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Abstract: In recent years, the shunt active power filters (SAPFs) have received much attention for compensating the harmonic 
pollution and also providing the reactive content. A crucial issue in controlling the SAPF is generating the reference 
compensating current (RCC). Typical approaches for this purpose are using the discrete Fourier transform (DFT) in the 
frequency domain, or the instantaneous p-q theory and the synchronous reference frame (SRF) in the time domain. The DFT, 
however, suffers from the picket-fence effect and spectral leakage. On the other hand, the DFT takes at least one cycle of the 
nominal frequency. The time domain methods show a weakness under voltage distortion, which require prior filtering 
techniques. The aim of this paper is to present a fast yet effective method for generating the RCC for SAPFs. The proposed 
method, which is based on the matrix pencil method (MPM), has a fast dynamic response and works well under distorted 
and unbalanced voltage. Moreover, the proposed method can estimate the voltage phase accurately, this property enables 
the algorithm to compensate for both power factor (PF) and current unbalance. The effectiveness of the proposed method is 
verified using simulation and experimental results, and compared with the standard methods. 
 

1. Introduction 

The large spread of electronic equipment based on 

semi-conductors for AC/DC and AC/AC power conversion 

has an adverse effect on the power quality. This pollution is 

well known as harmonics perturbation, which causes harmful 

effects to both power generation and power transmission [1]-

[3]. Traditionally, the mitigation of harmonics and the 

compensation of the power factor (PF) were attained by using 

passive power filters (PPFs) [4], because of their simplicity 

and low cost. These filters, however, suffer from some serious 

drawbacks such as poor dynamic behaviour, susceptibility to 

resonance with the load/line impedance, and high sensitivity 

to the variation in the system parameters. To deal with these 

problems of the PPFs, the shunt active power filters (SAPFs) 

have received much attention in recent years [5]. The SAPFs, 

which are often implemented using voltage source converters, 

are responsible for generating the total harmonic/reactive 

content required by the loads. In this way, only the active 

current required by the loads is drawn from the power system 

[6], [7].  

A critical part in the control of SAPFs is generating 

the RCC. Indeed, the dynamic behaviour and the accuracy of 

the SAPF highly depends on the performance of this part. 

Probably, the most widely used frequency-domain approach 

for generating the RCC is employing the DFT [8], [9], or the 

fast Fourier transform (FFT), which is a developed version of 

the DFT with a collection of algorithms to reduce its 

computational time [10]-[13]. Nevertheless, the FFT 

consumes extra power since all frequency bins have to be 

calculated during the process [14]. Moreover, the FFT 

provides insufficient performance in analysing a noise-

contaminated data [15]-[17]. Besides, the picket-fence effect 

and spectral leakage disturb the preciseness of the estimated 

parameters, as well as the complexity in analysing the inter-

harmonics [17], [18]. In [12], an online discrete wavelet 

transform in combination with a least squares algorithm for 

generating the RCC is proposed.  This method is based on 

down-sampling and decomposing signal into some low- and 

high-frequency components using a multistage low-

pass/high-pass filter and reconstructing the fundamental 

component using obtained information. This technique, 

however, cannot extract every single harmonic, which 

implies it cannot be used in applications where a selective 

harmonic compensation is demanded. On the other hand, it is 

a bit difficult to choose the appropriate number of 

decompositions/stages in the multistage filter and the suitable 

type of mother wavelet. In the time domain, the P-Q theory 

and the SRF approach are the most popular methods [19]-[22]. 

They both offer less computation, and in the existence of the 

harmonics 6h±1 (h is the harmonic order) they offer a faster 

transient response compared to frequency domain methods. 

Moreover, they can effectively compensate for the PF and 

correct the unbalance. For both techniques, the overall 

harmonic compensation (OHC) can be implemented. The 

principle is to use high-pass filters (HPFs) to eliminate the dc 

component in the d-q frame, which is corresponding to the 

fundamental component in the stationary frame [23]. While 

the selective harmonic compensation (SHC) is mainly based 

on using multiple synchronous reference frame low-pass 

filters (LPFs) rotating at different angular frequencies for 

extracting the concerned harmonic frequencies. The rotating 

angle is provided by a phase-locked loop (PLL). The 

performance of both OHC and SHC strategies depends on the 

employed LPFs/HPFs, which are often simple infinite 

impulse response (IIR) filters [13], [23]-[25]. Using these 

filters have some disadvantages, mainly the long-time 

response, the constraints of the appropriate cut off frequency 

and the filter order, as well as the trade-off existing between 

improving the accuracy and reducing the response time. 

Furthermore, both techniques present insufficient 
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performance in case of voltage distortion which needs prior 

filtering techniques. 

To enhance the SAPF performance, integrating the 

MPM into the SRF is presented in this paper. The application 

of MPM in controlling SAPFs has received a little attention, 

because the MPM is known to be a computationally 

demanding algorithm.  Here, however, it is explained that 

how the computational burden can be reduced. Indeed, the 

main principle of the proposed method is converting the 

harmonic perturbation into a generalized eigenvalue problem, 

and applying the MPM based on the singular value 

decomposition (SVD) to solve it. One of the most effective 

aspects of MPM is the providing a high accuracy when 

dealing with noisy contaminated data, which offers an 

accurate assessment of harmonics. Furthermore, the MPM 

can extract the dc component of the positive sequence signal, 

as it can also extract the fundamental and each harmonic of a 

periodic signal under nominal and off-nominal voltage 

frequency. These properties enable the algorithm to work 

efficiently under harmonically contaminated and unbalanced 

voltage, providing equations to estimate the phase of each 

extract frequency, which allows the compensation of the PF 

and unbalance.    

The rest of the paper is organized as follows. In 

Section 2, the concept of MPM and its application to dc and 

ac distorted signals are discussed. In Section 3, the 

application of MPM to the SAPF is conducted. In Section 4 

and 5, simulation and experimental results are presented. 

Section 6 concludes this article. 

2. Matrix pencil method  

            The matrix pencil is a polynomial approach related to 

Prony method (PM), which proved that the obstacle of 

functions’ interpolation can be solved by an approximation of 

a sum of exponentials [26]. Kumaresan and Tufts inserted the 

SVD inside PM to enhance its noise immunity [27], [28], then 

the SVD is extended to be applied in MPM [29], [30] [31], 

taking advantage of the total least square to improve the 

performance of the method [31], [32]. The appellation Pencil 

came from the name Pencil of function that is relevant to PM 

[33]. In [29], a comparison between the MPM and PM is 

presented. The results indicate that the MPM offers a faster 

dynamic response and higher noise immunity than the PM. 

The difference between PM and MPM is that the MPM is 

one-step process (direct method) while PM is a two-step 

process in finding the poles ℊ𝑖[32],[17]. Recently, the MPM 

has been developed to be applied in various areas, offering 

better accuracy with a less computational time [30], [17], 

[34].  

            Assume that 𝑦(𝑡) is the distorted current signal. In 

this case, according to the PM, it can be approximated by  

 

𝑦(𝑡) ≌ ∑ ℍ𝑖 · 𝑒(ℑ𝑖𝑡)𝓅
𝑖=1 + 𝜂(𝑡)                              (1) 

 

where ℍ𝑖:  Residues or complex amplitudes of 𝑖 poles. 

ℑ𝑖= −𝛼𝑖 + 𝑗𝜔𝑖  

𝛼𝑖: Damping factors of poles. 

𝜔𝑖: Angular frequencies (𝜔𝑖 = 2𝜋𝑓𝑖). 

𝜂(𝑡): Noise caused during the measurement. 

In the discrete-time domain, the data samples 𝛶  are 

introduced with the sampling period  𝑇𝑠 , so (1) can be 

expressed as: 

 

𝑦(ℓ𝑇𝑠) = ∑ ℍ𝑖 · ℊ𝑖
ℓ𝓅

𝑖=1 ℌ(ℓ𝑇𝑠) + 𝜂(ℓ𝑇𝑠)                 (2) 

 

with: ℓ= 0,1, ….,𝛶 −1, ℊ𝑖= 𝑒(ℑ𝑖𝑇𝑠), for the tolerance 𝓅 we 

have 𝑖 = 1,2,…… 𝓅. 

            In order to perform the MPM, the sized data should be 

structured in the Hankel matrix form, where each descending 

skew-diagonal from the right side to the left is constant [35], 

introducing the parameter L that is well known as the pencil 

parameter as expressed in (3). 

 

[𝑌] = [

𝑦(0)         𝑦(1)

𝑦(1)         𝑦(2)
⋯  𝑦(𝐿)        
⋯ 𝑦( 𝐿+1)

 ⋮                ⋮
𝑦( 𝛶−𝐿−1) 𝑦( 𝛶−𝐿)

⋱         ⋮          
⋯ 𝑦( 𝛶−1)

]

(𝛶−𝐿) × (𝐿+1)

(3)      

 

            According to [17], [32], [33], [35], the algorithm 

gives the best performance when L is chosen in the interval 

of   
𝛶

3
 ≤ 𝐿  ≤  

𝛶

2
. However, in case of a periodic undamped 

signal, the results proved that L gives the best performance 

when L =
𝛶

2
.  Also, when applying the MPM in the SRF 

method to extract the dc component, which is corresponding 

to the fundamental component in the stationary reference 

frame, the algorithm gives best performance when L = 1. The 

smaller the value of L, the lower the computational burden is. 

It implies that using the MPM in the SRF significantly 

reduces its computational burden.  

            The SVD is one of the most important decompositions 

in the linear algebra. It is widely used in the signal processing 

and statistical methods to characterize and analyze the 

behavior and the properties of noisy signals. Inside the 

decomposition, it displays the frequencies variation in a 

descending order from the most dominant to the smallest. In 

addition, it offers the possibility to reduce the data by 

preserving the fundamental with the essential points. As a 

result, the noisy signal will be filtered and the computation 

time will be reduced. 

            In order to perform the SVD of [𝑌], the product of the 

three following matrices must be accomplished [35][36].  

 

[𝑌] = [𝑈][𝐷][𝑉]𝑇                                      (4)  

                        

[𝑈] = [

  𝑈(0)          𝑈(1)

  𝑈(1)          𝑈(2)
⋯ 𝑈(𝛶−𝐿−1)        

⋯      𝑈(𝛶−𝐿)          

   ⋮                   ⋮
𝑈(𝛶−𝐿−1) 𝑈(𝛶−𝐿)

⋱               ⋮                  
⋯ 𝑈( 2𝛶−2𝐿−2) 

]

(𝛶−𝐿)×(𝛶−𝐿)

 (5) 

 

[𝐷] = [

𝜎(0)        0
   0          𝜎(1)

0        0          
    0        0              

 ⋮                 ⋮
   0                0   

  ⋱       ⋮            
 0 𝜎(𝛶−1)  

]

(𝛶−𝐿)× (𝐿+1)

        (6) 

 

[𝑉] = [

𝑉(0)         𝑉(1)

𝑉(1)         𝑉(2)
⋯   𝑉( 𝐿)     

  ⋯ 𝑉( 𝐿+1)  

 ⋮                 ⋮
𝑉( 𝐿) 𝑉( 𝐿+1)  

  ⋱       ⋮            
    ⋯     𝑉( 2𝐿)     

]

( 𝐿+1)× ( 𝐿+1)

       (7) 

 

where 𝑇 represents the transpose of the matrix, the product  

of [𝑈] · [𝑈]𝑇 and [𝑉] · [𝑉]𝑇 results in the unitary matrix [𝐼], 
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[𝑈] is an orthogonal matrix that contains the eigenvectors 

rows of [ 𝑌 ]  · [𝑌]𝑇  and [𝑉]  is an orthogonal matrix that 

contains the eigenvectors rows of [𝑌]𝑇 ·[𝑌]. The diagonal 

non-negative singular values of the eigenvalues of the matrix 

[𝑈] or [𝑉] are ordered in a descending rank from the largest 

left side to the smallest right side, and located in the central 

diagonal of the rectangular diagonal matrix [𝐷], they appear 

as pair values for periodic signals, and impair values for non-

periodic  signals. The rank of the square roots (real values) of 
[𝐷] is the most important phenomenon of the SVD which 

exhibits where the intense variation is happening. For the 

contaminated data 𝑦(ℓ𝑇𝑠) , selecting 𝓅  with the biggest 

singular value leads to extracting the fundamental component 

since it contains the biggest value, and selecting 𝓅 with the 

rest singular values leads to extracting the harmonics. The 

singularity inside [𝐷] is well-defined by the zeros, and the 

number of non-zeros identifies the matrix rank. The aim of 

this hypothesis is to calculate ℍ𝑖  with the best approximation 

of   ℊ𝑖  and the appropriate selection of 𝓅 . Since the 

application of the OHC needs the extraction of only the 

fundamental, and applying the SHC needs the extraction of 

only the predominant harmonics. The SVD can be reduced to 

extract only the needed eigenvalues and their corresponding 

eigenvectors that conform to the extracted frequencies. As a 

consequence, the calculation of the pseudo inverse of the 

matrix [𝑌]′  is reduced and thus the computation of the 

algorithm is extensively decreased. In MATLAB, the reduced 

SVD can be obtained using the function (svds) that is shown 

in (8). The selection of the desired 𝓅 leads to obtain the sub-

matrices (9), (10) and (11). After the selection of  𝓅 , the 

matrix [𝑌] cannot be reconstructed due to the unfit sizes of 

[𝑈1] and [𝑉1]𝑇. For this reason, [𝑉1] is reduced into two sub-

matrices (12) and (13): 

 

[𝑈1𝐷1𝑉1] = svds (𝑌, 𝓅)                         (8) 
 

[𝑈1] = [

  𝑈(0)           𝑈(1)

  𝑈(1)           𝑈(2)
⋯         𝑈( 𝓅−1)        

⋯             𝑈( 𝓅)            

  ⋮                  ⋮
𝑈( 𝛶−𝐿−1) 𝑈(𝛶−𝐿)

⋱                ⋮                    
⋯ 𝑈(𝛶+𝓅−𝐿−2)  

]

(𝛶−𝐿)× (𝓅)

(9)  

 

 [𝐷1] = [

𝜎(0)        0
   0         𝜎(1)

0         0          
    0         0              

  ⋮               ⋮
    0              0   

  ⋱          ⋮            
0 𝜎(2𝓅−2)

]

(𝓅)× (𝓅)

          (10)  

 

[𝑉1] = [

𝑉(0)         𝑉(1)

𝑉(1)         𝑉(2)
⋯   𝑉( 𝓅−1)     

⋯        𝑉( 𝓅)        

 ⋮                 ⋮
𝑉( 𝐿) 𝑉( 𝐿+1)

 ⋱             ⋮             
  ⋯ 𝑉( 𝐿+𝓅−1)

]

( 𝐿+1)× (𝓅)

      (11) 

 

[𝑉𝑎1] = [

   𝑉(0)      𝑉(1)

   𝑉(1)      𝑉(2)
⋯   𝑉( 𝓅−1)     

⋯        𝑉( 𝓅)        

  ⋮              ⋮
𝑉( 𝐿−1) 𝑉( 𝐿)

 ⋱             ⋮             
⋯ 𝑉( 𝐿+𝓅−2)

]

( 𝐿)× (𝓅)

          (12) 

 

[𝑉𝑏1] = [

𝑉(1)         𝑉(2)

𝑉(2)         𝑉(3)
⋯      𝑉( 𝓅)          
⋯ 𝑉( 𝓅+1)        

 ⋮                 ⋮ 
𝑉( 𝐿)  𝑉( 𝐿+1)

 ⋱             ⋮             
⋯ 𝑉( 𝐿+𝓅−1)

]

( 𝐿)× (𝓅)

          (13) 

 

where [𝑉𝑎1] and [𝑉𝑏1] are, respectively, obtained by deleting 

the last and the first row of [𝑉1], then each matrix is used to 

identify a new composition of [𝑌] as follows: 

[𝑌𝑎] = [𝑈1][𝐷1][𝑉𝑎1] 𝑇                      (13) 

[𝑌𝑏] = [𝑈1][𝐷1][𝑉𝑏1] 𝑇                     (14) 

 

            Very important to note that all these matrices are 

reduced to be only rows when applying the MPM inside the 

SRF to extract the dc component, and thus the computation is 

largely reduced.  

            Next the eigenvalues λ problem is solved as [𝑌]𝑎 − 

λ[𝑌]𝑏  that is facilitated to [𝑌]+
𝑎

− 𝜆[𝐼], introducing the sign 

(+) as the pseudo inverse of the matrix. The DFT which is 

based on the correlation technique assumes that the frequency 

of the extracted signal is known. Therefore, under off-

nominal supply frequency, the DFT provides less precision. 

Adapting the window size of the DFT with a PLL to estimate 

the new supply frequency, results in slow response under 

distorted supply voltage. However, solving the eigenvalue 

problem in the MPM is a key factor for estimating the 

frequency of the extracted signal under off-nominal supply 

frequency. This advantage enables the adaption of the 

window to increase the accuracy of the extracted signal.    

Once ℊ𝑖 is attained with the frequency that corresponds to the 

supply voltage frequency, the residues ℍ𝑖  are simply 

extracted by the least square solution. 

 

[

𝑌(0)
𝑌(1)

⋮
𝑌(𝛶 − 1)

] = [

1               1
ℊ1             ℊ2

 ⋯       1      
  ⋯       ℊ𝑀      

 
⋮                ⋮

ℊ1
(𝛶−1)

  ℊ2
(𝛶−1)

    ⋱        ⋮          

     ⋯     ℊ𝑀
(𝛶−1)  

] [

ℍ1

ℍ2

⋮
ℍ𝑀

]  (15) 

 

            Fig. 1 is depicted to show the difference between the 

DFT and the MPM in extracting the fundamental component 

and the harmonic magnitudes (the scales of the magnitudes 

are zoomed to provide a better view of the difference between 

MPM and DFT) of a periodic distorted signal under a drifted 

frequency (changes from 50 Hz to 51 Hz). Since the DFT 

needs prior information about the aimed frequencies, it offers 

less precision under off nominal grid frequency. Constructing 

the periodic fundamental signal using the phase and the 

magnitude information of the DFT results in a deformed 

waveform, with a misinformation of its frequency (
1

𝑇𝑠1
)  as 

shown in Fig.1, subplot (1). However, based on the 

eigenvalue problem, the MPM extracts the fundamental and 

the harmonic components as periodic signals with the 

frequencies that correspond to the entered contaminated 

signal frequency(
1

𝑇𝑠2
), then the extracted signals are served to 

the least square algorithm to estimate their exact magnitude 

and phase. In other words, the MPM does not need prior 

information about the frequency of the contaminated data 

when dealing with periodic signals. As a result, the 

fundamental component and the magnitudes of the harmonic 

components and their frequencies are accurately estimated 

even under frequency drift as demonstrated in Fig. 1. 

3. Application of MPM for controlling SAPF 

            Fig. 2(a) depicts a three-phase power network system 

that contains a power supply (230 V, 50 Hz), an isolation 

transformer with a turns ration of 1, and three non-linear loads 

that cause harmonic currents in the power  
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Fig. 1.  Performance of the MPM and the DFT in extracting 

the periodic fundamental component, and the magnitudes of 

the fundamental and the 5th, 7th and 11th harmonic 

components of a distorted signal under frequency variation.  

 

system, a linear load which affects the PF and cause the 

unbalance, and a two-level four wires SAPF that is connected 

to suppress the harmonics and correct both the PF and the 

unbalance. Fig. 2(b) shows the control structure of the SAPF.  

            In order to optimize the transient response of the 

SAPF during the load variation, the SRF-based method is 

applied. The procedure starts by performing Park’s 

transformation to convert the load currents 𝑖𝑙𝑜1,2,3 from abc 

system into direct–quadrature–zero (dqo) rotating coordinate 

as expressed in equations (16), (17) and (18): 

 

𝑖𝑑 =
2

3
[𝑖𝑙𝑜1 sin(ɸ1) + 𝑖𝑙𝑜2 sin(ɸ2) + 𝑖𝑙𝑜3𝑠𝑖𝑛(ɸ3)]     (16) 

𝑖𝑞 =
2

3
[𝑖𝑙𝑜1 cos(ɸ1) + 𝑖𝑙𝑜2 cos(ɸ2) + 𝑖𝑙𝑜3𝑐𝑜𝑠(ɸ3)]    (17) 

𝑖0 =
1

3
[𝑖𝑙𝑜1 + 𝑖𝑙𝑜2 + 𝑖𝑙𝑜3]                        (18) 

 

            Typically, for separating the dc currents (𝑖𝑑𝑑𝑐 , 𝑖𝑞𝑑𝑐), 

which are corresponding to the load fundamental component, 

and the ac currents (𝑖𝑑𝑎𝑐 , 𝑖𝑞𝑎𝑐), which are corresponding to 

the load harmonic content, ordinary LPFs and the HPFs are 

used, respectively. However, this technique has some 

drawbacks such as long time response, constraints of the 

appropriate cut off frequency and the filter order, as well as 

low accuracy. The MPM replaces the LPFs and HPFs for 

providing an accurate extraction of the harmonics using the 

OHC technique, where the transient response can easily be 

adapted. The strategy of applying the MPM is achieved by 

buffering the data of 𝑖𝑑 and 𝑖𝑞with the number of samples 𝛶 

from fast time input to slow time  

 
(a) 

 
(b) 

Fig. 2.  Block diagram of SAPF topology 

(a) SAPF schematic diagram, (b) control configuration of the 

shunt active power filter. 

output, then the algorithm of MPM (see section 2) is applied 

with the selected 𝓅. In case of the existence of the harmonics 

6h±1, 𝛶 is buffered every 
1

6
 cycle (0.0033s) to offer a fast 

response with an accurate harmonic extraction. In case the 

unbalance appears, 𝛶 is adapted to be buffered with half 

cycle (0.01s) when detecting the zero sequence current to give 

accurate harmonic extraction, and compensate for the 

unbalance. Next, the extracted continues currents 𝑖𝑑𝑑𝑐 and 

𝑖𝑞𝑑𝑐 which are corresponding to the load current fundamental 

component, are reconstructed back from frame based input 

(slow time) to sample-based output (fast time) using the 

unbuffer function. To obtain the sum of harmonic currents, 

𝑖𝑑𝑑𝑐  is subtracted from 𝑖𝑑, and 𝑖𝑞𝑑𝑐 is subtracted from 𝑖𝑞 . The 

DC-link voltage V𝑑𝑐  of the SAPF is compared with its 

reference and added to 𝑖𝑑𝑎𝑐 through a PI controller to 

compensate for the losses caused by the switches and 

maintains the DC voltage fixed. After that the inverse Park’s 

is performed to transform from d-q-0 rotating coordinate into 

a-b-c system as shown below:  

𝑖𝑟𝑒𝑓1 = 𝑖𝑑𝑎𝑐
′ sin(ɸ1) + 𝑖𝑞 cos(ɸ1) + 𝑖0           (19) 

𝑖𝑟𝑒𝑓2 = 𝑖𝑑𝑎𝑐
′ sin(ɸ2) + 𝑖𝑞 cos(ɸ2) + 𝑖0           (20) 

 𝑖𝑟𝑒𝑓3 = 𝑖𝑑𝑎𝑐
′ sin(ɸ3) + 𝑖𝑞 cos(ɸ3) + 𝑖0           (21) 
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            The last step is to compare the reference signals 

𝑖𝑟𝑒𝑓1,2,3  with the output filter currents 𝑖𝑓𝑖1,2,3  and send the 

error to the PWM control through a PI controller. The role of 

the PI controller is to optimize the dynamic performance of 

the SAPF by reducing the error and offering a fast response, 

the comparison is made with a triangular signal of (7 KHz) to 

create the switches’ pulses. The advantage of this control lies 

in the simplicity and the effectiveness of tracking the 

references, as well as the controllability of the switches’ 

speed. 

            In case the voltages V𝑠1,2,3 are sinusoidal, the PLL is 

used to synchronous the reference currents 𝑖𝑟𝑒𝑓1,2,3 

with V𝑠1,2,3. However, in case V𝑠1,2,3 are distorted, the MPM 

is applied to V𝑠1,2,3 in the a-b-c stationary coordinate system 

to extract the fundamental signals V𝑓1,2,3  using the same 

procedures that are applied to 𝑖𝑑  and 𝑖𝑞 . The effective 

performance of the MPM in extracting the fundamentals of 

V𝑠1,2,3 in presence of harmonics enables the use of PLL to 

give an accurate estimation of the phases ɸ
1,2,3

. However, the 

PLL is a closed loop control system that has a large transient 

response (probably more than two cycles), and require a high 

proficiency in designing its controller to avoid instability. The 

MPM can be considered as an open loop synchronization 

technique by applying the equations (22) and (23), these 

equations are developed for MATLAB to estimate  ɸ
1,2,3

 of 

V𝑓1,2,3 to offer a faster transient response and high stability.  

 

[𝑀𝑎𝑔1 𝑅𝑎𝑛𝑘1] =  𝑚𝑎𝑥(𝑢(: ))                (22) 

𝜙 = (𝑅𝑎𝑛𝑘1 · 𝑇𝑠 −
1

𝑓·4
) ·

180

0.01
                (23) 

 

where: u(:) is the extracted signal that contains all the samples 

of the vector, Mag1 and Rank1 are the magnitude and the   

rank order of the maximum point of 𝑢(: ),  𝜙 is the phase. 

            In the a-b-c stationary system, the MPM can extract 

the harmonics and the fundamental in a half cycle (0.01s) in 

the presence of the harmonics 6h±1 and the unbalance. 

According to [17], the MPM can accurately estimate the DC 

offset. However, since the purpose of applying the MPM to 

the voltage in this paper is to estimate the phase of the 

fundamental component, the DC offset can be rejected by 

applying a derivative to the contaminated data, then the 

extracted signal is divided by (2𝜋𝑓ℎ) (ℎ is the harmonic order 

of the extracted signal) and its phase is subtracted from 
𝜋

2
 to 

cancel the shift and the magnitude augmentation caused by 

the derivative. In some cases, the derivative can increase the 

noise, but the MPM is a noise-resilient technique that can 

work efficiently under noisy contaminated data. The 

advantage of this technique lies in offering a fast transient 

response (half cycle in presence of the harmonics 6h±1, 

unbalance and DC offset) that is not affected by the rejection 

of the DC offset. Since in this paper the voltage amplitude is 

considered fixed and the load current is variable, then the 

rejection of the DC offset can be easily achieved by buffering 

the data of one cycle and applying equations (24) to the 

algorithm before equation (2).  Equation (24) uses the mean 

value of the buffered points to extract the DC offset, then (25) 

rejects the DC offset from the data. It will be demonstrated in 

Section 4 that this technique is effective even under frequency 

variations.   

 

𝑦𝑑𝑐 =
𝑠𝑢𝑚(𝑦(ℓ𝑇𝑠))

Υ
                           (24) 

𝑦(ℓ𝑇𝑠) = ∑ ℍ𝑖 · ℊ𝑖
ℓ𝓅

𝑖=1 ℌ(ℓ𝑇𝑠) − 𝑦𝑑𝑐 + 𝜂(ℓ𝑇𝑠)       (25) 

4. Simulation results 

            Table 1 displays the parameters used in both 

simulation and experimental. The simulation studies are 

conducted under MATLAB/Simulink. The comparison of the 

MPM, LPF and the DFT is depicted only in subplot 5 in all 

the simulation figures, and in subplot 4 in the experimental 

figures to provide enough information about the accuracy and 

the transient response of the three methods. And the rest 

subplots are obtained using the MPM.  

            Fig. 3 is presented to confirm the effectiveness of 

applying the MPM based on the SRF method to the SAPF. 

The subplots are respectively displaying: the voltage supply 

V𝑠1,2,3, the distorted load currents 𝑖𝑙𝑜1,2,3 with a THD of 32%, 

the improved source currents 𝑖𝑠1,2,3 , the fluctuated direct 

current 𝑖𝑑, the filtered DC component 𝑖𝑑𝑑𝑐 using DFT, MPM, 

and LPF, the inverter output filter currents 𝑖𝑓𝑖1,2,3  and finally 

the dc link  voltage 𝑉𝑑𝑐.  The buffering of the signal can be 

achieved every sample which provide a moving window with 

a size of 1/6 cycle in case of the harmonics 6h±1, or a half 

cycle in the appearance of unbalance. But, in order to offer 

less computation, the signal can be buffered only every 1/6 

cycle or every half cycle in  

  Table I Simulation parameters of the system 

 

 

Power supply 
Voltages RMS 

values: 

Main impedances: 

 

 

DC offset: 

𝑽𝒔𝟏,𝟐,𝟑 = 230 

V 

𝑳𝒔𝟏,𝟐,𝟑  =
 0.004 𝒎𝑯 

𝑹𝒔𝟏,𝟐,𝟑  =0.5 𝜴 

𝑽𝒅𝒄𝒐𝒇 =40 V 

 

 

 

SAPF 

DC-link voltage 

references  

DC-link capacitor: 

output filters: 

𝑽𝒅𝒄 = 650-660 

V 

C = 2200 𝝁𝑭 

𝑳𝒔𝟏,𝟐,𝟑  =
 15 𝒎𝑯 

𝑹𝒔𝟏,𝟐,𝟑  =2.5 𝜴 

 

Load  

Non-linear load: 

 

 

Connected non-

linear  

loads : 

 

 

Linear inductive  

load: 

 

Linear unbalanced 

load  

 

 

Linear unbalanced 

load  

 

 𝑹𝑳 = 𝟐𝟑𝟎𝛀 

 𝑹 = 𝟓𝟕𝜴 

 𝑪 =22 𝛍𝐅 

𝑳𝑳𝟏 = 10 𝐦𝐇  

𝑹𝑳𝟏 = 𝟒𝟔𝟎 𝛀 

𝑳𝑳𝟐 = 10 𝐦𝐇 

𝑹𝑳𝟐 = 460 𝛀 

𝑳𝑪 𝟏,𝟐,𝟑  =
 0.8 𝐇 

𝑹𝑪 𝟏,𝟐,𝟑  = 54𝛀 

𝑹′𝑪 𝟏  = 230𝛀 

𝑹′𝑪 𝟏  = 80𝛀 

𝑹′𝑪 𝟏  = 230𝛀 

𝑹𝑳𝟑  = 100𝛀 

𝑳𝑳𝟑  = 0.1𝑯 
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Fig. 3.  Simulation results of harmonic suppression applying 

MPM. 
 

the appearance of unbalance. Since the signal is buffered 

every 1/6 cycle, the response of MPM depends on which 

instant the variation occurs during buffering the signal. If the 

variation happens within the first buffered points, the MPM 

takes 1/6 cycle to estimate the fundamental. If the variation 

occurs in the other points, then the algorithm gives near 

information about the fundamental in less than 1/6 cycle. 

After that, it takes 1/6 cycle to give more precise information 

as demonstrated in subplot. 5. It is clear that the 𝑖𝑑𝑑𝑐 extracted 

by MPM gives accurate information about the fundamental, 

offering the smallest transient response. In contradiction with 

the DFT that takes 1 cycle to reach the steady state, and the 

SRF based on LPF that also show long response with some 

fluctuations.  Applying the MPM to 𝑖𝑠1,2,3  improves them 

with the faster response during load variation to reach a THD 

of less than 3% that respects the IEC 61000-3-6 and IEEE 

519-1992 norms.  

            Fig. 4 demonstrates the capability of the proposed 

method in suppressing harmonics while compensating the PF. 

It is obvious that  𝑖𝑙𝑜1,2,3 are affected by the harmonics with a 

THD of 28% and the reactive currents that decrease the PF to 

0.89%. Connecting the SAPF using the SRF technique based 

on MPM improves the THD to less than 3%, and compensates 

for the PF to be near to the unity. Furthermore, it is obvious 

that 𝑖𝑑𝑑𝑐 extracted by MPM takes only 
1

6
 cycle to give near 

information about the fundamental in the first period. And in 

the instant 0.0548s during load variation, it takes less then 
1

6
 

cycle (0.0019s) to start giving near information about the 

fundamental, then takes 
1

6
 cycle 

 

Fig. 4.  Simulation results of harmonic suppression and PF 

improvement applying MPM. 
 

to give precise value. While the DFT and LPF take 

approximately one period to give information about the 

fundamental, with some fluctuations caused by the LPF.  

   Fig.5 presents the behaviour of the proposed method under 

unbalanced linear and nonlinear variable loads. It is obvious 

that  𝑖𝑙𝑜1,2,3 are unbalanced and distorted with a THD of 24% 

and an unbalance of about 34.6% caused by the linear load. 

in the instant 0.04s, a single phase nonlinear load is connected 

to add an unbalance of harmonics. Subplot.3 shows the effect 

of harmonic distortion and unbalance on 𝑖𝑑 . Applying the 

MPM to the SAPF improves the wave form of 𝑖𝑠1,2,3 to reach 

a THD of 1.8% which respects the aformentioned norms. 

Subplot.5 depicts the response and the accuracy of extracting 

𝑖𝑑𝑑𝑐 using the three abovementioned methods. It is obvious 

that 𝑖𝑑𝑑𝑐  extracted by SRF based on MPM is accurate with 

the smallest response that is changed automaticly to a half 

period in presence of unbalance, while 𝑖𝑑𝑑𝑐 extracted by the 

DFT and the LPF has longer response. Also, the 𝑖𝑑𝑑𝑐 
estimated by LPF causes unaccuracy due to the oscillations 

introduced  by the unbalance. Subplots 6,7,8,9 depict 

respectively 𝑖𝑓𝑖1,2,3, the fourth wire current 𝑖𝑓𝑖4 of the output 

filter of the inverter that compensates for the unbalance, the 

compensated neutral current 𝑖𝑛𝑒𝑢𝑡𝑟𝑎𝑙 and 𝑉𝑑𝑐. It is clear that 

when the SAPF is connected in the instance 0.02, 𝑖𝑛𝑒𝑢𝑡𝑟𝑎𝑙 is 

reduced from around 2.5 A to almost 0.1A. 

            Fig. 6 proves the efficiency of the proposed method 
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Fig. 5.  Simulation results of harmonic suppression and 

unbalance compensation applying MPM. 
 

under voltage distortion. the subplots  from 1 to 7 displays  

V𝑠1,2,3 that are Distorted with a THD around 14%. 𝑖𝑙𝑜1,2,3 that 

are affected by the harmonics of nonlinear loads and the 

harmonics of the distorted voltage with a THD of around 

28%, 𝑖𝑠1,2,3 that are improved to a THD of 2.9%, 𝑖𝑑 that is 

affected by load and voltage harmonics, 𝑖𝑑𝑑𝑐 extracted by the 

three abovementioed methods, 𝑖𝑓𝑖1,2,3 that compensate for the 

source harmonics and finally 𝑉𝑑𝑐 . V𝑠1,2,3 are filtered using 

MPM, then their phases are extracted using the equations (22) 

and (23) that are sent to achieve the Park transformation. 

After that, the MPM is applied to extract 𝑖𝑑𝑑𝑐 as explained in 

section III. Applying the MPM to the 

 

Fig.6.  Simulation results of harmonic suppression under 

voltage distortion using MPM. 
 

distorted voltage enables the application of LPF in the d-q-o 

coordinate to make a comparison. Subplot. 5 shows the 

response of the three aforementioned methods. It is clear that 

the MPM provides an accurate extraction with the smallest 

transient response of 
1

6
 cycle during load variation while the 

other methods cause slow transient response of around one 

cycle. 

            Fig. 7 shows the effectiveness of the proposed 

algorithm under a voltage that is affected by harmonics and 

dc offset, as well as a drifted frequency (51 Hz). the subplots  

from 1 to 7 depict respectively: V𝑠1,2,3 that are affacted by 

harmonics with a THD of 14% and a DC offset of 40 V. 

𝑖𝑙𝑜1,2,3  that are harmonically contaminated with a THD of 

around 28%, 𝑖𝑠1,2,3 that are improved to a THD of around 4% 

using the proposed technique, 𝑖𝑑 that is affected by load and 

voltage harmonics, 𝑖𝑑𝑑𝑐 extracted by the three abovementioed 

methods, 𝑖𝑓𝑖1,2,3  that compensate for the source harmonics 

and 𝑉𝑑𝑐. The DC offset of V𝑠1,2,3 is rejected using (24) and 

(25), then the proposed algorithm is applied to extract the 

phase of the voltage. It is clear that 
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Fig. 7.   Simulation results of harmonic suppression under 

voltage distortion and dc offset using MPM. 

even under voltage frequency drift and DC offset, the 

proposed technique offers accurate estimation of the phase, 

and frequency which enables to perform Park transform and 

extract the RCC. Since the load is unbalanced and nonlinear, 

the DC offset of the voltage does not affect the current. 

However, in case the load current is affected by the DC offset, 

it can be rejected by expanding the window size of the 

buffered data of 𝑖𝑑. 

5.   Experimental results  

            Fig. 8 depicts the experimental prototype of the SAPF 

developed in the laboratory. The setup consists of: a three 

phase isolation transformer with a leakage inductance of 0.8 

mH, a digital signal processor (dspace-1006), Hall effect 

current and voltage sensors, and a Danfoss 2.2 kVA converter 

with an output L-filter. The THD of the 𝑖𝑠1,2,3 is measured 

using the power quality analyzer (Fluke 437). The output 

filter is situated inside the setup, the sampling time is 10 kHz. 

            Fig. 9 displays the experimental results that prove the 

effectiveness of the MPM in harmonic suppression during 

load variation.  𝑖𝑙𝑜1,2,3 are distorted with a THD of 32%. The 

application of park transformation results in the oscillated 

direct current  𝑖𝑑 . It is observable that during the load 

variation, the  𝑖𝑑𝑑𝑐𝑠  extracted by DFT and LPF cause slow 

transient response (almost one period). Moreover, the 𝑖𝑑𝑑𝑐𝑠 

extracted by LPF contain some fluctuations that decrease the 

accuracy. However, the  𝑖𝑑𝑑𝑐 extracted by the MPM offers a 

faster transient response with the higher precision. 

Consequently, applying the MPM to the SAPF 

Inverter

dspace card

THD analyzer

Variable 

resistors

DC link 

capacitors

rectifiers
Load capacitance

Linear 

inductive load

DC inductive 

load

transformer

 

Fig. 8.  Experimental prototype of the SAPF   

results in improving the wave form of  𝑖𝑠1,2,3 by decreasing 

the THD to about 4.4% which conforms to the IEC 61000-3-

6 and IEEE 519-1992 standards. Furthermore, the transient 

response of 𝑖𝑠1,2,3 takes only 
1

6
 cycle to be improved. 

            Fig. 10 shows the experimental results that 

demonstrate the reliability of the proposed technique in 

extracting the fundamental during PF compensation. When 

the load variation occurs in the instant 0.698s, the direct 

current 𝑖𝑑 increases progressively due to the existence of the 

reactive power. It is clear that the  𝑖𝑑𝑑𝑐 extracted by the MPM 

follows the progressive variation faster than the ones 

Fig. 9.  Experimental results of harmonic suppression 

applying MPM. 
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Fig. 10.  Experimental results of harmonic suppression 

during PF compensation applying MPM.  

extracted by DFT and LPF, and offers more accuracy. As a 

consequence, the dynamic performance of the SAPF that is 

based on MPM is improved, which leads to decrease the THD 

of 𝑖𝑠1,2,3  from 28% to 4.4% that conforms to the 

aforementioned standards. Besides, the PF is improved from 

about 0.9 to be close to unity.  

6.    Conclusion 

            In this paper, the MPM based harmonic control 

strategy for SAPF is proposed. The harmonic perturbation is 

introduced as an eigenvalue problem, then the MPM is 

applied to solve it. The proposed method proved its accuracy 

and efficiency in extracting the desired frequencies in both 

stationary and rotating coordinates under sinusoidal and 

distorted voltage. Moreover, the MPM demonstrated its 

reliability of improving the dynamic performance of the four 

legs SAPF to compensate for the unbalanced linear and 

nonlinear loads, offering the faster transient response 

comparing to standard methods. The simulation of the 

analyzed model is carried out under MATLAB\Simulink 

environment, and the results demonstrate the reliability of the 

proposed method in harmonics assessment, PF and unbalance 

correction in case of sinusoidal and distorted voltage with 

harmonics and DC offset. The results are enhanced by the 

experiment offering a comparison with standards methods. 
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