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Abstract-Stability analysis of single-phase power converters 

controlled in stationary reference frame is now mature and well 

developed, by using either linear or nonlinear methods. However, for 

the single-phase converters with synchronous reference frame (SRF) 

control loops, little work has been done on the evaluation of the 

nonlinear approaches for stability analysis. In this paper, the 

stability of a digital controlled single-phase voltage source inverter 

(VSI) with SRF voltage control loop is investigated from the 

perspective of nonlinear system. The analysis is based on the 

discrete-time model defined by the stroboscopic map, which is 

derived using the state-space averaging (SSA) technique. 

Furthermore, two different nonlinear analysis methods, the 

Jacobian matrix method and Lyapunov exponent method, are 

adopted to analyze the fast-scale stability and the slow-scale stability 

of the PWM inverter under variations of control parameters, hence 

the stability regions can be obtained. The theoretical results indicate 

that, for the established stroboscopic models, the Jacobian matrix 

method and the Lyapunov exponent method are mathematically 

equivalent, which means that the fast-scale stability and slow-scale 

stability of the studied single-phase VSI are consistent, especially 

under linear load conditions. Experimental results under resistive 

load, inductive-resistive load, and diode rectifier load conditions are 

presented to support the theoretical results, which also proves that 

the discrete-time model plus Jacobian matrix method or Lyapunov 

exponent method is capable to investigate the stability of a converter 

with SRF control loops accurately. 

 

Index Terms—Single-phase, voltage source inverter (VSI), 

synchronous reference frame (SRF), stroboscopic map, nonlinearity, 

Jacobian matrix, Lyapunov exponent 

 І. INTRODUCTION 

SINGLE-phase voltage source inverters (VSIs) are widely 

used in various industrial fields, and play an important role in 

renewable energy systems including distributed generations 

(DGs) and microgrids (MGs) by serving as the interface for 

single-phase grid or local loads, due to the increasing penetration 

of renewable energy in recent years [1]-[4]. Single-phase VSIs 

can work either in grid-connected mode or stand-alone mode, and 

are closely combined with the pulse-width modulation (PWM) 

technique and digital control technologies. In general, the most 

common application of single-phase VSIs in stand-alone mode 

lies in off-grid power generation systems and power equipment  
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like uninterrupted power supply (UPS) [5], [6]. This kind of 

converter is normally designed with an LC smoothing filter and 

closed-loop control structure, to produce a stable sinusoidal 

output voltage of constant magnitude and frequency with fast 

dynamic response and zero steady-state error [7]. 

To regulate the output voltages of single-phase VSIs in stand-

alone mode, various control techniques, including stability 

analysis and parameters design methods, have been proposed. 

Apart from the conventional single or dual closed-loop control 

strategy based on the proportional-integral-derivative (PID) 

regulators, the deadbeat control [8], [9], repetitive control [10], 

[11], sliding mode control [12], [13], and proportional-resonant 

(PR) control [14], [15] are most frequently used control methods. 

The deadbeat control possesses excellent dynamic performance 

and wide control bandwidth due to the direct regulation of the 

inverter output voltage, but it is highly sensitive to system 

parameters and cannot remove the steady-state errors of system. 

The repetitive control is mainly designed for systems with 

periodic output, and it is effective in suppressing the harmonics 

of the output voltage. However, poor rejection of aperiodic 

disturbance, slow dynamics and low tracking accuracy normally 

limits the application of this control technique. The sliding mode 

control exhibits superiority in the dynamic behaviors, and 

implementation simplicity, and less additional regulation. 

Despite these advantages, sliding mode control also suffers from 

obvious flaw of dynamic tracking accuracy. PR control is well 

known for its capacity of effectively eliminating the steady-state 

error in tracking ac signals and applicability of instantaneous 

voltage control for single-phase VSIs, and the PR control scheme 

containing multiple resonant units is a prevalent method for 

harmonic compensation. But PR control is also constrained by 

the disadvantages of poor dynamic response to input changes and 

great sensitivity to deviations of sampling signals. In addition to 

these methods, some intelligent control approaches, such as 

adaptive control [16], neural network control [17], and fuzzy 

control [18], have also been presented in literatures. Generally, 

intelligent control methods are applied in practical applications 

for their advantages of strong robustness, low dependence on 

system parameters, and adaptive characteristics, which means 

that these approaches are suitable for nonlinear, time-varying or 

delay systems. However, due to the high complexity, limited 

control precision, and the lack of complete analysis and design 

guidelines, intelligent control methods are still not mature for 

converter systems to a certain extent. 

In [19]-[21], a synchronous reference frame (SRF) control 

scheme for the single-phase VSI is presented. This control 

technique has attracted increasing interests due to its advantage 

of realizing a zero steady-state error by employing the 

conventional PI regulators in the SRF. To utilize this control 

technique, a fictitious second phase voltage is generated by the 

orthogonal-signal-generation (OSG) techniques to emulate a 

two-phase system, and the electrical signals are transformed to 

the SRF for effective control. Stability analysis and parameters 

design of digital controlled single-phase VSIs with SRF voltage 

control are illustrated in [22], [23], by using equivalent transfer 

functions in stationary frame to overcome the analytical difficulty 
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caused by coordinate transformation. However, the switching 

converters are nonlinear systems in nature, whose nonlinear 

characteristics are originated from both the power circuits and the 

control systems. Despite the broad applicability for switching 

converters, linear analysis methods like transfer functions suffer 

from the drawbacks of poor description for the nonlinearity and 

the fast-scale dynamics of switching converters, and incomplete 

stability prediction. On the contrary, the nonlinear approaches are 

capable of illustrating the slow- and fast-scale stability of the 

switching converters directly, and well adapted to present the 

nonlinear phenomena such as bifurcation and chaos in switching 

converters. Furthermore, the nonlinear approaches have been 

shown to be suitable for analyzing the digital controlled 

switching converters reliably and accurately [24], [25]. 

In retrospect, the nonlinear theory is first adopted to study the 

nonlinear phenomena in DC-DC converters [26]-[28], and then 

extended to the other switching converters like PWM inverters 

[29]-[34], power factor correction (PFC) circuits [35], [36]. 

Several nonlinear control strategies for switching converters have 

been developed, such as the Lyapunov function-based and 

passivity-based control methods [30]-[34]. These control 

strategies can not only reserve the nonlinearities of the switching 

converters, but also ensure high control performances, including 

global stability, improved waveforms, zero steady-state error, and 

fast dynamics under linear or nonlinear load conditions. For 

stability analysis of switching converters, bifurcation diagram 

method, Lyapunov exponent method and Jacobian matrix method 

are three main nonlinear approaches [29]. These three methods 

are normally based on the discrete-time model, and for a certain 

system, they can be applied simultaneously. Bifurcation diagram 

method describes system stability through the bifurcation 

diagrams. To utilize this method, iterative calculation determined 

by the discrete-time model, should be implemented to compute 

numerous values of state variables under different bifurcation 

parameters. By plotting the calculated state variable values with 

the corresponding bifurcation parameter values into graphs with 

certain rules, bifurcation diagram can be produced. In an ordinary 

bifurcation diagram, bifurcation parameter is on one axis as an 

independent variable, and state value on the other axis as a 

dependent variable. System is stable on the bifurcation parameter 

intervals where one certain bifurcation parameter value 

corresponds to only one state variable value. System goes into the 

unstable period-n state on the bifurcation parameter intervals 

where one certain value of bifurcation parameter corresponds to 

n (n≥2) state variable values. And on the bifurcation parameter 

intervals where one certain bifurcation parameter value 

corresponds to infinite state variable values, system operates in 

chaotic state which is highly unstable [28]. Bifurcation diagram 

presents the stable and unstable parameter intervals, and the 

processes of bifurcations in a straightforward manner. However, 

to use this method, state variables are required to be precisely 

calculated in iterations, which is not available for all discrete-

time models, and may lead to a huge computational burden.  

The Lyapunov exponent method depicts the system stability by 

employing the Lyapunov exponent. An n-dimensional system 

possesses n Lyapunov exponents, and system stability can be 

described by the maximum one. The stability criteria of 

Lyapunov exponent method is, negative maximum Lyapunov 

exponents indicate that the system is stable, zero maximum 

Lyapunov exponents indicate that system operates in critical 

steady state, and positive maximum Lyapunov exponents indicate 

that the system is chaotic. The maximum Lyapunov exponent can 

be calculated by several approaches [37]. By plotting the 

maximum Lyapunov exponent with the selected system 

parameter into graphs, the maximum Lyapunov exponent 

spectrums can be obtained. In maximum Lyapunov exponent 

spectrum, the stable and unstable parameter intervals can be 

demonstrated clearly. The principle of Jacobian matrix method is 

to determine system stability on the basis of the eigenvalues of 

Jacobian matrix at the fixed point of discrete-time model [38]. 

The stability criteria of Jacobian matrix method can be expressed 

as: when all eigenvalues of Jacobian matrix at the fixed point of 

discrete-time model are located in the unit circle on the complex 

plane, system is stable, and when any eigenvalue lies outside the 

unit circle, system becomes chaotic. For the critical situations that 

some eigenvalues lie on the unit circle but no eigenvalue lies 

outside it, system moves into the critical steady state [39], [40]. 

The Jacobian matrix method is carried out in one single switching 

cycle, which is a sufficiently short time period that can be defined 

as the so called “fast-scale”. It reveals the system dynamic 

behavior which possesses low amplitude or high frequency close 

to the switching frequency, so the stability described by this 

feature is usually called the fast-scale stability of switching 

converters. On the contrary, the bifurcation diagram method and 

Lyapunov exponent method are both implemented in multiple 

successive switching cycles, which constitute a much longer time 

period that can be defined as the “slow-scale”, and they normally 

demonstrate the system dynamic property with a frequency that 

is much lower than the switching frequency, and the stability 

characteristics can be called the slow-scale stability of switching 

converters. 

Without doubt, discrete-time model is significant for stability 

analysis of the switching converters using the bifurcation 

diagram method, Lyapunov exponent method or Jacobian matrix 

method. Discrete-time models of switching converters are 

usually derived by using discrete maps. Depending on the 

mapping points, discrete maps mainly include stroboscopic map, 

synchronous switching map, asynchronous switching and two-

by-two map, while the stroboscopic map is the most popular one 

[41], [42]. In stroboscopic map, the state variables at the end point 

are derived by solving the state equations with state variables at 

the starting point within one switching cycle, which is equivalent 

to sampling the state variables with switching frequency. For 

stability analysis, stroboscopic model defined by the stroboscopic 

map, is proved to be reliable and accurate. However, the inherent 

piecewise-linear property of switching converters can bring great 

difficulties in calculating the exact solutions of the state equations 

during a switching cycle, especially for state equations of high 

order, which creates a limitation for stroboscopic map. For the 

sake of facilitating the modeling of converters with stroboscopic 

map, the state-space averaging technique has been proposed [24], 

[43]. In [24], a single-phase VSI with capacitor voltage and 

inductor current feedback control in stationary frame, as well as 

a current-controlled BOOST chopper, is investigated by Jacobian 

matrix method. In addition, a comparison of stroboscopic models 

derived by using the state-space average technique and precisely 

solving the state equations is presented to confirm that the former 

is accurate enough for analyzing the nonlinear characteristics of 

switching converters with high switching frequency.  

In this paper, the detailed stability analysis of a digital 

controlled single-phase VSI with SRF voltage control is 

presented by employing nonlinear approaches. The stroboscopic 

model of the inverter is established by using the state-space 

averaging technique, and analyzed by Jacobian matrix method 

and Lyapunov exponent method under control parameters 

variations. The stability regions of the inverter are obtained, and 

the analysis results show that, for the studied stroboscopic model, 

the fast-scale stability described by Jacobian matrix method is 

equivalent to the slow-scale stability determined by Lyapunov 

exponent method. Experimental results under resistive load, 

inductive-resistive load, and diode rectifier load conditions are 

presented to validate the theoretical analyses. 

This paper is organized as follows. Section II presents the 

modeling of the single-phase VSI with SRF voltage control, and 
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the stroboscopic model is derived. Section III provides the 

stability analyses of the inverter under the parameter variations 

of voltage loop. The stability analysis of the inverter under the 

parameter variations of current loop is presented in Section IV. 

Section V presents the experimental results to validate the 

theoretical analyses. Section VI concludes the paper. 

II. SYSTEM MODELING OF SINGLE-PHASE VSI WITH SRF 

VOLTAGE CONTROL 

Fig. 1 illustrates the structure of the studied digital controlled 

single-phase VSI with SRF voltage control, which works in the 

stand-alone mode with an LC filter and the load Z. As can be seen, 

the filter capacitor voltage plus the filter capacitor current 

feedback control strategy is applied in this inverter system. 

Specifically, to emulate a two-phase system, the filter capacitor 

voltage vC is taken as the α-axis input vα for the Park’s 

transformation, and a fictitious electrical signal generated by the 

time delay block serves as the β-axis input vβ. In the stationary 

frame, the reference of vC is defined as vC
* =VCmcos(ωft) with a 

fundamental cycle of Tf=2π/ωf, so the time delay block delays vC 

for one quarter of Tf in time domain to ensure that its output vβ 

is orthogonal to vC. The d-axis reference voltage vd
* in the SRF 

is then set to the desired magnitude VCm, and the q-axis reference 

voltage vq
*  is equal to zero. After the same PI control for the 

deviation of both vd and vq, the electrical signals are transformed 

back to stationary frame by inverse Park’s transformation, and the 

α-axis output is subsequently taken as the reference for the filter 

capacitor current iC in current loop, since only α-axis quantities 

correspond to the real system. In the current loop, the deviation 

of iC is regulated by a proportional controller, and then 

modulation signal vm is finally produced.  

Main parameters of the studied PWM inverter with a reduced-

scale power rating are listed in Table I except three important 

control parameters, proportional gain ki and integral gain kp of the 

PI controllers in voltage loop, and the proportional gain K in 

current loop, since their effect on the system stability is 

investigated in Section III and IV.  

 
Fig.1. System structure of the digital controlled single-phase VSI with SRF voltage control in stand-alone mode. 

TABLE I 

PARAMETERS OF THE PROTOTYPE INVERTER SYSTEM 

Parameter Symbol Value 

Dc-link voltage E 50V 

Filter inductance L 2mH 

Filter capacitance C 2.2μF 

Sampling frequency fs 20kHz 

Switching frequency f 20kHz 

d-axis reference value vd
* 40V 

Angular frequency ωf 100π rad/s 

A. System Modeling under Resistive Load Condition 

In this case, load Z in Fig.1 is regarded as a linear resistor of 

20Ω, which is denoted by R. Since the PWM inverter in stand-

alone mode is composed of power stage and digital controller, 

these two parts are modeled simultaneously in the following parts. 

The stroboscopic map used for the modeling is shown in Fig. 2.  

For the power stage, the filter inductor current iL and filter 

capacitor voltage vC are considered as state variables. In one 

switching cycle, the state in which S1 and S3 are on, and S2 and 

S4 are off is defined as State 1, while the state in which S2 and 

S4 are on, and S1 and S3 are off is defined as State 2. State 

equation for State 1 is derived as 

E
1 1

x = A x + B                (1) 

 

Fig. 2. Stroboscopic map of the single-phase PWM inverter. 
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And state equation for State 2 is written as 

E
2 2

x = A x + B               (2) 

where 

 
T

L Ci vx , 

1
0

1 1

L

C RC

 
 

    
 
  

1 2
A A A , 

1

0

L

 
 
 
 

1
B , 

1

0

L

 
 
 
 

2
B . 

The duty ratio denoted as d is defined as the duration of State 

1 in one switching cycle.  

In Fig. 2, it can be seen that the PWM inverter switches 

between State 1 and State 2 in a switching cycle, which makes 

the complete state equation piecewise linear and complicates the 

modeling process. To overcome this problem, the state-space 

averaging technique is employed. By averaging the durations of 

State 1 and State 2 in one switching cycle, a simplified state 

equation is derived to replace the original one, which is written 

as 

( ) (1 )( )d E d E    
1 1 2 2

x A x B A x B         (3) 

namely 

Ex = Ax + B                (4) 

where 

2 1

0

d

L

 
 
 
 

B . 

As illustrated in Fig. 2, taking the filter inductor current value 

iL(n) = iL(nT) and filter capacitor voltage value vC(n) = vC(nT) at 

the beginning of n-th switching cycle for initial conditions to 

solve equation (4), the filter inductor current value iL(n+1) = 

iL[(n+1)T] and filter capacitor voltage value vC(n+1) = vC[(n+1)T] 

at the beginning of (n+1)-th switching cycle are derived as 

1 2

3 4

1
( 1) [( 1) ] ( cos sin ) [1 2 ( )]

( 1) [( 1) ] ( cos sin ) [1 2 ( )]

T

L L

T

C C

i n i n T e K T K T d n E
R

v n v n T e K T K T d n E





 

 


      


       

 

(5) 

where d(n) is the duty ratio in the n-th switching cycle, and the 

expressions of α, β, K1, K2, K3, K4 are found in the Appendix A. 

For the digital controller, the duty ratio d is regarded as the 

state variable. In terms of the discrete map in Fig. 2, one 

switching cycle delay for the digital control is taken into account, 

and thus the stroboscopic model of control stage are expressed as 

1 1
( 1) ( )

2 2
md n v n                 (6) 

where 

*( ) [ ( ) ( )]m C Cv n K i n i n  , 

* * *

1

1

( ) (cos ) ( ) (cos )

(cos ) [ ( )cos( ) ( )sin( )]

(sin ) [ ( )sin( ) ( )cos( )]

C p d f p C i d f

n

i f C f C f

k

n

i f C f C f

k

i n k v nT k v nT nk v T nT

k T nT v kT kT v kT kT

k T nT v kT k T v kT kT

 

   

   





  

  

  





, 

2 f





 , 

1
( ) ( ) ( )C L Ci n i n v n

R
  . 

And d(n+1) is the duty ratio in the (n+1)-th switching cycle. 

vm(n)=vm(nT), iC
* (n)=iC

* (nT) , and iC(n)=iC(nT) represent the 

modulation signal, reference filter capacitor current and filter 

capacitor current in the n-th switching cycle respectively. Thus, 

the complete stroboscopic model of the PWM inverter is 

described by (5) and (6). Apparently, this model is linear in one 

switching cycle, but on a longer time interval, it is still a nonlinear 

description for the PWM inverter, which can be used to 

investigate the dynamic properties of the system, and the 

accuracy of this approach will be verified by experimental results. 

B. System Modeling under Inductive-Resistive Load Condition 

In this case, the load Z shown in Fig.1 is composed of a linear 

resistor of 10Ω and a linear inductor of 4mH, which are denoted 

as R1 and L1 respectively. Besides filter inductor current iL and 

filter capacitor voltage vC, output current io is also taken as a state 

variable for system modeling. By using the state-space averaging 

technique, the state equation of power stage is derived as 

E
3 3

x = A x + B                (7) 

where 

 
T

L C oi v ix , 

1

1 1

1
0 0

1 1
0

1
0

L

C C

R

L L

 
 

 
 
 
 
 
  

3
A , 

2 1

0

0

d

L

 
 
 

  
 
 

3
Β . 

Taking the filter inductor current value iL(n) = iL(nT), filter 

capacitor voltage value vC(n) = vC(nT), and output current value 

io(n)= io(nT) at the beginning of n-th switching cycle for initial 

conditions to solve (7), the filter inductor current value iL(n+1) = 

iL[(n+1)T], filter capacitor voltage value vC(n+1) = vC[(n+1)T], 

and output current value io(n+1)= io[(n+1)T)] at the beginning of 

(n+1)-th switching cycle are obtained as (8), shown at the bottom 

of the page, where the coefficients r, α1, β1, K5, K6, K7 are defined 

in the Appendix B. 

And the modeling of the digital controller is the same as the 

case under resistive load condition.  
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   (8) 
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C. System Modeling under Diode Rectifier Load Condition 

In this case, the structure of the studied PWM inverter is shown 

in Fig. 3. To eliminate the odd harmonics component in the output 

voltage, the harmonic suppression scheme which consists of a 

series of PI controllers in the SRFs with harmonic angular 

frequency, is adopted. The load resistor and capacitor of the diode 

bridge rectifier, denoted as Ro and Co, are 50Ω and 2mF 

respectively. An additional inductor of 2mH is employed to form 

an LC filter with Co, which is denoted as La.  

Due to the operational characteristic of diode-bridge rectifier, 

the on-off states of the four diodes in the rectifier are 

indeterminate for State 1 and State 2 during any switching cycle, 

which results in great difficulty in determining the output current 

io of the PWM inverter. In fact, accurate time-domain io, namely 

the input current of the diode bridge rectifier needed for system 

modeling, can be obtained only under a certain input voltage of 

the diode-bridge rectifier, which possesses an explicit expression 

on a time interval composed of one or several successive 

fundamental periods, rather than a switching cycle [44]. 

Furthermore, the conduction angles of diode bridge rectifier are 

normally calculated by the iterative algorithms like Newton-

Raphson method or Gauss-Seidel approach, which is complex 

and time-consuming [45]. Therefore, precise modeling of the 

PWM inverter under diode rectifier load condition is nearly 

impossible with the stroboscopic map. However, by using an 

equivalent controlled current source (CCS) to represent the diode 

rectifier load, the approximate system modeling can be conducted. 

A simple and practical equivalent model of the diode rectifier 

load is proposed in [46], and described in Fig. 4. 

 

Fig. 3. Structure of the digital controlled single-phase VSI with diode rectifier load. 

Clearly, this model is an equivalent current source controlled 

by a dead-zone block with a proportional regulator and sinusoidal 

input voltage. Since the input voltage of the real diode rectifier 

uin is quite close to the desired sinusoidal voltage vC
* = 

VCmcos(ωft) under the steady state of the inverter, then supposing 

the input voltage of the equivalent model uin,e is also 

vC
* =VCmcos(ωft), and thus parameters of the equivalent model 

including the regulation gain a, dead-zone limit uL can be selected 

to achieve the best possible approximation of the real diode 

rectifier input current by simulation. Finally, the time-domain 

explicit expression of the PWM inverter output current io is 

approximately written as 

,

[( cos ) ], cos

( ) ( ) 0, cos

[ ( cos )], cos

Cm f L Cm f L

o o e L Cm f L

L Cm f Cm f L

a V t u V t u

i t i t u V t u

a u V t V t u

 



 

 


    
    

(9) 

Once again, by taking the filter inductor current iL and filter 

capacitor voltage vC as the state variables, the simplified state 

equation of power stage is derived as 

4 4
x = A x + B               (10) 
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Fig. 4. Equivalent model of the diode bridge rectifier load. 
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Mathematically, taking the filter inductor current value iL(n) = 

iL(nT) and filter capacitor voltage value vC(n) = vC(nT) at the 

beginning of the n-th switching cycle for the initial conditions to 

solve (10), the filter inductor current value iL(n+1) = iL[(n+1)T] 

and the filter capacitor voltage value vC(n+1)=vC[(n+1)T] can be 

derived.  

For the digital controller, vm(n) is modified as 

*

, _ 2 1

0

( ) [ ( )] ( )
n

m C m C

m

v n K i n Ki n 



          (11) 

The output of the (2m+1)-th order harmonic controller is 

represented as (12), presented at the bottom of the page, where τ 

=π/2ωf, iC(n) =iL(n)-io(n). 

The parameters kp,2m+1 and ki,2m+1 are the proportional gain and 

integral gain of the (2m+1)-th harmonic controller, d(n+1) keeps 

the same form as the case under resistive load condition. 

D. Discussion on the System Modeling of the PWM Inverter in 

the Grid-Connected Mode 

In the grid-connected mode, an LCL filter is employed to 

replace the LC filter used in stand-alone mode, as presented in 

Fig. 5. The inverter output current io must be controlled to gain 

the same frequency as the grid voltage, which is also mainly 

implemented in the SRF. Supposing the grid voltage is  

 

vg=Vgmcos(ωgt+φ), the reference of io is accordingly defined as 

io
*= Iomcos(ωgt+φ). As a result, the d-axis reference current id

* is 

determined as Iomcosφ, and q-axis reference current iq
* is set as 

Iomsinφ . The angular frequency ωg and phase φ of the grid voltage 

are identified by a single-phase phase-locked loop (PLL), and 

normally, ωg and φ are constant for a definite single-phase grid. 

Taking filter inductor current iL, output current io, filter capacitor 

vC as state variables, and following the aforementioned modelling 

steps, the stroboscopic model of the PWM inverter in grid-

connected mode can be established, and this model can also be 

analyzed by the methods demonstrated in Section III and IV.  

III. STABILITY ANALYSIS UNDER VARIATIONS OF CONTROL 

PARAMETERS IN VOLTAGE LOOP 

Because the fictitious second phase voltage vβ is generated by 

delaying vC for one quarter of fundamental cycle of vC
* , it is 

extremely difficult to obtain the exact values of vβ at the 

beginning of any switching cycle for the direct iteration defined 

by the stroboscopic model. Thus, the Jacobian matrix method and 

Lyapunov exponent method are employed for the stability 

analysis of the PWM inverter. 

A. Stability Analysis under Resistive Load by Using Jacobian 

Matrix Method 

Denoting the fixed point of the stroboscopic model as (iL
* , vC

* , 

d
*
) and substituting it into (5) and (6), and supposing 

iL(n+1)=iL(n)=iL
* , vC(n+1)=vC(n)=vC

* , d(n+1)=d(n)=d
* , the 

Jacobian matrix at the fixed point is derived as (13), where the 

matrix elements are listed in the Appendix C.

 

 

*

, _ 2 1 ,2 1 ,2 1

1

,2 1

1

( ) ( ) cos[(2 1) ] { ( )cos[(2 1) ] ( )sin[(2 1) ]}

sin[(2 1) ] { ( )sin[(2 1) ] ( )cos[(2 1) )]}

n

C m p m C i m f C f C f

k

n

i m f C f C f

k

i n k v nT k T m nT v kT m kT v kT m kT

k T m nT v kT m kT v kT m kT

    

   

  







       

     





  (12) 
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Fig. 5. System structure of the digital controlled single-phase VSI with SRF control loop in grid-connected mode. 
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(13) 

 

As can be seen, the Jacobian matrix in (13) is independent to 

any fixed point of the stroboscopic model, and this is because the 

stabilities of different fixed points are regarded as consistent for 

the established state-space averaging model.  

To investigate the fast-scale stability of the PWM inverter with 

a low computation cost, four typical values of ki including 20, 40,  

60, 80, are taken into account to find the stability regions by 

Jacobian matrix method, which are depicted in Fig. 6. In Fig. 6, 

 

 

 
Fig. 6. Stability regions of the single-phase VSI with SRF voltage control under different ki. (a) ki=20; (b) ki=40; (c) ki=60; (d) ki=80. 
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the green zones represent the control parameters that enable all 

eigenvalues of the Jacobian matrix in (13) to be located in the unit 

circle on the complex plane, which means that the PWM inverter 

is stable. While the red zones represent parameters that make at 

least one eigenvalue of the Jacobian matrix lies on or outside the 

unit circle, which indicates that the PWM inverter is unstable. 

It is obvious that, for a certain ki, stable intervals of K become 

smaller as kp increased. Conversely, when K increases, stable 

intervals of kp reduce. However, the effect of parameter ki on the 

stability of the PWM inverter is not distinct. This is because the 

Jacobian matrix in (13) contains only one component of ki, which 

is (1/2)KTki. Owing to a sufficiently small switching cycle T, it is 

hard for (1/2)KTki to exert a significant influence on the 

eigenvalues of the Jacobian matrix. 

In consideration of the stability regions in Fig. 6 and without 

loss of generality, ki=20 and K=0.5 is taken as a typical condition 

to analyze the effect of kp on the fast-scale stability of the PWM 

inverter in detail. Denoting three eigenvalues of the Jacobian 

matrix in (13) as λ1, λ2, λ3, and then their loci and moduli are 

illustrated in Fig. 7.  

 

      (a) Loci of λ1, λ2, λ3                                         (b) Moduli of λ1, λ2, λ3 

  

     (c) Locus of λ1                                            (d) Modulus of λ1 

 

     (e) Locus of λ2                                            (f) Modulus of λ2 

  

      (g) Locus of λ3                                       (h) Modulus of λ3 
Fig. 7. Loci and moduli of three eigenvalues of the Jacobian matrix when kp varies under condition of ki=20 and K=0.5. 
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As shown in Fig. 7, λ1 and λ2 form a pair of complex-conjugates, 

and λ3 remains real on the studied interval consistently. When 

0<kp<0.082, λ1, λ2 and λ3 all lie in the unit circle, which suggests 

that the PWM inverter is stable. When 0.082<kp<1, λ1 and λ2 

move outside the unit circle, while λ3 still locates in it, which 

indicates that the PWM inverter becomes unstable. Thus, 

kp=0.082 is the critical point determining the stable and unstable 

state of the PWM inverter when ki=20 and K=0.5. 

B. Stability Analysis under Resistive Load condition by Using 

Lyapunov Exponent Method 

To validate the above results obtained by Jacobian matrix 

method, the maximum Lyapunov exponents of the inverter are 

calculated to show its slow-scale stability. According to [37], the 

maximum Lyapunov exponent of a three-dimensional discrete 

system can be defined as 

 1 2 3max , ,L L L L                (14) 

 
1

1 12

3

1
lim ln [ ]

L

n nL
n

L

eig J J J
n










 
 


 
  

         (15) 

 

where eig(JnJn-1…J1) is the eigenvalue function of JnJn-1…J1, and 

Jn is the Jacobian matrix at the mapping point in the n-th 

switching cycle. Moreover, in terms of the stroboscopic model in 

(5) to (6), it is possible to derive J1=J2=…Jn-1=Jn=J, in which the 

J is the Jacobian matrix presented in (13). 

 

 

 

 
Fig. 8. Projections on the K-kp plane of maximum Lyapunov exponent spectrums under different ki. (a) ki=20; (b) ki=40; (c) ki=60; (d) ki=80. 

Fig. 8 illustrates the projections of maximum Lyapunov 

exponent spectrums on K-kp plane, under ki =20, 40, 60, 80. The 

red regions represent the control parameters leading to positive 

or zero maximum Lyapunov exponent, which are defined as 

unstable regions for the inverter. And the green regions match the 

control parameters producing negative maximum Lyapunov 

exponent, which are accordingly defined as stable regions. 

Clearly, Fig. 8 is almost the same as Fig. 6, and that means the 

slow-scale analysis results obtained by Lyapunov exponent 

method are consistent with the fast-scale analysis results obtained 

by Jacobian matrix method. 

In fact, since J1=J2=…Jn-1=Jn=J, it is possible to obtain 

eig(JnJn-1…J1)=[eig(J)]n according to matrix theory, which yields 

 

 

 

 

 

1

1 12

3

1
lim ln [ ]

1
lim ln [ ]

ln [ ]

L

n nL

L

eig J J J
n n

neig J
n n

eig J


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



 
 


  
  






     (16) 

Obviously, equation (16) shows a direct proof for the 

equivalence of Jacobian matrix method and Lyapunov exponent 

method, which also reveals that, in the sense of state space 

averaging, the fast-scale stability and slow-scale stability are 

almost the same for the studied PWM inverter model. 
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The maximum Lyapunov exponent spectrum on kp is presented 

in Fig. 9 under condition of ki =20 and K=0.5. As can be seen, 

when kp <0.082, the maximum Lyapunov exponent is negative, 

but when kp >0.082, the maximum Lyapunov exponent becomes 

positive, which means that kp =0.082 is the critical point when 

ki=20 and K=0.5. Fig. 9 clearly shows a good consistency with 

Fig. 7. 

 
Fig. 9. The maximum Lyapunov exponent spectrum on kp, under resistive load 

condition when ki=20 and K=0.5. 

C. Stability Analysis under Inductive-Resistive Load Condition 

In view of the consistency of Jacobian matrix method and 

Lyapunov exponent method proved in the analyses under 

resistive load condition, and the significant similarities between 

the system models of resistive and inductive-resistive load, it is 

reasonable to infer that Jacobian matrix method and Lyapunov 

exponent method are also coincident for inductive-resistive load, 

which reveals the fact that inductive-resistive load is inherently a 

kind of linear load. Therefore, for the sake of brevity, only 

Lyapunov exponent method is adopted to investigate the effect of 

kp on the stability of the PWM inverter when ki=20 and K=0.5 in 

this part. The result is presented in Fig. 10. It is clear that, when 

kp <0.07, the maximum Lyapunov exponent is negative, but when 
kp >0.07, the maximum Lyapunov exponent becomes positive. So 

kp =0.07 is the critical point for system stability when ki=20 and 

K=0.5 under inductive-resistive load condition. 

 

Fig. 10. The maximum Lyapunov exponent spectrum on kp under inductive-

resistive load condition when ki=20 and K=0.5. 

D. Stability Analysis under Nonlinear Load Condition 

Since the equivalent controlled current source is an 

approximated time-domain model of the diode rectifier with 

limited precision, so it is not very suitable for fast-scale stability 

analysis of the PWM inverter which is sensitive to the model 

accuracy. Hence, in this part, only slow-scale stability analysis 

under diode rectifier load condition is conducted when ki =20 and 

K=0.5 by employing the equivalent diode rectifier model and 

Lyapunov exponent method. The 3rd, 5th, 7th, 9th, and 11th 

harmonic control schemes are also added into the controller, and 

the parameters of them are selected by simulation method and 

considered as constants in the analysis. The result is presented in 

Fig. 11. It can be seen that, when kp<0.048, the maximum 

Lyapunov exponent is negative, but when kp>0.048, the 

maximum Lyapunov exponent becomes positive, which means 

that kp =0.048 is the critical point when ki =20 and K=0.5 under 

nonlinear load condition. Apparently, the critical point of kp is 

smaller under nonlinear load condition, compared to the cases of 

linear load conditions with same ki and K. 

 
Fig. 11. The maximum Lyapunov exponent spectrum on kp under nonlear  

load condition when ki =20 and K=0.5. 

IV. STABILITY ANALYSIS UNDER VARIATIONS OF CONTROL 

PARAMETERS IN CURRENT LOOP 

A. Stability Analysis under Resistive Load Condition by Using 

Jacobian Matrix Method 

Considering the analysis in Section III, the effect of K on the 

stability of the PWM inverter is investigated under condition of 

ki =20 and kp=0.04 by Jacobian matrix method first. Fig. 12 shows 

the loci and moduli of the three eigenvalues of the Jacobian 

matrix in (13), under variations of parameter K. 
As shown in Fig. 12, on the studied interval of K, λ1 and λ2 are 

a pair of complex-conjugates. λ3 is real and remains in the unit 

circle when K varies. When K<0.742, λ1 and λ2 are located in the 

 

 

 
      (a) Loci of λ1, λ2, λ3                                          (b) Moduli of λ1, λ2, λ3 
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     (c) Locus of λ1                                           (d) Modulus of λ1 

 
     (e) Locus of λ2                                             (f) Modulus of λ2 

 
     (g) Locus of λ3                                             (h) Modulus of λ3 

Fig. 12. Loci and moduli of the three eigenvalues of the Jacobian matrix when K varies under condition of ki=20 and kp=0.04. 

unit circle, but when K>0.742, they move outside the unit circle. 

Hence the PWM inverter is stable when K<0.742, but unstable 

when K>0.742, and K=0.742 is the critical point for the stability 

of the inverter when ki=20 and kp=0.04. 

 

Fig. 13. The maximum Lyapunov exponent spectrum on K under resistive load 

condition when ki=20 and kp=0.04. 

B. Stability Analysis under Resistive Load Condition by Using 

Lyapunov Exponent Method 

Fig. 13 depicts the maximum Lyapunov exponent spectrum on 

K when ki=20 and kp=0.04 to validate the results in Fig. 12. In Fig. 

13, it is shown that when K<0.742, the maximum Lyapunov 

exponent is negative. However, when K>0.742, the maximum 

Lyapunov exponent becomes positive, which means that 

K=0.742 is the critical point. Obviously, Fig. 13 shows a good 

consistency with Fig. 12.  

C. Stability Analysis under Inductive-Resistive Load Condition 

Under inductive-resistive load condition, Lyapunov exponent 

method is adopted to investigate the effect of K on the stability of 

the PWM inverter when ki=20 and kp=0.04, and the result is 

shown as Fig. 14. It can be seen from Fig. 14, when K<0.652, the 

maximum Lyapunov exponent is negative, but when K>0.652, 

the maximum Lyapunov exponent becomes positive. So K=0.652 

is the critical point when ki=20 and kp=0.04 under inductive-

resistive load condition.  

 

Fig. 14. The maximum Lyapunov exponent spectrum on K under inductive-
resistive load condition when ki=20 and kp=0.04. 

D. Stability Analysis under Nonlinear Load Condition 

Under nonlinear load condition, slow-scale analysis is done to 

investigate the effect of K on the stability of the PWM inverter 

when ki=20 and kp=0.04, based on the equivalent model of diode 
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rectifier and Lyapunov exponent method. The 3rd, 5th, 7th, 9th, 

and 11th harmonic controllers are also employed in this case, and 

the parameters of them keep the same as those in the analysis on 

kp in Part D, Section III. The analysis result is shown in Fig. 15. 

It is clear that, when K<0.552, the maximum Lyapunov exponent 

is negative. However, when K>0.552, the maximum Lyapunov 

exponent becomes positive, and that means K=0.552 is the 

critical point under nonlinear load when ki=20 and kp=0.04. 

Evidently, this critical point of K is obviously much smaller than 

those of linear load conditions with same ki and kp. 

 
Fig. 15. The maximum Lyapunov exponent spectrum on K under nonlinear load 
condition when ki=20 and kp=0.04. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

According to the system structure in Fig. 1 and parameters in 

Table I, an experimental PWM inverter is built with a controller 

of TMS320F28335 DSP to verify the theoretical analyses. 

Voltage sensor HPT205A and current sensor ACS712ELCTR-

05B-T are employed. The transformation ratio of HPT205A is 

2mA: 2mA, and its precision is 0.1%. The optimized range of 

ACS712ELCTR-05B-T is ±5A, and its sensitivity is 185 mV/A. 

The DC-link voltage of the inverter is provided by a 

programmable DC power supply. The RIGOL digital 

oscilloscope is employed to record the time-domain waveforms 

and FFT results. The experimental results are presented as 

follows. 

A. Experimental Results under Resistive Load Condition 

Fig. 16 shows the steady-state waveforms under resistive load 

condition for different kp when ki =20, K=0.5. It is evident that, 

waveforms of the filter capacitor voltage vC and output current io  

are periodic and sinusoidal without any distortion when 

kp=0.042,which indicates that the PWM inverter is stable. When 

kp=0.062, waveforms of vC and io become slightly distorted, 

which means that the PWM inverter is nearly critical stable. 

When kp increases to 0.082, waveforms of vC and io are obviously 

distorted, which suggests that the PWM inverter is oscillating. 

 

 
Fig. 16. Steady-state waveforms under resistive load condition for different kp when ki=20 and K=0.5. (a) kp=0.042; (b) kp=0.062; (c) kp=0.082; (d) kp=0.102. 
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Fig. 17. Transient waveforms under resistive load condition when ki=20, K= 0.5 and kp=0.04 (a) Transient waveforms in response to no load to nominal resistive load 

step change; (b) Transient waveforms in response to +50% step change of load resistor 

And when kp=0.102, serious oscillation appears in the waveforms 

of vC and io, and the PWM inverter is totally unstable. Therefore, 

experimental results in Fig. 16 are in accordance with the 

theoretical results that the PWM inverter becomes unstable when 

kp>0.082 for ki=20 and K=0.5. Besides the waveforms observed 

in several fundamental cycles of vC which describe the slow-scale 

dynamic behaviors of the inverter, the magnified waveforms of 

vC and io in successive switching cycles are also provided to 

present the fast-scale dynamic behaviors of the inverter. 

Obviously, the magnified waveforms demonstrate almost the 

same stability characteristics as the normal waveforms, and that 

means the fast- and slow-scale stability are consistent for the 

inverter under resistive load condition, which is also consistent 

with the theoretical results. 

The transient waveforms under resistive load condition when 

ki=20, K=0.5, and kp=0.04 are presented in Fig. 17, including the 

transient waveforms in response to no load to nominal resistive 

load step change, and transient waveforms in response to +50% 

step change of load resistor. Clearly, the transient waveforms 

prove that the dynamic response of the PWM inverter with 

resistive load is quite fast. 

 

Fig. 18. Steady-state waveforms under resistive load condition for different K when ki=20 and kp=0.04. (a) K=0.542; (b) K=0.642; (c) K=0.742; (d) K=0.842. 

Fig. 18 illustrates the steady-state waveforms under resistive 

load condition for different K when ki=20 and kp=0.04. As shown 

in Fig. 18, waveforms of the filter capacitor voltage vC and output 

current io are periodic and sinusoidal without any distortion when 

K=0.542, which indicates that the PWM inverter is stable. When 

K=0.642, waveforms of vC and io become slightly distorted, 

which means that the PWM inverter is nearly critically stable. 

And when K increases to 0.742, noticeable oscillation are 

observed in the waveforms, which indicates that the PWM 

inverter becomes unstable. And when K=0.842, significant 

oscillation appears in waveforms of vC and io, and that means the 

PWM inverter is highly unstable in this case. Thus, the 
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experimental results in Fig. 18 show consistency with the 

theoretical results, i.e., the PWM inverter becomes unstable when 

K>0.742 for ki=20 and kp=0.04. In addition, the presented 
magnified waveforms of vC and io also show similar dynamic 
properties like those in the normal waveforms, and verify the 
consistency of the fast- and slow-scale stability for the PWM 
inverter.  

B. Experimental Results under Inductive-Resistive Load 

Condition 

The steady-state waveforms under inductive-resistive load 

condition for different kp when ki =20 and K=0.5 are shown in Fig. 

19. It can be seen that, waveforms of filter capacitor voltage vC 

and output current io are sinusoidal and periodic when kp= 0.05, 

which indicates that the PWM inverter is stable. But when kp 

=0.06, waveforms of vC and io become slightly distorted, which 

means that the PWM inverter is almost critically stable. And 

when kp =0.07, waveforms of vC and io become oscillating, which 

means that the PWM inverter becomes unstable. When kp =0.08, 

waveforms of vC and io oscillate remarkably, which indicates that 

the PWM inverter is totally unstable. Thus, the experimental 

results in Fig. 19 show good conformity with the theoretical result 

that the PWM inverter becomes unstable when kp >0.07 for ki=20 

and K=0.5. Furthermore, as can be observed in Fig.19, the 
magnified and normal waveforms of vC and io are also 
substantially consistent in dynamic characteristics, which 
proves the concordance of the fast- and slow-scale stability for 
the inverter under inductive-resistive load condition.  

Fig. 20 depicts the transient waveforms under inductive-

resistive load condition when ki=20, K=0.5, and kp=0.04, 

including both the transient waveforms in response to no load to 

nominal resistive load step change, and transient waveforms in 

response to -50% step change of load resistor. It can be seen that, 

the dynamic performance of the PWM inverter with inductive-

resistive load is also excellent. 

 
Fig. 19. Steady-state waveforms under inductive-resistive load condition for different kp when ki=20, K=0.5. (a) kp=0.05; (b) kp=0.06; (c) kp=0.07; (d) kp=0.08. 

 

Fig. 20. Transient waveforms under inductive-resistive load condition when ki=20, K=0.5 and kp=0.04 (a) Transient waveforms in response to no load to nominal 

resistive load step change; (b) Transient waveforms in response to -50% step change of load resistor 
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C. Experimental Results under Nonlinear Load Condition 

Fig. 21 presents the steady-state waveforms under nonlinear 

load condition with and without using harmonic control scheme 

for the 3rd, 5th, 7th, 9th, and 11th harmonic components. As 

shown in Fig. 21(b), by employing the harmonic control scheme, 

the 3rd, 5th, 7th, 9th, and 11th harmonic components are 

significantly reduced. The total harmonic distribution (THD) of 

vC becomes smaller, and approximately sinusoidal waveform of 

vC is obtained, which validates the effectiveness of the proposed 

harmonic control scheme. 

The steady-state waveforms under nonlinear load condition for 

different kp when ki=20 and K=0.5 are shown in Fig. 22. In Fig. 

22 (a), when kp=0.038 which is lower than the critical value 0.048 

in Fig. 11, the THD of vC is relatively small. But when kp 

increases to 0.058, the THD of vC becomes much higher, as 

shown in Fig.22 (b). The experimental results reveal that, the 

Lyapunov exponent method and equivalent model of diode 

rectifier are effective for the approximate slow-scale stability 

analysis under nonlinear load condition. 

Fig. 23 demonstrates the steady-state waveforms under 

nonlinear load condition for different K when ki=20 and kp=0.04. 

It can be seen that, when K=0.452 which is lower than the critical 

value 0.552 in Fig. 15, the harmonic distortion of vC is less 

obvious. However, when K=0.652 which is higher than 0.552, the 

harmonic distortion of vC increases significantly, as shown in 

Fig.23 (b). The experimental results also clearly verify the 

validity of the Lyapunov exponent method and equivalent model 

of diode rectifier for the approximate slow-scale stability analysis 

under nonlinear load condition. 

 

Fig. 21.Steady-state waveforms under nonlinear load condition with and without using harmonic control scheme. (a) Without using harmonic control scheme. (b) With 

using harmonic control scheme 

 
Fig. 22. Steady-state waveforms under nonlinear load condition for different kp when ki=20 and K=0.5 for different kp.(a) kp=0.038. (b) kp=0.058 

 

Fig. 23. Steady-state waveforms under nonlinear load condition for different K when ki=20 and kp=0.04 for different K.(a) K=0.452. (b) K=0.652 
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VI. CONCLUSION 

This paper presents the stability analysis of a digital controlled 

single-phase VSI with SRF voltage control by employing two 

nonlinear approaches, Jacobian matrix method and Lyapunov 

exponent method. To adopt these two methods, the stroboscopic 
model of the PWM inverter is established by using the state-space 

averaging technique. The analyses are subsequently implemented 

under variations of three control parameters of voltage loop and 

current loop, and stability regions of the PWM inverter system 

are obtained. 

In addition, for the derived stroboscopic model, the Jacobian 

matrix method and Lyapunov exponent method are proved to be 

mathematically equivalent. Therefore, the fast-scale stability and 

slow-scale stability described by Jacobian matrix method and 

Lyapunov exponent method respectively are consistent for the 

studied PWM inverter in stand-alone mode. The theoretical 

results are verified by the experimental results, which indicates 

that discrete-time model plus Jacobian matrix method or 

Lyapunov exponent method are capable to analyze the stability 

of a switching converter with SRF control loops accurately.  

APPENDIX A 

Expressions of α, β, K1, K2, K3, K4 in Equation (5): 
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APPENDIX B 

Definitions of Coefficients in Equation (8): 

2 3 2 3

13 3

12 4 27 2 4 27 3

Rq q p q q p
r

L
            (B1) 

2 3 2 3

13 3
1

1

1

2 2 4 27 2 4 27 3

Rq q p q q p

L


 
           
 

 (B2) 

2 3 2 3

3 3
1

3

2 2 4 27 2 4 27

q q p q q p


 
         
 

    (B3) 

2

1 1

2

1 13

L L R
p

LL C L


                 (B4) 

3

1 1 1 1

3 2

1 1 1

2 ( )

27 3

R R R L L
q

LL C L LL C


             (B5) 

2 2

1 1 1 1 1
5

2 2 [2 ( ) 1]1 1
[ ] ( ) ( ) ( )L C o

L d n E
K i n v n i n

LC L LC L

    

     

 
      

 (B6) 

6 5( )LK i n K                (B7) 

1

7 1 5

1 1

1
{[2 ( ) 1] ( ) ( )}C L

r
K d n E v n Li n K

L




 


      (B8) 

2 2 2

1 1 12r                   (B9) 

APPENDIX C 

Expressions of Matrix Elements in Equation (13): 
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