

Aalborg Universitet

A Playful Programming Products Vs. Programming Concepts Matrix

Allsopp, Benjamin Brink

Published in:
Proceedings of the 11th European Conference on Game-Based Learning

Creative Commons License
GNU GPL

Publication date:
2017

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Allsopp, B. B. (2017). A Playful Programming Products Vs. Programming Concepts Matrix. In M. Pivec, & J.
Gründler (Eds.), Proceedings of the 11th European Conference on Game-Based Learning (1 ed., Vol. 1, pp. 1-
8). Academic Conferences and Publishing International. Academic Bookshop Proceedings Series

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2021

https://vbn.aau.dk/en/publications/8d56ae43-4a6c-4f6b-a2b0-03ccb4443c09

	 	

A	Playful	Programming	Products	Vs.	Programming	Concepts	Matrix	
Benjamin	Brink	Allsopp	
Department	of	Learning	and	Philosophy,	Aalborg	University,	Copenhagen,	Denmark	
ben@learning.aau.dk			
	
Abstract:	A	number	of	Danish	primary	 schools	are	 involved	 in	pilot	 studies	where	1st	 to	9th	grade	students	
work	with	Scratch	and	Lego	MindStorms	in	STEM	subjects.	These	games	may	become	part	of	the	curriculum	at	
these	 schools.	 Recent	 research	 identifies	 a	 category	 of	 games	 and	 toys	 that	 support	 learning	 to	 computer	
program:	playful	programming.	This	research	also	describes	a	project	to	bring	together	different	stakeholders	
(developers,	 educators,	 parents	 and	 researchers)	 with	 a	 common	 vocabulary	 for	 describing,	 developing,	
teaching	 with	 and	 comparing	 these	 playful	 programming	 products	 and	 develops	 a	 model	 of	 supported	
programming	 concepts	 that	 can	 be	 used	 to	 differentiate	 these	 products.	 The	model	 includes	 programming	
concepts	 like	 operators,	 procedures,	 encapsulation,	 variables	 and	 events,	 but	 also	 identifies	 numerous	
specialization	 and	 sub-specializations	 of	 these	 concepts.	 This	 paper	 aims	 to	 use	 this	 model	 to	 provide	
educators	and	researchers	involved	in	pilot	studies	with	an	overview	of	which	programming	concepts	various	
playful	 programming	products	 exercise	 (a	 playful	 programming	products	 vs.	 programming	 concepts	matrix).	
We	 also	 add	 additional	 concept	 specializations	 and	 expand	 on	 the	 descriptions	 of	 concepts	 included	 in	 the	
model.	 Finally	 we	 consider	 how	 this	 work	 can	 be	 used	 to	 support	 a	 crowed-sourced	 playful	 programming	
research	program.	
	
Keywords:	 Playful	 programming,	 Programming	 Concepts,	 Block	 programming,	 Concept	 specialization	maps,	
Product	comparison	matrix	

1. Introduction	
There	is	growing	interest	in	equipping	current	and	future	school	children	with	the	skills	that	will	serve	them	in	
an	 increasingly	digital	 society,	and	much	resent	 research	 focuses	on	developing	computational	 thinking	 (e.g.	
Guzdial	&	Soloway,	2008;	Resnick	et	al,	2009;	Repenning,	Webb	&	Ioannidou,	2010;	Brennan	&	Resnick,	2012).	
However	 learning	 programming	 is	 difficult	 and	 requires	 complex	 abstractions,	 overview	 and	 mathematical	
insight	(Misfeldt	&	Ejsing-Duun,	2015).	We	can	fear	that	teaching	programming	as	we	teach	other	subjects	at	
school	may	not	generate	sufficient	interest	and	confidence	for	most	children.	One	growing	option	is	to	leave	
the	traditional	school	environment.	This	is	seen	in	coding	clubs	like	Coding	Pirates	where	parents,	volunteers	
and	children	come	together	 in	programming	related	activities	that	the	children	have	considerable	autonomy	
over.	These	environments	typically	have	one	adult	dedicated	to	only	a	few	children	and	seem	to	be	growing	in	
popularity,	but	it	is	unclear	how	scalable	this	approach	is.		
	
A	different	approach,	which	is	sometimes	practiced	at	coding	clubs	as	well	as	in	schools	and	at	home	is	to	use	
programming	games	that	allow	much	of	the	learning	to	be	guided	by	the	game.	A	number	of	Danish	primary	
schools	are	involved	in	pilot	studies	where	1st	to	9th	grade	students	work	with	Scratch	and	Lego	MindStorms	
in	 STEM	 subjects	 (Jensen,	 Hanghøj	 &	Misfeldt	 2016)	 and	 Allsopp	 &	 Ejsing-Duun	 (2016)	 describe	 a	 growing	
number	of:	“computer	games,	robotic	toys,	programming	apps	and	other	software	products	(and	even	board	
games)	…	 that	attempt	 to	 turn	 learning	 to	program	 into	play.”	There	are	 two	assumptions	 in	 this	approach:	
playful	 programming	 products	 support	 perseverance	 and	 motivation,	 and	 playful	 programming	 products	
actually	teach	programming.	Perseverance	and	motivation	are	hard	to	maintain	when	learning	programming,	
but	are	precisely	what	many	games	seem	to	support.	Likewise,	the	playful	programming	products	all	promise	
to	teach	programming,	and	spending	any	time	with	these	products	seems	to	confirm	this.	However,	educators	
need	to	know	more	specifically	what	these	products	teach.	Brennan	&	Resnick	(2012)	identify	three	aspects	of	
computational	 thinking	 that	 they	 argue	 are	 supported	 by	 Scratch:	 computational	 concepts,	 computational	
practices	and	computational	perspectives.	However	there	are	dozens	of	similar	products,	and	educators	need	
to	be	able	to	choose	between	them	based	on	more	specific	understandings	of	what	they	teach.	The	primary	
aim	of	 this	article	 is	 to	address	 this	need	by	comparing	nine	different	playful	programming	products	using	a	
fine-grained	list	of	programming	concepts.		

2. Prior	Work		
There	 is	 extensive	 literature	 on	 teaching	 programming	 to	 children	 and	 adults	 (e.g.	 Robins,	 Rountree	 &	
Rountree	2003),	but	much	less	on	using	games	to	teach	programming.	This	article	relies	heavily	on	one	article	

	
	

that	 explores	 this:	 Allsopp	&	 Ejsing-Duun	 (2016)	 coin	 the	 term	playful	 programming	 to	 describe	 the	 use	 of	
games	 in	 learning	to	program	and	playful	programming	products	to	describe	the	growing	number	of	games,	
toys,	 and	other	 software	 that	 promise	 to	make	 learning	 programming	more	 playful.	 They	 acknowledge	 this	
promise,	but	also	acknowledge	a	lack	of	clarity	on	what	the	products	can	do	and	what	their	underlying	didactic	
and	pedagogical	strategies	are.	More	specifically	for	this	article	they	point	to	a	lack	of	clarity	on	the	aspects	of	
computational	 thinking	 that	 they	aim	 to	 teach,	and	what	 specific	parts	of	 these	aspects	 they	exercise.	 They	
argue	that	this	lack	of	clarity	creates	problems	for	educators	wishing	to	choose	a	product	and	having	to	rely	on	
the	developers’	own	descriptions	of	 the	products	which	may	be	exaggerated	or	otherwise	hard	 to	 compare	
with	other	products.	They	 see	addressing	 this	problem	as	part	of	a	 larger	project	with	 the	goal	of	 “bringing	
together	 different	 stakeholders	 (developers,	 educators,	 parents,	 learners	 and	 researchers)	 with	 a	 common	
vocabulary	for	describing,	developing,	 teaching	with	and	comparing	products”	 (Allsopp	&	Ejsing-Duun	2016).	
Not	 only	 will	 this	 help	 stakeholders	 choose	 products,	 but	 hopefully	 it	 will	 also	 support	 developers	 to	
understand	how	they	can	better	support	users	in	learning	to	program.	

2.1 The	programming	concepts	list	

The	specific	goal	with	Allsopp	&	Ejsing-Duun’s	(2016)	article	was	to	create	a	list	of	programming	concepts	that	
would	 allow	 stakeholders	 to	 identify	 differences	 in	 what	 different	 products	 support.	 Previous	 lists	 of	
programming	concepts	for	learning	programming	exist.	For	example	Brennan	&	Resnick	(2012)	provide	a	list	of	
computational	 concepts	 in	 their	 broader	 exploration	 of	 computational	 thinking.	 However	 Allsopp	 &	 Ejsing-
Duun	 (2016)	 aim	 for	 a	 more	 fine-grained	 list	 that	 allows	 them	 to	 identifying	 subtle	 differences	 in	 what	
different	 products	 support.	 Their	 ambition	 is	 to	 achieve	 enough	 granularity	 in	 the	 concepts	 to	 be	 able	 to	
categorise	products	without	using	descriptions	of	the	degree	to	which,	or	how,	they	exercise	a	programming	
concept,	but	simply	with	a	binary	marker	indicating	that	they	do	or	do	not	exercise	a	specific	concept.		

At	the	same	time,	they	did	not	want	to	include	too	many	concepts,	but	to	keep	the	list	relevant	for	comparing	
playful	programming	products	by	grounding	it	in	observations	from	actual	products	in	the	category	rather	than	
in	 more	 general	 descriptions	 of	 programming	 languages.	 There	 actual	 observations	 where	 from	 only	 two	
products	Scratch	and	Lightbot	(both	the	Web	and	the	9+	version),	and	they	acknowledge	that	examining	more	
products	may	improve	on	it,	but	argue	for	it	being	relatively	stable.		

2.2 Concept	specialization	maps	

	

Figure	1.	A	concept	specialisation	map	(CSM)	showing	all	 the	programming	concepts	 identified	by	Allsopp	&	
Ejsing-Duun	(2016)	

Of	particular	 interest	 is	 the	way	Allsopp	&	Ejsing-Duun	 (2016)	analyse	 their	observations	using	a	new	visual	
notation	called	concept	specialization	maps	(CSMs),	which	is	exemplified	in	Figure	1.	Because	the	goal	of	the	
current	article	 is	not	just	to	use	the	list,	but	 if	possible	 improve	it,	 it	 is	 important	to	understand	these	maps.	
CSMs	are	designed	to	reduce	ambiguity	between	concepts	by	spatially	arranging	them	to	better	see	when	they	

	
	

overlap,	 and	when	 they	 differ.	More	 specifically,	 CSMs	 are	 directed	 graphs	with	 nodes	 and	 arcs	 that	 point	
between	nodes.	They	are	acyclic,	or	partially	ordered,	 in	that	no	arcs	go	upstream.	Each	arc	points	from	one	
concept,	 which	 is	 considered	 more	 general,	 to	 a	 concept,	 which	 is	 considered	 more	 specific.	 These	
representations	 where	 used	 to	 visualize	 tentative	 understandings	 of	 the	 relations	 between	 programming	
concepts	and	where	modified	 iteratively	as	new	programming	concepts	were	 identified.	 Figure	1	 shows	 the	
CSM	developed	by	Allsopp	&	Ejsing-Duun	 (2016),	 in	a	 version	 that	 consolidates	all	 the	 changes	 identified	 in	
their	article.	This	acyclic	graph	was	flattened	to	become	their	list	of	programming	concepts.	

3. Our	Approach	
In	this	article	we	adopt	an	inclusive	understanding	of	playful	programming	products	as	introduced	in	Allsopp	&	
Ejsing-Duun	(2016),	and	use	their	 list	of	 identified	programming	concept.	Here	we	identify	the	concepts	that	
each	product	exercises	and	register	these	observations	in	a	matrix	connecting	programming	concepts	to	each	
product.	When	forced	to,	we	update	the	model	and	reconsider	previous	products	against	updates	to	the	list.	
However,	 although	 we	 update	 the	 model	 iteratively	 when	 identifying	 new	 concepts,	 for	 reasons	 of	 clarity	
when	 presenting	 our	 findings	 we	 will	 describe	 the	 populating	 of	 the	 matrix	 and	 the	 updating	 of	 the	 map	
separately.		

With	only	one	exception	all	 the	playful	programming	products	were	 installed	and/or	accessed	online.	These,	
also	with	only	a	 few	exceptions,	were	played	 to	completion.	 In	 the	 few	situations	where	a	product	was	not	
played,	 or	 not	 played	 to	 completion,	we	were	 able	 to	 view	 online	 videos	 of	 all	 levels	 of	 the	 games.	While	
working	 through	 the	 products	 in	 this	way	we	 considered	 each	 new	programming	 challenge	 and	 code	 block	
against	 the	 concepts	 list.	 In	 the	 vast	majority	of	 situations	 the	matrix	 could	be	updated	without	needing	 to	
reflect	 on	 the	 list	 or	 the	 underling	 concept	 specialisation	 map.	 	 On	 a	 few	 occasions	 however,	 a	 playful	
programming	 product	 exercised	 something	 that	 seemed	 like	 a	 programming	 concept,	 yet	 could	 not	 be	
satisfactorily	recognised	as	one	of	the	existing	concepts	in	the	list.	This	could	either	be	because	it	seemed	to	
do	more	or	 less,	or	both	at	 the	same	time,	 than	an	existing	concept.	 In	 these	situations	 it	was	necessary	 to	
introduce	a	concept,	but	not	simply	by	adding	 it	 to	 the	 list.	We	 first	needed	to	examine	the	CSM	to	 find	an	
appropriate	place	for	it,	and	if	necessary	reconsider	the	existing	concepts	and	their	relations.	Working	with	the	
CSM	 map	 forced	 us	 to	 understand	 each	 concept	 as	 part	 of	 a	 coherent	 understanding	 of	 all	 the	 concepts	
together.	This	way	we	avoid	arbitrarily	defined	concepts	that	promote	a	specific	product.			

3.1 Method	

As	in	Allsopp	&	Ejsing-Duun	(2016),	our	methodological	foundation	for	this	work	is	inspired	by	Lakatos’	(1976)	
philosophical	work	on	mathematical	proofs.	We	invite	social	falsification	by	opening	up	our	observations	and	
analysis	to	peer	scrutiny.	Specifically	the	CSM	and	the	comparison	matrix	play	the	same	role	as	a	mathematical	
notation	in	a	mathematical	proof;	they	provide	transparency	into,	and	aid	the	interrogation	of,	our	reasoning.	

4. More	Products	
In	the	following	we	report	on	observations	when	examining	six	new	playful	programming	products.	In	choosing	
the	 products	we	 choose	 to	 look	 at	 two	 of	 three	 clusters	 identified	 by	 Allsopp	&	 Ejsing-Duun	 (2016).	 These	
where	navigation	games	and	visuospatial	 authoring	 tools	which	both	 can	be	 called	block	programming.	 The	
third	cluster	consists	of	environments	that	provide	support	or	motivation	for	regular	text	based	programming.	
Besides	 this,	 the	products	were	casually	chosen	and	by	no	means	exhaustive	of	 the	category.	The	 individual	
assessments	 of	 which	 products	 exercise	 which	 concepts	 are	 presented	 in	 the	 completed	 matrix	 shown	 in	
Figure	 2.	 In	 this	 figure	 we	 see	 three	 visuospatial	 authoring	 tools	 (Scratch,	 Microsoft	 Block	 Editor	 and	
Hopscotch)	 followed	 by	 six	 navigation	 games	 (Lightbot	 (Web	 and	 9+),	 Kodable,	 Lego	 Bits	 &	 Bricks,	 Coding	
Pirates	 and	 Cargobot).	 The	 programming	 concepts	 do	 not	 completely	 match	 those	 identified	 by	 Allsopp	 &	
Ejsing-Duun	(2016),	but	the	small	modifications	will	be	discussed	under	Updating	the	map,	but	before	this	we	
discuss	the	new	products	in	turn.	

	
	

	
	
Figure	2.	The	completed	products	vs.	concepts	matrix	

4.1 Visuospatial	authoring	tools		
The	examined	visuospatial	authoring	tools	all	resemble	Scratch	in	that	the	user	chooses	blocks	from	extensive,	
pallets	and	places	them	onto	a	canvas	that	can	support	more	than	one	procedure.	The	steps	in	a	procedure	are	
arranged	from	top	to	bottom.			

4.1.1 Microsoft	Block	Editor	

We	explored	Microsoft	Block	Editor	 (MBE)	as	provided	as	a	programming	 interface	 for	 the	BBC	Micro:bit;	 a	
pocket	 sized	 embedded	 device	 for	 children	 to	 build	 internet	 of	 things	 systems.	 The	 Micro:bit	 approach	 is	
interesting	 because	 it	 forces	 the	 programmer	 to	 think	 beyond	 developing	 typical	 screen	 interactions	 and	
explore	alternative	connections	between	the	digital	and	the	non-digital.	MBE	thus	includes	blocks	representing	
the	 various	 input/output	 capabilities	 of	 the	 hardware.	 These	 include	 accessing	 an	 array	 of	 LED	 lights,	 a	
compass,	an	accelerometer	and	more,	 including	a	number	of	ports	to	connect	to	other	electronic	hardware.	
These	 I/O	blocks	 have	 names	 like	 “show	 LEDs”,	 “compass	 heading”	 and	 “on	 shake”,	 and	 clearly	 differ	 from	
those	 available	 in	 the	 standard	 Scratch	 environment,	 however	 when	 these	 blocks	 are	 ignored	 and	 the	
remaining	blocks	are	considered	in	terms	of	the	programming	concepts	exercised,	it	is	almost	indistinguishable	

	
	

from	Scratch	except	for	in	two	ways.	MBE	does	not	support	any	blocks	which	allow	the	defining	of	arrays,	and	
MBE	(at	least	in	the	micro:bit	version	considered	here)	does	not	seem	to	allow	the	creating	of	objects,	beyond	
the	default	object	which	is	the	micro:bit	device.		

4.1.2 Hopscotch	

Hopscotch	is	designed	for	the	iPhone	and	iPad	and	was	a	pleasure	to	use,	arranging	blocks	neatly	in	the	canvas	
with	 a	 significantly	 simpler	 interface	 than	 Scratch.	 However	 Hopscotch	 supports	 almost	 all	 the	 same	
programming	concepts	as	Scratch.	Like	MBE	 is	does	not	support	arrays,	but	 it	allows	the	creation	of	objects	
with	parallelism	within	and	across	them.	It	differs	from	both	Scratch	and	MBE	by	allowing	the	encapsulation	of	
procedures,	and	procedures	calling	procedures.		

4.2 Navigation	games	

All	 of	 the	 navigation	 games	 consist	 of	 adding	 blocks	 left	 to	 right	 in	 an	 instruction	 area	 to	 control	 the	
movements	 of	 an	 avatar	 (normally	 through	 a	 maze).	 None	 of	 these	 games	 exercise	 variables	 or	 events	 as	
programming	concepts.	

4.2.1 Kodable	

Kodable	 is	 an	 extensive	 collection	 of	 learning	materials,	which	 promises	 a	 smooth	 transition	 into	 JavaScript	
code.	 However	 we	 will	 only	 look	 at	 what	 is	 exercised	 in	 an	 included	 navigation	 game.	 Where	 all	 other	
navigation	games	considered	here	require	one	block	to	move	each	step	 in	the	maze,	a	single	arrow	block	 in	
Kodable	will	make	the	avatar	continue	to	move	in	a	direction	until	 it	 is	stopped	(for	example	by	a	wall).	This	
makes	 it	 important	 to	 introduce	 conditionals	 earlier	 to	 interrupt	 these	 movements.	 Like	 Lightbot	 9+	
conditionals	can	be	triggered	by	coloured	squares	in	the	maze.	One	way	this	is	different	from	more	advanced	
conditionals,	 seen	 in	 for	 example	 Scratch,	 is	 what	 conditions	 are	 supported.	 Kodable	 only	 supports	 the	 (=)	
equals	condition	triggered	when	the	current	squares	colour	is	equal	to	a	specific	colour.	Another	way	that	its	
conditionals	 are	 different	 to	 Scratch,	 is	 that	 it	 does	 not	 support	 if	 else	 conditionals.	 Kodable	 supports	
procedures	with	loops;	more	specifically	procedures	with	dedicated	loop	structures.	These	are	loop	structures	
supporting	any	number	of	 repetitions,	 but	are	 restricted	 to	 looping	 through	only	 two	blocks	of	 code.	 Finally	
Kodable,	like	Lightbot,	supports	procedures	calling	procedures,	which	are	called	functions	and	are	represented	
with	a	block	labelled	“{}”,	however	unlike	Lightbot	it	does	not	allow	procedures	to	call	themselves.		

4.2.2 Lego	Bits	&	Bricks	

Lego	Bits	&	Bricks	is	very	similar	to	Lightbot	in	its	scenario	of	a	bot	needing	to	navigate	a	maze.	We	completed	
all	16	levels	and	our	overall	impression	is	that	the	game	was	fun	and	challenging,	but	this	may	have	more	to	do	
with	the	designs	of	the	mazes	than	to	do	with	the	programming	concepts	exercised;	the	mazes	would	also	be	
fun	to	solve	by	moving	the	bot	directly.	Unlike	the	previous	navigation	games,	this	game	requires	each	placed	
block	to	be	tagged	with	a	digit	 (1	to	9)	for	the	number	of	times	 it	 is	to	be	repeated.	The	ways	that	different	
games	 implement	 a	movement	block	 are	not	 considered	programming	 concepts	 and	Bits	&	Bricks	does	not	
support	many	coding	concepts.	It	supports	procedures	with	flow	control,	but	no	conditional	flow	control;	in	the	
game	play,	crossing	bridges	or	taking	portals	in	the	maze	depends	on	the	bot	stepping	on	coloured	squares	or	
pulling	levers,	but	there	is	no	option	to	specify	conditional	steps.	Without	conditionals	there	is	also	no	need	for	
conditions,	 or	 operators	 in	 general.	 Bits	 &	 Bricks	 does	 however	 support	 procedures	 with	 loops	 and	 even	
procedures	with	dedicated	loop	structures.	This	dedicated	loop	structure	is	shown	in	Figure	3.	The	structure	is	
different	from	Kodable’s	dedicated	loop	structure	in	that	it	supports	any	number	of	blocks	to	be	inserted	in	the	
loop	 (…	supporting	any	number	of	 inline	 steps).	 It	 is	however	also	 limited	 in	 that,	 like	other	blocks	 in	Bits	&	
Bricks,	it	takes	a	digit	tag	and	only	supports	1	to	9	reparations.					
	

	
	
Figure	3.	Bits	&	Bricks’	dedicated	loop	structure			

	
	

4.2.3 Coding	Pirates	

The	game,	Coding	Pirates,	is	developed	by	the	Coding	Pirates	code	club.	We	experienced	our	initial	signing	in	
to	 Coding	 Pirates	 as	 clunky	 and	 perhaps	 even	 buggy.	 We	 have	 not	 considered	 the	 game’s	 custom	 maps,	
multiplayer	options,	or	 level	editor,	but	we	played	all	 levels.	At	first	 it	resembles	Lightbot	with	simple	blocks	
representing	 a	 single	move.	 It	 also	 resembles	 Lightbot	 9+	with	 respect	 to	 how	 it	 exercises	procedures	with	
conditionals.	 Different	 blocks	 in	 the	 instructions	 check	 if	 the	 avatar	 (this	 time	 a	 pirate)	 is	 standing	 on	
something	(sand,	grass	etc.),	sees	something	(tree,	rock	etc.)	or	is	holding	something	(a	key,	treasure),	before	
continuing	 the	 instructions	or	moving	down	to	an	alternative	 instruction.	Although	there	are	many	different	
things	that	can	be	checked	these	correspond	to	the	(=)	equals	condition.	An	example	condition	could	be	read	
as:	“what	the	pirate	is	standing	on	equals	sand”.	Like	other	navigation	games	the	user	is	limited	to	procedures	
with	if	conditionals.	Where	coding	pirate	really	stands	out	is	in	how	it	supports	procedures	with	loops.	Coding	
Pirates	provides	a	block	with	a	chain	 icon	on	 it.	This	could	suggest	a	dedicated	 loop	structure,	however	 it	 is	
more	than	this.	By	placing	a	chain	block	the	instruction	area	and	then	clicking	on	it	the	user	 is	able	to	select	
any	 other	 block	 in	 the	 specification.	 A	 directed	 arc	 is	 drawn	 from	 the	 chain	 block	 to	 the	 selected	 block	 to	
indicate	that	 it	will	be	executed	next.	This	 is	a	different	and	more	general	 type	of	procedure	w.	 flow	control	
than	those	with	loops.	It	resembles	the	goto	statements	seen	in	older	programming	languages	and	thus	Coding	
Pirates	 exercises	 procedures	 with	 gotos.	 Only	 when	 we	 use	 this	 block	 to	 point	 to	 a	 block	 earlier	 in	 the	
specification	 do	we	 have	 procedures	with	 loops,	 specifically	procedures	 looping	 using	 gotos.	With	 the	 goto	
block	and	simple	conditions	Coding	Pirates	supported	some	really	interesting	coding	challenges.	

4.2.4 Cargo-Bot	

Cargobot	 is	an	 iPad	game	that	 is	similar	to	the	other	navigation	games	in	that	the	user	drags	blocks	onto	an	
instruction	area.	However	 it	differs	 from	 the	navigation	games	 in	 that	users	do	not	 specify	an	avatar’s	path	
through	a	maze	(going	forward	and	turning	left	or	right).	Instead	they	control	a	crane	that	can	only	move	left	
or	right	along	a	rail	and	pick	up	or	drop	off	crates,	which	are	placed	in	fixed	positions	under	the	rail.	We	played	
a	number	of	screens	of	Cargo-Bot,	but	then	watched	a	fast-forwarded	video	recording	of	the	completion	of	all	
levels	(see	link	in	references)	to	identify	additional	blocks	and	how	they	were	used.	Despite	their	differences	
Cargo-Bot	 resembles	 Lightbot	 9+	 in	 how	 relatively	 few	 types	 of	 blocks	 exercise	many	 general	 programming	
concepts.	 Like	 Lightbot,	 procedures	 calling	 procedures	 are	 supported	 with	 a	 numbered	 block	 directing	
execution	to	a	numbered	alternative	instruction	area.	Again	like	Lightbot,	procedures	with	loops	are	supported	
as	 procedures	 looping	 by	 calling	 themselves.	 Conditionals	 are	 also	 supported	 similarly	 to	 in	 Lightbot	 9+	 as	
procedures	with	 if	conditions.	Here	a	block	may	be	tagged	with	a	colour	so	that	 it	only	executes	 if	 the	crate	
held	 by	 the	 crane	 has	 the	 same	 colour.	 The	 conditions	 supporting	 these	 conditionals	 are,	 like	 the	 other	
navigation	games,	limited	to	the	(=)	equals	concept.	Finally,	it	is	worth	noting	that	like	Lego	Bits	and	Bites,	the	
game’s	challenges	often	preceded	decisions	on	applying	programming	concepts.	Both	games	required	thinking	
that	would	also	be	necessary	even	if	the	user	controlled	the	bot	or	crane	directly	with	say	a	joystick.	

5. Updating	the	CSM	
Some	of	 the	 new	products	 exercised	 programming	 concepts	where	 not	 identified	 by	Allsopp	&	 Ejsing-Duun	
(2016).	Updating	the	concept	list	requires	understanding	how	these	new	concepts	relate	to	existing	concepts,	
and	 this	 has	 depended	 on	 understanding	 how	 to	 update	 the	 CSM	 to	 accommodate	 the	 required	 concept.	
There	are	three	kinds	of	modifications:	changes	to	the	naming	of	existing	concepts,	the	adding	and	connecting	
of	 a	 new	 concepts	 and	 the	 changing	 of	 specialisation	 relations	 between	 existing	 concepts.	 The	 changing	 of	
names	has	been	relatively	limited	and	focused	on	using	more	conventional	terminology.	For	example	the	term	
“if	 else”	 replaces	 the	 term	 “if-else”.	 One	 simple	 example	 of	 the	 adding	 and	 connecting	 of	 a	 new	 concept	
occurred	when	we	observed	that	Coding	Pirates	supported	a	block	that	exercised	the	creating	of	procedures	
with	gotos.		This	is	considered	a	different	way	of	supporting	procedures	with	flow	control	than	both	procedures	
with	 loops	 and	procedures	with	conditionals.	 This	 could	 therefor	be	added	 to	 the	CMS	as	a	 specialisation	of	
procedures	 with	 flow	 control.	 Beyond	 this	 change,	 all	 other	 changes	 to	 the	 CMS	 involve	 specialisations	 to	
procedures	with	loops.		All	changes	are	emphasised	in	the	CMS	shown	in	Figure	4,	the	remaining	of	which	are	
discussed	below.	

	
	

	
	
Figure	4.	The	updated	CSM	with	the	new	specialisation	and	programming	concepts	emphasized	

5.1 Specialisations	to	procedures	with	loops	
Procedures	looping	with	gotos	seem	to	be	a	way	to	implement	procedures	with	loops,	however	it	is	not	simply	
a	 specialisation	 of	 what	 was	 understood	 by	 the	 concept	 that	 Allsopp	 &	 Ejsing-Duun	 (2016)	 identified	 from	
Scratch	 and	 called	 “procedures	with	 loops”.	 Scratch	 supports	 special	 loop	 blocks	 that	 enclose	 the	 repeated	
code,	while	gotos	allow	jumping	to	any	step	in	a	procedure.	Looping	with	gotos	is	not	a	special	case	of	what	
Scratch	does.	What	is	then	the	best	way	of	understanding	procedures	looping	with	gotos,	as	a	specialisation	of	
procedures	with	loops	or	not?			
	
It	 is	 in	 situations	 like	 this	where	 concept	 specialisation	maps	 can	 show	 their	 strength.	 It	 is	 possible	 that	 in	
normal	conversation	or	writing	we	would	either	 ignore	the	dilemma	or	offer	some	sort	of	 loose	explanation	
about	how	looping	with	gotos	is	similar	to,	but	not	strictly	speaking	the	same	as	procedures	with	loops.	While	
in	CSMs	we	are	forced	to	either	connect	or	not	connect	two	concepts,	and	we	must	rethink	our	assumptions	
until	we	can	do	this.	Upon	deeper	reflection	and	with	the	representational	support	of	the	CSM	a	satisfactory	
precisioning	was	found.	It	turns	out	that	Scratch’s	way	of	supporting	loops,	while	perhaps	the	most	obvious	or	
common	in	popular	programming	languages	can	be	seen	as	a	specialisation	of	a	more	generic	concept,	which	
can	 keep	 the	 position	 of	 procedures	 with	 loops	 and	 even	 keep	 its	 name.	 A	 new	 concept,	 procedures	 with	
dedicated	 loop	 structures	 is	 drawn	 as	 a	 specialisation	 of	 the	 original	 concept	 and	 describes	what	 is	 special	
about	Scratch,	the	other	visuospatial	authoring	tools,	and	the	navigation	games:	Bits	and	Bricks	and	Kodable.		
	
Now	it	is	meaningful	to	draw	procedures	looping	with	gotos	as	both	a	specialisation	of	procedures	with	gotos,	
and	procedures	with	loops.	It	is	just	a	different	specialisation	of	the	latter	than	procedures	with	dedicated	loop	
structures.	 The	 introduction	 of	 the	 procedures	 with	 dedicated	 loop	 structures	 specialization	 also	 allows	 a	
similar	 drawing	 of	 a	 concept	 as	 a	 specialisation	 of	 two	 other	 concepts.	 It	 is	 now	 possible	 to	 draw	 a	
specialisation	arc	from	procedures	with	loops	to	procedures	looping	by	calling	themselves.	Previously	this	arc	
would	not	have	been	appropriate	because	 is	would	have	 suggested	 that	 the	 looping	 seen	 in	 LightBot	was	a	
special	type	of	the	looping	seen	in	Scratch.			
	
Finally	it	was	necessary	to	distinguish	between	two	different	types	of	dedicated	loop	structures.	Those	seen	in	
the	 editors	 and	 the	 more	 restricted	 ones	 seen	 in	 Bits	 and	 Bricks	 and	 Kodable.	 Here	 it	 was	 possible	 to	
distinguish	the	editors	by	both	exercising	procedures	with	dedicated	loop	structures	supporting	any	number	of	
inline	steps	and	procedures	with	dedicated	loop	structures	supporting	any	number	of	repetitions.	The	dedicated	
loop	structures	seen	in	Bits	and	Bits	and	Kodable	can	be	distinguished	from	the	visuospatial	authoring	tools	by	
only	 exercising	 one	 of	 these.	 They	 can	 be	 distinguished	 from	 each	 other	 in	 that	 they	 differ	 on	 which	
specialisation	they	exercise.		

	
	

6. Discussion	
The	usefulness	of	the	matrix	has	not	been	explored	empirically.	We	can	currently	only	ask	as	researchers	if	we	
find	it	convincing	that	educators	will	use	it.	This	can	be	split	into	two	parts:		
	

a. Would	we	as	researchers,	who	have	read	the	above	article	be	able	to	differentiate	between	two	
products?		

b. Would	ordinary	educators	pressured	with	a	choice	between	two	playful	products	to	use	in	class	be	
able	to	do	the	same?	

			
The	 first	 question	 seems	 unproblematic;	 an	 understanding	 of	 the	 CMS	 provides	 an	 understanding	 of	 the	
different	programming	concepts	and	the	matrix	allows	us	to	immediately	compare	two	or	more	products	with	
respect	 to	 which	 programming	 concepts	 they	 support.	 The	 second	 question	 is	 more	 problematic.	 The	
programming	concepts	are	disambiguated	by	their	name	and	their	relation	to	other	programming	concepts	in	
the	CSM.	However	beyond	the	descriptions	in	this	article	and	Allsopp	&	Ejsing-Duun	(2016),	the	concepts	have	
not	 been	 provided	 with	 textual	 description.	 This	 will	 probably	 be	 necessary	 if	 educators	 are	 to	 be	 able	 to	
understand	the	available	programming	concepts	in	a	product.		

6.1 Looking	ahead	
The	above	could	be	addressed	with	the	publishing	of	these	descriptions;	however,	looking	ahead,	the	writing	
of	these	descriptions	should	ideally	be	an	on-going	process	that	may	be	more	suited	to	a	wiki	format	than	print	
or	e-journal	publication.		The	idea	of	opening	up	this	work	to	online	collaboration	ties	in	well	with	the	broader	
goals	 for	 the	 playful	 programming	 project	 Allsopp	 &	 Ejsing-Duun	 (2016)	 where	 the	 ambition	 is	 to	 bring	
together	developers,	educators,	parents,	learners	and	researchers.	This	bringing	together	of	practitioners	need	
not	just	be	for	them	to	consume	research,	but	for	them	to	be	the	participants	in	further	research.		
	
A	Lakatos	understanding	of	science	(involving	social	falsification)	requires	the	opening	up	of	claims	to	scrutiny	
(Lakatos	1976),	and	the	maintenance	of	the	right	sort	of	community	to	provide	that	social	scrutiny.	In	a	subject	
like	 mathematics	 this	 has	 consisted	 of	 various	 mathematical	 notations	 that	 make	 reasoning	 errors	 more	
visible,	and	of	communities	of	mathematicians	(connected	through	universities	and	journals)	that	are	able	to	
scrutinise	and	 respond	 to	 this	 reasoning.	 In	a	playful	programming	 research	program,	both	 the	 scrutiny	and	
the	community	can	be	supported	online	with	purpose	built	infrastructure	allowing	a	form	of	crowed-sourced	
science.	 In	 the	 specific	 current	 case	 of	 identifying	 programming	 concepts	 and	 gathering	 observations	 of	
individual	 products	 exercising	 individual	 programming	 concepts,	 interactive	 online	 versions	 of	 the	 CSM	 and	
products	 vs.	 concepts	matrix	 can	be	 an	 important	 part	 of	 that	 infrastructure.	 Imagine	 if	 the	 clicking	on	 any	
concept	node	or	specialisation	arc	between	concept	in	the	CSM,	or	any	cell	in	the	matrix,	opened	up	an	online	
threaded	discussion	 forum	dedicated	 to	 that	 token.	Any	practitioner	could	add	highly	 focused	evidence	and	
analysis	to	the	on-going	understanding	of	playful	programming	products	and	the	programming	concepts	that	
they	exercise.	

7. Conclusion		
This	 article	 has	 continued	work	 initiated	 by	Allsopp	&	 Ejsing-Duun	 (2016).	 It	 has	 examined	 (or	 reexamined)	
nine	playful	 programming	products	 to	determine	 the	underlining	programming	 concepts	 that	 they	exercise,	
and	mapped	the	resulting	observations	 in	a	products	vs.	concepts	matrix.	 	 It	has	used	concept	specialization	
maps	 (CSMs)	 to	 analyze	 and	 further	 develop	 a	model	 of	 the	 interrelations	 between	 programming	 concepts	
needed	to	differentiate	playful	programming	products	and	to	update	the	list	of	programming	concepts.	The	list	
is	 showing	 signs	 of	 stability	 in	 that	 the	 changes	 to	 the	 CMS	 due	 to	 examining	 the	 additional	 products	 are	
significantly	smaller	 than	the	changes	due	to	examining	the	original	 two	products.	More	work	 is	 required	to	
make	 the	 matrix	 accessible	 and	 comprehensible	 to	 educators	 needing	 to	 make	 choices	 between	 playful	
programming	products,	but	it	is	argued	that	this	is	not	only	doable,	but	that	the	CMS	and	matrix	can	be	part	of	
an	interactive	infrastructure	for	supporting	crowd-sourced	science	into	playful	programming	products.						

References:	
Allsopp,	 B.	 B.	 and	 Ejsing-Duun,	 S.,	 2016.	 Programming	 Concepts	 in	 Playful	 Programming	 Products.	 In	
Proceedings	of	the	10th	European	Conference	on	Games	Based	Learning:	ECGBL	2016,	(p.	1).	

	
	

Brennan,	 K.	 and	 Resnick,	M.,	 2012,	 April.	 New	 frameworks	 for	 studying	 and	 assessing	 the	 development	 of	
computational	 thinking.	 In	 Proceedings	 of	 the	 2012	 annual	 meeting	 of	 the	 American	 Educational	 Research	
Association,	Vancouver,	Canada.		
Guzdial,	M.	and	Soloway,	E.,	2002.	Teaching	the	Nintendo	generation	to	program.	 In	Communications	of	 the	
ACM,	45(4),	pp.17-21.		
Jensen,	E.	O.,	Hanghøj,	T.,	and	Misfeldt,	M.,	2016.	Game	Design	and	Development	as	Mathematical	Activities:	
Proposing	 a	 Framework.	 In	Proceedings	 of	 the	 10th	 European	Conference	 on	Games	Based	 Learning:	 ECGBL	
2016	(p.	296).	
Lakatos,	I.,	1976.	Proofs	and	Refutations.	Cambridge	University	Press.	
Repenning,	 A.,	Webb,	 D.	 and	 Ioannidou,	 A.,	 2010,	March.	 Scalable	 game	 design	 and	 the	 development	 of	 a	
checklist	 for	 getting	 computational	 thinking	 into	 public	 schools.	 In	 Proceedings	 of	 the	 41st	 ACM	 technical	
symposium	on	Computer	science	education	(pp.	265-269).	ACM.		
Resnick,	M.,	Maloney,	J.,	Monroy-Hernández,	A.,	Rusk,	N.,	Eastmond,	E.,	Brennan,	K.,	Millner,	A.,	Rosenbaum,	
E.,	 Silver,	 J.,	 Silverman,	 B.	 and	 Kafai,	 Y.,	 2009.	 Scratch:	 programming	 for	 all.	 Communications	 of	 the	 ACM,	
52(11),	pp.60-67.		
Robins,	 R.,	 Rountree,	 J.	 and	 Rountree	 N.,	 2003.	 “Learning	 and	 Teaching	 Programming:	 A	 Review	 and	
Discussion”.	Computer	Science	Education,	vol.	13,	no	2,	Routledge.		
	
Andy	G	(2012)	Cargo-bot	full	walkthrough,	YouTube	
https://www.youtube.com/watch?v=r_DRHuKCEMU&ab_channel=AndyG	

	

	
	
	
	

