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Direct Realization of Digital Differentiators in 

Discrete Domain for Active Damping of 

LCL-Type Grid-Connected Inverter 

Donghua Pan, Member, IEEE, Xinbo Ruan, Fellow, IEEE, and Xuehua Wang, Member, IEEE 

Abstract—To damp the LCL-filter resonance in a grid- 

connected inverter, the feedback of capacitor current is usually 

adopted, and it can be replaced by the feedback of capacitor 

voltage as a low-cost solution, if an accurate digital differentiator 

can be made. The best way for realizing such a differentiator has 

so far proved to be an indirect nonideal generalized integrator 

(GI). As a simple alternative, this paper proposes two digital 

differentiators, which are directly developed in the discrete 

domain. They are a first-order differentiator based on backward 

Euler plus digital lead compensator and a second-order 

differentiator based on Tustin plus digital notch filter. The basic 

idea of the proposed methods is to correct their frequency 

responses to match the ideal differentiator with embedded digital 

filters. It is shown that the proposed differentiators exhibit the 

same derivative performance as the nonideal-GI differentiator, 

and they are more attractive for digital implementations due to 

their direct discrete natures, compact expressions, and easy 

algebraic manipulations. In particular, the proposed first-order 

differentiator is most competitive for its general representation 

and simplest implementation. Finally, a 12-kW prototype is built, 

and experiments are performed to verify the theoretical analysis. 

 
Index Terms—Active damping, differentiator, discrete domain, 

grid-connected inverter, LCL filter. 

I. INTRODUCTION 

grid-connected inverter with an LCL filter has been a 

popular power conversion interface in distributed power 

generation systems [1]. The use of LCL filter offers a 

cost-effective attenuation of the switching harmonics, but it 

suffers from also a severe resonance problem. Passive and 

active solutions for damping the LCL-filter resonance have 

been extensively discussed, with the latter being favored for 

its high efficiency and flexibility [2]–[6]. Active damping 

solutions are usually realized by compensating the control 

loop through feeding back the filter state variables, which 

might be the inverter-side inductor current [5], [6], the 

capacitor current [7]–[12], and the grid current [13]–[15]. 

Among them, the capacitor current active damping (CCAD) 

has proved to be effective and robust with only a proportional 

feedback gain [16], [17]. However, measuring the capacitor 

current is not convenient and would take much cost, especially 

in high-power applications. An alternative to this issue is to 

compute the capacitor current from the known capacitor 

voltage, thus a set of current sensors can be saved. 

Obviously, a differentiator is needed for the capacitor 

voltage active damping (CVAD). Since the resonance 

frequency can vary in a wide range due to the variation of grid 

impedance [18], an accurate derivative over a wide frequency 

range should be preserved for an effective damping. This 

imposes great challenge on the realization of digital 

differentiator. Generally, there are two ways to develop a 

digital differentiator. One way is directly discretizing the “s” 

function with proper discretization methods, which might be 

forward Euler, backward Euler, and Tustin [19]. The forward 

Euler compromises the system stability by adding unstable 

poles. The backward Euler, on the other hand, introduces 

considerable phase lag at high frequency. Tustin produces an 

expected 90º phase, but its infinite gain at the Nyquist 

frequency will cause noise amplification. The other way is 

emulating the “s” function with a continuous filter and then 

discretizing such filter function, which is the indirect 

discretizing method. High-pass filter [13]–[15] and lead-lag 

element [20], [21] are the most common choices. 

Unfortunately, the high-pass filter is subject to the large phase 

lag as the backward Euler method, and the lead-lag element 

takes effect only in a narrow frequency range. 

Therefore, the main challenges of the digital differentiator 

lie in the large phase lag and noise amplification at high 

frequency. To address these issues, an indirect differentiator 

based on a nonideal generalized integrator (GI) is presented in 

[22] and [23]. By carefully tuning the damping term of the 

continuous nonideal GI, the infinite noise amplification is 

avoided at the expense of a slight phase lag at high frequency, 

which closely matches the characteristics of the “s” function. 

And these characteristics are retained in the discretized 

nonideal GI by applying the first-order hold (FOH) 

discretization method. In spite of the satisfactory derivative 

performance, the discretization process takes much effort, as 

various discretization methods have to be examined to find the 

A 

Manuscript received June 27, 2017; revised October 23, 2017; accepted 

November 27, 2017. This work was supported by the National Natural 

Science Foundation of China under Award 50837003. 
D. Pan was with the State Key Laboratory of Advanced Electromagnetic 

Engineering and Technology, School of Electrical and Electronic Engineering, 

Huazhong University of Science and Technology, Wuhan 430074, China. He 
is now with the Department of Energy Technology, Aalborg University, 

Aalborg 9220, Denmark (e-mail: dop@et.aau.dk). 

X. Ruan is with the State Key Laboratory of Advanced Electromagnetic 
Engineering and Technology, School of Electrical and Electronic Engineering, 

Huazhong University of Science and Technology, Wuhan 430074, China, and 

also with the Center for More-Electric-Aircraft Power Systems, College of 
Automation Engineering, Nanjing University of Aeronautics and Astronautics, 

Nanjing 210016, China (e-mail: ruanxb@nuaa.edu.cn). 
X. Wang is with the State Key Laboratory of Advanced Electromagnetic 

Engineering and Technology, School of Electrical and Electronic Engineering, 

Huazhong University of Science and Technology, Wuhan 430074, China (e-mail: 

wang.xh@hust.edu.cn). 

IEEE TRANSACTIONS ON POWER ELECTRONICS 



0885-8993 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2017.2780174, IEEE
Transactions on Power Electronics

2 

best one (i.e., FOH). Moreover, resulting from the 

sophisticated FOH method, the discretized nonideal GI is not 

easy to be expressed and requires substantial algebraic 

manipulations before putting into practice. 

Driven by the demand for ease of implementation, two 

simple digital differentiators that directly developed in the 

discrete domain are proposed in this paper. The basic idea of 

the proposed methods is to correct the frequency responses of 

the direct discretized differentiators with embedded digital 

filters. Specifically, a first-order differentiator is constructed 

by incorporating a digital lead compensator into backward 

Euler differentiator to raise its phase at high frequency, and a 

second-order differentiator is formed by cascading a digital 

notch filter to Tustin differentiator to attenuate its infinite gain 

at the Nyquist frequency. Without any complicated 

discretization process, the usages of the proposed 

differentiators turn to be very straightforward. A comparison 

between the proposed differentiators and the 

nonideal-GI-based one shows that both kinds of differentiators 

exhibit the same derivative performance, while the former 

ones are advantageous for their direct discrete natures, 

compact expressions, and easy algebraic manipulations, which 

thus facilitate their applications in practice. 

This paper begins with a systematic modeling of the 

LCL-type grid-conencted inverter with either CCAD or CVAD 

in Section II. This is followed by a brief review of the 

nonideal-GI differentiator in Section III. Then, the first-order 

and second-order differentiators are proposed in Section IV, 

and they are compared to the nonideal-GI-based one in 

Section V. Experimental results are provided to verify the 

effectiveness of proposed methods in Section VI. Finally, 

Section VII concludes this paper. 

II. MODELING THE LCL-TYPE GRID-CONNECTED INVERTER 

Fig. 1 shows a three-phase voltage-source inverter feeding 

into the grid through an LCL filter. L1 is the inverter-side 

inductor, C is the filter capacitor, and L2 is the grid-side 

inductor. Lg is the grid inductance. The grid current i2 is 

controlled with a proportional-integral (PI) regulator in the 

synchronous dq frame. The capacitor voltage vC is sensed and 

fed to a phase-locked loop (PLL) for grid synchronization. 

Since the bandwidth of the PLL is usually set far lower than 

that of the grid current loop, the grid current loop can be 

evaluated independently. For the grid current control, a single 

loop can stabilize the system if the LCL-filter resonance 

frequency fr is higher than one-sixth of the sampling frequency 

fs /6 [24]–[27]. This stable region is however hard to ensure in 

practice, since the variation of Lg may shift fr across fs /6. In 

view of this, an additional damping is required to achieve a 

strong robustness, and it is usually realized by a proportional 

feedback of the capacitor current iC [16], [17]. To avoid an 

extra current sensing, iC is computed through the derivative of 

vC, as shown in Fig. 1, where Kad is the damping gain. 

Subtracting the damping term from the output of PI regulator 

yields the modulation reference, which is then processed by 

the space vector modulation (SVM) to generate the driver 

signal for adjusting the inverter switching. 
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Fig. 1. Topology and current control architecture of a three-phase LCL-type 

grid-connected inverter. 

The per-axis control diagram of active damping with either 

capacitor current or capacitor voltage is shown in Fig. 2(a), 

where the cross-coupling terms between the d-axis and q-axis 

are ignored since they have little effect on system dynamics 

[28]. Gi(z) is the PI regulator, whose expressions before and 

after applying the backward Euler discretization are given as 

    i

i p

K
G s K

s
,  

1
 



i s

i p

K T z
G z K

z
 (1) 

where Kp is the proportional gain, Ki is the integral gain, and 

Ts is the sampling period. 

The digitally controlled system contains computation and 

pulse-width modulation (PWM) delays, whose total value is 

one and half sampling periods [29]. These delays are 

incorporated in Fig. 2(a). Specifically, the computation delay 

is one sampling period, and it is modeled as z−1. The PWM 

delay is half sampling period, and it is caused by the 

zero-order hold (ZOH), which is expressed as 

 
1 ssT

h

e
G s

s




 . (2) 

KPWM = Vin/(2Vtri) is the transfer function of the PWM 

inverter, where Vin is the input voltage, and Vtri is the 

amplitude of the triangular carrier. Gic(s), Gvc(s), and Gi2(s) are 

the transfer functions from the inverter bridge output voltage 

vinv(s) to iC(s), vC(s), and i2(s), respectively, and they are 

expressed as 
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 (3) 

where ωr is the LCL-filter resonance angular frequency and 

expressed as 

 
1 2
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2π
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(a) (b) 

Fig. 2. Per-axis control diagram of active damping with either capacitor current or capacitor voltage. (a) Initial model. (b) Discrete model. 

For digital implementation of the CVAD, the differentiator 

“s” is realized by a discrete function Gd(z), whose 

performance will be discussed latter. By applying the ZOH 

discretization to (3), the initial model in Fig. 2(a) can be 

transformed into the discrete one, as shown in Fig. 2(b), where 
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(5) 

Then, the system loop gains related to CCAD and CVAD, 

i.e., Tic(z) and Tvc(z), can be derived as (6), shown at the 

bottom of this page. 

Tic(z) and Tvc(z) can be used to evaluate the effectiveness of 

the two active damping solutions. As depicted in (6), the 

digital differentiator Gd(z) is essential to the equivalence 

between Tic(z) and Tvc(z), and it is focused in the next sections. 

Besides, designs of the damping gain Kad and PI parameters 

have been intensively discussed in [16] and [29], thus they are 

not repeated here. 

III. BRIEF REVIEW OF INDIRECT NONIDEAL-GI DIFFERENTIATOR 

As previously mentioned, the effectiveness of the CVAD is 

dependent on the accuracy of the digital differentiator. Among 

various digital differentiators, the indirect nonideal-GI 

differentiator was proved to have the best derivative 

performance [22], [23]. A brief review of such method is thus 

necessary to help construct new differentiators. 

Generally, an ideal GI can be expressed as 

 
2

GI 2 2

n

n

s
G s

s
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
. (7) 
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Fig. 3. Frequency responses of ideal differentiator, ideal integrator, ideal GI, 

nonideal GI, and FOH-discretized nonideal GI. 

Note that, at frequencies lower than ωn, GGI(s) can be 

simplified as an ideal differentiator, i.e., GGI(s) ≈ s; and at 

frequencies higher than ωn, GGI(s) can be simplified as an 

ideal integrator (rescaled by 2

n ), i.e., GGI(s) ≈ 2

n /s, as shown 

in Fig. 3. In order to make a maximum utilization of its 

derivative characteristic, ωn is set to the Nyquist frequency, 

which is ωn = π×104 rad/s for 10-kHz sampling. However, 

with an infinite gain at ωn, the ideal GI will suffer from the 

noise amplification problem. To overcome this drawback, a 

nonideal GI is constructed by adding a damping term ωcs to 

the ideal one, i.e., 

 
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The gain at ωn is now reduced to |GnGI(s)| = 2

n /ωc, which 

decreases with the increase of ωc. A larger ωc thus leads to a  
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better noise rejection, but is compromised by the increasing 

phase error around ωn. ωc = 5×103 rad/s is taken as a good 

tradeoff between noise rejection and phase error, as shown in 

Fig. 3. Consequently, GnGI(s) is taken for discretization instead 

of GGI(s). 

In [22] and [23], various discretization methods had been 

tried, and the best one for discretizing GnGI(s) was found to be 

the FOH method, but its discretized expression was not given 

due to the high complexity. Here, it is derived as (9), shown at 

the bottom of this page. In (9), ωd is expressed as 

2

2

4

c

d n


   . (10) 

Frequency response of GnGI-FOH(z) is also shown in Fig. 3. 

The discretized nonideal GI exhibits well-matched 

characteristics as the continuous one, which implies an 

accurate derivative performance that close to the ideal 

differentiator. 

From the above reviewing, it can be concluded that the 

development of the nonideal-GI differentiator requires a 

careful tuning of the continuous filter to closely match the “s” 

function at first, and then a discretization process to totally 

retain its characteristics in the discrete domain. To perform a 

desired discretization, the sophisticated FOH method is 

adopted, which unfortunately complicates the discretized 

expression and features a heavy computation burden, as 

shown in (9). However, such shortcomings can be 

immediately avoided if a differentiator can be directly 

developed in the discrete domain. From this point of view, two 

simple digital differentiators will be constructed in the 

following section. 

IV. DIRECT REALIZATION OF DIGITAL DIFFERENTIATORS IN 

DISCRETE DOMAIN 

Direct differentiators can be realized by applying forward 

Euler, backward Euler, or Tustin to the “s” function, as 

discussed in Section I. Since the forward Euler destabilizes the 

system, the backward Euler and Tustin are considered here. 

However, these two methods are challenged by the practical 

issues, such as phase lag and noise amplification. By revisiting 

to them, a basic idea for addressing these issues is proposed in 

this section. 

A. Basic Idea of Proposed Differentiators 

The expressions of backward Euler and Tustin 

differentiators are given as 

 back
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Frequency responses of Gback(z) and Gtustin(z) with the 

sampling frequency fs = 10 kHz are shown in Fig. 4, where an 

ideal differentiator is also presented for comparison. As seen, 

each differentiator has its own attractive advantage, but also  

102 103 5×103

Frequency (Hz)

0

45

90

135

P
h
as

e 
(°

)
M

ag
n
it

u
d
e 

(d
B

)

50

100

150

raise the phase

att
en

uate

the g
ain

Tustin
Backward

Ideal

 
Fig. 4. Frequency responses of ideal, backward Euler, and Tustin 

differentiators. 

faces visible disadvantage. Backward Euler differentiator 

yields a good magnitude response, but its phase rolls off and 

reaches zero as the frequency goes high. The large phase lag 

will cause the loss of derivative effect, which thus limits its 

usage to relatively low-frequency range [19]. Tustin 

differentiator shows a perfect phase response with an ideal 90º, 

while its magnitude rises to infinite at the Nyquist frequency 

(i.e., fs /2 = 5 kHz). This infinite gain will lead to noise 

amplification and thus is unacceptable. 

Naturally, a question coming to mind is whether it is 

possible for a digital differentiator to combine the advantages 

of both backward Euler and Tustin differentiators, which 

means to behave in magnitude as backward Euler 

differentiator and in phase as Tustin differentiator. An intuitive 

idea for achieving this goal is to either raise the phase of 

backward Euler differentiator or attenuate the gain of Tustin 

differentiator, which, in other words, is to correct their 

frequency responses to match the ideal differentiator. To do 

that, a phase-lead compensator is needed for backward Euler 

differentiator, and for Tustin differentiator, a trap at the 

Nyquist frequency is expected to cancel out its infinite gain. 

B. First-Order Differentiator Based on Backward Euler Plus 

Lead Compensator 

As shown in Fig. 4, the phase lag of backward Euler 

differentiator Gback(z) is up to 90º at the Nyquist frequency, 

which is equivalent to a delay of half sampling period. To 

compensate this half sampling period delay, a lead-lag element 

[30], a first-order lead compensator [31], [32], and a 

second-order generalized integrator [33] can be used. Due to 

its effectiveness and simplicity, the first-order lead 

compensator is preferred here, and it is expressed as 
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Fig. 5. Frequency response of first-order lead compensator. 
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Fig. 6. Frequency response of first-order backward-lead differentiator. 

 
 

lead

1 m z
G z

z m





 (12) 

where 0 ≤ m ≤ 1. When m = 0, Glead(z) = 1; and when m = 1, 

Glead(z) = 2z/(z+1). Frequency response of Glead(z) is shown in 

Fig. 5, where a phase lead is obtained, but the gain at high 

frequency is amplified as well. A larger m leads to a better 

compensation of the phase, but a higher amplification of the 

high-frequency gain. For m = 1, a desired phase lead up to 90º 

is achieved, while an infinite gain appears at the Nyquist 

frequency. Therefore, a tradeoff between the phase lead 

compensation and the gain amplification should be made to 

select a proper m. 

Multiplying Gback(z) in (11) and Glead(z) in (12), a first-order 

differentiator based on backward Euler plus lead compensator 

(backward-lead) is constructed, and it is expressed as 

     
 

back-lead back lead

1 1

s

m z
G z G z G z

T z m

 
  


. (13) 

Note that, for m = 0 and m = 1, Gback-lead(z) is reduced to 

Gback(z) and Gtustin(z), respectively. This property is also  
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Fig. 7. Frequency response of second-order digital notch filter. 
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Fig. 8. Frequency response of second-order Tustin-DNF differentiator. 

identified in Fig. 6. As seen, Gback-lead(z) behaves more like 

backward Euler differentiator if m is closer to 0, and more like 

Tustin differentiator if m is closer to 1. Therefore, Gback-lead(z) 

can be regarded as a general form of digital differentiator, 

whose performance can be flexibly adjusted depending on the 

value of m. Here, m = 0.8 is selected as it gives a closer match 

with the ideal differentiator. 

C. Second-Order Differentiator Based on Tustin Plus Digital 

Notch Filter 

For Tustin differentiator, a gain trap at the Nyquist 

frequency is required, and it can be produced by either a 

continuous [34] or a digital [35] notch filter. Due to its direct 

discrete nature, the digital notch filter is preferred here. 

Recalling Gtustin(z) in (11), it is clear to see that there is a pole 

located at the Nyquist frequency, i.e., 
2π 2

1 s sj f T
z e

 
   . (14) 

Exactly, it is the pole z = −1 which causes the infinite gain 

at the Nyquist frequency. Thus, to cancel out this infinite gain, 

a zero z = −1 should be provided. A second-order digital notch  
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Fig. 9. Frequency responses of nonideal-GI, backward-lead, and Tustin-DNF 
differentiators. 

filter dedicated to this purpose is given as 

 
   

 
DNF 2

1 2 1 1

2 1 1

k z z
G z

k z z

  


  
. (15) 

Owing to its selective filtering characteristic, GDNF(z) has 

been widely used in multi-sampled digitally controlled 

systems for switching-ripple removal [35]. Note that, when k 

= 0, GDNF(z) = 1; and when k approaches infinite, GDNF(z) = 

(2z−1)(z+1)/(2z2). Frequency response of GDNF(z) is shown in 

Fig. 7, where a gain trap is readily identified. Meanwhile, a 

phase shift, depending on k, is introduced near the Nyquist 

frequency. Increasing k doesn’t have much effect on the 

magnitude characteristic, but delays the phase a lot. Therefore, 

a smaller k (say k = 0.5) is selected to minimize the undesired 

phase shift. 

Multiplying Gtustin(z) in (11) and GDNF(z) in (15), a 

second-order differentiator based on Tustin plus digital notch 

filter (Tustin-DNF) is constructed, and it is expressed as 

     
   

 
tustin-DNF tustin DNF 2

1 2 1 12

2 1 1s

k z z
G z G z G z

T k z z

  
  

  
. 

(16) 

Obviously, for k = 0, Gtustin-DNF(z) is reduced to Gtustin(z). 

Frequency response of Gtustin-DNF(z) is shown in Fig. 8, 

together with those of ideal and backward Euler differentiators 

for comparison. With k = 0.5, the infinite gain caused by 

Tustin is clearly flattened, at the cost of a slight phase lag near 

the Nyquist frequency. This phase lag, although cannot be 

eliminated, is quite smaller than that of backward Euler 

differentiator. Therefore, the second-order Tustin-DNF 

differentiator achieves a good compromise between Tustin and 

backward Euler differentiators. 

It is worth noting that the Tustin-DNF differentiator doesn’t 

show generality as the backward-lead differentiator given in 

(13), and it is a little more complicated due to the 

second-order manner. Despite that, the proposing of 

Tustin-DNF differentiator is still of interest, since it provides a 

different perspective to cope with the problems faced by 

conventional differentiators. 
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Fig. 10. Root loci of the closed-loop systems by varying the damping gain Kad. 

V. COMPARISON BETWEEN NONIDEAL-GI DIFFERENTIATOR 

AND PROPOSED DIFFERENTIATORS 

For the purpose of the CVAD, the indirect nonideal-GI 

differentiator has been briefly reviewed, and two direct 

differentiators, i.e., the first-order backward-lead differentiator 

and the second-order Tustin-DNF differentiator, have been 

proposed in the previous sections. In this section, the 

nonideal-GI differentiator and the proposed ones are compared 

to help understand the connections and differences between 

them. 

The aforementioned three differentiators, together with their 

optimum parameters, are given as GnGI-FOH(z) with ωc = 5×103 

rad/s, Gback-lead(z) with m = 0.8, and Gtustin-DNF(z) with k = 0.5, 

whose frequency responses are redrawn in Fig. 9 for a clear 

comparison. It is shown that the three differentiators exhibit 

almost the same derivative characteristics. 

This similarity can be better demonstrated with the root 

locus method. Recalling Tic(z) and Tvc(z) in (6), and 

simplifying the PI regulator Gi(z) to a proportional gain Kp, 

root loci of the closed-loop systems are plotted by varying the 

damping gain Kad, as shown in Fig. 10. For the CVAD, the 

backward Euler, nonideal-GI, backward-lead, and Tustin-DNF 

differentiators are all evaluated by replacing Gd(z) in Tvc(z) 

with Gback(z), GnGI-FOH(z), Gback-lead(z), and Gtustin-DNF(z), 

respectively. The pole movement is obtained with the LCL 

filter parameters listed in Table I, where fr = 2.27 kHz is 

higher than fs /6 (1.67 kHz). As shown in the shaded areas, the 

trajectories of the resonant poles start exactly inside the unit 

circle, which confirms a stable operation without damping (i.e., 

Kad = 0) due to fr > fs /6. With the increase of Kad, the resonant 

poles first stay inside the unit circle and then track outside. 

The effective damping regions, within which the resonant 

poles locate inside the unit circle, are almost identical in the 

cases of the CCAD and the CVAD with GnGI-FOH(z), 

Gback-lead(z), or Gtustin-DNF(z). But for the CVAD with Gback(z), 

the effective damping region is very narrow, and the resonant 
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TABLE I 

COMPARISON OF DIFFERENT DIGITAL DIFFERENTIATORS 

Features Backward Euler High-pass filter Lead-lag element Nonideal-GI Backward-lead Tustin-DNF 

Function order First order First order First order Second order First order Second order 

Simplicity Better Good Good Inferior Better Good 

Direct discrete 

development 
Yes No No No Yes Yes 

Effective 

frequency range 
Low Low Narrow Wide Wide Wide 

 

poles quickly move outside the unit circle. That means an 

accurate derivative is performed by any of the nonideal-GI, 

backward-lead, and Tustin-DNF differentiators, rather than the 

backward Euler differentiator. 

While wondering how the similarity comes from, we can 

rewrite the nonideal GI GnGI(s) as 

 

   

2

nGI 2 2

2 2 2

GI CNF2 2 2 2

n

c n

n n

n c n

s
G s

s s

s s
G s G s

s s s



 

 

  


 


   

  

 (17) 

where GCNF(s) is a continuous notch filter and expressed as 

 
2 2

CNF 2 2

n

c n

s
G s

s s



 




 
. (18) 

From (17), it is clear that GnGI(s) can be regarded as 

cascading the continuous notch filter GCNF(s) to the ideal GI 

GGI(s). GCNF(s) aims to trim off the infinite gain caused by 

GGI(s), which takes the same effect as that of GDNF(z) in 

Gtustin-DNF(z), as shown in (16). Therefore, the essence of the 

nonideal-GI differentiator can be considered as correcting the 

frequency response with an embedded filter, which is, in fact, 

the same as those of the proposed differentiators. 

Despite the similarity, it is worth paying more attention on 

the differences between the nonideal-GI differentiator and the 

proposed ones. In the nonideal-GI differentiator, the frequency 

response is corrected in the s-domain with the continuous 

notch filter, which thus calls for a sophisticated discretization 

method (i.e., FOH) to retain its characteristics in the discrete 

domain. The proposed differentiators are, however, directly 

developed in the z-domain and corrected with digital filters. 

The absence of discretization equips the proposed 

differentiators with the following features. 

1) Direct discrete nature. The development of the 

nonideal-GI differentiator takes two steps: at the first to 

tune the continuous nonideal GI and then to discretize it. 

The latter, in particular, is not trivial and would take 

much effort. As shown in [22] and [23], various 

discretization methods have to be examined before 

finding the best one. Comparatively, the natures of the 

proposed differentiators as direct discrete development 

make their usages very straightforward. 

2) Compact expression. Recalling (9), (13), and (16), it can 

be seen that the backward-lead differentiator yields a 

simplest expression due to its first-order manner. 

However, even with the same second-order property, the 

expression of the Tustin- DNF differentiator is much 

more compact than that of the nonideal-GI-based one. 

The compact expression will facilitate the 

implementations of the proposed differentiators in a 

digital signal processor (DSP). 

3) Easy algebraic manipulation. As shown in (13) and (16), 

there are negligible algebraic manipulations in the 

proposed differentiators. While in the nonideal-GI 

differentiator, substantial computation efforts have to be 

devoted to the discretized nonideal GI, due to its 

complicated symbolic expression, as shown in (9). For 

simplicity, the computation can be done by using the 

MATLAB command “c2d” for a specific ωc. 

Based on the previous analysis, a brief summary of the 

digital differentiators mentioned earlier is given in Table I. It 

is shown that accurate digital differentiators can be made not 

only by the indirect discretizing method with a nonideal GI, 

but also by the direct discretizing method with either 

backward-lead or Tustin-DNF. These differentiators are 

therefore competitive in practice. Particularly, the proposed 

ones are more attractive owing to the aforementioned 

promising features. Conventional differentiators, namely, the 

backward Euler, high-pass filter, and lead-lag element 

differentiators, take effect in either low or narrow frequency 

range. Despite the inaccuracy, they can still be used in some 

particular applications. According to their effective frequency 

ranges, a guideline for selecting the proper digital 

differentiator is given as follows. 

1) If the signal at low frequency needs to be differentiated, 

such as the derivative feed-forward of grid voltages [36], 

[37], the backward Euler and high-pass filter 

differentiators can be chosen. 

2) If the signal at a certain frequency needs to be 

differentiated, such as the CVAD of the LCL filter in a 

stiff grid condition [20], [21], the lead-lag element 

differentiator, which operates as a selective derivative, 

can be chosen. 

3) If the signal over a wide frequency range needs to be 

differentiated, such as the CVAD of the LCL filter in a 

weak grid condition (the case studied in this paper), the 

nonideal-GI, backward-lead, and Tustin-DNF 

differentiators must be chosen. Among them, the 

backward-lead differentiator is recommended for its 

general representation and simplest implementation. 
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Fig. 11. Photograph of the three-phase grid-connected inverter prototype. 

VI. EXPERIMENTAL VERIFICATION 

A. Experimental Setup 

A 12-kW prototype of the three-phase LCL-type 

grid-connected inverter, as shown in Fig. 11, is built and tested 

in the lab. The inverter bridge is implemented using three 

IGBT modules (CM100DY-24NF). These modules are driven 

by M57962L. The capacitor voltage vC, which is used for the 

PLL and active damping, is sensed by a voltage hall (LV25-P). 

The grid current i2 is sensed by a current hall (LA55-P). The 

measured signals are sent to an extended 14-bit A/D converter 

(MAXIM-1324ECM), whose outputs are transmitted to a TI 

TMS320F2812 DSP for the controller process. 

In order to remove the switching noise from the measured 

signals, a RC low-pass filter with the time constant of 1 μs is 

installed between the sensors and the A/D converter. Such a 

filter will also be needed when the capacitor current iC is 

directly sensed for active damping. Since its cutoff frequency 

is much higher than the sampling frequency, this low-pass 

filter rarely affects the system dynamic performance. 

Accordingly, it can be omitted from the system model with 

either CCAD or CVAD. 

Table II gives the parameters of the prototype, where the 

symmetrical regular sampled SVM is implemented. The LCL 

filter is designed with the well-known constraints listed in [38] 

and [39], and its resonance frequency fr = 2.27 kHz is kept the 

same as that in [22] and [23] to provide a comparable basis. 

For the purpose of active damping, the CCAD and the CVAD 

with backward Euler, nonideal-GI, backward-lead, and 

Tustin-DNF differentiators are all tested. The PI parameters 

are designed with the method in [29], and they are given as Kp 

= 0.12 and Ki = 60. The optimal damping gain, which yields 

high robustness against the grid impedance variation, has been 

derived in [16], and it is calculated as Kad = 0.06 in the test 

system. 

To obtain an intuitive sense, the directly sampled capacitor 

current and the calculated results by the four differentiators 

under test are compared, as shown in Fig. 12. For better clarity, 

the switching ripple of the capacitor current is removed, since  

TABLE II 

PARAMETERS OF THE PROTOTYPE 

Parameter Symbol Value Parameter Symbol Value 

Input voltage Vin 650 V 
Inverter-side 

inductor 
L1 1300 μH 

Grid voltage 

(RMS) 
Vg 220 V 

Grid-side 

inductor 
L2 440 μH 

Output power Po 12 kW Filter capacitor C 15 μF 

Fundamental 

frequency 
fo 50 Hz 

Resonance 

frequency 
fr 2.27 kHz 

Switching 

frequency 
fsw 10 kHz 

Sampling 

frequency 
fs 10 kHz 

it will not be sampled by the synchronous sampling [8]. For 

any of the nonideal-GI, backward-lead, and Tustin-DNF 

differentiators, the calculated result is well matched with the 

sampled result over a wide frequency range. But for the 

backward Euler differentiator, a visible phase lag is observed 

in the calculated result as the frequency goes high, which is 

consistent with the above analysis. 

Recalling Tic(z) and Tvc(z) in (6), Fig. 13 shows the 

closed-loop pole maps with Lg varying up to 10% per unit, 

which equals to 3.8 mH in the test system. For the CCAD, as 

shown in Fig. 13(a), the resonant poles stay inside the unit 

circle irrespective of Lg, which implies a robust damping 

performance as desired. For the CVAD, if the backward Euler 

differentiator is used, as shown in Fig. 13(b), the resonant 

poles always stay outside the unit circle, which means the loss 

of damping effectiveness due to the inaccurate derivative. 

However, if the backward-lead differentiator is used, as shown 

in Fig. 13(c), the robust damping matched with the CCAD is 

recovered, which confirms the accuracy of the proposed 

differentiator. Similar pole trajectories as Fig. 13(c) can also 

be obtained with the nonideal-GI and Tustin-DNF 

differentiators, and they are not repeated here. 

B. Experimental Results 

Based on the prototype developed above, experimental 

results are provided here. Fig. 14 shows the experimental 

results acquired by changing between different active damping 

solutions at full load. As seen, a stable operation is retained in 

any of the CCAD and the CVAD with nonideal-GI, 

backward-lead, and Tustin-DNF differentiators. This is due to 

the accurate derivatives that ensure an effective damping 

matched with the CCAD to stabilize the system. However, it is 

not the case for the CVAD with backward Euler differentiator, 

where serious oscillation is triggered, due to the large phase 

lag of backward Euler differentiator that causes the loss of 

damping effectiveness. 

A further comparison of the CCAD and the CVAD with 

nonideal-GI, backward-lead, and Tustin-DNF differentiators is 

given in Fig. 15, where the current reference steps between 

half and full loads. The transient responses in all these cases 

are almost identical, with a percentage overshoot of 24% and a 

settling time of 0.8 ms (5% tolerance), which confirms the 

matched derivative performances of the above three 

differentiators. 
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Fig. 12. Simulation results of sampled and calculated capacitor currents under different output frequencies. 
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(a)                                         (b)                                        (c) 

Fig. 13. Closed-loop pole maps with Lg varying up to 3.8 mH. (a) CCAD. (b) CVAD with backward Euler differentiator. (c) CVAD with backward-lead differentiator. 

Besides, the operation accuracy of the differentiator is also 

tested under different switching frequencies. In industrial 

products, the switching frequency may be adjusted in a certain 

range according to the load condition. Assuming the variation 

of ±20%, the switching frequencies ranging from 8 kHz to 12 

kHz are considered here. Since the nonideal-GI, 

backward-lead, and Tustin-DNF differentiators have similar 

derivative characteristics, the experimental results with the 

backward-lead differentiator are given as an example, as 

shown in Fig. 16, where the top figure gives the full view over 

two fundamental periods and the bottom one gives the 

zoomed-in view of the shaded area. Satisfactory steady-state 

operations are preserved under different cases, which imply 

that the proposed differentiators are less sensitive to the 

switching frequency variation. 
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Fig. 14. Experimental results at full load when changing (a) between the CCAD and the CVAD with backward Euler differentiator, and between the CVAD with 
backward Euler and (b) nonideal-GI, (c) backward-lead, and (d) Tustin-DNF differentiators. Voltage: 250 V/div, current: 20 A/div, time: 10 ms/div. 
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Fig. 15. Experimental results when the current reference steps between half and full loads for (a) the CCAD, (b) the CVAD with nonideal-GI differentiator, (c) the 

CVAD with backward-lead differentiator, and (d) the CVAD with Tustin-DNF differentiator. Voltage: 250 V/div, current: 20 A/div, time: 10 ms/div. 
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Fig. 16. Experimental results of the CVAD with backward-lead differentiator under different switching frequencies. Voltage: 250 V/div, current: 20 A/div, time: 

10 ms/div (top) and 100 μs/div (bottom). 

CVAD with Backward-lead CVAD with Backward Euler

i2,a

vC,ab

 

CVAD with Backward-lead CVAD with Backward Euler

vC,ab
i2,a

 
(a) (b) 

Fig. 17. Experimental results at full load under grid impedance variation. (a) Lg = 1.9 mH. (b) Lg = 3.8 mH. Voltage: 500 V/div, current: 20 A/div, time: 20 ms/div. 

Finally, experiments under the grid impedance variation are 

performed to verify the system robustness. Two grid 

inductances, i.e., Lg = 1.9 mH and Lg = 3.8 mH, are tested, as 

shown in Fig. 17. In either condition, stable operations are 

retained for the CVAD with backward-lead differentiator, 

while disastrous oscillations are triggered for the CVAD with 

backward Euler differentiator. The experimental results show 

that the proposed differentiators achieve a robust damping 

performance, which is in agreement with the theoretical 

analysis in Section VI-A. 

VII. CONCLUSION 

Direct realization of digital differentiator in discrete domain 

has been analyzed in this paper for the capacitor voltage active 

damping of LCL-type grid-connected inverter. A first-order 

backward-lead differentiator and a second-order Tustin-DNF 

differentiator are proposed in this manner. The proposed 

differentiators show the same derivative performance as the 

well-known nonideal-GI differentiator, and they are more 

attractive owing to their direct discrete natures, compact 

expressions, and easy algebraic manipulations. A guideline for 

selecting the proper digital differentiator is given based on the 

application scenario. In particular, the first-order 

backward-lead differentiator is recommended for its general 

representation and simplest implementation. The outcome of 

this work allows a digital differentiator to be constructed from 

a direct discretizing perspective which is usually claimed 

undesirable. Experimental results from a 12-kW three-phase 

prototype confirm the theoretical expectations. Except for 
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active damping, the proposed differentiators can also be used 

with other applications where derivative is needed. 

REFERENCES 

[1] X. Ruan, X. Wang, D. Pan, D. Yang, W. Li, and C. Bao, Control 

Techniques for LCL-Type Grid-Connected Inverters. Singapore: 

Springer, 2017. 
[2] R. P. Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and F. 

W. Fuchs, “Analysis of the passive damping losses in LCL-filter-based 

grid converters,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 
2642−2646, Jun. 2013. 

[3] R. N. Beres, X. Wang, F. Blaabjerg, M. Liserre, and C. L. Bak, “Optimal 

design of high-order passive-damped filters for grid-connected 
applications,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 

2083−2098, Mar. 2016. 

[4] M. Lu, X. Wang, P. C. Loh, and F. Blaabjerg, “Resonance interaction of 
multiparallel grid-connected inverters with LCL filter,” IEEE Trans. 

Power Electron., vol. 32, no. 2, pp. 894−899, Feb. 2017. 

[5] J. He and Y. W. Li, “Generalized closed-loop control schemes with 
embedded virtual impedances for voltage source converters with LC or 

LCL filters,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 

1850−1861, Apr. 2012. 
[6] X. Wang, Y. W. Li, F. Blaabjerg, and P. C. Loh, “Virtual-impedance- 

based control for voltage-source and current-source converters,” IEEE 

Trans. Power Electron., vol. 30, no. 12, pp. 7019−7037, Dec. 2015. 
[7] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, F. Gao, and F. Blaabjerg, 

“Generalized design of high performance shunt active power filter with 

output LCL filter,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 
1443−1452, Mar. 2012. 

[8] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Capacitor-current- 

feedback active damping with reduced computation delay for improving 
robustness of LCL-type grid-connected inverter,” IEEE Trans. Power 

Electron., vol. 29, no. 7, pp. 3414−3427, Jul. 2014. 

[9] L. Harnefors, A. G. Yepes, A. Vidal, and J. D. Gandoy, “Passivity-based 
controller design of grid-connected VSCs for prevention of electrical 

resonance instability,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 

702−710, Feb. 2015. 
[10] X. Wang, F. Blaabjerg, and P. C. Loh, “Virtual RC damping of 

LCL-filtered voltage source converters with extended selective harmonic 

compensation,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 
4726−4737, Sep. 2015. 

[11] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, “Wide damping 

region for LCL-type grid-connected inverter with an improved 
capacitor-current- feedback method,” IEEE Trans. Power Electron., vol. 

30, no. 9, pp. 5247−5259, Sep. 2015. 

[12] M. Huang, X. Wang, P. C. Loh, and F. Blaabjerg, “Active damping of 
LLCL-filter resonance based on LC-trap voltage or current feedback,” 

IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2337−2346, Mar. 2016. 

[13] M. Hanif, V. Khadkikar, W. Xiao, and J. L. Kirtley, “Two degrees of 
freedom active damping technique for LCL filter-based grid connected 

PV systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2795−2803, 
Jun. 2014. 

[14] J. Xu, S. Xie, and T. Tang, “Active damping-based control for 

grid-connected LCL-filtered inverter with injected grid current feedback 
only,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4746−4758, Sep. 

2014. 

[15] X. Wang, F. Blaabjerg, and P. C. Loh, “Grid-current-feedback active 
damping for LCL resonance in grid-connected voltage source 

converters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 213−223, 

Jan. 2016. 
[16] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Optimized controller 

design for LCL-type grid-connected inverter to achieve high robustness 

against grid-impedance variation,” IEEE Trans. Ind. Electron., vol. 62, 
no. 3, pp. 1537−1547, Mar. 2015. 

[17] D. Pan, X. Ruan, X. Wang, H. Yu, and Z. Xing, “Analysis and design of 

current control schemes for LCL-type grid-connected inverter based on a 
general mathematical model,” IEEE Trans. Power Electron., vol. 32, no. 

6, pp. 4395−4410, Jun. 2017. 

[18] M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of photovoltaic 
and wind turbine grid-connected inverters for a large set of grid 

impedance values,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 

263−272, Jan. 2006. 
[19] J. Dannehl, F. W. Fuchs, S. Hansen, and P. B. Thøgersen, “Investigation 

of active damping approaches for PI-based current control of 

grid-connected pulse width modulation converters with LCL filters,” 
IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1509−1517, Jul./Aug. 2010. 

[20] V. Blasko and V. Kaura, “A novel control to actively damp resonance in 

input LC filter of a three-phase voltage source converter,” IEEE Trans. 
Ind. Appl., vol. 33, no. 2, pp. 542−550, Mar./Apr. 1997. 

[21] R. P. Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and F. 

W. Fuchs, “Systematic design of the lead-lag network method for active 
damping in LCL-filter based three phase converters,” IEEE Trans. Ind. 

Informat., vol. 10, no. 1, pp. 43−52, Feb. 2014. 

[22] Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, “Realization of digital 
differentiator using generalized integrator for power converters,” IEEE 

Trans. Power Electron., vol. 30, no. 12, pp. 6520−6523, Dec. 2015. 

[23] Z. Xin, P. C. Loh, X. Wang, F. Blaabjerg, and Y. Tang, “Highly accurate 
derivatives for LCL-filtered grid converter with capacitor voltage active 

damping,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3612−3625, 

May. 2016. 
[24] S. G. Parker, B. P. McGrath, and D. G. Holmes, “Regions of active 

damping control for LCL filters,” IEEE Trans. Ind. Appl., vol. 50, no. 1, 

pp. 424−432, Jan./Feb. 2014. 
[25] C. Zou, B. Liu, S. Duan, and R. Li, “Influence of delay on system 

stability and delay optimization of grid-connected inverters with LCL 

filter,” IEEE Trans. Ind. Informat., vol. 10, no. 3, pp. 1775−1784, Aug. 
2014. 

[26] J. Wang, J. D. Yan, L. Jiang, and J. Zou, “Delay-dependent stability of 

single-loop controlled grid-connected inverters with LCL filters,” IEEE 
Trans. Power Electron., vol. 31, no. 1, pp. 743−757, Jan. 2016. 

[27] X. Wang, F. Blaabjerg, and P. C. Loh, “Passivity-based stability analysis 

and damping injection for multi-paralleled voltage source converters 
with LCL filters,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 

8922−8935, Nov. 2017. 

[28] E. Twining and D. G. Holmes, “Grid current regulation of a three-phase 
voltage source inverter with an LCL input filter,” IEEE Trans. Power 

Electron., vol. 18, no. 3, pp. 888−895, May. 2003. 

[29] D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, “Optimized 
design of stationary frame three phase AC current regulators,” IEEE 

Trans. Power Electron., vol. 24, no. 11, pp. 2417−2426, Nov. 2009. 

[30] K. Jalili and S. Bernet, “Design of LCL filters of active-front-end 
two-level voltage-source converters,” IEEE Trans. Ind. Electron., vol. 

56, no. 5, pp. 1674−1689, May 2009. 

[31] C. Chen, J. Xiong, Z. Wan, J. Lei, and K. Zhang, “A time delay 

compensation method based on area equivalence for active damping of 

an LCL-type converter,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 
762−772, Jan. 2017. 

[32] M. Lu, X. Wang, P. C. Loh, F. Blaabjerg, and T. Dragicevic, “Graphical 

evaluation of time-delay compensation techniques for digitally- 
controlled converters,” IEEE Trans. Power Electron., to be published. 

[33] Z. Xin, X. Wang, P. C. Loh, and F. Blaabjerg, “Grid-current-feedback 

control for LCL-filtered grid converters with enhanced stability,” IEEE 
Trans. Power Electron., vol. 32, no. 4, pp. 3216−3228, Apr. 2017. 

[34] J. Dannehl, M. Liserre, and F. W. Fuchs, “Filter-based active damping of 

voltage source converters with LCL filter,” IEEE Trans. Ind. Electron., 
vol. 58, no. 8, pp. 3623−3633, Aug. 2011. 

[35] L. Corradini, P. Mattavelli, E. Tedeschi, and D. Trevisan, 

“High-bandwidth multisampled digitally controlled DC-DC converters 
using ripple compensation,” IEEE Trans. Ind. Electron., vol. 55, no. 4, 

pp. 1501−1508, Apr. 2008. 

[36] X. Wang, X. Ruan, S. Liu, and C. K. Tse, “Full feedforward of grid 

voltage for grid-connected inverter with LCL filter to suppress current 

distortion due to grid voltage harmonics,” IEEE Trans. Power Electron., 

vol. 25, no. 12, pp. 3119−3127, Dec. 2010. 
[37] W. Li, X. Ruan, D. Pan, and X. Wang, “Full-feedforward schemes of 

grid voltages for a three-phase LCL-type grid-connected inverter,” IEEE 

Trans. Ind. Electron., vol. 60, no. 6, pp. 2237−2250, Jun. 2013. 
[38] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Magnetic integration of 

the LCL filter in grid-connected inverters,” IEEE Trans. Power Electron., 

vol. 29, no. 4, pp. 1573−1578, Apr. 2014. 
[39] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A 

review of passive power filters for three-phase grid connected 

voltage-source converters,” IEEE J. Emerg. Sel. Topics Power Electron., 
vol. 4, no. 1, pp. 54−69, Mar. 2016. 

 

 

 

IEEE TRANSACTIONS ON POWER ELECTRONICS 



0885-8993 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2017.2780174, IEEE
Transactions on Power Electronics

13 

Donghua Pan (S’12-M’15) was born in Hubei 

Province, China, in 1987. He received the B.S. and 
Ph.D. degrees in electrical engineering from 

Huazhong University of Science and Technology, 

Wuhan, China, in 2010 and 2015, respectively. 
From July 2015 to August 2017, he was a 

Research Engineer with Suzhou Inovance Technology 

Co., Ltd., Suzhou, China. Since September 2017, he 
has been with Aalborg University, Aalborg, Denmark, 

where he is currently a Postdoctoral Fellow in the 

Department of Energy Technology. His research interests include magnetic 
integration technique and renewable energy generation system. 

 

 
 

Xinbo Ruan (M’97-SM’02-F’16) was born in Hubei 

Province, China, in 1970. He received the B.S. and 
Ph.D. degrees in electrical engineering from Nanjing 

University of Aeronautics and Astronautics 

(NUAA), Nanjing, China, in 1991 and 1996, 
respectively. 

In 1996, he joined the Faculty of Electrical 

Engineering Teaching and Research Division, 
NUAA, where he became a Professor in the College 

of Automation Engineering in 2002 and has been 

engaged in teaching and research in the field of 
power electronics. From August to October 2007, he was a Research Fellow 

in the Department of Electronic and Information Engineering, Hong Kong 

Polytechnic University, Hong Kong, China. From 2008 to 2011, he was also 
with the School of Electrical and Electronic Engineering, Huazhong 

University of Science and Technology, Wuhan, China. He is a Guest 

Professor with Beijing Jiaotong University, Beijing, China, Hefei University 
of Technology, Hefei, China, and Wuhan University, Wuhan, China. He is the 

author or coauthor of 9 books and more than 200 technical papers published 

in journals and conferences. His main research interests include soft-switching 
dc-dc converters, soft-switching inverters, power factor correction converters, 

modeling the converters, power electronics system integration and renewable 

energy generation system. 
Dr. Ruan received the Delta Scholarship by the Delta Environment and 

Education Fund in 2003 and the Special Appointed Professor of the Chang 

Jiang Scholars Program by the Ministry of Education, China, in 2007. From 

2005 to 2013, he served as Vice President of the China Power Supply Society, 

and from 2014 to 2016, he served as Vice Chair of the Technical Committee 
on Renewable Energy Systems within the IEEE Industrial Electronics Society. 

He is currently an Associate Editor for the IEEE TRANSACTIONS ON 

INDUSTRIAL ELECTRONICS, IEEE JOURNAL OF EMERGING AND SELECTED 

TOPICS IN POWER ELECTRONICS, IEEE TRANSACTIONS ON POWER 

ELECTRONICS, and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: 

EXPRESS BRIEFS. 
 

 

 
Xuehua Wang (M’12) was born in Hubei Province, 

China, in 1978. He received the B.S. degree in 

electrical engineering from Nanjing University of 
Technology, Nanjing, China, in 2001, and the M.S. 

and Ph.D. degrees in electrical engineering from 

Nanjing University of Aeronautics and Astronautics, 

Nanjing, China, in 2004 and 2008, respectively. 

He is currently an Associate Professor in the 

School of Electrical and Electronic Engineering, 
Huazhong University of Science and Technology, 

Wuhan, China. His main research interests include 

multilevel inverter and renewable energy generation system. 

IEEE TRANSACTIONS ON POWER ELECTRONICS 


