triangulation is derived, but first some
examples.

Example

Consider the polynomial vector field f : R2 → R2, taken from [2], given as

c =
[
−1 2 −1 4 −8 4 −1 4 0 −4 0 10 0

0 0 0 0 −9 10 0 2 −8 −4 −1 4 −4

]
γ =

[
3 3 3 2 2 2 1 1 1 1 0 0 0
2 1 0 2 1 0 4 3 2 0 3 2 1

] (187)

where, by Equation (11), f1(x) and f2(x) are

f1(x) =
13

∑
k=1

c1,kxγk =− x3
1x2

2 + 2x3
1x2 − x3

1 + 4x2
1x2

2 − 8x2
1x2

+ 4x2
1 − x1x4

2 + 4x1x3
2 − 4x1 + 10x2

2,

(188)

f2(x) =
13

∑
k=1

c2,kxγk =− 9x2
1x2 + 10x2

1 + 2x1x3
2 − 8x1x2

2

− 4x1 − x3
2 + 4x2

2 − 4x2.

(189)

79

Stability Certification

(a) Polynomial Lyapunov function for (187). (b) Polynomial Lie derivative for (187).

Figure 22: Solution to LP(Σ, K) in the example. The solid lines are the facets of the simplices
and the red, blue, and green crosses are the control points. The colour of the crosses indicate
whether the coefficient is negative (red), positive (green), or equal to zero (blue). A few crosses
on Figure (b) are green, i.e. positive. Their values are in the magnitude of 10−11 and depend on
the accuracy of the solver.

Note that the description of a polynomial vector field in the monomial basis
is equal to the description of a single polynomial, except the coefficient vector
c from Equation (11) is expanded to a coefficient matrix as seen above.

In order to investigate the local stability of the origin using the linear
synthesis problem LP(Σ, K), two things must be specified. The degree and
type of the Lyapunov function to search for and the hypercube to define it
on. In this Example, a polynomial Lyapunov function of degree dV = 3 is
used and it is defined on the hypercube U0 = [±1.5]2.

In this Thesis, linear programming problems are solved using the com-
mercially available software MOSEK. It provides optimisation solutions for
linear, quadratic, conic, and mixed integer problems, and the interested reader
is encouraged to visit mosek.com for more information and to obtain a free
academic trial. MOSEK was chosen due to some inherent features which will
become evident and important later on.

Running the program reveals that LP(Σ, K) is solvable and the synthe-
sised Lyapunov function is

V(x) = −0.0322x3
1 − 0.0165x2

1x2 + 0.298x2
1 − 0.0271x1x2

2 − 0.0253x3
2 + 0.298x2

2
(190)

80

http://www.mosek.com/

19. Linear Program for Synthesising

with a Lie derivative

V̇(x) =0.0966x5
1x2

2 − 0.193x5
1x2 + 0.0966x5

1 + 0.033x4
1x3

2 − 1.05x4
1x2

2+

2.15x4
1x2 − 1.15x4

1 + 0.124x3
1x4

2 − 0.605x3
1x3

2 + 3.3x3
1x2

2−
5.44x3

1x2 + 2.84x3
1 + 0.033x2

1x5
2 − 0.945x2

1x4
2 + 3.74x2

1x3
2−

7.27x2
1x2

2 + 6.38x2
1x2 − 2.38x2

1 + 0.0271x1x6
2 − 0.26x1x5

2+

1.85x1x4
2 − 5.32x1x3

2 + 6.59x1x2
2 − 2.38x1x2 + 0.076x5

2−
1.17x4

2 + 2.69x3
2 − 2.38x2

2.

(191)

Figure 22 shows the Lyapunov function and the Lie derivative on U0.
�

Example

Consider the polynomial vector field f : R2 → R2, taken from [42], given as

c =
[
−2 0 −0.5 −0.5 0 0

0 0.25 −0.125 0 0.25 −0.4125

]
γ =

[
3 1 1 1 0 0
0 2 1 0 2 1

]
.

(192)

To investigate the local stability of the origin, consider the hypercube U0 =
[±1]2. Choosing to synthesise a polynomial Lyapunov function of degree
dV = 2 results in an LP(Σ, K) which is unsolvable. In contrast, choosing to
synthesise a continuous piecewise-polynomial Lyapunov function of degree
dV = 2 renders LP(Σ, K) solvable. This is an example of the fact that contin-
uous piecewise-polynomials belong to a larger class of functions which has
polynomials as a subset.

The synthesised Lyapunov function is

V(x) =


V1(x) = 0.746x2

1 + 0.491x1x2 + 0.746x2
2 ∀x ∈ σ1

V2(x) = 0.192x2
1 + 0.808x2

2 ∀x ∈ σ2

V3(x) = 0.676x2
1 − 0.351x1x2 + 0.676x2

2 ∀x ∈ σ3

V4(x) = 0.0738x2
1 + 0.14x1x2 + 1.77x2

2 ∀x ∈ σ4

, (193)

with a Lie derivative

V̇(x) =


V̇1(x) ∀x ∈ σ1

V̇2(x) ∀x ∈ σ2

V̇3(x) ∀x ∈ σ3

V̇4(x) ∀x ∈ σ4

, (194)

81

Stability Certification

(a) Continuous piecewise-polynomial Lya-
punov function for (192).

(b) Discontinuous piecewise-polynomial Lie
derivative for (192).

Figure 23: Solution to LP(Σ, K) in the example. Note the discontinuity of the Lie derivative on
the facets. One cross on Figure (b) is green but its value is in the magnitude of 10−10.

where

V̇1(x) =− 0.295x4
1 − 0.28x3

1x2 + 0.0349x2
1x2

2 − 0.0913x2
1x2 − 0.0738x2

1

+ 0.884x1x3
2 − 0.477x1x2

2 − 0.128x1x2 + 0.884x3
2 − 1.46x2

2
(195)

V̇2(x) =− 2.7x4
1 + 0.702x3

1x2 − 0.0878x2
1x2

2 − 0.632x2
1x2 − 0.676x2

1

+ 0.338x1x3
2 − 0.0811x1x2

2 + 0.32x1x2 + 0.338x3
2 − 0.557x2

2
(196)

V̇3(x) =− 0.768x4
1 − 0.192x2

1x2 − 0.192x2
1 + 0.404x1x3

2 − 0.202x1x2
2

+ 0.404x3
2 − 0.667x2

2
(197)

V̇4(x) =− 2.98x4
1 − 0.982x3

1x2 + 0.123x2
1x2

2 − 0.807x2
1x2 − 0.746x2

1

+ 0.373x1x3
2 − 0.309x1x2

2 − 0.448x1x2 + 0.373x3
2 − 0.615x2

2.
(198)

Figure 23 shows the Lyapunov function and the Lie derivative on U0.
�

20 Infeasibility

Having seen examples of when everything works and LP(Σ, K) is solvable on
the initial collection of simplices, the following two sections consider strate-
gies for modifying the collection in an attempt to obtain a solvable LP(Σ, K).
This is motivated by the experience obtained in Chapter Positivity Certi-
fication, particularly the fact that if a Lyapunov function exists, LP(Σ, K)
may be unsolvable simply due to the particular collection of simplices K.
Sub-dividing the simplices into a new collection of simplices K∗ may render
LP(Σ, K∗) solvable.

82

20. Infeasibility

To be consistent with the sub-division strategies for certifying positivity
being split into pre-defined and adaptive vertex placement, the first section
considers generic methods and the second section considers methods for util-
ising information from the current problem.

20.1 Regular Sub-Division

In this Section, the collection of simplices is sought modified by applying a
regular sub-division routine to all simplices in the collection. Remember that
a regular sub-division routine was any sub-division routine with a constant
shrinking factor C such that 0 < C < 1, as introduced in Section 12. Two
such routines are the standard triangulation and the binary splitting.

To distinguish between different collections of simplices, denote the initial
collection obtained by Kuhn’s Triangulation as K0 and define the following.

Definition 27 Let K0 be a collection of simplices covering the hypercube U0 obtained
from Kuhn’s triangulation, see Definition 3. Let S be a regular sub-division routine.
Then

K1 = S(K0) (199)

is the collection of simplices after 1 application of the sub-division routine on all
simplices in the collection K0. Then

Kn+1 = S(Kn) (200)

is recursively defined as the collection of simplices after n application of the sub-
division routine on all simplices in all intermediate collections of simplices K0, K1 to
Kn.

This enables the following algorithm.

Algorithm 28 (The BBAlgorithm [29])
Input: Dynamical system Σ, closed hypercube U0, and type and degree of the Lya-
punov function (dV ≥ 1).
Output: Triangulation of U0 and Lyapunov function V defined on the resulting
simplices.
Procedure:

0) Set iteration counter k = 1 and get initial K{k} = K0.

1) If LP(Σ, K{k}) is solvable, then return K{k} and CV. Otherwise, go to 2).

2) Use a regular sub-division routine on all simplices to get K{k+1} = S
(

K{k}
)

and set k = k + 1. Go to 1).

83

Stability Certification

(a) Polynomial Lyapunov function for (192). (b) Polynomial Lie derivative for (192).

Figure 24: Solution to LP(Σ, K) obtained after one sub-division using binary splitting on the
initial collection of simplices. Compare to Figure 23 for the solution when synthesising a contin-
uous piecewise-polynomial Lyapunov function for the vector field in Equation (192).

Initial work comparing standard triangulation and binary splitting to ob-
tain a collection of simplices K∗ rendering LP(Σ, K∗) solvable did not reveal
any significant advantage of either. Considerations regarding bookkeeping
when implementing the routines in arbitrary dimension led to a choice of
utilising the binary splitting in the following. Readers interested in standard
triangulation in arbitrary dimension are referred to [17].

Example

In this Example, the system from the previous example, Equation (192), is
revisited. Since LP(Σ, K) was unsolvable when synthesising a polynomial
Lyapunov function of degree dV = 2, the BBAlgorithm utilising binary split-
ting in step 2 is used for the stability analysis. In iteration two, after applying
binary splitting once, LP(Σ, K{2}) is solvable. The synthesised Lyapunov
function and the Lie derivative are shown in Figure 24 on U0 = [±1]2 from
above, but now on a collection of eight simplices. The Lyapunov function is

V(x) = 3.22x2
1 − 2.78x1x2 + 3.08x2

2 (201)

with a Lie derivative

V̇(x) =− 12.9x4
1 + 5.56x3

1x2 − 0.695x2
1x2

2 − 2.87x2
1x2 − 3.22x2

1

+ 1.54x1x3
2 − 0.0744x1x2

2 + 2.54x1x2 + 1.54x3
2 − 2.54x2

2.
(202)

�

84

20. Infeasibility

Existence and Solvability

In this Section, I pinpoint an inherent drawback with the BBAlgorithm and
using the Bernstein basis in general, and then argue that the drawback may
not be as profound as it could seem. First, recall the notion of a Bernstein
basis certifying collection as a collection of simplices K such that, for a given
positive definite polynomial p, C ≥ 0 when p is described on K. Then p was
said to be Bernstein basis certifiable. See Notation 12 for details.

Theorem 10 is the foundation for certifying positivity of positive polyno-
mials using sub-division. Using the theorem as justification to synthesise pos-
itive definite polynomials does not encompass bi-implication. As seen from
the counterexample in Appendix D, positive definite polynomials which are
not Bernstein basis certifiable do exist. Such a polynomial can never be the
solution to any LP(Σ, K).

Seeing as Lyapunov functions possess a certain structure, is was of inter-
est to investigate if the counterexample could serve as a Lyapunov function
for a stable vector field. To this end, a stable vector field was synthesised such
that it admitted the counterexample as a Lyapunov function. As such, this
system proves the existence of stable vector fields which admit to polynomial
Lyapunov functions without any Bernstein basis certifying collections. A nat-
ural question was whether the synthesised systems admitted to polynomial
Bernstein basis certifiable Lyapunov functions. The system was analysed us-
ing the BBAlgorithm. It retuned a feasible CV shoving that the system indeed
did admit to polynomial Bernstein basis certifiable Lyapunov functions. See
Appendix D for the full analysis.

This result exemplifies a desirable feature of Lyapunov analysis. When
interested in assessing the stability properties of a given system, the existence
of Lyapunov functions and the ability of the BBAlgorithm to find at least one
of them is enough. Whether or not there exist Lyapunov functions which the
BBAlgorithm cannot find does not matter, as long as there exists at least one
Lyapunov functions which the BBAlgorithm can find.

Naturally, the work on converse Lyapunov theorems has never considered
whether or not the necessary and sufficient existence of a polynomial Lya-
punov function also ensures the existence of a polynomial Lyapunov function
which is Bernsten basis certifiable. To the best of my knowledge, there are no
results in this regard on the characterisation of positive definite polynomials.
Such a characterisation could enable a result on whether the existence of a
polynomial Lyapunov function would also ensure the existence of a poly-
nomial Bernstein basis certifiable Lyapunov function. This was certainly the
case for the synthesised vector field in Appendix D. Despite my best efforts, I
have not been able to determine the underlying mechanism behind the non-
existence of a Bernstein basis certifying collection for the counterexample, let
alone begun to attack the problem in general. Such a characterisation could

85

Stability Certification

possibly remove the (apparent) conservatism introduced in the analysis when
using the BBAlgorithm.

Convergence

In [29] a convergence result is proven under assumptions regarding the ex-
istence of a Bernstein basis certifying collection. Further work attempting
to loosen the assumptions, has shown that the assumptions were in fact not
restrictive enough.

The collection obtained in step 2 of the BBAlgorithm cannot consist of
arbitrary simplices. The simplices created in step 2 depend on the hyper-
cube and on which sub-division routine is used. For instance, for a two
dimensional hypercube symmetric around the origin using binary splitting,
all simplices at any iteration are identical down to scaling and rotation, see
Figure 25(a) below. This calls for the following definitions.

Definition 29 (S-Generated Simplex) For the collections of simplices K0 to KN ob-
tained by applying the sub-division routine S up to N times, if

σ ∈ Kn (203)

for some n ∈ {1, 2, . . . , N}, then σ is an S-generated simplex of level n. Then

KN =
N⋃

n=0
Kn (204)

is the set of all S-generated simplices of at most level N, and if

σ ∈ KN (205)

σ is an S-generated simplex of at most level N.

Definition 30 (S-Generated Collection) Let K = {σ1, σ2, . . . , σm} be a collection
of simplices. For a given hypercube and sub-division routine S, if

σi ∈ KN ∀i ∈ {1, 2, . . . , m} (206)

then K is an S-Generated Collection. The simplices in K are all S-generated simplices
of at most level N.

For an example of S-generated simplices, consider Figure 25(a) where a two
dimensional hypercube symmetric around the origin is sub-divided three
times using binary splitting, resulting in the S-generated collection of sim-
plices K3 = {σ1, σ2, . . . , σ32}. All simplices in K3 are level 3 simplices, leading
to

σi ∈ K3 ∀i ∈ {1, 2, . . . , 32}. (207)

86

20. Infeasibility

(a) S-generated simplices. Here the sub-
division routine is the binary splitting and
K3 = {σ1, σ2, . . . , σ32}

(b) S-generated collection. Here K∗ =
{σ∗1, σ∗2, . . . , σ∗14}

Figure 25: Clarification of the notation of S-generated simplices and S-generated collections.

More generally, consider Figure 25(b) where the same two dimensional hy-
percube symmetric around the origin is covered by the S-generated collection
K∗ = {σ∗1, σ∗2, . . . , σ∗14}. In this case

σ∗i ∈ K3 ∀i ∈ {1, 2, . . . , 14} (208)

meaning that the simplices in K∗ are of level 3 at most.
It is possible to prove a convergence result for the BBAlgorithm with this

notation. First, the notion of a Bernstein basis certifying collection is ex-
panded to Lyapunov functions as follows.

Notation 31 (Lyapunov Bernstein Basis Certifying Collection) Let V be a Lyapunov
function and V̇ its Lie derivative for a given dynamical system Σ. The collection K is
said to be a Lyapunov Bernstein basis certifying collection for V, if it is a Bernstein
basis certifying collection for V and −V̇.

Before stating the convergence result, a lemma is needed.

Lemma 32 ([29]) Let the polynomial p of degree d be defined in the Bernstein basis
of degree D ≥ d on a simplex σ̂, and let b(p, D, σ̂) ≥ 0. Then any sub-division of σ̂
into a collection of simplices K = {σ1, σ2, . . . , σm} such that

σ̂ =
⋃

σ∈K
σ, (209)

will preserve b(p, D, σi) ≥ 0, ∀i ∈ {1, . . . , m}.

87

Stability Certification

Proof
This follows from the fact that b(p, D, σi) are calculated as convex combina-
tions of b(p, D, σ̂). See [26] for details.

�
The convergence result reads as follows.

Proposition 33 Let V∗ be a polynomial Lyapunov function of degree less than or
equal to the degree input to Algorithm 28 for the locally asymptotically stable system
Σ. Assume the existence of an S-generated Lyapunov Bernstein basis certifying col-
lection K∗ for V∗. Then Algorithm 28 converges to a collection K′ making LP(Σ, K′)
solvable in finitely many steps, and the solution V′ is a Lyapunov function for Σ.

Proof
Let K∗ = {σ∗1, σ∗2, . . . , σ∗m

∗} be the S-generated Lyapunov Bernstein basis
certifying collection for V∗. Let N be such that

σ∗i ∈ KN ∀i ∈ {1, 2, . . . , m∗}, (210)

e.g. all simplices in K∗ are of at most level N. Then N sub-divisions of K0
result in the collection KN where all simplices are of level N. Setting K′ = KN ,
it follows from Lemma 32 that the coefficients of V′ when described on K′ are
CV′ ≥ 0, since the coefficients of V∗ when described on K∗, by assumption,
are CV∗ ≥ 0. This makes LP(Σ, K{N}) solvable.

Prior to obtaining the collection KN , it may happen at iteration k < N that
LP(Σ, K{k}) is solvable. In this case K′ = K{k} and the algorithm has still
converged.

�
Regarding the choice of which degree of the Lyapunov function dV to

search for, one argument is to choose a very high degree in an attempt to
fulfil dV∗ ≤ dV . However, this will lead to LP(Σ, K)’s with a (possibly unnec-
essary) large number of variables and constraints, to an increase in runtime,
and possibly challenge the capabilities of the hardware on which LP(Σ, K) is
sought solved. On the other hand, choosing a degree too small might result
in an unsolvable LP(Σ, K) simply because dV∗ ≤ dV is violated.

Engineering intuition and experience from countless examples leaves me
with the rule of thumb that a good choice of dV is dV ≈ D, where D is the
maximal degree of the polynomials in the vector field being analysed, see
Equation (173).

Despite Proposition 33 being mathematically sound, is it not very en-
couraging in terms of engineering. The assumption of an S-generated Lya-
punov Bernstein basis certifying collection seems very restrictive. On top
of that, there is no way around it; sub-division routines can only generate
S-generated simplices.

88

20. Infeasibility

One way to alleviate the restrictive nature of the assumption, would be to
obtain a result regarding robustness in the existence of Bernstein basis cer-
tifying collections. This again involves a characterisation of positive definite
polynomials without Bernstein basis certifying collections, and their ability
to serve as Lyapunov functions. This is an open question.

If the BBAlgorithm is used to analyse an unstable vector field, no col-
lection of simplices will ever make LP(Σ, K) solvable and the program will
never terminate. This is an undesirable feature, which is addressed in the
next chapter. Before that, the next section considers the utilisation of infor-
mation of the current problem, to guide the sub-division.

20.2 Irregular Sub-Division

Certifying positivity and certifying stability are similar in the sense that a co-
efficient vector of a known polynomial with a negative entry does not imply
that the polynomial cannot be positive, and that an unsolvable LP(Σ, K) does
not imply that the system cannot be stable. They differ, however, in that a
coefficient vector with negative entries could be utilised to guide the place-
ment of the next vertex, and that an unsolvable LP(Σ, K) does not offer any
information regarding where to place new vertices.

Inspired by the insight obtained into where to place new vertices when
certifying positivity in Section 12.2, I investigated different strategies on how
to incorporate information from a given vector field into the sub-division
routine. I was interested in obtaining a notion similar to the most negative
coefficient, as used in the grid point triangulation.

Initially, both the design variables and the constraints were of interest. By
Equation (27), the location of a design variable, which is a coefficient of the
Lyapunov function if LP(Σ, K) is solvable, is located somewhere in the hyper-
cube. The same equation determines the location of the constraints. I quickly
realised that the design variables were of no use in this endeavour, since only
the constraints contain information regarding the vector field being analysed.
Thus it was the constraints and their location in the hypercube which some-
how could be used to guide the placement of new vertices. But could one
talk about the most negative constraint? The constraint most responsible for
the infeasibility of LP(Σ, K)?

I pondered this question for quite some time, eventually publishing [27]
on the use of slack variables to identify the violated constraints in an arti-
ficial solution to an augmented linear problem. My first attempt was, for
each simplex with one or more violated constraints, to place a new vertex at
the location of the most violated constraint. This would then be completely
reminiscent of the most negative coefficient from positivity certification.

In some regard, it turned out that this strategy was a bit too ambitious.

89

Stability Certification

Examples showed that trying to target specific constraints the way grid point
triangulation targeted specific coefficients, did not work as intended. In a
given simplex with violated constraints, the location of the most violated
constraint simply did not correspond to the most opportune location to place
the next vertex. However, the examples did reveal that the strategy success-
fully targeted simplices with violated constraints as a whole, and did not
sub-divide simplices without any violated constraints. This allowed for a tai-
lored sub-division routine, based on information from the vector field being
analysed where only simplices with constraints contributing to the unsolv-
ability of LP(Σ, K) were sub-divided by a regular sub-division routine.

After the work on [27], I felt like the use of slack variables was a crude
solution. I felt like there could be a more elegant way of identifying the
constraints responsible for the unsolvability. The answer revealed itself in the
form of Farkas’ lemma.

Lemma 34 (Farkas’ Lemma [11]) Given a matrix Ā and a vector b exactly one of
the following two propositions is true:

1. ∃x : Āx ≤ b,

2. ∃y : y ≥ 0, ĀTy = 0, bTy < 0.

That is, if the proposition 1. is infeasible, then there exists a y certifying
the infeasibility. This is interesting, since the non-zero elements of y identify
some or all of the constraints responsible for the infeasibility [4].

The reason why the certificate of infeasibility does not necessarily identify
all constraints responsible for the infeasibility, is because the certificate y can
fulfil proposition 2. without having non-zero entries corresponding to all
constraints responsible for the infeasibility. To see this, consider the following
system of inequalities.

x1 ≤0 (211a)

−x1 ≤− 1 (211b)

x2 ≤0 (211c)

−x2 ≤− 1. (211d)

Here Equation (211a) and Equation (211b) constitutes an unsolvable sub-
set, and so does Equation (211c) and Equation (211d). Identifying either,
is enough to certify the unsolvability of Equation (211). Thus e.g. y1 =
[1, 1, 0, 0]T and y2 = [0, 0, 1, 1]T are both certificates of infeasibility of Equa-
tion (211).

Note that when solving linear programs using either simplex or dual-
simplex methods, the certificate of infeasibility is a so-called basis certificate
[3]. When solving using an interior-point algorithm, the obtained certificate

90

20. Infeasibility

is a linear combination of all basis certificates, but the basis certificates can
be recovered using the methods described in [3]. These methods are not
detailed here, and henceforth when referring to a certificate of infeasibility it
is assumed to be a basis certificate.

Simple manipulations can transform the linear feasibility problem from
Equation (182) into the system of inequalities in proposition 1 in Farkas’
Lemma. This transformation is included for completeness. The constraints
and bounds on the design variables in Equation (182) were

lx ≤CVT ≤ ux

lc ≤A CVT ≤ uc
(212)

which can be rewritten as

b1 =

[
lx

−ux

]
≤
[

CVT

−CVT

]
= z

Ãz =

[
A 0
0 A

] [
CVT

−CVT

]
≤
[

uc

−lc

]
= b2.

(213)

Combining yields

Āz =

[
−I

Ã

]
z ≤

[
−b1

b2

]
= b. (214)

At the beginning of my studies, there were no considerations regarding a
choice of software for solving linear programming problems. After Farkas’
lemma caught my attention, the MOSEK software naturally stood out as ad-
vantageous. When asked to solve an infeasible problem, MOSEK automati-
cally returns a certificate of infeasibility.

To identify not only constraints in this way, but the simplices which they
belong to, the maps ∆i from Equations (52) and (53) can be used to identify
the simplices identified by the certificate of infeasibility y. To this end, define
the following operator.

Definition 35 Let LP(Σ, K) be infeasible where the collection of simplices has m
simplices. Let y ∈ R

Ny
≥0 be a certificate of infeasibility with Ny entries corresponding

to LP(Σ, K) having Ny inequalities. Define Γ : RNy → {0, 1}m as a map from
constraints to simplices such that

Γ(y) = Y = (Y1, Y2, . . . , Ym) (215)

where

Yi =

{
0, if simplex i had no constraints identified by y
1, if simplex i had one or more constraints identified by y.

(216)

91

Stability Certification

This allows for the following method for obtaining a sub-division where
simplices are sub-divided by a regular sub-division routine, but where only
some simplices are sub-divided at each iteration.

Notation 36 (Certificate of Infeasibility Identifying (CII) Method) When LP(Σ, K)
is unsolvable, use Farkas’ lemma to get a certificate of infeasibility y to identify,
possibly a subset, of the constraints responsible for the infeasibility. When yi > 0
denote the ith constraint as a CII constraint. When Yi = 1 denote the ith simplex as
a CII simplex and let KY denote all CII simplices in the collection K.

The BBAlgorithm is modified using the certificate of infeasibility identi-
fying method in step 2, such that it becomes the following.

Algorithm 37 (Modified BBAlgorithm [29])
Input: Dynamical system Σ, closed hypercube U0, and type and degree of the Lya-
punov function (dV ≥ 1).
Output: Triangulation of U0 and Lyapunov function V defined on the resulting
simplices.
Procedure:

0) Set iteration counter k = 1 and get initial K{k} = K0.

1) If LP(Σ, K{k}) is solvable, then return K{k} and CV. Otherwise, go to 2).

2) Use a regular sub-division routine on CII simplices to get K{k+1} = S
(

K{k}Y

)
and set k = k + 1. Go to 1).

As for the BBAlgorithm, the modified BBAlgorithm will employ the binary
splitting as the regular sub-division routine.

Example

This example considers a polynomial vector field from [42] given by

c =
[
−1.5 0 −1 0.5 0.5 −2 1

0 −0.5 0 0 0 0 0

]
γ =

[
1 0 2 1 0 3 2
0 1 0 1 2 0 1

]
.

(217)

To clearly exemplify the difference between sub-dividing all simplices or only
the CII simplices, the vector field is analysed using a polynomial Lyapunov
function of degree dV = 2 on the hypercube U0 = [±5]2 using both the
BBAlgorithm and the modified BBAlgorithm.

The synthesised Lyapunov function using the BBAlgorithm, i.e. binary
splitting on all simplices, and its Lie derivative are shown in Figure 26(a) and
Figure 26(b). The Lyapunov function is

V(x) =0.16x2
1 + 0.0533x1x2 + 0.902x2

2 (218)

92

20. Infeasibility

(a) Synthesised polynomial Lyapunov func-
tion V using the BBAlgorithm.

(b) The polynomial Lie derivative V̇ using
the BBAlgorithm.

(c) Synthesised polynomial Lyapunov func-
tion V using the modified BBAlgorithm.

(d) The polynomial Lie derivative V̇ using
the modified BBAlgorithm.

Figure 26: Difference between using binary splitting on all simplices or on the CII simplices. In
both cases the synthesised Lyapunov function is a polynomial.

with a Lie derivative

V̇(x) =− 0.64x4
1 + 0.213x3

1x2 − 0.32x3
1 + 0.0533x2

1x2
2 + 0.107x2

1x2

− 0.48x2
1 + 0.187x1x2

2 − 0.107x1x2 + 0.0267x3
2 − 0.902x2

2.
(219)

The synthesised polynomial Lyapunov function using the modified BBAl-
gorithm, i.e. binary splitting on the CII simplices, and its Lie derivative are
shown in Figure 26(c) and Figure 26(d). The Lyapunov function is

V(x) =0.16x2
1 + 0.0533x1x2 + 0.98x2

2 (220)

with a Lie derivative

V̇(x) =− 0.64x4
1 + 0.213x3

1x2 − 0.32x3
1 + 0.0533x2

1x2
2 + 0.107x2

1x2

− 0.48x2
1 + 0.187x1x2

2 − 0.107x1x2 + 0.0267x3
2 − 0.98x2

2.
(221)

93

Stability Certification

Note how remarkably similar the two synthesised Lyapunov functions are.
Comparing the two resulting collections of simplices in Figure 26, it is

clear that the CII method is able to tailor the collection and thus LP(Σ, K)
to the vector field being analysed. Comparing the two solvable LP(Σ, K)’s
where the collection K has been obtained by either method, the resulting lin-
ear program is smaller for the CII method than the resulting linear program
when sub-dividing all simplices. The solvable LP(Σ, K) for sub-dividing all
simplices yields a collection of 32 simplices, leaving the linear program with
81 decision variables and 480 constraints. The solvable LP(Σ, K) for the CII
method yields a collection of 22 simplices, leaving the linear program with
55 decision variables and 330 constraints.

�

Convergence

It is possible to prove a convergence property for the modified BBAlgorithm
as follows.

Proposition 38 For a given dynamical system, assume that Algorithm 28 termi-
nates and produces a Lyapunov function. Then Algorithm 37 also produces a Lya-
punov function.

Proof
Since the BBAlgorithm terminates at some iteration k̂, there exists a Bernstein
basis certifiable Lyapunov function V. Let a bad simplex be a simplex not
certifying the positive definiteness of V. At iteration k in the modified BBAl-
gorithm, the collection of simplices consists of simplices of different levels,
see Definition 29. Define

Bk = {bad simplices in the collection at iteration k}, (222)

where all these bad simplices have level < k̂. Group the bad simplices by
level as

Bk 7→ ik = (#bad simplices of level 0,

#bad simplices of level 1, . . . ,

#bad simplices of level k̂− 1) ∈Nk̂.

(223)

Let hk be the minimum level of bad simplices at iteration k. Then

ik+1,j ≤ ik,j ∀j ∈ {0, 1, . . . , hk}, (224)

and since the CII method identifies at least one bad simplex at every iteration

ik+1 < ik in lexicographic order on Nk̂. (225)

94

20. Infeasibility

This implies the termination of the modified BBAlgorithm.
�

Using the CII method initially allows for the sub-division routine to create
non-proper collections. This is undesirable since it disables an easy fulfilment
of the continuity constraint as given in Equation (58) or Equation (60) dur-
ing intermediate iterations. To understand the problem, consider Figure 27
where the initial collection K{1} = {σ1, σ2, σ3, σ4} is shown in Figure 27(a).
For the sake of the argument, for some dynamical system Σ, imagine that the
CII method identifies that simplex σ4 contains constraints responsible for in-
feasibility of LP(Σ, K{1}). The simplex is sub-divided by binary splitting into
simplices σ4 and σ5 such that K{2} = {σ1, . . . , σ5} as seen in Figure 27(b).
LP(Σ, K{2}) is also infeasible and the CII method identifies σ5 as responsible.
Another application of binary splitting yields K{3} = {σ1, . . . , σ6} as seen in
Figure 27(c). This is a non-proper collection. The sub-division of simplex
σ1 as shown in Figure 27(d) is artificially included to get a proper collection
K{3

∗} = {σ1, . . . , σ7}. This artificial sub-division can sometimes result in sim-
plices which are not S-generated. This is the case in Figure 27(d) for σ1 and
σ7. This potentially destroys the convergence result, but should σ1 and/or σ7

from K{3
∗} be selected by the CII method in later iterations, they can easily

be combined into σ1 from K{3} again, and then sub-divided accordingly.

Using the CII method to identify simplices to sub-divide, is an attempt to
obtain a solvable LP(Σ, K) by only modifying the collection of simplices in
areas of the hypercube where the constraints are not fulfilled. When working
with polynomials, the fact that the coefficients on one simplex define all other
coefficients (see Equation (58)) diminishes the CII method’s ability to work as
intended. In contrast, working with continuous piecewise-polynomials, the
fact that coefficients on one simplex only define the coefficients on the facets
of neighbouring simplices (see Equation (60)) allows for the CII method to
work as intended.

In Section 18.3, the listed results state that there is no theoretical argument
for not simply using polynomial Lyapunov functions when analysing poly-
nomial vector fields. However, the numerical and algorithmic considerations
leading to the CII method is an argument for using the broader class of con-
tinuous piecewise-polynomial Lyapunov functions. I consider this realisation
to be one of the main contributions of my PhD studies and I believe that fur-
ther investigation of the differences between what theory deems needed and
what algorithms can efficiently search for, can revolutionise software for sta-
bility certificates. It does not suffice to ask the computer to do something in
one way just because theory says it is enough, we need to ask the computer
to do it in an intelligent way.

95

Stability Certification

σ
4

σ
1

σ
2

σ
3

(a) Initial collection K{1} = {σ1, σ2, σ3, σ4}.

σ
4

σ
1

σ
2

σ
3

σ
5

(b) After the first sub-division the collec-
tion is K{2} = {σ1, σ2, σ3, σ4, σ5}.

σ
4

σ
1

σ
2

σ
3

σ
5

σ
6

(c) After the second sub-division the collec-
tion is K{3} = {σ1, σ2, σ3, σ4, σ5, σ6}.

σ
4

σ
1

σ
2

σ
3

σ
5

σ
6

σ
7

(d) Extra sub-division included in second
sub-division to obatin proper collection.

Figure 27: The problem of possibly obtaining a non-proper collection when using the CII
method. After two sub-divisions, the collection to use in the third interation K{3} is initially
a non-proper collection. This is overcome by including a convention to sub-divide additional
simplices to obtain proper collections, as with σ1 in (c) to σ1 and σ7 in (d).

A Remark on Sparsity and Solvers

For linear programming problems, the inequality matrix sometimes pos-
sesses a certain structure, for instance block diagonal, lower triangular, or
staircase [12]. Different structures offer different customised solving strate-
gies and can potentially improve numerical stability and solver time com-
pared to more generic strategies. When synthesising a continuous piecewise-

96

21. Software

polynomial Lyapunov function, the coefficients in the interior of simplices are
unique to their respective simplex. Because of this, it is possible to rearrange
the inequality matrix into a structure known as dual block angular. This
structure offers sparsity and a dedicated solver is presented in [31]. It relies
on parallel implementation and requires hardware not necessarily present
on an everyday laptop. It does, however, spark the hope that a customised
solving strategy can help alleviate the curse of dimensionality.

21 Software

This Section combines most of the software from Part I with the developed
algorithms into a single function to certify stability.

The function analyseStability is used to analyse the stability properties of a
polynomial vector field defined by the inputs C and gamma on the hypercube
interval. The function has 4 optional inputs: the degree of the Lyapunov func-
tion to search for dV; the type of Lyapunov function to search for LyapFcn
determined as a string by either ′POL′ for polynomial or ′CPP′ for continu-
ous piecewise-polynomial; the sub-division strategy TriMeth determined as
a string by either ′ALL′ for binary splitting on all simplices or ′CII′ for bi-
nary splitting on the CII simplices; and whether to search for at Lyapunov
function or a Lyapunov function candidate (see Chapter Instability Certifica-
tion) StbType determined as a string by either ′STA′ or ′ INS′. The output is a
string containing the conclusion. Optional outputs are the collection of sim-
plicies vex, simplex, quantities defining the synthesised Lyapunov function,
and quantities defining the Lie derivative. Note that the function does not
necessarily terminate.

The function getStabilityCertificateCPPLyap is used to synthesise a contin-
uous piecewise-polynomial Lyapunov function for a dynamical system. It
takes six inputs: C and gamma defining the vector field, vex and simplex
defining the collection of simplices, dV is the desired degree to search for,
and StbType is used to determine whether to search for a stability or an in-
stability certificate. If StbType is unspecified, the default is to search for a
stability certificate. The function uses MOSEK to solve the linear problem
and returns the structure res, which contains the outcome of the optimisa-
tion. It also returns the number of variables n, the inequality matrix from
Equation (182) CLieTrans, the degree of the Lie derivative dLie, the α-matrix
for the Lie derivative alphaLie, the location of all grid points for the Lie deriva-
tive in the collection from Equation (27) ctrlPointsLie, the maps ∆i relating the
grid points for the Lie derivative to simplices in the collection as shown in
Equations (52) and (53) in the matrix simplexCtrlPointsLie, the α-matrix for
the Lyapunov function alphaV, the location of the grid points for the Lya-
punov function ctrlPointsV, the maps ∆i for the Lyapunov function simplex-

97

Stability Certification

CtrlPointsV, and finally two vectors CVsimplexShared and CVsimplexUnique
which contain indices of design variables shared by two or more simplices
and indices of design variables unique to a single simplex.

The function getLieDerivativeTrans is used to obtain the inequality matrix
from Equation (182). It takes eight inputs: the vector field being analysed
defined in the Bernstein basis by coefficients CB, the α-matrix alphaC, the
degree d and the maps ∆i relating the grid points for the vector field to
simplices as shown in Equations (52) and (53) simplexCtrlPointsC. It also takes
the degree of the Lyapunov function to search for dV, the number of variables
n and the collection on which everything is defined vex and simplex. The
outputs are the inequality matrix CLieTrans, the α-matrix for the Lie derivative
alphaLie, the degree of the Lie derivative dLie, the location of all grid points for
the Lie derivative in the collection from Equation (27) ctrlPointsLie, the maps
∆i relating the grid points for the Lie derivative to simplices in the collection
as shown in Equations (52) and (53) in the matrix simplexCtrlPointsLie, the
α-matrix for the Lyapunov function alphaV, the location of the grid points
for the Lyapunov funvtion ctrlPointsV, and the maps ∆i for the Lyapunov
function simplexCtrlPointsV.

The function getSimplexUniqueCtrlPoints takes the maps ∆i for the Lya-
punov function simplexCtrlPointsV and identifies all coefficients, i.e. design
variables, that are shared by two or more simplices in the collection CVsim-
plexShared, and all which are unique to a single simplex CVsimplexUnique.

The function getBinarySplitting takes the collection defined by vex and
simplex as inputs and performs binary splitting. An optional third input, in-
dex, determines which simplices to sub-divide. If left unspecified, the default
is to perform binary splitting on all simplices in the collection. Should the
sub-division result in a non-proper collection the function sub-divides addi-
tional simplices to obtain a proper collection. The new collection is outputted
as vex and simplex.

The function getStabilityCertificatePOLLyap is used to synthesise a polyno-
mial Lyapunov function for a dynamical system. It takes six inputs: C and
gamma defining the vector field, vex and simplex defining the collection of
simplices, dV is the desired degree to search for, and StbType is used to deter-
mine whether to search for a stability or an instability certificate. If StbType
is unspecified, the default is to search for a stability certificate. The function
uses MOSEK to solve the linear problem and returns the structure res, which
contains the outcome of the optimisation. It also returns the number of vari-
ables n, the inequality matrix from Equation (182) CLieTrans, the degree of
the Lie derivative dLie, the α-matrix for the Lie derivative alphaLie, the loca-
tion of all grid points for the Lie derivative in the collection from Equation
(27) ctrlPointsLie, the maps ∆i relating the grid points for the Lie derivative
to simplices in the collection as shown in Equations (52) and (53) in the ma-
trix simplexCtrlPointsLie, the α-matrix for the Lyapunov function alphaV, the

98

22. Design Using the Basis Polynomials

location of the grid points for the Lyapunov function ctrlPointsV, the maps
∆i for the Lyapunov function simplexCtrlPointsV, and the matrix B2C which
relates the coefficients on simplex σm to the coefficients on all simplices in the
collection according to Equation (98).

Finally, the function getLyapunovFunctionPlot is used to visualise the syn-
thesised Lyapunov function and Lie derivative. It creates a figure and plots
the polynomial described by coefficient vector CB, α-matrix alpha, degree d,
and on simplex simplex. An optional input CtrlPointsOnPlots enables the
plotting of the control points on the graph. The default is to plot the points.

22 Design Using the Basis Polynomials

In the service of completeness, this Section briefly presents another utilisation
of the Bernstein basis to synthesise Lyapunov functions. This method was
devised by Sriram Sankaranarayanan (among others, see [42]) and was the
reason for our collaboration and me visiting him. It does not focus on the
coefficients and their sign, but instead uses a Reformulation Linearisation
Technique [44].

The idea behind the reformulation linearisation technique is to introduce
new variables to replace the non-linear terms in polynomial optimisation.
Each different non-linear term results in one new variable. The reformu-
lated, now linear, optimisation is then appended with constraints capturing
information relating the new variables to the non-linear terms. The solution
then approximates the solution to the original non-linear problem. The more
information captured by the constraints, the better the approximation. For
instance, if y replaces x2 it is obvious that y ≥ 0. If, in addition, the original
problem had a bound like −1 ≤ x ≤ 1 then 0 ≤ y ≤ 1 can be added to the
linear problem.

Since the non-linear problem to reformulate is cast in the Bernstein basis,
the non-linear terms to replace are the basis polynomials B, see Equation (15).
Chapter Bernstein Basis Properties presented properties useful for the devel-
opment in this Thesis, but as mentioned in the chapter, the Bernstein basis
does posses several other properties. By imposing properties like partition
of unity (Equation (18)) or the non-negativity of the basis polynomials, the
method in [42] creates a hierarchy of three realisations. When the search for
a Lyapunov function fails using one realisation, more properties are imposed
in the next.

The most resent contribution along this line of thought is [41] where the
reformulation linearisation technique is paired with an iterative approach to
simultaneous Lyapunov function and feedback synthesis. The authors over-
come the problem of bi-linearity by fixing either the Lyapunov function or
the feedback and searching for the other. This method is similar to the ap-

99

Stability Certification

proach in [20] where semi-definite programming is used to synthesise Lya-
punov function and feedback simultaneously, also by iteratively fixing one
and searching for the other.

100

Instability Certification

This Chapter is concerned with the problem of possibly trying to certify the
stability of a system which is in fact unstable. In this case, the linear program
for synthesising a Lyapunov function will never terminate. Instead, I though
of setting op the program to search for a candidate Lyapunov function with a
negative semi-definite Lie derivative, but initially without any constraints on
the Lyapunov function. This thought came to me during my stay with Sriram
in Boulder. In [42] Sriram argued to disregard the condition on the Lyapunov
function and justified it by a result from [52]. The setting was different in [42]
in the way that they wanted to reduce their problem size and I wanted to be
able to investigate a broader class of systems.

When a candidate Lyapunov function is found, a sub-sequent determi-
nation of the sign of the candidate Lyapunov function then determines if the
function is a Lyapunov function which certifies stability, or if the function cer-
tifies instability (or if the function is sign indefinite and no conclusion can be
drawn). This enables the automated analysis of systems which may or may
not be stable, and the algorithm can accommodate both cases. Seeing as the
positivity certification of a known polynomial plays a role, the considerations
in Part I suddenly become interesting again.

23 Modifying the Linear Program

In terms of setting up the linear program, the procedure is exactly like before,
except that the lower bounds on the design variables are disregarded. This
leaves us with the program

min
CV

s.t. lc ≤ A CVT ≤ uc,
(226)

where A is the matrix from Equation (181) or Equation (185) depending on
whether a polynomial or continuous piecewise-polynomial candidate Lya-
punov function is synthesised. Contrary to the previous chapter, no objective
function is considered in this Chapter.

101

Instability Certification

The linear program for synthesising a candidate Lyapunov function will
be referred to as LPc(Σ, K). When LPc(Σ, K) is infeasible, the collection of
simplices is modified according to the procedures introduced for the BBAl-
gorithm and modified BBAlgorithm. Initially, I expected the runtime for the
analysis to be at least equal to that of LP(Σ, K), and possibly way faster, since
the problem is less constrained. However, when testing the technique on
examples, the runtime when searching for a candidate Lyapunov function
turned out to be almost equal to searching for a Lyapunov function. In addi-
tion, the sub-sequent sign determination turned out to be very expensive, as
reported in the examples below. Regardless, remember that only searching
for a candidate allows for a program which terminates even if the system
under investigation is unstable. This is a valuable feature.

24 Unstable Systems

This Section considers two systems, which are both analysed by searching
for a Lyapunov function and for a candidate Lyapunov function. They are
investigated under both stable and unstable stability properties. A stable
system is made unstable by simply negating the sign of all coefficients in the
coefficient matrix c.

Simplex Example

This Example considers a vector field f : R2 → R2, taken from [42], given as

c =
[
−1.5 0 −1 0.5 0.5 −2 1

0 −0.5 0 0 0 0 0

]
γ =

[
1 0 2 1 0 3 2
0 1 0 1 2 0 1

]
,

(227)

when analysing both the stable and unstable version, using both polynomial
(POL) and continuous piecewise-polynomial (CPP) (candidate) Lyapunov
functions. The analysis is done using the modified BBAlgorithm with the
degree input set to dV = 2. The findings are reported in Table 1, which is
read as follows. On the left, the actual stability property of the system is
listed. Then the settings of the algorithm are seen. Next, the runtimes are re-
ported, where Solve LP refers to the time needed to solve the linear program
and Cert Pos is the time needed for subsequent sign determination when
synthesising candidate Lyapunov functions. The times are in seconds and
the * indicates the analysis shown in Figure 28.

When analysing the stable system using a continuous piecewise-polyno-
mial (candidate) Lyapunov function, both LP(Σ, K) and LPc(Σ, K) are solv-
able with the initial collection consisting of 4 simplices. Certifying the posi-

102

24. Unstable Systems

CPP POL
Setting Solve LP Cert Pos Solve LP Cert Pos

Stable
’STA’ 0.57 s N/A 2.1 s N/A
’INS’ 0.60 s* 0.38 s* 1.2 s 0 s

Unstable
’STA’ ∞ N/A ∞ N/A
’INS’ 0.53 s 0.31 s 1.1 s 0 s

Table 1: Runtimes for stability and instability analysis of (227) using both polynomial and con-
tinuous piecewise-polynomial (candidate) Lyapunov functions. The analysis is done with the
modified BBAlgorithm and a degree of 2. The * indicates the analysis shown in Figure 28.

tivity of the candidate Lyapunov function requires sub-division, resulting in
a collection of 8 simplices. This situation is shown in Figure 28. Using a poly-
nomial (candidate) Lyapunov function requires one sub-division of the initial
collection before LP(Σ, K) and LPc(Σ, K) become solvable. In this case, certi-
fying the positivity of the candidate Lyapunov function does not require any
sub-division since all coefficients of the candidate Lyapunov function were
automatically non-negative. As such, the solution to LPc(Σ, K) automatically
fulfilled the positivity criteria of LP(Σ, K) without it being enforced.

When analysing the unstable system, the program searching for a Lya-
punov function can never terminate. When searching for a continuous piece-
wise-polynomial candidate Lyapunov function, LPc(Σ, K) is solvable without

(a) Continuous piecewise-polynomial candi-
date Lyapunov function for (227).

(b) Candidate Lyapunov function certified
non-negative.

Figure 28: Comparison of the solution to stable (227) using continuous piecewise-polynomial
candidate Lyapunov function before and after certifying the non-negativity. Note on Figure (b)
that the collection is not a proper collection of simplices. This does not matter in this setting,
since the continuity of the polynomial is embedded in LPc(Σ, K) and the certification process
treats each initial simplex individually. Each sub-division will result in proper collections of
simplices being created from the individual initial simplices. The red coefficients on Figure (b)
are in the magnitude of 10−11.

103

Instability Certification

Setting Solve LP Cert Pos

Stable
’STA’ ~3 min N/A
’INS’ ~3 min ~137 min

Unstable
’STA’ ∞ N/A
’INS’ ~3 min ~99 min

Table 2: Runtimes for stability and instability analysis of the comprehensive example using
continuous piecewise-polynomial (candidate) Lyapunov functions.

any sub-division of the initial triangulation, and the certification of the can-
didate Lyapunov function requires sub-dividing from 4 to 8 simplices. Con-
sidering a polynomial candidate Lyapunov function LPc(Σ, K) requires one
sub-division before it becomes solvable. As with the stable system, certifying
the candidate Lyapunov function does not require any sub-division, since the
coefficients were all automatically non-negative.

�

Comprehensive Example

This Example considers a 4 dimensional system of degree 6 taken from [42].
The vector field has a total of 161 different monomial combinations and is
not printed in the thesis. The system is given in the function sampleSystems,
see the software section below. The system was analysed, both as stable
and unstable, searching both for a candidate Lyapunov function and for a
Lyapunov function. In both cases, only continuous piecewise-polynomials
were sought synthesised and the degree was dV = 6. The results are reported
in Table 2, which is read as follows.

On the left, the actual stability property of the system is listed, followed
by the setting in the algorithm. Solve LP contains the information regard-
ing runtime reported in minutes. Cert Pos indicates the runtime in minutes
for certifying the positivity of the candidate Lyapunov function in the stable
case, or the runtime for certifying the negativity of the candidate Lyapunov
function in the unstable case.

Observe that the computations needed to certify the stability of a stable
system now take significantly longer than they did before allowing for analy-
sis of unstable systems. The advantage, of course, is the added flexibility seen
in that the analysis of an unstable system can never terminate when trying
to certify stability. In this case, the long runtime is simply a necessary evil, in
order to ensure termination of the program.

Note that in the three solvable cases, LP(Σ, K) and LPc(Σ, K) are solvable
using the initial collection K0 consisting of 48 simplices as obtained from
Kuhn’s triangulation of the 4 dimensional unit cube, see Definition 3. Since
no sub-division is needed, the BBAlgorithm and the modified BBAlgorithm

104

25. Software

are equal. However, in order to certify the positivity in the stable case, the
48 simplices are sub-divided into 388 simplices, where each of the original 48
simplices are sub-divided into between 1 and 23 simplices, before obtaining
the certificate of positivity. In the unstable case, the 48 simplices are sub-
divided into 329 simplices, where each of the original 48 simplices are sub-
divided into between 1 and 24 simplices, before obtaining the certificate of
negativity.

�

25 Software

The modifications needed in order to accommodate the analysis of unstable
systems is straightforward, and are in fact already present in the software
presented in Section 21. The parameter StbType works as an input to analyse-
Stability and is passed to getStabilityCertificateCPPLyap and getStabilityCertifi-
catePOLLyap. If set to allow analysis of unstable systems, the lower bounds
on the design variables are set to −∞ and the objective function is set to zero.
The objective function is set to zero to ensure that the linear program does
not become dual infeasible due to an unbounded primal objective function.

The function determineSignOfLyapunovFunction can be used to determine
the sign of any polynomial defined on a collection of simplices. It analyses the
coefficients at the vertices in the collection. Based on them being positive or
negative, determineSignOfLyapunovFunction tries to certify the non-negativity
or non-positivity of the polynomial. If the sign of the vertex coefficients are
mixed, the conclusion is that the polynomial is sign indefinite. The function
takes seven inputs. C, simplexCtrlPoints, and alpha are the coefficients, the
maps ∆i, and the α-matrix respectively. vex and simplex define the collection
and n and d are the number of variables and the degree. The function out-
puts res, which is a string containing the conclusion of the analysis and CC,
alphaC, vexC and simplexC which are the coefficients and α-matrix on the
resulting collection.

The function getVertexCoefficientsComplex is used to single out coefficients
located at the vertices in a collection. The inputs are the coefficient vector
C, the maps ∆i in simplexCtrlPoints, and the α-matrix in alpha. The output
VexCoe f contains the coefficients at the vertices.

The .m-script sampleSystems contains a collection of polynomial vector
fields, which are stable. The comprehensive example from above is case 15.
All systems analysed in the thesis can be found in the script.

105

Instability Certification

106

References

[1] Amir Ali Ahmadi, Miroslav Krstic, and Pablo A. Parrilo. “A Glob-
ally Asymptotically Stable Polynomial Vector Field with no Polyno-
mial Lyapunov Function”. In: Proceedings of the Conference on Decision
and Control (2011), pp. 7579–7580.

[2] Amir Ali Ahmadi and Pablo A. Parrilo. “Converse Results on Existence
of Sum of Squares Lyapunov Functions”. In: Proceedings of the Conference
on Decision and Control (2011), pp. 6516–6521.

[3] Erling D. Andersen. “Certificates of Primal or Dual Infeasibility in
Linear Programming”. In: Computational Optimizations and Applications
(2001), pp. 171–183.

[4] Erling D. Andersen. How to Use Farkas’ Lemma to Say Something Im-
portant About Infeasible Linear Problems. Tech. rep. MOSEK, 2013. url:
http://docs.mosek.com/whitepapers/infeas.pdf.

[5] Jasbir S. Arora. Introduction to Optimum Design. 3. Elsevier Inc., 2012.

[6] Andrea Bacciotti and Lionel Rosier. Liapunov Functions and Stability in
Control Theory. Springer, 2005.

[7] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in
Real Algebraic Geometry. Vol. 10. Springer, 2006.

[8] J. Berchtold and A. Bowyer. “Robust Artihmetic for Multivariate Bern-
stein-Form Polynomials”. In: Computer-Aided Design 32 (2000), pp. 681–
689.

[9] Carl de Boor. “B-Form Basics”. In: Geometric Modeling (1987), pp. 131–
148.

[10] Fatima Boudaoud, Fabrizio Caruso, and Marie-Françoise Roy. “Certifi-
cates of Positivity in the Bernstein Basis”. In: Discrete and Computational
Geometry 39 (2007), pp. 639–655.

[11] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge University Press, 2004.

107

http://docs.mosek.com/whitepapers/infeas.pdf

References

[12] Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti. Applied
Mathematical Programming. Addison-Wesley Publishing Company, 1977.

[13] Gerald Farin. “Triangular Bernstein-Bézier Patches”. In: Computer Aided
Geometric Design 3.2 (1986), pp. 83–127.

[14] Rida T. Farouki. The Bernstein Polynomial Basis: A Centennial Retrospec-
tive. Tech. rep. Department of Mechanical and Aerospace Engineering,
University of California, 2012.

[15] Rida T. Farouki and V. T. Rajan. “Algorithms for Polynomails in Bern-
stein Form”. In: Computer Aided Geometric Design 5 (1988), pp. 1–26.

[16] Peter A. Giesl and Sigurdur F. Hafstein. “Revised CPA Method to Com-
pute Lyapunov Functions for Nonlinear Systems”. In: Journal of Mathe-
matical Analysis and Applications 410.1 (2014), pp. 292–306.

[17] Tim Goodman and Jörg Peters. “Bézier Nets, Convexity and Subdivi-
sion on Higher Dimensional Simplices”. In: Computer Aided Geometric
Design 12 (1994), pp. 53–65.

[18] Wolfgang Hahn. Stability of Motion. Springer-Verlag New York Inc.,
1967.

[19] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. “GloptiPoly
3: Moments, Optimization and Semidefinite Programming.” In: Opti-
mization Methods and Software 24 (2009), pp. 761–779.

[20] Zachary William Jarvis-Wolszek. “Lyapunov Based Analysis and Con-
troller Synthesis for Polynomial Systems using Sum-of-Squares Opti-
mization”. PhD thesis. University of California, Berkeley, 2003.

[21] Reza Kamyar, Chaitanya Murti, and Matthew M. Peet. “Constructing
Piecewise-Polynomial Lyapunov Functions for Local Stability of Non-
linear Systems Using Handelman’s Theorem”. In: Proceedings of the Con-
ference on Decision and Control (2014), pp. 5481–5487.

[22] Christopher M. Kellett. “A Compendium of Comparison Function Re-
sults”. In: Mathematics of Control, Signals, and Systems 26.3 (2014), pp. 339–
374.

[23] Hassan K. Khalil. Nonlinear Systems. Vol. 3. Prentice Hall, 1996.

[24] V. Lakshmikantam and A. A. Martynyuk. “Lyapunov’s Direct Method
in Stability Theory (Review)”. In: Prikladnaya Mekhanika 28.3 (1992).
Translation, pp. 135–144.

[25] Jean Bernard Lasserre. Moments, Positive Polynomials and Their Appli-
cations. Ed. by Jean Bernard Lasserre. Vol. 1. Imperial College Press
Optimization Series. Imperial College Press, 2010.

[26] Richard Leroy. “Certificates of Positivity in the Simplicial Bernstein Ba-
sis”. In: Archives: hal-00589945 (2011).

108

References

[27] Tobias Leth, Christoffer Sloth, and Rafał Wisniewski. “Lyapunov Func-
tion Synthesis - Algorithm and Software”. In: Proceedings of the Multi-
Conference on Systems and Control (2016), pp. 641–647.

[28] Tobias Leth, Rafał Wisniewski, and Christoffer Sloth. “On the Existence
of Polynomial Lyapunov Funcitons for Rationally Stable Vector Fields”.
In: Proceedings of the Conference on Decision and Control (2017).

[29] Tobias Leth, Christoffer Sloth, Rafał Wisniewski, and Sriram Sankara-
narayanan. “Lyapunov Functions Synthesis - Infeasibility and Farkas’
Lemma”. In: Proceedings of the IFAC World Congress (2017), pp. 1703–
1708.

[30] Tobias Leth, Carsten Skovmose Kallesøe, Christoffer Sloth, and Rafał
Wisniewski. “Stability of Drinking Water Distribution Network”. In:
Proceedings of the European Control Conference (2016), pp. 1764–1769.

[31] Miles Lubin, J. A. Julian Hall, Cosmin G. Petra, and Mihai Anitescu.
“Parallel Distributed-Memory Simplex for Large-Scale Stochastic LP
Problems”. In: Computational Optimizations and Applications 55.3 (2013),
pp. 571–596.

[32] Esmeralda Mainar and J.M. Peña. “Evaluation Algorithms for Multi-
variate Polynomails in Bernstein-Bézier Form”. In: Journal of Approxi-
mation Theory 143.1 (2006), pp. 44–61.

[33] Sigurdur F. Marinòsson. “Stability Analysis of Nonlinear Systems with
Linear Programming - A Lyapunov Functions Based Approach”. PhD
thesis. Gerhard-Mercator-University, 2002.

[34] Jose L. Massera. “Contributions to Stability Theory”. In: Annals of Math-
ematics 64.1 (1956), pp. 182–206.

[35] César Muñoz and Anthony Narkawicz. “Formalization of Bernstein
Polynomials and Applications to Global Optimization”. In: Journal of
Automated Reasoning 51.2 (2013), pp. 151–196.

[36] P. S. V. Nataraj and M. Arounassalame. “A New Subdivision Algorithm
for the Bernstein Polynomial Approach to Global Optimization”. In:
International Journal of Automation and Computing 4.4 (2007), pp. 342–
352.

[37] Pablo A. Parrilo. “Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization”. PhD thesis. Cal-
ifornia Institute of Technology, 2000.

[38] Matthew M. Peet. “Exponentially Stable Nonlinear Systems Have Poly-
nomial Lyapunov Functions on Bounded Regions”. In: IEEE Transac-
tions on Automatic Control 54.5 (2009), pp. 979–987.

[39] Victoria Powers. “Positive Polynomial and Sums of Squares: Theory
and Practice”. In: Real Algebraic Geometry (2011), pp. 1–28.

109

References

[40] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A.
Parrilo. “SOSTOOLS and its Control Applications”. In: Positive Polyno-
mials in Control 312 (2005), pp. 273–292.

[41] Mohamed Amin Ben Sassi, Ezio Bartocci, and Sriram Sankaranarayanan.
“A Linear Programming-Based Iterative Approach to Stabilizing Poly-
nomial Dynamics”. In: Proceedings of the IFAC World Congress (2017),
pp. 10951–10958.

[42] Mohamed Amin Ben Sassi, Sriram Sankaranarayanan, Xin Chen, and
Erika Ábrahám. “Linear Relaxations of Polynomial Positivity for Poly-
nomial Lyapunov Function Synthesis”. In: Journal of Mathematical Con-
trol and Information (2015), pp. 1–34.

[43] Konrad Schmudgen. “Around Hilbert’s 17TH Problem”. In: ISMP Extra
(2012), pp. 433–438.

[44] Hanif D. Sherali and Cihan H. Tuncbilek. “A Global Optimization Al-
gorithm for Polynomial Programming Problems Using a Reformulation-
Linearization Technique”. In: Journal of Global Optimization 2 (1992),
pp. 101–112.

[45] Christoffer Sloth. “Nonnegative Polynomial with no Certificate of Non-
negativity in the Simplicial Bernstein Basis”. In: Archives (2017).

[46] Christoffer Sloth and Rafał Wisniewski. “Robust Stability of Switched
Systems”. In: Proceedings of the Conference on Decision and Control (2014),
pp. 4685–4690.

[47] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Pren-
tice Hall, 1991.

[48] Georgi V. Smirnov. Introduction to the Theory of Differential Inclusions.
Vol. 41. Graduate Studies in Mathematics. American Mathematical So-
ciety, 2002.

[49] Gilbert Stengle. “A Nullstellensatz and a Positivstellensatz in Semial-
gebraic Geometry”. In: Mathematische Annalen 207 (1974), pp. 87–97.

[50] Romain Testylier and Thao Dang. “Analysis of Parametric Biological
Models with Non-Linear Dynamics”. In: Proceedings of the Workshop on
Hybrid Systems and Biology (2012).

[51] Jihad Titi and Jürgen Garloff. “Matrix Methods for the Simplicial Bern-
stein Representation and for the Evaluation of Multivariate Polynomi-
als”. In: Konstanzer Schriften in Mathematik (2017).

[52] A. Vannelli and M. Vidyasagar. “Maximal Lyapunov Functions and Do-
mains of Attraction for Autonomous Nonlinear Systems”. In: Automat-
ica 21.1 (1985), pp. 69–80.

110

Appendix A

Selected Basis Polynomials

0
1

0.5

1

B2

(2,0,0)

0.5

1

0.5
0 0

0
1

0.5

1

B2

(1,1,0)

0.5

1

0.5
0 0

0
1

0.5

1

B2

(1,0,1)

0.5

1

0.5
0 0

0
1

0.5

1

B2

(0,2,0)

0.5

1

0.5
0 0

0
1

0.5

1

B2

(0,1,1)

0.5

1

0.5
0 0

0
1

0.5

1

B2

(0,0,2)

0.5

1

0.5
0 0

Figure A.1: Bernstein basis polynomials in two dimension of degree 2. The shaded area is the
simplex.

I

Appendix A. Selected Basis Polynomials

0
1

0.5

1

B3

(3,0,0)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(2,1,0)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(2,0,1)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(1,1,1)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(1,0,2)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(0,3,0)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(0,2,1)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(0,1,2)

0.5

1

0.5
0 0

0
1

0.5

1

B3

(0,0,3)

0.5

1

0.5
0 0

Figure A.2: Bernstein basis polynomials in two dimension of degree 3 with B3
(1,2,0) omitted. See

Figure 7 for B3
(1,2,0). The shaded area is the simplex.

II

Appendix B

Basis Transformation
Derivation

Monomial to Bernstein

This Section considers how to obtain the matrix A as defined in Equation
(29). The matrix is used to transform descriptions of a polynomial in the
monomial basis to a description in the Bernstein basis on a given simplex.
The derivation is eventually limited to an arbitrary two dimensional simplex
but readily available for algorithmic implementation for arbitrary dimension
and simplex. This is similar to [32] where the derivation was limited to three
dimensions but restricted to the standard simplex.

Polynomials in the monomial basis were described by Equation (11), re-
peated here for convenience, as

p(x) =
K

∑
k=1

ckxγk (B.1)

where x ∈ Rn, c = [c1 c2 · · · cK] is the coefficient vector, and

γ =


γ1(1) γ2(1) · · · γK(1)
γ1(2) γ2(2) · · · γK(2)
· · · · · · · · · · · ·

γ1(n) γ2(n) · · · γK(n)

 (B.2)

xγk = xγk(1)
1 xγk(2)

2 · · · xγk(n)
n . (B.3)

The degree of p is

d = max
k∈{1,...,K}

n

∑
i=1

γk(i). (B.4)

III

Appendix B. Basis Transformation Derivation

That is, the maximal degree of any monomial is equal to the actual degree of
p.

Since 
x1
x2
· · ·
xn

 =


σ0(1) σ1(1) · · · σn(1)
σ0(2) σ1(2) · · · σn(2)
· · · · · · · · · · · ·

σ0(n) σ1(n) · · · σn(n)




λ0
λ1
· · ·
λn

 , (B.5)

from Equation (4), expanding the expressing for p described in the monomial
basis using the multinomial theorem (see. Equation (18)) yields

p =
K

∑
k=1

ck

n

∏
i=1

xγk(i)
i (B.6)

=
K

∑
k=1

ck

n

∏
i=1

[σ0(i) · · · σn(i)]

 λ0
· · ·
λn

γk(i)

(B.7)

=
K

∑
k=1

ck

n

∏
i=1

∑
|β|=γk(i)

(
γk(i)

β

) n

∏
t=0

(σt(i)λt)
βt (B.8)

=
K

∑
k=1

ck

n

∏
i=1

∑
|β|=γk(i)

n

∏
t=0

σt(i)βt

︸ ︷︷ ︸
b(i)β

(
γk(i)

β

) n

∏
t=0

λ
βt
t︸ ︷︷ ︸

Bγk(i)
β

(B.9)

=
K

∑
k=1

ck

n

∏
i=1

∑
|β|=γk(i)

b(i)βB
γk(i)
β (B.10)

Note that the products over sums of β are products of Bernstein polynomials
of possibly different degrees, γk(i). The multiplication over i is done using
Equation (114). For n = 2 this gives

p =
K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

∑
|κ−β1|=γk(2)

κ−β1≥0

b(1)β1 b(2)κ−β1

(
γk(1)

β1

)(
γk(2)
κ − β1

)
(

γk(1) + γk(2)
κ

) Bγk(1)+γk(2)
κ

(B.11)

where β1 and β2 = κ − β1 comes from the multiplication.
Note now that the sum over k is a summation of Bernstein polynomials of
possibly different degrees (γ1(1) + γ1(2), γ2(1) + γ2(2), . . . , γK(1) + γK(2)).

IV

To add polynomials in the Bernstein basis they must be described in a basis
of the same degree. Since the degree of p was

d = max
k∈{1,...,K}

n

∑
i=1

γk(i), (B.12)

at least one of the Bernstein polynomials in the summation is of degree d and
the rest will all be of equal or lower degree. By degree elevation, see Equation
(116), a relation between Bernstein basis polynomials of different degrees d
and ď, with d > ď, is

Bď
β = ∑

|α|=d

(
ď
β

)(
d− ď
α− β

)
(

d
α

) Bd
α. (B.13)

Using this the monomial description is transformed to Bernstein description
of degree d.

p =
K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

∑
|κ−β1|=γk(2)

κ−β1≥0

b(1)β1 b(2)κ−β1

(
γk(1)

β1

)(
γk(2)
κ − β1

)
(

γk(1) + γk(2)
κ

)

∑
|α|=d

(
γk(1) + γk(2)

κ

)(
d− (γk(1) + γk(2))

α− κ

)
(

d
α

) Bd
α

(B.14)

= ∑
|α|=d

K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

∑
|κ−β1|=γk(2)

κ−β1≥0

b(1)β1 b(2)κ−β1

(
γk(1)

β1

)(
γk(2)
κ − β1

)
(

γk(1) + γk(2)
κ

)
(

γk(1) + γk(2)
κ

)(
d− (γk(1) + γk(2))

α− κ

)
(

d
α

) Bd
α

(B.15)

V

Appendix B. Basis Transformation Derivation

= ∑
|α|=d

K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

∑
|κ−β1|=γk(2)

κ−β1≥0

b(1)β1 b(2)κ−β1

(
γk(1)

β1

)(
γk(2)
κ − β1

)(
d− (γk(1) + γk(2))

α− κ

)
(

d
α

) Bd
α

(B.16)

Comparing (26) and (B.16) the following relation is obvious

bα(p, d, σ) =
K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

∑
|κ−β1|=γk(2)

κ−β1≥0

b(1)β1 b(2)κ−β1

(
γk(1)

β1

)(
γk(2)
κ − β1

)(
d− (γk(1) + γk(2))

α− κ

)
(

d
α

)
(B.17)

∀ |α| = d.

Equation (B.17) was derived for n = 2, but the expansion needed from Equa-
tion (B.10) to Equation (B.11) can sequentially be extended to arbitrary n. The
operations are implemented in loops and no further expansion is needed. The
function getMon2BernSimplex implements the above as described in Section 4.

Bernstein to Bernstein

This Section considers how to obtain the matrix iBj as defined in Equation
(32). The matrix is used to transform descriptions of a polynomial on simplex
σj to simplex σi. The generic method of collecting terms and equating to
zero can be applied to any two bases. However, limiting the operation offers
computational advantages. The following procedure is for the scenario where
the two simplices overlaps with one facet, e.g. there is only one vertex unique
to either simplex. This is similar to the "Domain Transformation" presented
in [13], although the derivation presented here follows that of [45]. Applying
the procedure n + 1 times enables the transformation of all vertices, one by
one, thus eliminating the limitation. This restriction is the argument behind
the simplex numbering convention introduced in Section 3.

Figure B.1 illustrates the situation. A polynomial p is described in the
Bernstein basis of degree D on σ, and it is desired to describe it on σ̃ instead,
e.g.

p = ∑
|α|=D

bα(p, D, σ)BD
α (σ) = ∑

|γ|=D
bγ(p, D, σ̃)BD

γ (σ̃), (B.18)

VI

σ

σ̃

σ0

σ2 = σ̃2 σ̃0

σ1 = σ̃1

λ0

λ1

λ2

λ̃0

λ̃1

λ̃2

Figure B.1: Simplex σ transformed into simplex σ̃. Since only one vertex is changed the trans-
formation is computationally efficient.

where b(p, D, σ) is known and bγ(p, D, σ̃) is unknown. To derive the relation
between bα and bγ, first recall from the definition of barycentric coordinates
that

x = λ0σ0 + λ1σ1 + λ2σ2 = λ̃0σ̃0 + λ̃1σ̃1 + λ̃2σ̃2. (B.19)

Only one vertex is unique to σ̃, and it can be described as a linear combination
of the original vertices by

σ̃0 = β0σ0 + β1σ1 + β2σ2 (B.20)

with β0 + β1 + β2 = 1 and, to avoid σ̃ being degenerate, β0 6= 0. For unknown
βi’s they are determined by β0

β1
β2

 =

 σ0(1) σ1(1) σ2(1)
σ0(2) σ1(2) σ2(2)

1 1 1

−1  σ̃0(1)
σ̃0(2)

1

 . (B.21)

Substituting σ̃i with σi yields

x =λ̃0(β0σ0 + β1σ1 + β2σ2) + λ̃1σ1 + λ̃2σ2 (B.22)

=(λ̃0β0)σ0 + (λ̃0β1 + λ̃1)σ1 + (λ̃0β2 + λ̃2)σ2, (B.23)

which identifies

λ0 = β0λ̃0, λ1 = β1λ̃0 + λ̃1, λ2 = β2λ̃0 + λ̃2. (B.24)

To obtain the relationship between the basis polynomials on the two sim-
plices, first consider the relationship between the barycentric coordinates
raised to a given multi-index α as

λα = (β0λ̃0)
α0(β1λ̃0 + λ̃1)

α1(β2λ̃0 + λ̃2)
α2 , (B.25)

VII

Appendix B. Basis Transformation Derivation

and expand using the multinomial theorem (see. Equation (18))

λα = βα0
0 λ̃α0

0

(
α1

∑
k=0

(
α1

k

)
βk

1λ̃k
0λ̃α1−k

1

)(
α2

∑
j=0

(
α2

j

)
β

j
2λ̃

j
0λ̃

α2−j
2

)
. (B.26)

Expanding the sums, and noting that α0 + k + j = γ0 enables the following
relation

λα = ∑
|γ|=D
γ1≤α1
γ2≤α2

(
α1

α1 − γ1

)(
α2

α2 − γ2

)
βα0

0 β
α1−γ1
1 β

α2−γ2
2 λ̃γ. (B.27)

Scaling the barycentric coordinates according to Equation (15) gives

BD
α (σ) = ∑

|γ|=D
γ1≤α1
γ2≤α2

(
α1

α1 − γ1

)(
α2

α2 − γ2

)
(D

α)

(D
γ)

βα0
0 β

α1−γ1
1 β

α2−γ2
2 BD

γ (σ̃) (B.28)

= ∑
|γ|=D
γ1≤α1
γ2≤α2

γ0!
α0!(α1 − γ1)!(α2 − γ2)!

βα0
0 β

α1−γ1
1 β

α2−γ2
2 BD

γ (σ̃). (B.29)

Substituting this into Equation (B.18) gives the relation

bγ(p, D, σ̃) = ∑
|α|=D
α1≥γ1
α2≥γ2

γ0!
α0!(α1 − γ1)!(α2 − γ2)!

βα0
0 β

α1−γ1
1 β

α2−γ2
2 bα(p, D, σ),

(B.30)

which, by arranging the entries according to vertex numbering yields iBj.
The derivation above extends naturally to n ≥ 3 as long there is only one

unique vertex in the simplices.
The function getCtrlPointBernTrans implements the above as described in

Section 4, where the description on one simplex can be transformed to de-
scriptions on several simplices directly.

VIII

Appendix C

Positivity Certification By
Dimension Elevation

To derive the equivalence between sub-division and dimension elevation, first
consider the procedure of dimension elevation of a polynomial in the mono-
mial basis. A polynomial in the monomial basis was defined by Equation
(11) as

p(x) =
K

∑
k=1

ckxγk (C.1)

where c = [c1, c2, · · · , cK] is the coefficient vector, x ∈ Rn, and

γ =


γ1(1) γ2(1) · · · γK(1)
γ1(2) γ2(2) · · · γK(2)
· · · · · · · · · · · ·

γ1(n) γ2(n) · · · γK(n)

 (C.2)

xγk = xγk(1)
1 xγk(2)

2 · · · xγk(n)
n . (C.3)

The process of dimension elevation consists of adding one row of zeros in
the exponent matrix γ and treat x ∈ Rn+1. Since all the monomials have the
term x0

n+1 this new exponent matrix define the same polynomial, except for
it being defined in the artificial dimension too. This makes the description in
the Bernstein basis have more coefficients.

To see the equivalence, first consider Figure C.1 where the two processes
are outlined for the one dimensional case. The simplex σ1 is either sub-
divided into σ2 and σ3, or dimension elevated to σ4. Note that the vertex
numbering is different from the rest of the thesis to ease the notation. The
vertices σi are with either one or two coordinates depending on them being

IX

Appendix C. Positivity Certification By Dimension Elevation

σ
1

σ
2

σ
3

σ
4

σ1

σ1

σ2

σ2σ3 σ1 σ2

σ4

(3, 0) (2, 1) (1, 2) (0, 3)

(3, 0) (2, 1)

(1, 2)

(0, 3)

(1, 2)

(2, 1) (3, 0)

(2, 0, 1)

(1, 0, 2) (0, 1, 2)

(0, 2, 1)

(0, 3, 0)

(0, 0, 3)

Figure C.1: Simplex σ1 under sub-division into σ2 and σ3 or dimension elevation into σ4. Note
that the vertex numbering is different from the rest of the thesis.

defined in one or two dimensions. Most of the grid points are numbered but
the ∆ is omitted. The shown degree is D = 3, but this is arbitrary and only
serves to exemplify the process.

To see the equality, next consider the Bernstein coefficient b(2,1)(σ
2), which

from Equation (B.17) is given as

b(2,1)(σ
2) =

K

∑
k=1

ck ∑
|β|=γk(1)
(2,1)−β≥0

σ1(1)β1 σ3(1)β2
(γk(1)

β)(D−γk(1)
(2,1)−β

)

(D
(2,1))

, (C.4)

with β ∈Nn+1
0 . Note that on σ2, σ1 and σ3 only have one coordinate.

Consider now the Bernstein coefficient b(2,0,1)(σ
4), which from Equation

(B.17) is given as

b(2,0,1)(σ
4) =

K

∑
k=1

ck ∑
|κ|=γk(1)+γk(2)

(2,0,1)−κ≥0

∑
|κ−β|=γk(2)

κ−β≥0

σ1(1)β1 σ2(1)β2 σ4(1)β3

σ1(2)κ1−β1 σ2(2)κ2−β2 σ4(2)κ3−β3
(γk(1)

β)(γk(2)
κ−β)(

D−(γk(1)+γk(2))
(2,0,1)−κ

)

(D
(2,0,1))

.

(C.5)

First note, by construction, that γk(2) = 0 ∀k. This is the result of adding the
row of zeros for the existing monomial combinations in the exponent matrix.
Simplifying yields

b(2,0,1)(σ
4) =

K

∑
k=1

ck ∑
|κ|=γk(1)

(2,0,1)−κ≥0

∑
|κ−β|=0
κ−β≥0

σ1(1)β1 σ2(1)β2 σ4(1)β3
(γk(1)

β)(D−γk(1)
(2,0,1)−κ

)

(D
(2,0,1))

.

(C.6)

X

Next, note that ∑|κ−β|=0 is a sum over one element, with κ = β. Substituting
gives

b(2,0,1)(σ
4) =

K

∑
k=1

ck ∑
|β|=γk(1)

(2,0,1)−β≥0

σ1(1)β1 σ2(1)β2 σ4(1)β3
(γk(1)

β)(D−γk(1)
(2,0,1)−β

)

(D
(2,0,1))

. (C.7)

The requirement (2, 0, 1)− β ≥ 0 forces β2 = 0 for the picked grid point. This
gives the final simplification

b(2,0,1)(σ
4) =

K

∑
k=1

ck ∑
|β|=γk(1)

(2,0,1)−β≥0

σ1(1)β1 σ4(1)β3
(γk(1)

β)(D−γk(1)
(2,0,1)−β

)

(D
(2,0,1))

. (C.8)

Now, the only difference between Equation (C.4) and Equation (C.8) is σ3(1)
and σ4(1). Thus sub-division is equivalent to dimension elevation if the new
vertex from sub-division and the first coordinate of the extra vertex from
dimension elevation coincide.

Note that on σ4, for grid points on the face defined by vertices σ1 and σ4,
the second element in the grid point will always be equal to zero. For grid
points on the face defined by vertices σ2 and σ4, the first element in the grid
point will always be equal to zero. This gives[

b(3,0)(σ
2), b(2,1)(σ

2), b(1,2)(σ
2), b(0,3)(σ

2)
]
=[

b(3,0,0)(σ
4), b(2,0,1)(σ

4), b(1,0,2)(σ
4), b(0,0,3)(σ

4)
] (C.9)

and [
b(3,0)(σ

3), b(2,1)(σ
3), b(1,2)(σ

3), b(0,3)(σ
3)
]
=[

b(0,3,0)(σ
4), b(0,2,1)(σ

4), b(0,1,2)(σ
4), b(0,0,3)(σ

4)
]

.
(C.10)

If one wishes to sub-divide more than once, an equal number of artificial
dimension can be added to obtain a result similar to the above. Also, the
arguments presented above extends naturally to higher dimension.

XI

Appendix C. Positivity Certification By Dimension Elevation

XII

Appendix D

Investigation of
Counterexample

This Appendix is concerned with the gap between a polynomial being posi-
tive definite and being Bernstein basis certifiable, as introduced in Section 14,
and in particular an explicit counterexample given in [45].

Counterexample

The polynomial

p =21x4
1 + 24x3

1x2 − 36x3
1 + 18x2

1x2
2−

24x2
1x2 + 18x2

1 + 12x1x3
2 − 12x1x2

2 + 30x4
2

(D.1)

can be written as a sum-of-squares (SOS) like

p =


x1
x2

1
x1x2
x2

2


T 

18 −18 −12 −6
−18 21 12 0
−12 12 18 6
−6 0 6 30




x1
x2

1
x1x2
x2

2

 . (D.2)

The matrix has positive eigenvalues making p positive definite. This is also
seen by the Cholesky factorisation leaving

p =
4

∑
i=1

g2
i (D.3)

XIII

Appendix D. Investigation of Counterexample

with

g1 = −4.2426x2
1 − 2.8284x1x2 + 4.2426x1 − 1.4142x2

2 (D.4)

g2 = 1.7321x2
1 − 3.4641x2

2 (D.5)

g3 = 0.63246x2
2 + 3.1623x1x2 (D.6)

g4 = 3.9497x2
2. (D.7)

Here it is easily seen from g2 and g4 than p has a unique minimum of 0, at
the origin.

When described on the standard simplex, see Equation (25), the coefficient
vector is

b(p, 4, σ) = [0, 0, 0, 3, 0, 0, 0, 1,−1, 0, 3, 0, 0, 0, 30]. (D.8)

In [45] it is proven that sub-dividing cannot change the sign of the negative
coefficient for the simplex with the origin as one of its vertices. The same is
true if the degree of the representation is raised, the coefficient remains neg-
ative. This shows that p is an example of the gab between positive definite
and Bernstein basis certifiable.

Following the discussion on existence and solvability in Section 20.1, the
rest of this Appendix is concerned with the following question: Can the
polynomial p serve as a Lyapunov function for a stable dynamical system
described by a polynomial vector field? And if so, can that system only
be shown stable using polynomials which do not admit to Bernstein basis
certifying collections?

The conclusion is, that the polynomial can serve as a Lyapunov function
for a synthesised stable system, but that that system also admits to other
Lyapunov functions which are Bernstein basis certifiable.

Stable Polynomial Vector Field

In this Section the vector field is synthesised. Seeing as the Lyapunov func-
tion is given only the following equation has to be true for the vector field.

Let ẋ = f (x) be the stable vector field (f (0) = 0 is the equilibrium), and
let the polynomial p in Equation (D.1) be a Lyapunov function for it. Then

∂V(x)
∂x

f (x) < 0 ∀x 6= 0 (D.9)

needs to be fulfilled. This inequality is relaxed as an SOS-criteria. An SOS-
program is set up and solved using SOSTOOLS [40], and it produces the

XIV

following system

f1 =− 18.13x3
1 − 1.193x2

1x2 − 14.77x1x2
2 − 0.1836x3

2

− 23.67x2
1 − 12.51x1x2 − 8.56x2

2 − 18.9x1 − 0.0003419x2,

f2 =15.46x3
1 + 0.01834x2

1x2 + 3.458x1x2
2 − 8.342x3

2+

13.94x2
1 + 0.9568x1x2 + 0.5464x2

2 + 1.966x1 − 18.23x2.

(D.10)

This proves p’s ability to serve as a Lyapunov function.

Synthesising using the BBAlgorithm

In this Section the vector field (D.10) is shown stable using the BBAlgoritm.
Using a polynomial Lyapunov function of degree dV = 4 the BBAlgorithm

retunes

V =2.2x4
1 + 2.4x3

1x2 + 0.085x3
1 + 8.1x2

1x2
2 + 0.13x2

1x2 + 0.12x2
1+

2.2x1x3
2 + 0.18x1x2

2 + 0.079x1x2 + 2.1x4
2 − 0.045x3

2 + 0.12x2
2.

(D.11)

This proves that the system allows for Lyapunov functions which admits to
Bernstein basis certifying collections, even though it also (by design) admits
to at least one Lyapunov function which does not admits a Bernstein basis
certifying collection.

Synthesising using an SOS-Program

In this Section the vector field (D.10) is shown stable using an SOS realisation.
This is trivial since this is how the vector field was designed in the first
place, but it is interesting to see if an SOS-program finds the same Lyapunov
function, e.g. (D.1), or if it finds another polynomial.

For this synthesis, the following two criteria needs to be fulfilled:

V(x) >0 ∀x 6= 0∧V(0) = 0, (D.12)

∂V(x)
∂x

f (x) <0 ∀x 6= 0∧ V̇(0) = 0, (D.13)

where V is the unknown, and f (x) is from (D.10). The inequalities are relaxed
as SOS-criteria. An SOS-program is set up and solved, and produces the
following Lyapunov function:

V(x) =1.87x4
1 + 0.1955x3

1x2 − 0.5042x3
1 + 1.316x2

1x2
2−

0.009137x2
1x2 + 2.397x2

1 − 0.001332x1x3
2 − 0.1279x1x2

2+

0.05443x1x2 + 1.636x4
2 − 0.0439x3

2 + 2.403x2
2.

(D.14)

XV

Appendix D. Investigation of Counterexample

This proves that the synthesised vector field allows for a Lyapunov function
found using SOS realisations which is different than the SOS polynomial used
to create it. In addition, the SOS synthesised Lyapunov function in Equation
(D.14) can be certified positive definite using the function getPositivityCer-
tificate from Chapter Positivity Certification (and the Lie derivative certified
negative definite). This shows that it is not an inherent feature of the syn-
thesised vector field that it needs SOS-Lyapunov functions without Bernstein
basis certifying collections. This is evidence towards that polynomials like
(D.1) are rare in the sense of their role in Lyapunov function analysis.

XVI

Appendix E

Polynomial Lyapunov
Functions for Rationally
Stable Systems

This Appendix presents a proof that rationally stable dynamical systems ad-
mits polynomial Lyapunov functions on bounded regions. It was first pre-
sented in [28]. The proof is heavily inspired by the proof from [38] for ex-
ponential stability, where the weight 1/||x||22 is of eminent importance. This
result is extended to include the weight 1/||x||r2 with r ∈ R>0. Before stating
the proof some definitions are needed.

Definitions

Denote the set of continuous maps defined on Ω ⊂ Rn by C(Ω) with norm

|| f ||∞ = sup
x∈Ω
|| f (x)||∞. (E.1)

Note for a function, (E.1) boils down to supx∈Ω | f (x)|.
For operators hi : X → X, let ∏i hi : X → X denote the sequential compo-

sition of the hi, i.e.,

∏
i

hi = h1 ◦ h2 ◦ · · · ◦ hn−1 ◦ hn. (E.2)

Following [38], for Ω ∈ Rn, define the following sets of differentiable func-
tions:

Ci
1(Ω) =

{
f : Dα f ∈ C(Ω) ∀ α ∈Nn s. t.

n

∑
j=1

αj ≤ i

}
,

XVII

Appendix E. Polynomial Lyapunov Functions for Rationally Stable Systems

Ci
∞(Ω) =

{
f : Dα f ∈ C(Ω) ∀ α ∈Nn s. t. max

j
αj ≤ i

}
.

The following definition is from [38].

Definition 39 An element of X is defined to be a set of 2n continuous functions,
indexed as fα ∈ C(Ω) for α ∈ {0, 1}n, and denoted { fα}α∈{0,1}n ∈ X. Define the
linear map K : X → C1

∞(Ω) as

K({ fα}α∈{0,1}n) = ∑
α∈{0,1}n

Gα fα (E.3)

where Gα : C(Ω)→ C1
∞(Ω) is given by

Gαh =

(
n

∏
i=1

gi,αi

)
h (E.4)

and where the operators gi,j are given by

(gi,jh)(x1, . . . , xn) =

{
h(x1, . . . , xi−1, 0, xi+1, . . . , xn) , j = 0∫ xi

0 h(x1, . . . , xi−1, s, xi+1, . . . , xn)ds , j = 1.
(E.5)

Lemmas

Definition 39 has the following consequence, given as Lemma 3 in [38].

Lemma 40 ([38]) For v ∈ C1
∞(Ω), K({Dαv}α∈{0,1}n) = v.

Lemma 41 For r ∈ R>0, let r̂ = dre be the smallest integer bigger than r. Let v ∈
Cr̂

1(B∞). Then for any ε > 0 there exists a polynomial p and an open neighbourhood
U of 0 such that ∣∣∣∣∣∣∣∣ p(x)− v(x)

||x||r2

∣∣∣∣∣∣∣∣
∞
≤ ε, ∀x ∈ U. (E.6)

Proof
Let the polynomial m be the r̂th order Taylor series expansion of v about x = 0

m(x) = v(0) +
n

∑
i=1

xi
∂v
∂xi

(0) +
1
2

n

∑
i1,i2=1

xi1 xi2
∂2v

∂xi1 ∂xi2
(0)

+ · · ·+ 1
r̂!

n

∑
i1,...,ir̂=1

xi1 · · · xir̂
∂r̂v

∂xi1 · · · ∂xir̂
(0).

(E.7)

Then by continuity, m approximates v close to the origin and

(v−m)(0) =
∂(v−m)

∂xi
(0) = · · · = ∂r̂(v−m)

∂xi1 · · · ∂xir̂
(0) = 0. (E.8)

XVIII

Let w(x) = ||x||r2 and define

h(x) =

{
0 , x = 0

v(x)−m(x)
w(x) , otherwise.

(E.9)

Since

v(x) = m(x) + Rv,r̂(x), (E.10)

h can be written as

h(x) =

{
0 , x = 0

Rv,r̂(x)
w(x) , otherwise.

(E.11)

Since the degree of Rv,r̂(x) is strictly greater than the degree of w(x)

lim
x→0

(
Rv,r̂(x)
w(x)

)
= 0, (E.12)

and h is continuous at 0. By Weierstrass approximation theorem, for every
ε/2 > 0 there exists a polynomial q such

||q− h||∞ ≤ ε/2. (E.13)

Let p(x) = m(x) + q(x)[||x||r2 − Rw,r̂(x)] where Rw,r̂(x) is the remainder after
an r̂th order Taylor series expansion of ||x||r2 about x = 0. Finally∣∣∣∣∣∣∣∣ p(x)− v(x)

w(x)

∣∣∣∣∣∣∣∣
∞
=

∣∣∣∣∣∣∣∣m(x) + q(x)w(x)− q(x)Rw,r̂(x)− v(x)
w(x)

∣∣∣∣∣∣∣∣
∞

(E.14)

=

∣∣∣∣∣∣∣∣m(x)− v(x)− q(x)Rw,r̂(x)
w(x)

+ h(x) + (q(x)− h(x))
∣∣∣∣∣∣∣∣

∞
(E.15)

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
−q(x)Rw,r̂(x)

w(x)
+

m(x)− v(x)
w(x)

+ h(x)︸ ︷︷ ︸
=0

+(q(x)− h(x))

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∞

(E.16)

≤
∣∣∣∣∣∣∣∣−q(x)Rw,r̂(x)

w(x)

∣∣∣∣∣∣∣∣
∞
+ ||(q(x)− h(x))||∞ (E.17)

≤
∣∣∣∣∣∣∣∣−q(x)Rw,r̂(x)

w(x)

∣∣∣∣∣∣∣∣
∞
+ ε/2 (E.18)

where the first inequality is due to the triangle inequality on norms and the
second inequality is from Equation (E.13). Now, since r̂ ≥ r

lim
x→0

−q(x)Rw,r̂(x)
||x||r2

= 0. (E.19)

XIX

Appendix E. Polynomial Lyapunov Functions for Rationally Stable Systems

Thus there is a sufficiently small region around 0 such that∣∣∣∣∣∣∣∣ p(x)− v(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
≤ε/2 + ε/2 = ε. (E.20)

�

Lemma 42 Let p = {pα}α∈{0,1}n and q = {qα}α∈{0,1}n with pα, qα ∈ C(B∞).
Then

max
β∈{0,1}n

∣∣∣∣∣∣∣∣DβKp(x)− DβKq(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
≤ 2n max

α∈{0,1}n

∣∣∣∣∣∣∣∣ pα(x)− qα(x)
||x||r2

∣∣∣∣∣∣∣∣
∞

. (E.21)

Proof
By the definition of gj,k

∂

∂xi
gj,k f =


gj,k

∂
∂xi

f , i 6= j
f , i = j, k = 1
0 , i = j, k = 0

(E.22)

which implies

∂β

∂xβ
Gα f =


0 , αi < βi for some i(

∏n
i=1

βi 6=1
gi,αi

)
f , otherwise.

(E.23)

The first step in the proof is to obtain bounds on the function

1
||x||r2

(gi,j f)(x). (E.24)

If j = 0 and x ∈ B∞, then for n = 1,∣∣∣∣∣∣∣∣ 1
||x||r2

(g1,0 f)(x)
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ f (x)

||x||r2

∣∣∣∣∣∣∣∣
∞

(E.25)

follows directly from Definition 39. For n > 1∣∣∣∣ 1
||x||r2

(gi,0 f)(x)
∣∣∣∣ = ∣∣∣∣ f (x1, . . . , xi−1, 0, xi+1, . . . , xn)

||x||r2

∣∣∣∣ (E.26)

≤

∣∣∣∣∣∣∣∣∣∣∣
f (x1, . . . , xi−1, 0, xi+1, . . . , xn)(

∑n
k=1
k 6=i

x2
k

)r/2

∣∣∣∣∣∣∣∣∣∣∣
(E.27)

≤
∣∣∣∣∣∣∣∣ f (s)
||s||r2

∣∣∣∣∣∣∣∣
∞

, (E.28)

XX

where the first inequality is due to x2
i ≥ 0. If j = 1 and x ∈ B∞, then for

n ≥ 1∣∣∣∣ 1
||x||r2

(gi,1 f)(x)
∣∣∣∣ = ∣∣∣∣∫ xi

0

f (x1, . . . , xi−1, t, xi+1, . . . , xn)

||x||r2
dt
∣∣∣∣ (E.29)

≤ sup
ν∈[−|xi |,|xi |]

| f (x1, . . . , xi−1, ν, xi+1, . . . , xn)|(
∑n

k=1 x2
k
)r/2 (E.30)

≤ sup
ν∈[−|xi |,|xi |]

| f (x1, . . . , xi−1, ν, xi+1, . . . , xn)|(
ν + ∑n

k=1
k 6=i

x2
k

)r/2 (E.31)

≤
∣∣∣∣∣∣∣∣ f (s)
||s||r2

∣∣∣∣∣∣∣∣
∞

. (E.32)

The first inequality it due to the mean value theorem and that |xi| ≤ 1, and
the second follows from x2

i ≥ ν2. This gives∣∣∣∣∣∣∣∣ 1
||x||r2

(gi,1 f)(x)
∣∣∣∣∣∣∣∣

∞
≤
∣∣∣∣∣∣∣∣ 1
||x||r2

f (x)
∣∣∣∣∣∣∣∣

∞
. (E.33)

Thus, for j ∈ {0, 1} and i = 1, . . . , n∣∣∣∣∣∣∣∣ 1
||x||r2

(gi,j f)(x)
∣∣∣∣∣∣∣∣

∞
≤
∣∣∣∣∣∣∣∣ 1
||x||r2

f (x)
∣∣∣∣∣∣∣∣

∞
. (E.34)

This bound can be applied inductively since the terms Gα are compositions
of gi,j. For any β ∈ {0, 1}n this gives

∣∣∣∣∣∣∣∣ 1
||x||r2

(
∂β

∂xβ
Gα f

)
(x)
∣∣∣∣∣∣∣∣

∞
=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
||x||r2


 n

∏
i=1

βi 6=1

gi,αi

 f

 (x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(E.35)

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
||x||r2


 n

∏
i=2

βi 6=1

gi,αi

 f

 (x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

(E.36)

· · · ≤
∣∣∣∣∣∣∣∣ f (x)
||x||r2

∣∣∣∣∣∣∣∣
∞

. (E.37)

XXI

Appendix E. Polynomial Lyapunov Functions for Rationally Stable Systems

Given this bound on Gα, for any β ∈ {0, 1}n, the triangle inequality yields∣∣∣∣∣∣∣∣DβKp(x)− DβKq(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
=

∣∣∣∣∣∣∣∣ 1
||x||r2

∂β

∂xβ
K(p− q)(x)

∣∣∣∣∣∣∣∣
∞

(E.38)

≤ ∑
α∈{0,1}n

∣∣∣∣∣∣∣∣ 1
||x||r2

(
∂β

∂xβ
Gα(pα − qα)

)
(x)
∣∣∣∣∣∣∣∣

∞

(E.39)

≤ ∑
α∈{0,1}n

∣∣∣∣∣∣∣∣ pα(x)− qα(x)
||x||r2

∣∣∣∣∣∣∣∣
∞

(E.40)

≤ 2n max
α∈{0,1}n

∣∣∣∣∣∣∣∣ pα(x)− qα(x)
||x||r2

∣∣∣∣∣∣∣∣
∞

, (E.41)

where the second inequality is from the bound in (E.37) and the third in-
equality is from the fact that pα and qα both have 2n elements.

�

Lemma 43 Let v be a function with partial derivatives

Dαv ∈ C2
1(B∞) (E.42)

for all α ∈ {0, 1}n. Then for r ∈ R>0 and for any ε > 0, there exists a polynomial
p, such that for x ∈ B∞

max
α∈{0,1}n

∣∣∣∣∣∣∣∣Dα p(x)− Dαv(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
≤ ε. (E.43)

Proof
From Lemma 41 there exists polynomial functions qα such that

max
α∈{0,1}n

∣∣∣∣∣∣∣∣ qα(x)− Dαv(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
≤ ε

2n . (E.44)

Let q = {qα}α∈{0,1}n and p = Kq. Since the qα are polynomial, p is poly-
nomial. Let h = {Dαv}α∈{0,1}n . Then by Lemma 40, v = Kh. Therefore by
Lemma 42

max
α∈{0,1}n

∣∣∣∣∣∣∣∣Dα p(x)− Dαv(x)
||x||r2

∣∣∣∣∣∣∣∣
∞
= max

α∈{0,1}n

∣∣∣∣∣∣∣∣DαKr(x)− DαKh(x)
||x||r2

∣∣∣∣∣∣∣∣
∞

(E.45)

≤ 2n max
α∈{0,1}n

∣∣∣∣∣∣∣∣ qα(x)− Dαv(x)
||x||r2

∣∣∣∣∣∣∣∣
∞

(E.46)

≤ ε, (E.47)

thus proving the Lemma.
�

XXII

Theorem

Combining the above the result yields the counterpart to Theorem 9 in [38].

Theorem 44 (Rationally Stable Vector Fields have Polynomial Lyapunov Functions
on Bounded Regions.) Let Ω ⊆ B∞ and let f be a given general non-linear vector
field uniformly bounded on B∞. Suppose there exists a function V : B∞ → R with
DαV ∈ C2

1(B∞) for all α ∈ {0, 1}n and such that

α0||x||r1
2 ≤ V(x) ≤ β0||x||r2

2 (E.48)

∇V(x)T f (x) ≤− γ0||x||r3
2 , (E.49)

where α0, β0, γ0, r1, r2, r3 ∈ R>0 are constants with r3 > r2. Then there exists a
polynomial p such that

α||x||r1
2 ≤ p(x) ≤ β||x||r2

2 (E.50)

∇p(x)T f (x) ≤ −γ||x||r3
2 , (E.51)

with α0 > α > 0, 0 < β0 < β and γ0 > γ > 0.

Proof
Let b = || f ||∞ = supx∈B∞ || f (x)||∞ and choose 0 < ε < min{α0 − α, β −
β0, (γ0 − γ)/(nb)}. By Lemma 43 there exists a polynomial p such that

max
r∈{r1,r2,r3}

∣∣∣∣ p(x)−V(x)
||x||r2

∣∣∣∣ ≤ ε, max
r∈{r1,r2,r3}

∣∣∣∣∣∣
∂p
∂xi

(x)− ∂V
∂xi

(x)

||x||r2

∣∣∣∣∣∣ ≤ ε, (E.52)

for all i = 1, . . . , n. This gives the following for the conditions on p:

p(x) = V(x) +
p(x)−V(x)
||x||r1

2
||x||r1

2 (E.53)

≥ α0||x||r1
2 − ε||x||r1

2 (E.54)

≥ α||x||r1
2 , (E.55)

and

p(x) = V(x) +
p(x)−V(x)
||x||r2

2
||x||r2

2 (E.56)

≤ β0||x||r2
2 + ε||x||r2

2 (E.57)

≤ β||x||r2
2 . (E.58)

XXIII

Appendix E. Polynomial Lyapunov Functions for Rationally Stable Systems

For the derivative it becomes:

∇p(x)T f (x) = ∇(p(x)−V(x))T f (x) +∇V(x)T f (x) (E.59)

=
∇(p(x)−V(x))T f (x)

||x||r3
2

||x||r3
2 +∇V(x)T f (x) (E.60)

≤
n

∑
i=1

∂p
∂xi

(x)− ∂V
∂xi

(x)

||x||r3
2

fi(x)||x||r3
2 − γ0||x||r3

2 (E.61)

≤ εnb||x||r3
2 − γ0||x||r3

2 (E.62)

≤ −γ||x||r3
2 . (E.63)

�

XXIV

Appendix F

Software Tutorial

This Appendix covers the usage of some of the functions introduced in the
thesis. The functions covered are the ones most usable as stand alone func-
tions. It was chosen to group similar functions together despite them being
introduced in different chapters. Each section is accompanied by a tutorial
function which can be executed prior to or in addition to reading the sections.

Collections

The function tutorialCollections covers the introduction presented in this Sec-
tion. To get the initial collection of simplices covering a hypercube, to sub-
divide it, and to plot the collections, the functions getInitialPartition, getBina-
rySplitting, and plotCollection are used.

As an example, define an interval as

I = [-1 1;-1 1;-1 1];

and obtain the initial collection like

[vex,simplex] = getInitialPartition(I);.

To visualise the collection call

plotCollection(vex,simplex).

To sub-divide all 12 simplices in the collection call

[vex,simplex] = getBinarySplitting(vex,simplex);

or call e.g.

[vex,simplex] = getBinarySplitting(vex,simplex,[1 6 7]);

to sub-divide the first, the sixth and the seventh simplex. Use plotCollection
again to plot the result. Try different hypercubes.

XXV

Appendix F. Software Tutorial

Basis Transformation

The function tutorialBasisTransformation covers the introduction presented in
this Section. The Bernstein basis polynomials of a given degree on a given
simplex are obtained using getBernsteinBasisPolynomials. Define the two di-
mensional standard simplex as

vex = [0 1 0;0 0 1];

and call

BBP = getBernsteinBasisPolynomials(2,vex);

to get the basis polynomials of degree 2 on the simplex. Call

BBP = getBernsteinBasisPolynomials(10,vex);

to get the basis polynomials of degree 10 on the simplex, and so on. Try
different simplices.

To transform between monomial and Bernstein bases use getMon2BernTrans.
Define a polynomial in the monomial basis as

c = [3 4 9 1 -5];
gamma = [3 1 1 0 0;0 2 1 3 1];

and use getInitialPartition to get a collection of simplices on the two dimen-
sional unit cube as described above. To get the transformation matrix call

[M2B,alpha,d,simplexCtrlPointsVF] = ...
getMon2BernTrans(2,gamma,vex,simplex);

and to get the Bernstein coefficients call

C = (M2B*c.’).’;.

To get the coefficients on the first simplex call

b1 = C(simplexCtrlPointsVF(1,:));

and to check the result recover the monomial description calling

BBP = getBernsteinBasisPolynomials(d,vex(:,simplex(1,:)));
p = b1*BBP;.

Try doing this for all simplices.
To transform between descriptions on different simplices use getCtrlPoints-

BernTrans. Still working on the collection of simplices covering the two di-
mensional unit cube from above, define a polynomial of degree 3 in the Bern-
stein basis on the fourth simplex as

XXVI

b4 = [1 2 0 -4 3 -8 4 0 1 2];.

Get the transformation matrix by calling

[B2C,alpha,d,simplexCtrlPointsVF] = ...
getCtrlPointBernTrans(2,3,vex,simplex);

and get the coefficient vector from the call

C = (B2C*b4.’).’;.

To visualise the polynomial on the collection call

for i = 1:4
getLyapunovFunctionPlot(C(simplexCtrlPointsVF(i,:)), ...
alpha,d,vex(:,simplex(i,:)))
end.

Certificates

The function tutorialCertificates covers the introduction presented in this Sec-
tion. To certify the positivity of a polynomial use getPositivityCertificate. Cre-
ate a collection of simplices, e.g.

I = [-1 1;-2 3;]; [vex,simplex] = getInitialPartition(I);,

and define a polynomial in the monomial basis as

c = [2401 -1078 -8993 2046 8649 3822 -1642 -7078 1488 -5045 ...
850 12526 -5226 1072 4492];

gamma = [4 3 2 1 0 3 2 1 0 2 1 0 1 0 0;
0 1 2 3 4 0 1 2 3 0 1 2 0 1 0];.

The call

[C,alpha,d,n,vex,simplex] = ...
getPositivityCertificate(c,gamma,vex,simplex);

certifies the positivity of the polynomial. The function sub-divides the col-
lection into a total of 59 simplices before the certificate is obtained. The
certificate is the fact that C only has positive entries. Plotting the collection
using plotCollection reveals the sub-division to be highly concentrated.

To certify the stability of a polynomial vector field use analyseStability. It
requires a working installation of the MOSEK software, visit mosek.com for
more information. Define a polynomial vector field like

c = [-1 2 -1 4 -8 4 -1 4 0 -4 0 10 0;
0 0 0 0 -9 10 0 2 -8 -4 -1 4 -4];

gamma = [3 3 3 2 2 2 1 1 1 1 0 0 0;
2 1 0 2 1 0 4 3 2 0 3 2 1];

XXVII

http://www.mosek.com/

Appendix F. Software Tutorial

and a hypercube

I = [-1 1;-1 1];.

The call

[result,vex,simplex,CV,alphaV,dV,simplexCtrlPointsV,CL, ...
alphaLie,dLie] = ...

analyseStability(c,gamma,I);

certifies the stability of the vector field and returns the conclusion, the syn-
thesised Lyapunov function and the collection on which it is described. The
function analyseStability automatically plots the Lyapunov function and the
Lie derivative, if the vector field is two dimensional. Try expanding the hy-
percube to

I = [-2 2;-2 2];

to require sub-division. Also try changing the degree and type of Lyapunov
function and to certify the instability of the unstable system with the call

[result,vex,simplex,CV,alphaV,dV,simplexCtrlPointsV,CL, ...
alphaLie,dLie] = ...

analyseStability(-c,gamma,I,2,’POL’,’ALL’,’INS’);.

The .m-script sampleSystems contains a collection of polynomial vector
fields which are stable. They can be used to further familiarise one self with
the analyseStability function. Notice in particular benchmark 13 which ini-
tially took 80 hours to solve. After an update to MATLAB 2016a in which
the execution engine was altered, the system is now certified stable in mere
minutes(!).

XXVIII

TO
B

IA
S LETH

PO
LYN

O
M

IA
LS IN

 TH
E B

ER
N

STEIN
 B

A
SIS A

N
D

 TH
EIR

 U
SE IN

 STA
B

ILITY A
N

A
LYSIS

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-087-6

	Front page
	Abstract
	Resumé
	Acknowledgements
	Contents
	Preface
	Introduction
	I Polynomials in the Bernstein Basis
	Bernstein Basis Introduction
	1 Definitions
	1.1 Barycentric Coordinates
	1.2 Simplex & Collection of Simplices
	1.3 Triangulation
	1.4 Basis Polynomials

	2 Polynomials in the Bernstein Basis
	2.1 Basis Transformation and Additional Notation

	3 Polynomials on Collection of Simplices
	4 Software

	Bernstein Basis Properties
	Arithmetic
	5 Multiplication
	6 Degree Elevation
	7 Addition
	8 Differentiation
	9 Software

	Positivity Certification
	10 By Degree Elevation
	11 By Sub-Division
	12 Vertex Placement
	12.1 Pre-Defined Vertex Placement
	12.2 Adaptive Vertex Placement

	13 By Dimension Elevation
	14 Gap Between Positive Definite and Bernstein Basis Certifiable
	15 Software

	II Stability Analysis
	Stability Introduction
	16 Definitions
	16.1 Comparison Function
	16.2 Vector Field
	16.3 Equilibrium Point

	17 Lyapunov Stability
	17.1 Lyapunov Function
	17.2 Lyapunov Functions in the Bernstein Basis
	17.3 Continuous Piecewise Lyapunov Functions

	18 Existence of Structured Lyapunov Functions
	18.1 Exponential Stability
	18.2 Rational Stability
	18.3 Structured Lyapunov Functions

	Stability Certification
	19 Linear Program for Synthesising
	20 Infeasibility
	20.1 Regular Sub-Division
	20.2 Irregular Sub-Division

	21 Software
	22 Design Using the Basis Polynomials

	Instability Certification
	23 Modifying the Linear Program
	24 Unstable Systems
	25 Software

	References
	A Selected Basis Polynomials
	B Basis Transformation Derivation
	C Positivity Certification By Dimension Elevation
	D Investigation of Counterexample
	E Polynomial Lyapunov Functions for Rationally Stable Systems
	F Software Tutorial

	Blank Page
	Blank Page
	Blank Page

