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Abstract

We consider a fixed-rate zero-delay source coding problem where a stationary vector-valued
Gauss-Markov source is compressed subject to an average mean-squared error (MSE) dis-
tortion constraint. We address the problem by considering the Gaussian nonanticipative
rate distortion function (NRDF) which is a lower bound to the zero-delay Gaussian RDF.
Then, we use its corresponding optimal “test-channel” to characterize the stationary Gaus-
sian NRDF and evaluate the corresponding information rates. We show that the Gaussian
NRDF can be achieved by p-parallel fixed-rate scalar uniform quantizers of finite support
with dithering signal up to a multiplicative distortion factor and a constant rate penalty.
We demonstrate our framework with a numerical example.

1 Introduction

Zero-delay processing of information in source coding is the decoding of each source
sample at the same time instant that the source sample is encoded. Zero-delay source
coding is desirable in various applications, like for instance, in signal processing [1]
and in networked control systems [2, 3].

In this paper, we consider a fixed-rate zero-delay source coding problem where
a vector-valued Gaussian source modeled as a stationary linear time-invariant (LTI)
vector-valued Gauss-Markov process is compressed subject to a MSE distortion con-
straint. We tackle the problem, by considering the NRDF [4] which is known to be a
tighter lower bound to the zero-delay RDF compared to the classical RDF (for details
see, e.g., [5, 6]). We use the optimal test-channel that corresponds to the NRDF of
the aforementioned stationary Gaussian source model under the MSE distortion con-
straint, to characterize the stationary Gaussian NRDF and evaluate its corresponding
information rates [6,7]. The realization of the optimal test-channel enables us to show
that the Gaussian NRDF can be achieved by p-parallel subtractively dithered scalar
uniform quantizers (SDSUQ) of finite support up to a multiplicative factor to the
MSE distortion and a constant rate penalty.

Our idea stems from the recent work of [8], where the authors used dithered fixed-
rate scalar quantization of a scalar Gaussian process in combination with Σ − ∆
modulation. They showed that for a fixed probability of overload, say Pol, and by
a careful choice of bitrate and limits on the quantizer’s support, it is possible to
guarantee system’s stability with a quantizer bitrate R′ = R + o(log log( 1

Pol
)), where
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R is the bitrate required for an unbounded quantizer without overload. Moreover,
the resulting distortion due to having overload distortion in addition to the granular
distortion D, would be D(1+o(1))

1−Pol
, where the multiplicative term o(1)→ 0 as the length

of the source sample increases since the effect of the initial state of their causal filter
vanishes. It is worth emphasizing that the results of [8], which we will build upon in
the sequel, were established under the assumption of i.i.d., scalar RVs obtained due
to non-causal prediction of a stationary scalar Gaussian colored process. In our work,
we consider zero-delay coding of a stationary vector Gaussian process with spatio-
temporal correlation, i.e., with correlation within the elements of a vector as well as
correlation between vectors.

The fixed-rate zero-delay source coding scheme of this paper complements the
achievability approach using variable-length zero-delay source coding that was pro-
posed in [6, Section IV] by means of an entropy coded dithered quantizer (ECDQ) [9].
Notation. Let R denote the set of real numbers, Z the set of integers, N0 the set of
natural numbers including zero, and Nn

0 , {0, . . . , n}, n ∈ N0. We denote a sequence
of random variables RVs by xtr , (xr,xr+1, . . . ,xt), (r, t) ∈ Z × Z, t ≥ r, and their
values by xtr ∈ X t

r , ×tk=rXk, with Xk = X , for simplicity. If r = −∞ and t = −1,
we use the notation x−1

−∞ = x−1, and if r = 0, we use the notation xt0 = xt. The
distribution of x on X is denoted by Px(dx) ≡ Px. The conditional distribution of
y given x = x is denoted by Py|x(dy|x = x) ≡ Py|x. The transpose of a matrix or
vector K is denoted by KT. For a square matrix K ∈ Rp×p with entries Kij on the
ith row and jth column, we denote by diag{K} the matrix having Kii, i = 1, . . . , p,
on its diagonal and zero elsewhere, its trace by trace(K), and its covariance by ΣK .
We denote the determinant of K by |K|. We denote by K � 0 (respectively, K � 0)
a positive-definite matrix (respectively, positive-semidefinite matrix). The statement
K � T means that K − T is positive semidefinite. We denote identity matrix by
I ∈ Rp×p. We denote the time index with “t” and the dimension index with “i”.

2 Problem Formulation

In this paper, we consider a source coding problem with instantaneous encoding
and decoding. We assume a stationary Rp-valued Gaussian source governed by the
following discrete-time LTI Gauss-Markov state-space model

xt+1 = Axt + wt, (1)

where A ∈ Rp×p is a deterministic matrix, x0 ∈ Rp ∼ N (0; Σx) is the initial state with
stationary covariance Σx � 0, wt ∈ Rp ∼ N (0; Σw), Σw � 0, is an i.i.d. Gaussian
sequence, independent of x0. To ensure that (1) is a stationary process, we restrict
the absolute values of the eigenvalues of A to be inside the unit circle.

Formally, this zero-delay source coding problem can be interpreted as follows. At
every time step t ∈ N0, the encoder observes the vector source xt and produces a
single binary codeword zt from a predefined set of codewords Zt of at most countable
number of codewords. We define the input and output alphabet of the noiseless
digital channel by M = {1, 2, . . . ,M} where M = maxt |Zt| < ∞. The elements



in M enumerate the codewords of Zt. The encoder is specified by the sequence of
measurable functions {ft : t ∈ N0} with ft :Mt−1×X t →M. At time t, the encoder
transmits the message zt = ft(z

t−1, xt) with z0 = f0(x0). Since the source is random,
zt and its length lt (in bits) are RVs (although the main result of this paper treats
fixed-rate coding). Upon receiving zt, the decoder produces the reconstruction yt.
The decoder is specified by the sequence of measurable functions {gt : t ∈ N0} with
gt : Mt → Yt. For each t ∈ N0, the decoder generates yt = gt(z

t) with y0 = g0(z0).
Both the encoder and decoder process information without delay, and at each time
step t, the per-letter MSE distortion needs to satisfy E{||xt − yt||22} ≤ D, ∀t, where
D > 0 is the pre-specified distortion level.

The objective is to minimize the average expected codeword length denoted by
lim supn−→∞

1
n+1

∑n
t=0 E(lt), over all measurable encoding and decoding functions

{(ft, gt) : t ∈ N0}. This is formally cast by the following optimization problem:

Rop
ZD(D) , inf

{(ft, gt): t∈N0},
E{||xt−yt||22}≤D, ∀t

lim sup
n−→∞

1

n+ 1

n∑
t=0

E(lt). (2)

We refer to (2) as the operational zero-delay Gaussian RDF. Solving (2) is very hard,
since it is defined over all operational codes. Instead, we consider in the next section
a lower bound to (2), which is based on information theoretic quantities.

3 A lower bound on Rop
ZD(D)

In this section, we state the definition of the NRDF, denoted by Rna(D), for the
source model of (1) subject to a MSE distortion constraint [6]. After the definition, we
explain the optimal test-channel that corresponds to this Gaussian source model [7].

First, notice that for general continuous alphabet sources, i.e., sources that are

not necessarily Gaussian, it holds that R(D)
(a)

≤ Rna(D)
(b)

≤ Rop
ZD(D) (see [5,6]), where

R(D) denotes the classical RDF [10]. Note that, inequality (a) is strict, in general,
and becomes equality when the source is i.i.d. or when the rate tends to infinity. In
contrary, inequality (b) is strict at high rates (high resolution) due to space-filling loss
and becomes equality at zero rate and at infinite dimensional vector-valued Gauss-
Markov sources.

We consider a source that randomly generates sequences xt = xt ∈ Xt, t ∈ Nn
0 ,

that we wish to reproduce or reconstruct by yt = yt ∈ Y , t ∈ Nn
0 , subject to a

squared-error distortion ||xt − yt||22.
Data Source. Suppose the source generates sequences xn = xn, n ∈ N0, according
to the collection of conditional distributions

Pxt|xt−1,yt−1 , P(dxt|xt−1), t ∈ Nn
0 . (3)

At time t = 0, we assume P(dx0|x−1) , P(dx0). Given the conditional distributions
in (3), then, by Bayes’ rule we can formally define the joint distribution on X n by
Pxn ≡ P(dxn) , ⊗nt=0P(dxt|xt−1).
Reproduction or “test-channel”. Suppose the reproduction yn = yn, n ∈ N0 of



xn ≡ (x0, . . . , xn) is randomly generated, according to the collection of conditional
distributions, known also as test-channels, by

Pyt|yt−1,xt , P(dyt|yt−1, xt), t ∈ Nn
0 . (4)

At n = 0, we assume P(dy0|y−1, x0) = P(dy0|x0). From [11], we know that the
conditional distributions P(dyt|yt−1, xt) in (4), uniquely define the family of con-

ditional distributions on Yn parametrized by xn ∈ X n, given by
−→
P (dyn|xn) ,

⊗nt=0P(dyt|yt−1, xt), and vice-versa. By (3) and (4), we can uniquely define the joint
distribution of {(xn,yn) : t ∈ Nn

0} by

Pxn,yn = P(dxn)⊗
−→
P (dyn|xn). (5)

Given the above construction of distributions, we introduce the mutual informa-
tion between xn to yn as follows:

I(xn; yn)
(a)
=

∫
Xn×Yn

log

(−→
P (·|xn)

P(·)
(yn)

)
P(dxn)⊗

−→
P (dyn|xn)

(b)
=

n∑
t=0

E
{

log

(
P(·|yt−1,xt)

P(·|yt−1)
(yt)

)}
(c)
=

n∑
t=0

I(xt; yt|yt−1),

where (a) is due to the Radon-Nikodym derivative theorem [12]; (b) due to chain rule
of relative entropy; (c) follows by definition.

Definition 1 (NRDF subject to a MSE distortion constraint) The NRDF of the sta-
tionary source model (1) subject to a per-letter MSE distortion constraint is defined
as (assuming the limit exists):

Rna(D) = lim
n−→∞

1

n+ 1
inf

P(dyt|yt−1,xt), t∈Nn
0 : E{||xt−yt||2}≤D, ∀t∈Nn

0

I(xn; yn). (6)

The optimization problem of Definition 1, in contrast to the one given in (2) is
convex and there exists an optimal solution characterizing it (assuming a non-zero
distortion) (for details see [11]). Moreover, by [6], the choice of the source model
of (1) subject to a MSE distortion constraint yields an optimal “test channel” that
achieves the infimum in (6) of the form

P∗(dyt|yt−1, xt) = P∗(dyt|yt−1, xt), t ∈ N0. (7)

In addition, the corresponding joint process {(xt,yt) : t ∈ N0} is jointly Gaussian.
Realization of the Optimal Test-Channel with Stationary Statistics. We
will now assume that the joint process {(xt,yt) : t ∈ N0} is stationary, so that
by [6, Section IV] (or [7, Theorem 2]), we can obtain the realization of the optimal test-
channel that corresponds to a stationary optimal minimizer (7). This is illustrated in
Fig. 1. In this setup, the stationary output process yt is of the form:
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Figure 1: Realization of the optimal stationary “test-channel” P∗(dyt|yt−1, xt).

yt = ETHE(xt − x̂t|t−1) + x̂t|t−1 + ETΘvt, (8)

where H � 0 is a scaling matrix; vt is an independent Gaussian noise process with
N (0; Σv), Σv = diag{V } independent of x0; the error (xt − x̂t|t−1) ∼ N (0; Σ), where

Σ = E{(xt− x̂t|t−1)(xt− x̂t|t−1)T}, ∀t, and x̂t|t−1 , E{xt|yt−1}; the error (xt− x̂t|t) ∼
N (0; Σ′), where Σ′ = E{(xt − x̂t|t)(xt − x̂t|t)

T}, ∀t, and x̂t|t , E{xt|yt}. Moreover,
{x̂t|t−1, Σ} are given by the following time-invariant filtering recursions:

x̂t|t−1 = Ax̂t−1|t−1, x̂0|−1 = invariant value, (9a)

Σ = AΣ′AT + Σw, (9b)

x̂t|t = x̂t|t−1 +Gk̃t, x̂0|0 = invariant value, (9c)

k̃t , yt − x̂t|t−1 (innovation), (9d)

Σ′ = Σ−GSGT, (9e)

G = Σ(ETHE)TS−1 (Kalman Gain), S = (ETHE)Σ(ETHE)T + ETΘΣvΘTE,

where (9b), (9e) are the steady state covariance matrices of the filter with Σ = ΣT � 0
and Σ′ = Σ′T � 0. In addition, we let

H , I − ∆̃Λ−1, Θ ,
√
H∆̃Σ−1

v , Φ , Θ−1H, ∆̃ , diag{δ}, Λt = diag{λ}, (10)

where Λ � 0, ∆̃ � 0 and E ∈ Rp×p is an orthogonal matrix. It is easy to verify that
for the choice of (10), the output process in (8) simplifies to:

yt = ETHExt + (I − ETHE)Ayt−1 + ETΘvt, (11)

because x̂t|t−1 = Ayt−1, x̂t|t = yt, G = I, Σ′ = ET∆̃E.
Next, we briefly explain the basic features of the realization of Fig. 1.

Encoder. We introduce the estimation error {kt ∈ Rp : t ∈ N0}, where kt ,
xt− x̂t|t−1 ∼ N (0; Σ), ∀t ∈ N0. The stationary value Σ is then, diagonalized by intro-

ducing an orthogonal matrix E (invertible matrix) such that EΣET = diag{λ} , Λ.
Decoder. We introduce the innovations process {k̃t : t ∈ N0} defined by (9d).
Parallel AWGN Channel. The AWGN channel is of the form βt = αt + vt =
ΦEkt + vt, vt ∼ N (0; Σv), Σv = diag{V }, t ∈ N0.
Distortion. The squared-error distortion ||kt − k̃t||22 at each t is not affected by the



above processing of {(xt,yt) : t ∈ N0}, i.e., ||xt − yt||22 = ||kt − k̃t||22, t ∈ N0.
Moreover, at each t, the scheme of Fig. 1 yields a MSE distortion E{||x − y||22} ≡
E{(xt − yt)

T(xt − yt)} = traceE{(xt − x̂t|t)(xt − x̂t|t)
T} = trace(Σ′) ≤ D.

Hence, following [6, Section IV], the stationary Gaussian NRDF subject to a MSE
distortion can be expressed as follows:

Rna(D) = min
0≺Σ′�Σ, trace(Σ′)≤D

1

2
log
|Σ|
|Σ′|

. (12)

The max-det optimization problem of (12) is convex and can be solved numerically
using, for instance, interior point methods via semidefinite programming approach
[13]. In the next theorem, we give the semidefinite representation that corresponds
to the optimization problem of (12).

Theorem 1 (Optimal solution of Rna(D)) Define F , (Σ′)−1 − ATΣ−1
w A � 0 where

Σ′ � 0. Then, for D > 0, Rna(D) is semidefinite representable as follows:

Rna(D) = min
F�0
−1

2
log |F |+ 1

2
log |Σw|. (13a)

s.t. 0 ≺ Σ′ � Σ, trace(Σ′) ≤ D (13b)[
Σ′ − F Σ′AT

AΣ′ Σ

]
� 0 (13c)

Proof. The proof is based on reformulating (12) using matrix determinant lemma
and Woodbury matrix identity to obtain the linear matrix inequality (13c). This
procedure is omitted due to space limitations. �

4 Fixed-Rate Coding Using Predictive SDSUQ of Finite Support

In this section, we leverage upon ideas in [8] in order to bound the probability of
overload, denoted Pol, using a scalar predictive quantizer of finite support with
dithering signal. Our idea is to construct a predictive coder based on the test-
channel realization of Fig. 1. With this scheme, the p elements of the Rp-valued
vector αt, namely, αt = (αt,1, . . . ,αt,p), will become mutually independent after
quantization but not identically distributed. We use p-parallel SDSUQ, namely,
Q(·) , (QSD

1 (·), . . . , QSD
p (·)), which are applied separately along the p-dimensions

of αt, hence substituting the p-parallel AWGN channels of Fig. 1. In particular,
the ith quantizer, QSD

i (·) which is applied on the ith-element αt,i has a bitrate Ri,
2Ri quantization levels, and quantizer support [−Γi

2
, Γi

2
), where Γi , 2Ri

√
12Vii. We

choose all the quantizers to have quantization step ∆i =
√

12Vii. We denote by rt the
Rp-valued random process of dithered signals whose individual components, denoted
by (rt,1, . . . , rt,p), are mutually independent across time and space, and uniformly
distributed over the interval rt,i ∼ Unif[−∆i

2
, ∆i

2
), independent of αt,i, ∀t, i. The

quantization scheme is depicted in Fig. 2. In order to quantize αt,i, we add and sub-
tract the dither signal rt,i, such that the output of the quantizer β̃t,i = QSD

i (αt,i+rt,i)
and βt,i = QSD

i (αt,i + rt,i)− rt,i. The quantization error ξt in each dimension i is:

ξt,i , βt,i −αt,i = QSD
i (αt,i + rt,i)− (αt,i + rt,i). (14)
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Figure 2: Proposed scheme with p-parallel predictive SDSUQ of finite support.

Clearly, if we employ the p-parallel SDSUQ at each time step t, then, it is highly
probable to cause an overload error which is further amplified due to the feedback
loop in our scheme. In that particular case, the system is no longer stable and the
MSE distortion is expected to be significantly increased. To avoid this critical issue,
we reset the system in a slightly different way than in [8, Section III], whenever an
overload error appears. In particular, we initialize the memory of the Kalman filter
by samples drawn from its stationary distribution. This means that only the current
input Rp-valued vector is dropped. This approach does not cause any temporal non-
stationarities in the statistics of the system because as analyzed in Section 3, the
statistics of the filter are stationary and the reproduction vector yt ∈ Rp is stationary.

Theorem 2 At each t, we let D be the MSE distortion attained by the test channel
of Fig. 1, and I(αt,i;αt,i + rt,i) the scalar mutual information between the input
and the output of the AWGN channel at each dimension. Then, at each time step
t, for 0 < Pol < 1, the p-parallel SDSUQ of Fig. 2 each with quantization rate per
dimension Ri = I(αt,i;αt,i + rt,i) + δ(Pol) attain a MSE distortion per dimension,
hereinafter denoted by Di, smaller than

Di

1−Pol

, D ,
1

p

p∑
i=1

Di, (15)

provided that overload did not occur. Moreover, the overload probability per dimension
is smaller than Pol with

δ(Pol) ,
1

2
log

(
−2

3
ln

Pol

2p

)
. (16)

Proof. The key idea here, is to get into a situtation where we can closely follow the
proof technique of [8]. Let Q̃√12ViiZ(x) denote rounding x to the nearest point in the

(infinite) lattice
√

12ViiZ. It is easy to verify that for any x ∈ [−Γi

2
, Γi

2
) we have:

Qi(x) = Q̃√12ViiZ

(
x+

√
12Vii
2

)
−
√

12Vii
2

. (17)

Applying (14), if |αt,i + ξt,i| ≤ Γi

2
, then overload did not occur, and we obtain:

ξt,i = Q̃√12ViiZ(αt,i + rt,i +
√

3Vii)− (αt,i + rt,i +
√

3Vii). (18)



Dealing with the overload event of the finite support scalar quantizer is quite compli-
cated. For this reason, we first consider a reference system with an infinite-support
scalar quantizer , i.e., Ri = ∞, and analyze its performance. Now, if the magnitude
of the ith-input to the ith unbounded quantizer never exceeds Γi

2
for i = 1, . . . , p,

then, clearly the reference system is equivalent to the original system where we have
assumed a finite-support scalar quantizer. Thus, it suffices to find the average distor-
tion of the reference system and the probability that the ith input to its ith quantizer
exceeds Γi

2
for i = 1, . . . , p.

Next, we will assume that the quantization noise for each i = 1, . . . , p, is given
by (18) regardless of whether or not |αt,i + rt,i| ≤ Γi

2
, and then, we will seek for the

probability of an overload error.
By assumption, ξt = (ξt,1, . . . ξt,p) is an i.i.d. sequence of RVs uniformly dis-

tributed over the interval ξt,i ∼
[
−
√

12Vii
2

,
√

12Vii
2

)
independent of αt = (αt,1, . . . ,αt,p).

Moreover, for each i, ξt,i has zero mean and variance Vii. For this reason, the p-
parallel SDSUQ depicted in Fig. 2 (with unbounded support) is equivalent to the

test-channel of Fig. 1 with ξt,i ∼ Unif
[
−
√

12Vii
2

,
√

12Vii
2

)
instead of vt,i ∼ N (0;Vii),

where vt = (vt,1, . . . ,vt,p). Hence, the average MSE distortion attained by the ref-
erence p-parallel SDSUQ of Fig. 2 is precisely the same as the one attained by the
analysis for Fig. 1 and is equal to D (see Section 3).

In what follows, we concentrate into analyzing the probability of an overload
error within a vector of length p, as a function of Ri and I(αt,i;αt,i+ξt,i). This event
translates into an event at the reference system where some input to the quantizer will
exceeds Γi

2
in magnitude within block p. Our aim is to upper bound the probability

of this event. We define the overload event OLi , {|αt,i + ξt,i| > Γi/2} and the event
OL , ∪pi=1OLi. By the union bound, we know that

Pol = Pr(OL) ≤
p∑
i=1

Pr(OLi). (19)

The RV αt,i+ξt,i is a linear combination of the Gaussian RVs {(x0,i,x1,i . . . ,xt,i) : t ∈
N0} and the independent uniform RVs (ξ0,i, ξ1,i, . . . , ξt,i). Using [14, Lemma 4], we
can bound by its variance the probability of a RV of this type to exceed a certain
threshold. Applying this bound to αt,i + ξt,i yields:

Pr (OLi) ≤ exp

{
− Γ2

i

8E(αt,i + ξt,i)2

}
(a)
= 2 exp

{
− 12Vii2

2Ri

8 (E(αt,i)2 + E(ξt,i)2)

}
,

= 2 exp

− 12Vii2
2Ri

8Vii

(
1 +

E(αt,i)2

Vii

)
 = 2 exp

{
−3

2
2

2

(
Ri− 1

2
log

(
1+

E(αt,i)
2

Vii

))}
(b)
= 2 exp

{
−3

2
22(Ri−I(αt,i;αt,i+ξt,i))

}
(20)

where (a) follows from the definition of Γi and the fact that αt,i and ξt,i are indepen-
dent ∀i; (b) follows from the definition of I(αt,i;αt,i + ξt,i) when αt,i is a Gaussian
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Figure 3: Comparison between Rna(D) and the zero-delay operational rates.

RV, and the fact that E(ξt,i)
2 = E(vt,i)

2 which implies E(αt,i)
2 = E(αGaussian

t,i )2. By
substituting (20) into (19) we obtain:

Pol ≤ 2

p∑
i=1

exp

{
−3

2
22(Ri−I(αt,i;αt,i+ξt,i))

}
(c)

≤ 2p exp

{
−3

2
22δ̄i

}
, (21)

where (c) follows from the fact that δ̄ , mini{δi} with δi , Ri − I(αt,i;αt,i + ξt,i).
Until now, we have shown that the reference system, i.e., the one with infinite-support
quantizer, achieves Di for each ith SDSUQ, that results into obtaining the total MSE
distortion normalized per dimension D = 1

p

∑p
i=1 Di which corresponds to the total

MSE distortion of the test-channel in Fig. 1. Based on our previous analysis, the
probability that the input samples for each of the p-parallel SDSUQ exceeds Γi

2
in

magnitude of block length p, is bounded by (21). For our original system whose ith

quantizer has finite support of [−Γi

2
, Γi

2
), this means that the overload probability is

also upper bounded by (21). Furthermore, Di of the original system if overload did
not occur is the same as that of reference system conditioned on the event that OL
did not occur. We denote this event by DOL

i and the average distortion conditioned
on the event that OL did occur by DOL

i . For the reference system, we have that:

Di = Pr(OL)DOL
i + Pr(OL)DOL

i ≥ Pr(OL)DOL
i ⇒ DOL

i ≤ Di

1−Pol

, ∀i.

Thus, we have shown that the p-parallel SDSUQ system illustrated in Fig. 2, whose
ith quantizer has limited support [−Γi

2
, Γi

2
), with Ri = I(αt,i;αt,i + rt,i) + δ(Pol)

achieves the same average MSE normalized per dimension D = 1
p

∑p
i=1Di as the

test-channel of Fig. 1 where Di is up to a multiplicative factor 1
1−Pol

with block

error probability less than or equal to 2p exp
{
−3

2
22δ̄i

}
. Thus, (12) characterizes the

rate-distortion tradeoff achieved by a system with p-parallel SDSUQ where for each
dimension i = 1, . . . , p, this tradeoff is achieved up to a factor 1

1−Pol
and a constant

penalty δ(Pol), that depends on the overload probability. To clarify this, for any
Pol ∈ (0, 1), taking the constant penalty of (16) at each dimension i, ensures that the
overload probability is smaller than Pol. �

Example 1 We consider an R10-valued source modeled as in (1), where A has i.i.d.
Gaussian elements with Aij ∼ N (0; 1

p2
), and Σw = I. We consider distortions



D ∈ [0.0003, 0.0009, 0.0045, 0.07, 0.31, 0.92] and Vii ∈ [1, 1, 1.2, 1.4, 1.7, 1.7] corre-
sponding to Ri = [8, 7, 6, 4, 3, , 2], Γi = [13.9, 27.7, 66.5, 310.4, 753.8, 1507.6], and
∆i = [3.46, 3.46, 4.15, 4.85, 5.89, 5.89], ∀i = 1, . . . , 10. Fig. 3 compares Rna(D) and
the corresponding operational rates both normalized per dimension. We note that
Rna(D) is evaluated by invoking the SDP solver of CVX platform [15] while the oper-
ational rates are evaluated using a SDSUQ of finite support in each dimension based
on the previously mentioned values of Ri, Γi, ∆i. According to Fig. 3, at high rates,
there is a loss of approximately 1 bit/dimension between the Rna(D) and the zero-delay
operational rates whereas at low rates this rate-loss mitigates to 0.5 bits/dimension.

References

[1] Y. Huang and J. Benesty (eds.), “Audio signal processing for next generation multi-
media communication systems,” 2004.

[2] T. Tanaka, K. H. Johansson, T. Oechtering, H. Sandberg, and M. Skoglund, “Rate of
prefix-free codes in LQG control systems,” in Proc. IEEE Int. Symp. Inf. Theory, July
2016, pp. 2399–2403.

[3] E. I. Silva, M. S. Derpich, J. Østergaard, and M. A. Encina, “A characterization of
the minimal average data rate that guarantees a given closed-loop performance level,”
IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2171–2186, Aug 2016.

[4] A. K. Gorbunov and M. S. Pinsker, “Prognostic epsilon entropy of a Gaussian message
and a Gaussian source,” Problems Inf. Transmiss., vol. 10, no. 2, pp. 93–109, 1974.

[5] M. S. Derpich and J. Østergaard, “Improved upper bounds to the causal quadratic
rate-distortion function for Gaussian stationary sources,” IEEE Trans. Inf. Theory,
vol. 58, no. 5, pp. 3131–3152, May 2012.

[6] P. A. Stavrou, J. Østergaard, C. D. Charalambous, and M. S. Derpich, “An upper
bound to zero-delay rate distortion via Kalman filtering for vector Gaussian sources,”
in Proc. IEEE Inf. Theory Workshop, 2017, pp. 534–538.

[7] P. A. Stavrou, T. Charalambous, and C. D. Charalambous, “Filtering with fidelity
for time-varying Gauss-Markov processes,” in Proc. IEEE Conf. Decision Control,
December 2016, pp. 5465–5470.

[8] O. Ordentlich and U. Erez, “Performance analysis and optimal filter design for sigma-
delta modulation via duality with DPCM,” in Proc. IEEE Int. Symp. Inf. Theory,
June 2015, pp. 321–325.

[9] R. Zamir, Lattice Coding for Signals and Networks. Cabridge University Press, 2014.
[10] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression. En-

glewood Cliffs, NJ: Prentice-Hall, 1971.
[11] C. D. Charalambous and P. A. Stavrou, “Directed information on abstract spaces:

Properties and variational equalities,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp.
6019–6052, Nov 2016.

[12] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large
Deviations. John Wiley & Sons, Inc., New York, 1997.

[13] L. Vandenberghe, S. Boyd, and S.-P. Wu, “Determinant maximization with linear
matrix inequality constraints,” SIAM J. Matrix Anal. and Applic, vol. 19, no. 2, pp.
499–533, 1998.

[14] O. Ordentlich and U. Erez, “Precoded integer-forcing universally achieves the MIMO
capacity to within a constant gap,” IEEE Trans. Inf. Theory, vol. 61, no. 1, 2015.

[15] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1,” http://cvxr.com/cvx, Mar. 2014.




