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Abstract— In microgrids, Voltage Source Inverters (VSIs) 

interfacing Distributed Generation (DG) units can be operated in 
Voltage or Current Controlled Modes (VCM/CCM). In this 
paper, a coordinated control of CCM and VCM units for reactive 
power sharing and voltage harmonics compensation is proposed. 
This decentralized control scheme is based on the local 
measurement of signals. In this way, the need for communication 
links is removed which results in a simpler and more reliable 
structure compared to the communication based control 
structures. To be more exact, the VCM units contribute to 
harmonics compensation by using capacitive virtual impedance 
which can fully compensate the effect of output inductance of the 
LCL filters. Furthermore, an adaptive virtual admittance 
regulated based on remaining capacity of the CCM units is 
implemented for the CCM units. For reactive power sharing, 
modified droop and reverse droop control methods are used for 
VCM and CCM units, respectively. The related droop 
coefficients are set by taking the limited capacity of the inverters 
and the distorted power into account. An experimental prototype 
is developed to evaluate the effectiveness of the proposed control 
scheme. Experimental and simulation studies show that the 
harmonics compensation is achieved by using only local 
measurements in presence of virtual admittance/impedance 
schemes of CCM/VCM units. Furthermore, it is demonstrated 
that the reactive power sharing among the CCM and VCM units 
is obtained based on their remaining capacities. 

Index Terms— current controlled mode, Distributed 
Generation (DG), harmonic compensation, microgrid, reactive 
power, voltage controlled mode, voltage source inverter. 
 

I. INTRODUCTION 
OLTAGE Source Inverters (VSIs) are widely used as 

interfaces of Distributed Generation (DG) units in 
distribution systems and microgrids (MGs) [1], [2]. They can 
be operated in Current/Voltage Control Modes (CCM/VCM) 
depending on the operation modes of MGs and the nature of 
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DG resources [3]. In MGs, the energy storage systems and 
controllable (dispatchable) DGs often act as voltage-controlled 
inverters while the intermittent Renewable Energy Sources 
(RESs) based (non-dispatchable) DGs such as Photovoltaic 
(PV) systems and Wind Turbines (WT) are interfaced to the 
system through CCM inverters [4]. Usually, CCM units are 
supposed to inject maximum available active power while 
VCM units deliver active and reactive powers and control 
voltage and frequency especially in the islanded operation of 
MGs [5]. 

For VCM units, decentralized, centralized and distributed 
control schemes are presented for active and reactive power 
sharing [6]-[8]. In [9] and [10], the reactive power 
compensation in distribution systems by DG CCM units is 
discussed. In [11] and [12], the coordinated control of active 
and reactive powers of VCM and CCM inverters is proposed. 
The methods of [11] and [12] are based on droop and reverse 
droop controls, which use local measurement. By using these 
control schemes, the CCM inverters can contribute to reactive 
power sharing in an islanded MG. Although, the limited 
capacity of the inverters is considered in [11], this approach is 
not comprehensive enough since only linear loads are taken 
into account.  

On the other hand, the increasing use of nonlinear loads has 
led to the harmonic pollution in electrical systems [13]. 
Control of DGs interfacing inverters for compensation of 
harmonics in MGs and DG-penetrated systems are 
investigated [14]-[24].  

The use of secondary control for the compensation of 
harmonics by VCM units is proposed in [15] and [16]. In these 
hierarchical architectures, some communication links and a 
central control are required, which increases the cost and 
decreases the system reliability. The harmonic compensation 
using capacitive-resistive virtual impedance is presented in 
[17]-[19] for VCM units. In these methods, the distorting 
effect of harmonic voltage drops on the line and filter 
impedances is compensated for enhancing the power quality 
using local measurements. The compensation of voltage and 
current is also presented in [20] where the VCM inverters can 
compensate the local nonlinear load current, DG or PCC 
voltages selectively. The methods presented in [15]-[20] are 
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proposed for VCM units while CCM units are typically 
applied and may contribute to harmonics compensation in 
MGs.  

Moreover, grid-connected CCM inverters are employed in 
[21]-[23] for local harmonic current compensation and PCC 
voltage quality enhancement. In [21], a coordinated control for 
the compensation of grid voltage harmonics and local 
nonlinear load current is proposed for two CCM units. Limited 
capacity of the inverters is considered in compensation of 
harmonics and reactive power of grid connected MG in [22]. 
However, in this scheme, the measurement of injected current 
and a central controller is required which can increase the 
complexity of the system. The harmonics compensation by 
grid tied inverters considering the limited virtual admittance of 
the inverter is presented in [23]. In the method of [23], the 
control of active and reactive powers is achieved by using 
fundamental-frequency virtual admittance while for the 
harmonics compensation; a virtual admittance with a fixed 
value in harmonic frequencies is applied. It should be 
emphasized that the method of [21] - [23] are applied only to 
grid-tied CCM inverters.  

A coordinated control method for CCM and VCM units by 
using a central controller (based on the communication 
system) and virtual admittance is proposed in [24]. However, 
in this study, the limited capacity and reactive power sharing 
of the CCM and VCM units are not considered.  

In the present paper, the reactive power sharing method 
presented in [11] is improved by considering the distorted 
power (i.e., the power drawn by nonlinear loads) according to 
IEEE 1459 standard [25]. Unlike the method proposed in [24], 
the harmonic compensation by CCM and VCM units is 
autonomously coordinated based on the local measurements. 
In this way, the need for the communication is removed 
leading to a more reliable and simpler control strategy as 
compared with communication-based approaches. The virtual 
capacitive impedance is used in VCM units for compensation 
of harmonic voltage drop on the output inductance of the LCL 
filter. In this study, the virtual admittance is dynamically set 
based on the remaining capacity of the inverters to share CCM 
unit’s harmonic compensation efforts. This approach is 
desired in application of CCM units where the reference 
power varies frequently in different operating conditions.  

 The main contributions of the paper can be summarized as 
follows: 
• Proposing a communication-free control method for the 
coordinated harmonic compensation and reactive power 
support by CCM and VCM units based on local measurements 
• Considering the distorted power and the remaining capacity 
of the interface inverters for reactive power compensation of 
VCM and CCM units  
• Taking into account the changes in the reference power of 
CCM units for harmonics and reactive power compensation 
The remaining parts of the paper are presented as follows: In 
Section II, the general control scheme and reactive power 
control method are presented. Section III is dedicated to 
present the VCM and CCM control schemes. Simulation and 
experimental results are presented in Section IV and finally,  

 
(a) 

 
(b)                                                               (c) 

Fig. 1. Coordination of CCM and VCM units in an MG, (a) general scheme of 
an islanded MG including CCM, VCM units, (b) reactive power droop 

control, (c) reverse reactive power droop control [11] 
 

the paper is concluded in Section V. 

II. GENERAL CONTROL SCHEME OF THE MG 
General scheme for an MG including current and voltage 
controlled inverters is depicted in Fig. 1(a). In this figure, ZV, 
ZF and ZL represent the virtual, filter and line impedances, 
respectively and YV is the virtual admittance. Linear and 
nonlinear loads are connected to the load connection point, 
hereinafter called Common Bus (CB). Typically, VCM units 
control and regulate the frequency and voltage amplitude of 
the MG while the maximum power values extracted from DG 
units such as PV and WT are injected to the MG by CCM 
inverters [26], [27]. 
Droop control is widely used in VCM inverters for the 
autonomous sharing of active and reactive powers. Assuming 
a highly inductive MG, the droop control is expressed by (1) 
[28]: 

,Pmωω p0 −= QnEE p0 −=                        (1)   

where ω0 and ω denote the rated and actual voltage angular 
frequencies. Rated and actual voltage amplitude values are 
represented by E0 and E, respectively. mp and np are the 
proportional coefficients related to active and reactive powers 
droops of VCM units, respectively. It is worth mentioning that 
even if the MG under study is not highly inductive, the 
fundamental virtual inductance may help to make it inductive 
enough [6]. The graphical representation of reactive power 
droop control for VCM units is shown in Fig. 1(b). 
The contribution of CCM inverters in the active and reactive 
powers sharing is achieved by using the reverse droop control 
as: 

 
)( EE

n
1

Q g0
r

−= ),( ωω
m
1

P g0
r

−=                 (2)   
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where ωg and Eg represent the system actual angular 
frequency and RMS voltage at the point of connection of 
CCM inverters, respectively [11]. The output active and 
reactive powers of the CCM unit are represented by P and Q 
while mr and nr are the reverse droop coefficients for CCM 
units. As mentioned before, CCM units usually deliver the 
reference power which is extracted by Maximum Power Point 
Tracking (MPPT) systems (in the case of PV and WT), power 
curtailment strategies [26], energy management strategies 
[29], [30] or emergency control [5], [26], [31]. Hence, in this 
paper, it is assumed that P=Pmax which means that active 
reverse droop of (2) does not act for CCM units and the 
remaining load  active power  is supplied by the VCM units. 
In other words, the details of generating active power 
references for the CCM units are out of the scope of the 
present paper. The reactive power sharing of CCM units by 
reverse droop has been shown in Fig. 1(c). 

By neglecting the voltage drops, the sharing of reactive 
power among the DGs (including VCM and CCM units) can 
be written as: 

n
n

Q
Q

i

j

j

i =                                                                (3)   

where ni and nj represent the droop/ reverse droop reactive 
power coefficients (np/nr) of ith and jth VCM/CCM units [11]. 
In a distorted grid, the harmonic current and voltage can 
occupy the capacity of the inverters. According to IEEE 1459 
standard, the apparent power (S) consists of three components 
(SN, P and Q) as described as follows [25]: 

SSQPSS 2
1

2
N

222
N

2 +=++=                                   (4) 

)()()( IVIVIVS HH
2

1H
2

H1
22

N ++=                         (5)  
where S1 and SN represent the fundamental apparent and 
distorted harmonics powers, respectively. V1 and I1 are the 
RMS fundamental voltage and current while VH and IH 
represent the RMS of harmonics contents of voltage and 
current. Without significantly affecting the accuracy, SN can 
be well approximated by SN≈V1IH since V1IH is the dominant 
term in (5) [25]. 
In this paper, the power quality enhancement by the CCM 
inverters is prioritized over the reactive power compensation 
since an islanded MG is more prone to harmonics distortion in 
comparison to a grid-connected one [15]. In other words, 
when the rated capacity of the inverter is defined as Sr, first 
and foremost the remaining capacity of the inverter (i.e.  S − ) is allocated to the harmonic compensation. After 
computing the distorted power (SN), the rest of capacity is 
allocated to reactive power compensation. Indeed, the priority 
can be given to reactive power compensation by changing the 
order of calculations if it is more important for the system 
operator using Kprio parameter. If the power quality 
enhancement is prioritized over reactive power compensation, 
the amount of this parameter should be 1. If else, the reactive 
power compensation is prioritized by setting this parameter to 
zero. In this paper, the amount of Kprio is considered equal to 

1. Hence, according to the above equation, the maximum 
injectable reactive power of CCM and VCM units can be 
expressed as: 

SKPSQ 2
Nprio

22
r .max −−=                            (6) 

This equation shows that the available reactive power 
support, in addition to the rated capacity of the inverter and P, 
depends on SN and Kprio. 
In order to use the remaining capacity of the inverters, the 
reactive power droop and reverse droop control coefficients, 
which are expressed in (1) and (2) respectively, are suggested 
here to be calculated based on the available capacity for 
reactive power support: 

SKPS

E
Q

Ennn
2
Nprio

22
r
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.max −−

Δ
=

Δ
===          (7) 

where ∆E represents the maximum allowable voltage 
amplitude deviation. By replacing this equation in (2), the 
injectable reactive power of CCM units can be written by (8): 
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.
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EE
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1

EE
n
1Q

g0

2
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22
r
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r

−
Δ
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                        (8) 

As depicted in (8) and Fig. 1(c), the CCM unit can react to 
the voltage amplitude deviation (E0-Eg). If the voltage 
deviation is high, the DG contributes more to reactive power 
compensation. As expressed in (8), the rate of the reaction is 
dependent on 1/n. If the remaining capacity of the inverter 
reaches zero, according to (8), the slope of reverse droop 
shown in Fig. 1(c) will be zero and the DG cannot contribute 
to reactive power compensation. If the active power of DG is 
low and the DG does not contribute to harmonics 
compensation, the available reactive power compensation of 
DG will be increased to its maximum and the corresponding n 
will be decreased to its minimum. It causes increase reverse 
droop slope (see Fig. 1(c)); hence the reactive power 
contribution will be increased.  

It should be mentioned that since n is directly applied for 
droop control of VCM units according to (1), a saturation 
block is used for the denominator of (7) to avoid division by 
zero. 
According to (7), Eq. (3) can be rewritten as (9): 

SKPS

SKPS
Q
Q

2
jNprio

2
j

2
jr

2
iNprio

2
i

2
ir

j

i

,,

,,

.

.

−−

−−
=

                                               (9)

 

This reactive power sharing is useful in islanded microgrid, 
because when the active power of CCM units is high and the 
active power delivered by VCM units is low, the VCM units 
can deliver more reactive power than CCM units while if the 
CCM delivered power is low and VCM units deliver high 
power, the CCM units can inject more reactive power to MG; 
Furthermore, If harmonics compensation is prioritized over 
than reactive power compensation (Kprio=1), the DG which 
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(a) 

 
(b) 

Fig. 2.  The control and power stages of VCM and CCM units in a MG, (a) 
VCM unit; (b) CCM unit. 

 
delivers more distorted power can contributes lower in 
reactive power sharing by considering equal rated apparent 
power (Sr) and  active power. It shows the advantage of the 
modified droop and reverse droop control approach in 
comparison to the conventional ones.  

III. CONTROL SCHEME OF VCM AND CCM UNITS 

The control and power stages of the VCM and CCM units are 
depicted in Figs. 2(a) and 2(b), respectively. As shown, the 
power stages of VCM and CCM units consist of a DC link, a 
three-phase inverter and an LCL filter. The control stages of 
these units are discussed in the following sections. 

A. VCM Unit 
As depicted in Fig. 2(a), the three-phase current and voltage 
variables are converted to stationary frame variables (αβ) by 
using Clarke’s transformation. Then, the fundamental active 
and reactive powers are calculated based on the instantaneous 
active and reactive power theory [32].The active and reactive 
powers droop controls are based on (1). The reactive power 
droop coefficient can be calculated by (7) while considering 
the distorted power (SN).   
The voltage and current control loops consist of Proportional-
Resonant (PR) controllers with resonant terms at fundamental 

and selected harmonic frequencies (5th, 7th and 11th). More 
details about the droop and PR controllers can be found in 
[33]. The fundamental and harmonics extraction in Figs 2(a) 
and 2(b) are extracted by multiple second-order generalized 
integrator (MSOGI) method [34]. 
Since the P-f and Q-V droops are valid in inductive MGs, the 
inductive virtual impedance is utilized in the fundamental 
frequency (i.e. fundamental component currents i2αβ,1 
[subscript ‘1’ represents the fundamental component] pass 
through a virtual inductance). Since the parameters of the lines 
are usually unknown, only the compensation of output 
inductance of LCL filter (L2) is targeted by using the virtual 
impedance. In order to compensate the effect of filter output 
inductance L2 on the voltage distortion, the capacitive virtual 
impedance is inserted selectively at low-order characteristic 
harmonics of order 5, 7, and 11 (i.e. hth harmonic current, i2αβ,h 
passes through a virtual capacitance depending on the 
sequence of the harmonics). More details about the capacitive 
virtual impedance can be found in [16]. 

B. CCM Unit 
As shown in Fig. 2(b), the interface inverter is connected 
through an LCL filter. Incorporation of LCL filters can 
inherently cause harmonic resonances; hence, an active 
resonance damping is applied through capacitor current 
feedback (see KD in Fig. 2(b)) and control of output current is 
performed through a multi-loop scheme [35]-[38]. In 
summary, the current inner loop is used for improving the 
dynamic and stability of the system while the tracking of the 
reference current is the role of the outer loop [37]. 
 The resonant terms of PR controller are tuned at fundamental, 
5th, 7th and 11th harmonic orders. Use of the PR controller can 
ensure accurate tracking of i2 in fundamental and selected 
harmonic frequencies. In the control system, the capacitor or 
output voltage of LCL filter (VO) can be measured and used as 
feedback [24]. Since the output voltage of the LCL filter (VO) 
is closer to (CB) (see Fig. 2(b)), the control of this voltage 
(instead of the filter capacitor voltage) can be more effective 
for providing a good voltage quality at the CB. As can be seen 
in Fig. 2(b), the voltage amplitude (E) is compared to its 
reference value (E0) and the reference reactive power is 
generated based on the proposed reverse control according to 
(2) and (7). The reference current for injecting the reference 
active and reactive powers are calculated based on the 
following equation:  ,, = , ,− , ,

                         
(9) 

The diagram of the virtual admittance block is depicted in Fig. 
3(a). As it can be observed in this figure, after the harmonic 
extraction, the RMS amount of each harmonic (VOh) is divided 
by the fundamental component RMS (VO1) in order to 
calculate Hh which denotes the individual harmonic indices of 
VO. As mentioned before, in this paper, a MSOGI is used for 
the extraction of the fundamental and harmonic components of 
the grid voltage and current [34]. The MSOGI accuracy and, 
therefore, the calculation of Hh factors can be enhanced by 
increasing the number of parallel SOGIs, but at the cost of a 
high computational burden. To provide a satisfactory 
compromise, four parallel SOGIs tuned at fundamental, 5th,  
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(a)  

  
(b) 

Fig. 3. Details of virtual admittance block of Fig 2(b); (a) GHh calculation  
block; (b) overall scheme 

 
7th and 11th harmonics frequencies have been selected in this 
paper. 
Afterward, Hh is compared to its allowable value, which is 
represented by Hh

*, and the resultant error passes through a 
deadband block in order to avoid the power quality 
compensation effort when it is not necessary. In other words, 
the inverter should not contribute to the harmonic 
compensation when Hh is lower than Hh

*. The value of Hh
* can 

be chosen based on a power quality standard (e.g. EN 50160 
standard [39] and IEEE 519 standard [40]) or the sensitivity of 
the load to harmonics. Proportional controllers (KPH,h) are used 
to regulate the amount of virtual admittance in each harmonic. 
The sharing of harmonic compensation effort among CCM 
units is achieved by using the S − − (1− ) /Sr 
gain. In order to avoid the overloading of the CCM units, the 
maximum value of the conductance GHh (GMAX,Hh) is calculated 
and applied to the dynamic limiter blocks according to Fig. 
3(b). The maximum allowable value of SN is considered to be 
equal to the remaining capacity of the inverter and can be 
written according to the approximation explained after 
equation (5) as: 

IVQK1PSS HO1
2

prio
22

rN max,max, ..)( =−−−=           (11) 

Thus, the maximum harmonic current (IH,max) that can be 
injected by a CCM unit is expressed as: 

VGVGVG
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2
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2
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.)(

+++
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It should be mentioned that if Kprio is set to 1 (harmonics 
compensation priority), the S −   for harmonics 
compensation and if the variable is set to 0, the S − −  
will be dedicated to harmonics compensation; furthermore, 
equation (12) with some unknown parameters can be used to 
calculate the maximum admittance of 5th harmonics by 

assuming KGh,5 as the ratio of the maximum admittance 
(conductance) of GHh to GH5 (KGh,5=GMAX,Hh/GMAX,H5): 

...)( max,max, IVQK1PSS H1O
2

pri
22

rN =−−−=                 (13) 
Thus, the maxim harmonics current which can be injected by a 
CCM unit is expressed as: 
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 (14)  

While the maximum admittance of 7th, 11th and hth order 
harmonics can be written as: 

GK
GGKG

HhMAX5Gh

HhMAX5HMAX57G7HMAX

,,

,,,,

.

,...,. ==

                  (14) 
It should be mentioned that in this paper, for the sake of 
simplicity, it is assumed that the ratios (KG7,5 and KG11,5) are 1 
(i.e. GMAX,H5=GMAX,H7= GMAX,H11) although it can be chosen 
differently.   
As shown in Fig. 4(b), the value of virtual admittances at each 
harmonics frequency is multiplied by its related voltage in αβ 
frame (Vαβ,h) in order to create compensation currents at this 
frequency (Icom,hαβ). Finally, the compensation currents at 
different frequencies are added together to form the total 
compensation current (Icom, αβ). 

IV. SIMULATION AND EXPERIMENTAL RESULTS 
In order to verify the effectiveness of the proposed method, 
some simulation and experimental results are presented. The 
rated apparent power of CCM inverters are assumed 10% 
higher than the maximum active power that can be extracted 
from the DG prime movers (e.g. WT, PV) to provide some 
room for the harmonic and reactive power compensation. The 
maximum capacity of CCM DG units is also assumed to be 
1500 W, and accordingly the rated apparent capacity of their 
inverters is set at 1650 VA. The maximum apparent capacity 
of VCM inverter is assumed to be 2500 VA. 

A. Simulation Study 
Fig. 4 shows an MG which is considered in the simulation 
case study. This MG consists of two CCM units and one VCM 
unit which supply nonlinear and linear loads. The parameters 
of power and control systems are listed in Tables I and II, 
respectively. As shown in Table I, the line impedance of DG3 
is chosen to be two times of that of DG2 for evaluating the 
performance of the control system with different line 
impedances. 
The VCM unit operates from the beginning and then, the 
simulation is performed in the following steps: 

• Step 1 (1s≤t<5s): Connecting CCM units (DG2 and DG3)  
• Step 2 (5s≤t<8s): Activation of virtual impedance of 

DG1 as VCM unit  
• Step 3 (8s≤t<11s): Activation of the proposed virtual 

admittance of CCM units 
• Step 4 (11s≤t<15s): Activation of reactive reverse droop 

without considering distorted power for CCM units 



0885-8993 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2792780, IEEE
Transactions on Power Electronics

 6

 
Fig. 4.  Schematic of the case study system 

TABLE I 
Power Stage Parameters 

DC link voltage LCL filter (L1/C/L2) Voltage/ 
Frequency 

650V For all DGs: 
8.6mH/4.5μF/1.8mH 

230V/50Hz 

Nonlinear Load Linear load 
 (simulation) 

Linear load 
(experimental) 

CNL(μF) RNL(Ω) LNL(mH) ZL(Ω) ZL(Ω) 
235 114 0.084 95+82j 200j 

 Line impedance 
ZL1(Ω)  ZL2(Ω) ZL3(Ω) ZNL (Ω) 

0.1+0.5j 0.1+0.5j 0.2+j 0.1+0.5j 
TABLE II 

Control Parameters 
Virtual admittance controller 

Allowable individual 
harmonic (%) 

P controllers Maximum 
admittance 
parameters 

H5
* H7

* H11
* KPH,5 KPH,7 KPH,11 KG7,5 KG11,5 

1% 1% 0.5% 100 100 100 1 1 
Maximum voltage deviation (∆E) Active power droop 

22 V 0.00025 
Selective capacitive Virtual impedance for VCM 

ZV1 ZV5 ZV7 ZV11 
j.ω. 1×10-3 -j.5.ω. L2 -j.7.ω. L2 -j.11.ω. L2 

 
• Step 5 (15s≤t<19s): Activation of the proposed reactive 

power droop and reverse droop controls, by taking into 
account distorted power (SN) 

• Step 6 (19s≤t≤22s): changing the reference of DG2 
• Step 7 (23s≤t≤26s): Increasing  the linear load by 50% 
•  Step 8 (26s≤t≤29s): Decreasing the linear load to 50% 

of Step 6 
Fig. 5(a) shows the harmonic content of output voltage of DG2 
(VO2) while the harmonic content of DG3 output voltage (VO3) 
is similar to it. As mentioned in Section III.B, VO2 and VO3 are 
used as the input of virtual admittance and the 5th, 7th and 11th 
individual harmonics indexes (H5, H7 and H11) of the voltage 
are regulated directly; As depicted in this figure, after 
activation of virtual admittance at Step 3, these indexes can 
track their reference values (H5

*, H7
*and H11

*) which are listed 
in Table 2 with small error. The small error occurs as a result 
of using P controller rather than PI controller in virtual 
admittance block as depicted in Fig. 3(a), since in islanded 
operation of MG, incorporation of the integrated term can 
endanger the harmonics sharing and stability when more than 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

 
(a) 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

 
(b) 

Step 1

 

Step 2 Step 3

 

Step 4

 

Step 5

 
 Step 6 Step 7 Step 8

 
(c) 

Step 1

 

Step 2

 

Step 3

 

Step 4

 

Step 5

 
 Step 6

 

Step 7 Step 8

 
(d) 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

 
(e) 

Fig. 5.  Harmonics compensation analysis; (a) Harmonic contents of VO2, 
(b) Harmonic contents of CB voltage, (c) Distorted power of DGs, (d) RMS 

value of 5th harmonic of DGs output currents (i2), (e) RMS value of 7th 
harmonic of DGs output currents (i2) 
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one CCM units contribute to harmonics compensation. 
The 5th, 7th and 11th individual harmonics indices (H5, H7 and 
H11) and total harmonic distortion (THD) of the CB voltage 
are depicted in Fig. 5(b). As can be seen in Figs. 5(a) and 5(b), 
the amount of all harmonics indices are decreased after the 
activation of virtual impedance of VCM unit at t=5s. As 
mentioned earlier, the compensation is achieved by using the 
capacitive virtual impedance of DG1 which can mitigate the 
effect of output inductance of LCL filter (L2). Furthermore, the 
figure shows that after the virtual admittance (conductance) 
activation of CCM units in Step 3, the harmonics 
compensation of the CB voltage is enhanced. In this mode, the 
CCM inverters act as active filters by creating a low 
impedance path for harmonic currents. Comparison of Figs. 
5(a) and 5(b) shows that the harmonic indexes of CB voltage 
are higher than their related indexes of DGs output voltages 
which are regulated directly because of line impedances and 
using the DGs output voltages (VO2 and VO3) as local 
measurements. 
Fig. 5(c) shows the distorted harmonic power (SN) of DGs. It 
can be observed that after the activation of virtual impedance 
of DG1 at Step 2, the DG1 distorted power is increased and 
after the activation of virtual admittance of CCM units (DG2 
and DG3) in Step 3, these DGs contribute to the compensation 
of harmonics. It can be seen in this figure that DG2, which is 
electrically close to the nonlinear load (ZL2<ZL3), injects a 
larger harmonic current than DG3. It is a desired situation 
since the power transmission losses are decreased in this case 
[24]. It is also shown that the entire remaining capacity of DG2 
is dedicated to the distorted power (i.e. = √1650 − 1500 = 680) in Step 5. 
Fig. 5(d) also shows the RMS amounts of 5th order harmonics 
of DGs output currents (i2 in Figs. 2 (a) and 2(b)), in order to 
depict the sharing of 5th harmonic currents. The RMS value is 
demonstrated here because H5 depends on the fundamental 
component of current, and this component is changed in 
different steps for the evaluation of reactive power 
compensation. As depicted in this figure, after the virtual 
impedance activation in Step 2, the amount of 5th order 
harmonics current of DG1 is increased, since the effect of the 
LCL filter output inductor (L2) is compensated by inserting a 
virtual capacitance in 5th harmonics of DG1. Furthermore, it 
shows that after the virtual admittance activation of CCM 
units, the 5th harmonic order components of DG2 and DG3 (as 
CCM units) currents are increased in Step 3, since they start 
harmonics compensation in this step. It can also be seen in this 
figure that 5th order harmonic of current of DG2 is higher than 
5th order harmonic current of DG3 since DG2 is closer to CB 
than DG3. Fig. 5(e) shows the 7th harmonic current of DGs 
output current. 
Figs. 6(a) and 6(b) show the CB voltage before and after 
compensation, respectively. This figure demonstrates a 
noticeable improvement in the voltage quality. This fact can 
also be confirmed by comparing the CB voltage THD in Steps 
1 and 6 of Fig. 7(a). 
Fig. 7(a) shows the delivered active powers by DG units. As 
shown in this figure, the CCM units can inject their reference 
powers (1500 W) to the MG in spite of harmonic distortion. In 
other words, injecting harmonics and reactive currents by the 
CCM units do not interfere with the active power injection. 

 
                                (a)                                                                (b) 

Fig. 7.  Voltage waveform in simulation, (a) CB voltage waveform before 
compensation (Step 1), (b) CB voltage waveform after compensation (Step 6) 
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Fig. 7.  Simulation results in different steps, (a) Active power, (b) Reactive 

power 
 
Furthermore, the result shows that the step changing of DG2 
reference power at t=19s does not affect the stability of the 
system. This figure also shows that by increasing the linear 
load in Step 7, the active powers delivered by DG1 (as VCM 
units) is increased while this powers is decreased in Step 8, 
since this unit regulates the frequency of the system by droop 
control without knowing about the load. It is assumed that the 
CCM reference powers are calculated by different systems 
such as master slave control, hierarchical control or 
coordinated control of CCM and VCM units [12] and 
calculation of it is not the scope of paper.  
The reactive powers of the DG units are depicted in Fig. 7(b). 
As shown in this figure, the CCM inverters can contribute to 
the reactive power compensation after the activation of their 
reverse droop controls in Step 4 based on measurement of the 
DGs output voltages (VO2 and VO3).  Before that, all of the 
reactive power of the load is provided by DG1 which is  
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Fig. 8  Experimental setup scheme 

 
working as VCM unit. The VCM unit regulates the voltage 
amplitude based on the droop control which is based on local 
measurement according to (1). It should be mentioned that for 
applying the proposed droop and reverse droop coefficients 
based on (7), the amount of ∆E is assumed to be 22 V which is 
lower than the 10% of rated voltage amplitude (230 V, phase 
RMS corresponding to 325 V phase amplitude) according to 
EN 50160 standard. After the activation of the proposed droop 
and reverse droop control and considering SN in Step 5, the 
reactive power of DG2 is decreased to zero since its remaining 
capacity is dedicated to the harmonic compensation and SN 
provision (see Fig. 5(c)). It means that the slope of reverse 
droop which has been shown in Fig. 1(c) reaches zero for this 
DG according to (8). It can also be seen that considering the 
distorted power, DG2 is prevented from overloading.  
After decreasing the reference power of DG2, the DG can 
contribute to reactive power support because the remaining 
capacity of the inverter is increased. 
The figure also shows that by increasing the reactive power 
demanded by load in Step 7, the contribution of DGs is 
increased in order to regulate the voltage since increasing the 
reactive power demanded in load can cause a reduction in 
voltage due to the impedances voltage drop, and according to 
(2), the CCM units should inject more reactive power in order 
to restore the voltage. It is also shown in this figure that this 
contribution is decreased in Step 8, when the linear load is 
decreased.      

B. Experimental Results  
For validation of the harmonic compensation and reactive 
power sharing, two DG units (one VCM and one CCM) are 
used in the experimental study by using a test system similar 
to Fig. 6, but, by having only DG1 and DG2. The parameters of 
the experimental setup are the same as the simulation study.  
Fig. 8 shows the test bed, which consists of nonlinear and 
inductive loads, three-phase inverters, and dSPACE 1006 
platform. A Fluke 437-II power quality analyzer is used for 
measuring the harmonic content of the CB voltage. 
In the experimental study, the effectiveness of the harmonic 
compensation is investigated (initially without any reactive 
power support) first. At the beginning, the CCM and VCM 
units supply nonlinear and inductive loads without 
compensation. Afterward, the virtual impedance of VCM unit 
and the virtual admittance of CCM unit are enabled. Fig. 9  

 
(a) 

 
(b) 

Fig. 9.  Power quality report of power quality analyzer; (a) Before 
compensation; (b) After compensation 

 
(a) 

 
 (b) 

Fig. 10.  Voltage in experimental study; (a) CB voltage before compensation, 
(b) After compensation 

 
shows the harmonic content of measured CB voltage while its 
fundamental phase-voltage is 222 V. As shown in this figure, 
the THD of CB voltage is decreased from 6.2% to 3.2% due to 
compensation of the main individual harmonics (5th, 7th and 
11th). This harmonic level is acceptable according to EN 
50160 and IEEE 519 standards. Fig. 10 shows the CB voltage 
waveform before and after compensation. 
As explained before, in the virtual impedance approach, the 
harmonic voltage drop of LCL filter is compensated by 
applying a voltage in the opposite phase of the distorting 
voltage drop; applying a voltage in the opposite phase of the 
distorting voltage drop; hence, the capacitor voltage will be 
distorted after activation of impedance in order to compensate 
the voltage drop of grid side inductance of LCL filter (L2). The  
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(a) 

 
(b) 

Fig.11 Capacitor voltage of VCM unit, (a) before virtual impedance 

activation, (b) after virtual impedance activation  

 

 
(a) 

 
(b) 

Fig.12 Output current of CCM unit, (a) before virtual admittance activation, 
(b) after virtual admittance activation  

 
capacitor voltage of VCM units before and after virtual 
impedance activation is depicted in Figs. 11(a) and 11(b), 
respectively. 
On the other hand, using the virtual admittance, a low 
impedance path for harmonic current is provided by the CCM 
unit. Figs. 12(a) and 12(b) show the CCM unit current before 
and after activation of virtual admittance. These figures verify 
the effectiveness of active damping method since no 
resonance can be observed in the current waveforms. 
To evaluate the effectiveness of the proposed method from the 
reactive power sharing point of view, it is assumed that both 
VCM and CCM units are contributing in harmonics  

 
(a) 

 
(b) 

 
(c) 

Fig. 13. Active and reactive powers and frequency in experimental; (a) 
Active power; (b) Frequency, (c) Reactive power 

 
(virtual impedance and admittance of VCM and CCM units 
are activated) and afterward, the following four steps are 
taken:   

• Step I: Connection of CCM unit without reactive 
power injection  

• Step II: Activation of the reverse droop without 
considering distorted power  

• Step III: Considering distorted power Step IV: 
Changing the reference power from 1500 W to 1200 W  

Fig. 13(a) shows the active powers which are delivered by the 
DG units. As shown in this figure, the control system of CCM 
unit can track the reference active power in different steps. As 
depicted in this figure, since the frequency regulation is 
achieved by the droop control of VCM unit, the active power 
of the DG1 (as VCM unit) is decreased after the connection of 
DG2 while the active power of the DG1 is increased when the 
reference power of the DG2 is decreased. In other word, the 
VCM unit (DG1) is responsible for providing the difference 
between the demanded active power and the active power 
derived by CCM unit (DG2). The frequency of the microgrid  



0885-8993 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2792780, IEEE
Transactions on Power Electronics

 10

 
Fig. 14. CB Voltage amplitude in experimental study 

 
is shown in Fig. 13 (b).  Fig. 13(c) shows the reactive power 
of DG units. As depicted in this figure, after the activation of 
reverse droop control in Step II, the CCM unit can contribute 
to the reactive power support. By considering the distorted 
power (Step III), the available reactive powers of CCM and 
VCM units are decreased. The result shows that the CCM unit 
cannot inject reactive power since all of the capacity is 
dedicated to active and distorted powers in Step III. 
In Step IV, more remaining capacity is available due to the 
decrease in the reference active power of CCM unit; thus, the 
CCM unit contributes more to the reactive power support. 
The amplitude of fundamental component of the CB voltage is 
depicted in Fig. 14. As shown in this figure, in all steps, the 
voltage amplitude is well above the value associated with the 
maximum 22V drop which is considered for the proposed 
reactive power sharing method and also specified by standard 
limit of EN 50160.   

V. CONCLUSION 
In this paper, a decentralized harmonic compensation and 
reactive power coordination method is proposed for VCM and 
CCM units in an islanded MG. The harmonic compensation is 
achieved by using virtual capacitive impedance and 
conductive admittance for VCM and CCM units, respectively. 
The proposed virtual admittance is adaptively changed in 
different values of reference power of CCM units according to 
the available capacity of the inverter. Furthermore, modified 
reactive droop and reverse droop control schemes are 
proposed for VCM and CCM units, respectively to take their 
available capacity into account. This coordinated control of 
CCM and VCM units are implemented using only local 
measurement; hence, the communication systems and central 
controllers are not required. 
Simulation and experimental results show that by applying 
virtual admittance and impedance approaches the CB voltage 
harmonics compensation is achieved properly. Furthermore, 
the CCM and VCM units can contribute to reactive power 
compensation depending on their remaining capacity using the 
proposed reactive power compensation approach. Thus, this 
scheme is effective in applications such as photovoltaic 
systems where the active power generation is changing 
throughout the day. 
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