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Abstract

The classical model of an elastic fluid-filled cylindrical shell is used for analysis of its vibrations. The model is based on thin shell
theory, standard linear acoustics and the heavy fluid-loading coupling concept. First, several important features of performance of
a fluid-filled shell not yet fully explored in literature e.g. the difference between kinematic/forcing excitations, acoustic source type
identification (monopole/dipole) and energy transfer between fluid and shell are studied. Then the discussion is extended to finite
fluid-filled shells by application of the Boundary Integral Equations Method (BIEM). Two techniques for solving the equations
deduced from the BIEM are discussed and investigated with respect to convergence, respectively, Boundary Elements (BE) and
modal expansion. Successively, the implementation of the BIEM is validated against numerical and experimental results for the
simplified case of an empty shell. Finally, impedance boundary conditions for a fluid-filled shell in an assembled piping system
and computations of its resonances and forced response using the BIEM are discussed.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

In industrial pump systems vibrations are a common cause of leakage due to reduced fatigue durability. For such
pump systems the receiving pipeline can, to some extent, be represented as a straight pipe with a proper choice of
impedance boundary conditions (BC). However, analysis of structures subjected to such conditions increase substan-
tially in complexity and thereby in computational time. Thus, the motivation of this paper is the study of convergence
rate of different solution techniques to improve computational efficiency such as to allow performance assessment and
parameter studies of such systems.

The model used in this paper is based on thin shell theory, standard linear acoustics and the heavy fluid loading
coupling concept, as described in e.g. [1–6]. The waveguide properties of an infinite shell in the framework of
the latter is a classical subject of vibro-acoustics, see also [7–9]. In this paper we therefore focus on infinite, finite
and compound shell structures exposed to structural and acoustic excitations/sources. For this purpose the Boundary
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Integral Equations Method (BIEM) is, due to its versatility, the obvious choice, provided that Green’s matrix can
be derived, see e.g. [3–5,9,10]. Green’s matrix is for this model found using an advanced new method based on
bi-orthogonality conditions, see [6,11,12]. The points of particular interest are the action of monopole vs. dipole
sources in the fluid and kinematic excitations of the structure. For 1D multi-modal finite structures such as an empty
cylindrical shell, the BIEM yields the exact solution of problems in forced and free vibrations. For 2- and 3D problems
such as vibration of a fluid-filled shell, the BIEM is converted to the Boundary Element Method (BEM), see e.g. [9]
or thousands of other references. The alternative method to consider a shell under heavy fluid loading is to use modal
Green’s matrix for the acoustic loadings, see [5]. To the best of our knowledge, the comparison of convergence rate
and computational efficiency of these techniques in analysis of forced vibration of a fluid-filled shell has not yet been
fully explored in literature. The subject of our ongoing work is in particular the analysis of vibrations of compound
shells with impedance boundary conditions.

2. Green’s matrix and excitation conditions

In this model the system of governing equations is denoted by the differential operator, D, and consist of three
linear Partial Differential Equations (PDE) of dynamics of a thin cylindrical shell and the equation of linear acoustics.
These equations are, by virtue of axi-symmetry, decoupled into circumferential modes, m ∈ Z, indicated by the
subscript, m. To construct a time-harmonic Green’s matrix the problem to be solved is

DmG0 j
m = q0 j

m (1)

where 0 j indicates a loading condition, qm are external forces; �q1m, q2m, q3m, Tm�T and Gm is Green’s function (vector)
containing the field variables (displacements); �um, vm,wm, φm�T (axial, circumferential, radial and velocity potential).

Green’s function is, by definition, found as the solution to the problem in Eq.(1) with a delta-function applied al-
ternately on the right-hand-side of the equation in the direction of the waveguide, x, at the excitation point, ξ, see
e.g. [3–5], such that for j = 1, qm = �δ(x − ξ), 0, 0, 0�T etc. Thus the complete Green’s matrix is assembled using all
Green’s functions. In this particular case we employ tailored Green’s functions following [13] which already satisfy
the interfacial conditions at the fluid-structure interface.

Upon solving Eq.(1) the vibration of the fluid-filled shell is uniquely characterised by a set of generalised forces/-
acoustic variables (axial, circumferential, radial, bending and acoustic velocity) and displacements (field variables)
given as {Q1m,Q2m,Q3m,Q4m, ϑm} and {um, vm,wm,w′m, pm} where w′m and pm is the rotation and acoustic pressure.
Details and definitions can be found in [3,4,6].

The infinite cylindrical shell can, by virtue of symmetry, be presented as two semi-infinite shells separated at the
excitation point with continuity and unit-jump conditions satisfied at x → ξ. These conditions are formulated in
Eq.(2) for j = 1.

Q1m(x, ξ) = −1
2

sgn(x − ξ), Q4m(x, ξ) = 0, pm(x, ξ, r) = 0, vm(x, ξ) = 0, wm(x, ξ) = 0, x→ ξ (2)

Formulation of remaining loading conditions to construct Green’s matrix can be found in [3,4,6]. In what follows in
this section, we compare the response of a fluid-filled shell to a monopole source with its response to a dipole one.
The former is the solution of Eq. (1) to the source; Tm =

1
r δ(r − r0)δ(x − ξ) applied at the excitation point (ξ, r0).

Q3m(x, ξ) = 0, Q2m(x, ξ) = 0, ϑm(x, ξ, r) = − 1
2r

sgn(x − ξ)δ(r − r0), um(x, ξ) = 0, w′m(x, ξ) = 0, x→ ξ (3)

where the choice of continuity conditions depend on the loaded component, see [6,14]. This solution also constitutes
a part of Green’s matrix.

Alternative, dipole excitation is specified as

Q1m(x, ξ) = 0, Q4m(x, ξ) = 0, pm(x, ξ, r) = − 1
2r

sgn(x − ξ)δ(r − r0), vm(x, ξ) = 0, wm(x, ξ) = 0, x→ ξ (4)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.356&domain=pdf
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where 0 j indicates a loading condition, qm are external forces; �q1m, q2m, q3m, Tm�T and Gm is Green’s function (vector)
containing the field variables (displacements); �um, vm,wm, φm�T (axial, circumferential, radial and velocity potential).

Green’s function is, by definition, found as the solution to the problem in Eq.(1) with a delta-function applied al-
ternately on the right-hand-side of the equation in the direction of the waveguide, x, at the excitation point, ξ, see
e.g. [3–5], such that for j = 1, qm = �δ(x − ξ), 0, 0, 0�T etc. Thus the complete Green’s matrix is assembled using all
Green’s functions. In this particular case we employ tailored Green’s functions following [13] which already satisfy
the interfacial conditions at the fluid-structure interface.

Upon solving Eq.(1) the vibration of the fluid-filled shell is uniquely characterised by a set of generalised forces/-
acoustic variables (axial, circumferential, radial, bending and acoustic velocity) and displacements (field variables)
given as {Q1m,Q2m,Q3m,Q4m, ϑm} and {um, vm,wm,w′m, pm} where w′m and pm is the rotation and acoustic pressure.
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Formulation of remaining loading conditions to construct Green’s matrix can be found in [3,4,6]. In what follows in
this section, we compare the response of a fluid-filled shell to a monopole source with its response to a dipole one.
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where the choice of continuity conditions depend on the loaded component, see [6,14]. This solution also constitutes
a part of Green’s matrix.

Alternative, dipole excitation is specified as
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For this particular problem we can derive an equivalent external source to the initial problem in Eq.(1) as well as the
equivalent source for a load applied in Q4m is q3m =

dδ(x−ξ)
dx , see [3,4,6]. The equivalent acoustic source is derived

from the relationship between pressure and velocity in linear acoustics and becomes; Tm =
1
r δ(r − r0) dδ(x−ξ)

dx , which
can immediately be identified as an acoustic dipole source in x. From this it follows directly that the study of acoustic
monopoles and dipoles is equivalent to the study of acoustic velocity vs. pressure sources.

Although, in acoustics monopoles and dipoles (force/kinematic) are accepted models of sources; in structural dy-
namics jumps in kinematic variables are meaningful only for semi-infinite structures. Thus, for structural kinematic
excitations there are no straightforward equivalent excitation since the choice of ’continuity’ conditions is not unique.
The study of the choice of these conditions is a subject of our ongoing work.

2.1. Comparison − velocity vs. pressure source

To demonstrate the difference between a velocity and a pressure source (monopole/dipole) a particularly interesting
example of near- and far-field energy flow (normalised) is shown in Fig.1 for f = 68kHz, vibrating at m = 3 with
the sources located at r0 = 0.95. This example is chosen based on [3] against which the model is also validated. In
the figure the energy flow is divided into the physical transmission paths (structure and fluid) following [3] and all
quantities are transformed into non-dimensional form using: ρ = ρ f l

ρstr
, γ = cstr

c f l
, µ = h

R , Ω = ω
2R2

c2
str

, r = r̃
R and x = x̃

R .
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Fig. 1. Normalised energy flow for (a) velocity source and (b) pressure source at m = 3, f = 68kHz and r0 = 0.95.

From the figure it is clear that there is a profound difference between applying a velocity and a pressure source near
the shell wall. In (a) the energy remains in the fluid and in (b) the energy escapes rapidly from the fluid to the structure
where it is conveyed as bending in the shell wall. This example, in particular, illustrates that the choice of source
(velocity or pressure) is not trivial. This discussion is in particular relevant when acoustic sources are deduced from
Computational Fluid Dynamics (CFD) simulations where the impedance at the radiating boundaries is rarely coherent
with the impedance of the acoustic sources in an elastic fluid-filled shell. Presumably this is caused by the rigid body
or incompressible fluid assumption in CFD. Thus, errors in impedance of sources deduced from CFD simulations may
produce behaviours counter to the actual physical behaviour.

3. Boundary Integral Equations Method

To advance from infinite to finite and compound shells the Green’s matrix is employed in the Boundary Integral
Equations Method. Following [5] (or [3] for in vacuo shells) Somigliana’s identity can be expressed in its non-
dimensional form as shown in Eq.(5) when using Green’s matrix as kernel.
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1
µ

[
δ1 jum(ξ) + δ2 jvm(ξ) + δ2 jwm(ξ) + δ4 jµw′m(ξ) + δ5 ji

ρ

γ3Ω
pm(ξ, r0)

]
= (5)

[
Q1m(x)u0 j

m (x, ξ) + Q2m(x)v0 j
m (x, ξ) + Q3m(x)w0 j

m (x, ξ) + µQ4m(x)w
′0 j
m (x, ξ) + i

ρ

γ3µΩ

∫ 1

0
p(0 j)

m (x, ξ, r)ϑm(x, r)rdr
]∣∣∣∣∣∣

x=b

x=a

−
[
Q0 j

1m(x, ξ)um(x) + Q0 j
2m(x, ξ)vm(x) + Q0 j

3m(x, ξ)wm(x) + µQ0 j
4m(x, ξ)w′m(x) + i

ρ

γ3µΩ

∫ 1

0
pm(x, r)ϑ(0 j)

m (x, ξ, r)rdr
]∣∣∣∣∣∣

x=b

x=a

+

∫ b

a

1
µ

[
q1m(x)u0 j

m (x, ξ) + q2m(x)v0 j
m (x, ξ) + q3m(x)w0 j

m (x, ξ) + i
ρ

γ3Ω

∫ 1

0
Tm(x, r)p0 j

m (x, ξ, r)rdr
]

dx

where δi j is Kronecker’s delta, i the complex operator, j refer to the loading cases of Green’s matrix and ξ has
becomes the observation point as oppose to an excitation point previously. Note that for a monopole the solution
become a function of the ring source location, r0, see e.g. [3,4,6]. The remaining forces/displacements (u, v,w,w′, p,
ϑ,Q1,Q2,Q3,Q4) constitute a total of 20 unknown boundary coefficients/functions; 10 at x = a and 10 at x = b −
assuming, for now, that the acoustic integral can be evaluated straight-away.

Now, moving the observation point alternately towards the boundaries, a and b, from inside the domain we arrive
at 10 Boundary (Integral) Equations (BIE) and by introducing the 10 additional BC’s in Eq.(6) we arrive at a complete
equation system, which constitutes the Boundary Integral Equations Method.

χα11Q1m + χ
α
12um = 0 χα21Q2m + χ

α
22vm = 0

χα31Q3m + χ
α
32wm = 0 χα41Q4m + χ

α
42w′m = 0

χα51ϑm + χ
α
52 pm = 0 (6)

where a set of arbitrary boundary conditions can be obtained by appropriate choice of the coefficients, χαi j, at α = a, b.

To find the resonances we set qnm and Tm to zero and seek non-trivial solutions of Eq.(5). Note that this is not
equivalent to the classical eigenvalue problem as Green’s matrix is an implicit functions of frequency by virtue of
the dispersion of free-waves. Thus, resonances are found by sweeping across the spectrum. Likewise, Eq.(5) can be
solved for any arbitrary external load and through Somigliana’s identity obtain the forced response.

For waveguides, such as the empty shell, supporting only a finite number of waves the solution to Eq.(5) is eas-
ily obtained and is exact in the framework of the theory used. However, when continuous or mixed waveguides
are considered such as the fluid-filled shell, the boundary equations become boundary integral equations due to the
acoustic integral; causing the complexity of the system to increase considerably and the solutions become approx-
imate. In general, there are two obvious ways of solving this transcendental system. Unfortunately, both methods
involve an expansion of the equation system to, in general, the number of boundary coefficients times the number
of modes/elements, M, retained in the analysis. For the fluid-filled shell only the acoustic domain is a continuous
waveguide and therefore the equation system expands only to; 16 + 4M. The two methods are, respectively:

1. The Boundary Element Method, [9]. We introduce M boundary elements with any local shape function across
the radius such that the integral in Eq.(5) can be approximated by a summation. Depending on the order of
the shape functions and number of elements the equation system expands accordingly. Thus, for elements with
constant shape functions and equal size the equation system for the fluid-filled shell expands proportional to the
number of elements i.e. 4M and the acoustic integral can be approximated by the summation in Eq.(7).

∫ 1

0
p(0 j)

m (x, ξ, r)ϑm(x, r)rdr

∣∣∣∣∣∣
x=b

x=a
⇒ 1

M

M−1∑
n=0

p(0 j)
m (x, ξ, rn)ϑnm(x, rn)rn

∣∣∣∣∣∣∣

x=b

x=a

where rn =
(2n + 1)

2M
(7)

To get additional equations to the additional 4M unknowns we formulate Somigliana’s identity and boundary
conditions for each Boundary Element such that r0 = rn for n = 0, . . . ,M − 1 in Eq.(5). This is done only for the
acoustic source.

2. The method of modal expansion, [5]. We assume a certain profile for the radial distribution of the pressure
and velocity at each boundary. The obvious choice of profile is the modal expansion on M free waves from the
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For this particular problem we can derive an equivalent external source to the initial problem in Eq.(1) as well as the
equivalent source for a load applied in Q4m is q3m =

dδ(x−ξ)
dx , see [3,4,6]. The equivalent acoustic source is derived

from the relationship between pressure and velocity in linear acoustics and becomes; Tm =
1
r δ(r − r0) dδ(x−ξ)

dx , which
can immediately be identified as an acoustic dipole source in x. From this it follows directly that the study of acoustic
monopoles and dipoles is equivalent to the study of acoustic velocity vs. pressure sources.

Although, in acoustics monopoles and dipoles (force/kinematic) are accepted models of sources; in structural dy-
namics jumps in kinematic variables are meaningful only for semi-infinite structures. Thus, for structural kinematic
excitations there are no straightforward equivalent excitation since the choice of ’continuity’ conditions is not unique.
The study of the choice of these conditions is a subject of our ongoing work.

2.1. Comparison − velocity vs. pressure source

To demonstrate the difference between a velocity and a pressure source (monopole/dipole) a particularly interesting
example of near- and far-field energy flow (normalised) is shown in Fig.1 for f = 68kHz, vibrating at m = 3 with
the sources located at r0 = 0.95. This example is chosen based on [3] against which the model is also validated. In
the figure the energy flow is divided into the physical transmission paths (structure and fluid) following [3] and all
quantities are transformed into non-dimensional form using: ρ = ρ f l

ρstr
, γ = cstr

c f l
, µ = h

R , Ω = ω
2R2

c2
str

, r = r̃
R and x = x̃
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Fig. 1. Normalised energy flow for (a) velocity source and (b) pressure source at m = 3, f = 68kHz and r0 = 0.95.

From the figure it is clear that there is a profound difference between applying a velocity and a pressure source near
the shell wall. In (a) the energy remains in the fluid and in (b) the energy escapes rapidly from the fluid to the structure
where it is conveyed as bending in the shell wall. This example, in particular, illustrates that the choice of source
(velocity or pressure) is not trivial. This discussion is in particular relevant when acoustic sources are deduced from
Computational Fluid Dynamics (CFD) simulations where the impedance at the radiating boundaries is rarely coherent
with the impedance of the acoustic sources in an elastic fluid-filled shell. Presumably this is caused by the rigid body
or incompressible fluid assumption in CFD. Thus, errors in impedance of sources deduced from CFD simulations may
produce behaviours counter to the actual physical behaviour.

3. Boundary Integral Equations Method

To advance from infinite to finite and compound shells the Green’s matrix is employed in the Boundary Integral
Equations Method. Following [5] (or [3] for in vacuo shells) Somigliana’s identity can be expressed in its non-
dimensional form as shown in Eq.(5) when using Green’s matrix as kernel.
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1
µ

[
δ1 jum(ξ) + δ2 jvm(ξ) + δ2 jwm(ξ) + δ4 jµw′m(ξ) + δ5 ji

ρ

γ3Ω
pm(ξ, r0)

]
= (5)

[
Q1m(x)u0 j

m (x, ξ) + Q2m(x)v0 j
m (x, ξ) + Q3m(x)w0 j

m (x, ξ) + µQ4m(x)w
′0 j
m (x, ξ) + i

ρ

γ3µΩ

∫ 1

0
p(0 j)

m (x, ξ, r)ϑm(x, r)rdr
]∣∣∣∣∣∣

x=b

x=a

−
[
Q0 j

1m(x, ξ)um(x) + Q0 j
2m(x, ξ)vm(x) + Q0 j

3m(x, ξ)wm(x) + µQ0 j
4m(x, ξ)w′m(x) + i

ρ

γ3µΩ
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]∣∣∣∣∣∣
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a

1
µ
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q1m(x)u0 j

m (x, ξ) + q2m(x)v0 j
m (x, ξ) + q3m(x)w0 j

m (x, ξ) + i
ρ

γ3Ω

∫ 1
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m (x, ξ, r)rdr
]

dx

where δi j is Kronecker’s delta, i the complex operator, j refer to the loading cases of Green’s matrix and ξ has
becomes the observation point as oppose to an excitation point previously. Note that for a monopole the solution
become a function of the ring source location, r0, see e.g. [3,4,6]. The remaining forces/displacements (u, v,w,w′, p,
ϑ,Q1,Q2,Q3,Q4) constitute a total of 20 unknown boundary coefficients/functions; 10 at x = a and 10 at x = b −
assuming, for now, that the acoustic integral can be evaluated straight-away.

Now, moving the observation point alternately towards the boundaries, a and b, from inside the domain we arrive
at 10 Boundary (Integral) Equations (BIE) and by introducing the 10 additional BC’s in Eq.(6) we arrive at a complete
equation system, which constitutes the Boundary Integral Equations Method.

χα11Q1m + χ
α
12um = 0 χα21Q2m + χ

α
22vm = 0

χα31Q3m + χ
α
32wm = 0 χα41Q4m + χ

α
42w′m = 0

χα51ϑm + χ
α
52 pm = 0 (6)

where a set of arbitrary boundary conditions can be obtained by appropriate choice of the coefficients, χαi j, at α = a, b.

To find the resonances we set qnm and Tm to zero and seek non-trivial solutions of Eq.(5). Note that this is not
equivalent to the classical eigenvalue problem as Green’s matrix is an implicit functions of frequency by virtue of
the dispersion of free-waves. Thus, resonances are found by sweeping across the spectrum. Likewise, Eq.(5) can be
solved for any arbitrary external load and through Somigliana’s identity obtain the forced response.

For waveguides, such as the empty shell, supporting only a finite number of waves the solution to Eq.(5) is eas-
ily obtained and is exact in the framework of the theory used. However, when continuous or mixed waveguides
are considered such as the fluid-filled shell, the boundary equations become boundary integral equations due to the
acoustic integral; causing the complexity of the system to increase considerably and the solutions become approx-
imate. In general, there are two obvious ways of solving this transcendental system. Unfortunately, both methods
involve an expansion of the equation system to, in general, the number of boundary coefficients times the number
of modes/elements, M, retained in the analysis. For the fluid-filled shell only the acoustic domain is a continuous
waveguide and therefore the equation system expands only to; 16 + 4M. The two methods are, respectively:

1. The Boundary Element Method, [9]. We introduce M boundary elements with any local shape function across
the radius such that the integral in Eq.(5) can be approximated by a summation. Depending on the order of
the shape functions and number of elements the equation system expands accordingly. Thus, for elements with
constant shape functions and equal size the equation system for the fluid-filled shell expands proportional to the
number of elements i.e. 4M and the acoustic integral can be approximated by the summation in Eq.(7).
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where rn =
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2M
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To get additional equations to the additional 4M unknowns we formulate Somigliana’s identity and boundary
conditions for each Boundary Element such that r0 = rn for n = 0, . . . ,M − 1 in Eq.(5). This is done only for the
acoustic source.

2. The method of modal expansion, [5]. We assume a certain profile for the radial distribution of the pressure
and velocity at each boundary. The obvious choice of profile is the modal expansion on M free waves from the
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dispersion equation such that;

ϑm(x, r) =
M∑

n=1

ϑnm(x)Jm

(
r
√

k2
n + γ

2Ω2
)

pm(x, r) =
M∑

n=1

pnm(x)Jm

(
r
√

k2
n + γ

2Ω2
)

⇒
∫ 1

0
p(0 j)

m (x, ξ, r)ϑm(x, r)rdr

∣∣∣∣∣∣
x=b

x=a
=

∫ 1

0
p(0 j)

m (x, ξ, r)
M∑

n=1

ϑnm(x)Jm

(
r
√

k2
n + γ

2Ω2
)

rdr

∣∣∣∣∣∣∣

x=b

x=a

(8)

where k is the wave-number in the direction of the waveguide. In this case the additional equations to the 4M
additional unknowns are retrieved using tailored modal Green’s matrices as kernels for the acoustic loadings, see
[5]. Thus, the tailored modal Green’s matrices solves the PDE’s for a set of modal loads; Tm = Jm(κnr) (Bessel-
function) for n = 1, . . . ,M and we set-up Somigliana’s identity for each modal Green’s matrix with boundary
conditions formulated for each kernel.

Finally, as we are by no means restricted to radial profiles formulated as an expansion on free waves there are many
other possible solution techniques for this problem. Thus, the motivation of this paper is to study also other tailored
Green’s matrices and their solution with respect to convergence rate and computational efficiency. This is the subject
of our ongoing work.

3.1. Validation of implementation of the BIEM

As correct implementation the BIE system can be a challenging task results from the shell model are compared to
both experimental results and numerical results from commercial software (ANSYS). To ensure correct implemen-
tation of the BIEM it is expedient, from an experimental viewpoint, to reduce the problem to an empty shell since
experimental sources of error associated with a fluid-filled shell are substantial compared to the empty shell. In addi-
tion, the BIEM for the empty shell provide exact solutions in the framework of the theory used, as discussed in section
1, and is therefore less sensitive to experimental and numerical inconsistencies. Thus, letting ρ → 0 and γ → ∞ in
Eq.(5) the BIE’s reduce to simple algebraic boundary equations with exact solutions.

The comparison between resonances from the shell model, numerical model and experiments are presented in
table 1 for free-free boundary conditions, a frequency spectrum from 0 to 1600Hz and numerical results calculated
using the Finite Element Method with 3D quadratic solid elements (SOLID186, see ANSYS documentation). The
associated fluid and mechanical parameters are; R = 68.3mm, h = 1.6mm, L = 743.5mm, E = 205GPa, ν = 0.3,

ρstr = 7967kg/m−3, ρ f l = 1000kg/m−3, c f l = 1440m/s−1 and cstr =
√

E
ρstr(1−ν2) .

Mode Exp. Shell model ANSYS Rel. err. Rel. err.
m [Hz] [Hz] [Hz] Shell ANSYS
1 1315.25 1325.50 1325.60 0.77% 0.78%
2 224.50 224.50 224.66 0% 0.07%
2 227.25 227.50 227.67 0.11% 0.18%
2 536.00 537.50 537.64 0.28% 0.31%
2 1247.00 1255.50 1255.50 0.68% 0.68%
3 635.50 635.25 635.13 -0.04% -0.06%
3 638.25 639.00 638.84 0.12% 0.09%
3 693.50 695.25 694.88 0.25% 0.20%
3 920.75 921.75 921.45 0.11% 0.08%
3 1358.25 1361.00 1360.90 0.20% 0.19%
4 1216.00 1218.00 1217.00 0.16% 0.08%
4 1221.75 1221.75 1220.70 0% -0.09%
4 1245.50 1247.25 1246.00 0.14% 0.04%
4 1321.50 1322.00 1320.80 0.04% -0.05%
4 1482.00 1485.75 1484.50 0.25% 0.17%

Table 1. Comparison between resonances from experiments, shell and numerical model. Relative errors are calculated with respect to experiments.

As seen from table 1 we may conclude that the implementation of the BIEM is successful since the shell model agrees
well with both experimental and numerical results − below 1%. With the BIEM formulated correctly expansion to
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larger systems is straightforward and the BIEM may therefore be used for studies on fluid-filled shells subjected to
impedance conditions.

3.2. Discussion of impedance boundary conditions

For structures with complex-valued impedance boundary conditions the resonances are complex-valued as well.
Therefore the frequency sweep is extended from the real line to the complex domain. Inevitably, the computational
effort of finding these resonances increase significantly and so, fast converging solutions of the BIE’s will obviously
improve the overall computational efficiency considerably − especially for fluid-filled shells.

As a consequence of impedance conditions the corresponding complex-valued solutions are manifestations of
damped resonances. The physical interpretation of these resonances is the radiation or leakage of energy at the
boundaries. This dissipation of energy is analogue to conventional internal (material) damping. However, in assem-
bled piping systems, it is related to structure- and fluid-borne sound propagation.

4. Conclusion

The classical model of a thin cylindrical shell, standard linear acoustic and the heavy fluid loading coupling concept
is revisited with the aim to develop a computationally efficient and robust tool for assessment of vibro-acoustic proper-
ties of assembled piping systems. To accomplish this task, the Boundary Integral Equations Method is chosen using a
time-harmonic tailored Green’s matrix. This solution strategy allows for a consistent investigation of force/kinematic
sources in the acoustic medium. For the fluid-filled shell an example illustrates the profound difference between pres-
sure and velocity sources near the shell wall. A study of kinematic versus forcing structural excitations is a subject of
our ongoing work. The BIEM, which permit analysis of forced and free vibrations of fluid-filled shells with arbitrary
boundary conditions including the complex-valued impedance boundary conditions, has been validated for the empty
shell with free-free conditions in comparison with both numerical and experimental results, while different solution
techniques have been discussed for the transcendental boundary integral equations. The study of convergence rate and
computational efficiency using alternative techniques to implement the BIEM is the subject of our ongoing work.
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dispersion equation such that;
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where k is the wave-number in the direction of the waveguide. In this case the additional equations to the 4M
additional unknowns are retrieved using tailored modal Green’s matrices as kernels for the acoustic loadings, see
[5]. Thus, the tailored modal Green’s matrices solves the PDE’s for a set of modal loads; Tm = Jm(κnr) (Bessel-
function) for n = 1, . . . ,M and we set-up Somigliana’s identity for each modal Green’s matrix with boundary
conditions formulated for each kernel.

Finally, as we are by no means restricted to radial profiles formulated as an expansion on free waves there are many
other possible solution techniques for this problem. Thus, the motivation of this paper is to study also other tailored
Green’s matrices and their solution with respect to convergence rate and computational efficiency. This is the subject
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tation of the BIEM it is expedient, from an experimental viewpoint, to reduce the problem to an empty shell since
experimental sources of error associated with a fluid-filled shell are substantial compared to the empty shell. In addi-
tion, the BIEM for the empty shell provide exact solutions in the framework of the theory used, as discussed in section
1, and is therefore less sensitive to experimental and numerical inconsistencies. Thus, letting ρ → 0 and γ → ∞ in
Eq.(5) the BIE’s reduce to simple algebraic boundary equations with exact solutions.

The comparison between resonances from the shell model, numerical model and experiments are presented in
table 1 for free-free boundary conditions, a frequency spectrum from 0 to 1600Hz and numerical results calculated
using the Finite Element Method with 3D quadratic solid elements (SOLID186, see ANSYS documentation). The
associated fluid and mechanical parameters are; R = 68.3mm, h = 1.6mm, L = 743.5mm, E = 205GPa, ν = 0.3,

ρstr = 7967kg/m−3, ρ f l = 1000kg/m−3, c f l = 1440m/s−1 and cstr =
√

E
ρstr(1−ν2) .
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4 1482.00 1485.75 1484.50 0.25% 0.17%

Table 1. Comparison between resonances from experiments, shell and numerical model. Relative errors are calculated with respect to experiments.

As seen from table 1 we may conclude that the implementation of the BIEM is successful since the shell model agrees
well with both experimental and numerical results − below 1%. With the BIEM formulated correctly expansion to
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larger systems is straightforward and the BIEM may therefore be used for studies on fluid-filled shells subjected to
impedance conditions.

3.2. Discussion of impedance boundary conditions

For structures with complex-valued impedance boundary conditions the resonances are complex-valued as well.
Therefore the frequency sweep is extended from the real line to the complex domain. Inevitably, the computational
effort of finding these resonances increase significantly and so, fast converging solutions of the BIE’s will obviously
improve the overall computational efficiency considerably − especially for fluid-filled shells.

As a consequence of impedance conditions the corresponding complex-valued solutions are manifestations of
damped resonances. The physical interpretation of these resonances is the radiation or leakage of energy at the
boundaries. This dissipation of energy is analogue to conventional internal (material) damping. However, in assem-
bled piping systems, it is related to structure- and fluid-borne sound propagation.

4. Conclusion

The classical model of a thin cylindrical shell, standard linear acoustic and the heavy fluid loading coupling concept
is revisited with the aim to develop a computationally efficient and robust tool for assessment of vibro-acoustic proper-
ties of assembled piping systems. To accomplish this task, the Boundary Integral Equations Method is chosen using a
time-harmonic tailored Green’s matrix. This solution strategy allows for a consistent investigation of force/kinematic
sources in the acoustic medium. For the fluid-filled shell an example illustrates the profound difference between pres-
sure and velocity sources near the shell wall. A study of kinematic versus forcing structural excitations is a subject of
our ongoing work. The BIEM, which permit analysis of forced and free vibrations of fluid-filled shells with arbitrary
boundary conditions including the complex-valued impedance boundary conditions, has been validated for the empty
shell with free-free conditions in comparison with both numerical and experimental results, while different solution
techniques have been discussed for the transcendental boundary integral equations. The study of convergence rate and
computational efficiency using alternative techniques to implement the BIEM is the subject of our ongoing work.
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