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ABSTRACT 
In this paper, a new model for cavitation induced primary break-up is proposed, which is able to map 
the influence of cavitating nozzle flow on spray formation. The model is applicable for viscous liquid 
sprays, where the Reynolds number is below 800. For such viscous spray systems, liquid break-up is 
enhanced when cavitation bubbles burst at the nozzle exit. The proposed model describes the transition 
from the flow inside the nozzle, modelled using a homogeneous equilibrium model (HEM) method, to 
the first primary droplets modelled using a Eulerian-Lagrangian method. Thus, providing the boundary 
conditions for the calculation of the secondary break-up and spray formation. The nozzle exit is divided 
into a definite number of patches, and liquid momentum and density from each patch are used to 
initialize the primary droplets. Using this method, the influence of bursting cavitation bubbles and 
asymmetrical properties of viscous sprays can be identified. The model has been implemented in the 
open-source CFD software package OpenFOAM and a first validation has been done using high-speed 
shadowgraphic imaging. 
Keywords:  spray formation, cavitation, primary break-up, numerical simulation, viscous liquids, 
OpenFoam. 

1  INTRODUCTION 
It is generally accepted that cavitation inside spray nozzles have a great importance on the 
break-up of liquid jets [1]–[5]. Cavitation is the formation of vapor cavities inside the liquid 
due to evaporation, which takes places, when the local pressure of the liquid drops below the 
vapor pressure. The subsequent collapse of these cavities introduces disturbances to the liquid 
stream that lead to a faster breakup of the exiting jet [6]–[8]. 
     Even in high pressure spray systems, the liquid jet does not atomize greatly when 
disturbances caused by cavitation are not present [9]. This is especially true for viscous 
liquids, which are difficult to atomize using pressure spray systems unless high fluid pressure 
is applied [10], [11]. 
     The internal nozzle cavitation has been studied intensively, and research has shown that 
cavitation is promoted by a variety of factors as e.g. sharp inlet orifices, needle lift, curvature 
of the inlet edge, liquid properties, and system pressure [12]–[15]. 
     Ravendran et al. [15], investigated the atomization of viscous liquids, and showed that 
the  non-axial injection conditions lead to a swirling liquid flow inside the nozzle. Thus, 
leading to the development of cavitation strings in the core of the liquid vortices. Fig. 1 
shows, shadowgraphic images of the two cavitation strings inside the studied transparent 
spray nozzle. 
     It was shown that the cavitation strings increase the degree of atomization greatly, this is 
only the case when the cavitation strings extends to the exit of the nozzle. However, when 
the cavitation collapses in the nozzle volume, the viscous liquid is able to stabilize the 
stochastic disturbances introduced by the cavitation. Fig. 2(a) shows an image of the exiting 
spray, when the cavitation collapses in the nozzle volume, whereas Fig. 2(b) shows a case 
where the liquid break-up is enhanced due to bursting cavitation bubbles at the nozzle exit. 
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Figure 1:  Shadowgraphic images of the developing cavitation strings inside the studied 
transparent spray nozzle. 

 

 
         (a)     (b)  

Figure 2:  Near-nozzle images of the spray formation. Images are taken with a shadow 
imaging system from LaVision. (a) Cavitation collapses in the nozzle volume; (b) 
Cavitation bursts outside the nozzle exit. 

     Several methods exist and are implemented in commercial CFD-codes for simulating the 
spray formation using the Lagrangian method as e.g. Taylor Analogy, et al., Break-up [16]. 
However, these models need sub-models to describe the transition from the nozzle flow to 
the primary droplet, as illustrated in Fig. 3. This coupling has been the focus of several 
authors, as accurate numerical simulation of spray formation is of great interest [6], [17], 
[18]. Especially, there is a high interest of modeling low viscous liquids such as water and 
diesel fuel, and not much work has been performed on cavitation induced primary break-up 
of viscous liquids. This leads to the objective of this study. 
     In this paper, a method for coupling the internal flow and the subsequent spray is 
proposed. The purpose of the new primary breakup model is to describe the transition from 
the flow inside the nozzle to the first primary droplets, and thereby providing all starting 
conditions for the calculation of secondary break-up and spray formation. The input data for 
the new model are based on the detailed numerical investigations of the nozzle flow 
performed in [15]. The first validation of the model has been done using high-speed 
shadowgraphic imaging, however this has not been the scope of this paper. 
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Figure 3:  Illustration of the numerical simulation approach used in this paper.  

2  NUMERICAL APPROACH 
The simulation approach is divided in two steps, as illustrated in Fig. 4. Firstly, simulation 
of the liquid flow and cavitation inside the nozzle is done using the two-phase fluid mixture 
Schneer and Saur model [15], [19], [20]. Secondly, simulation of the spray formation is done 
using a standard Lagrangian KHRT secondary break-up model. The two simulation steps are 
connected using a coupling model, which translates the flow inside the nozzle to the first 
primary droplets at the nozzle exit and provide the starting conditions for the spray formation. 
     The focus of the following section is therefore to describe the proposed coupling model, 
as the simulation of the internal flow is described in detail in [15], and the standard  
KHRT-model is for example documented in [6], [18], [21].  

2.1  Primary break-up model 

The purpose of the coupling model is to initiate the primary droplets using the nozzle exit 
conditions. The nozzle exit is therefore separated into a defined number of boundary patches, 
from which liquid velocity (ܷ) and degree of cavitation (ߙ) are used to calculate the diameter 
of the primary droplet (ܦ௜), mass flow rate (݉పሶ ), and spray angle (߮௜) at each patch (݅). 
     The location of each patch is randomly selected, in order to suppress geometrical effects 
when introducing a defined boundary grid. This approach makes the model flexible and 
applicable for different nozzle geometries. However, as patches are allowed to overlap and 
exceed the diameter of the nozzle, minor errors in spray angle are expected.      The first 
droplets at the nozzle exit is introduced using the so-called blob-method, where the 
assumption is that the dense spray near the nozzle can be represented by spherical droplets 
with uniform size. The diameter of these droplets equals the nozzle hole diameter. The 
number of the droplets injected per unit time is determined from the mass flow rate. The mass 
flow rate of the primary droplets is calculated using eqn (1). 

݉௜ሺݐሻ ൌ ௟ߩ ∙ ௣௔௧௖௛ܣ ∙ ௜ܷሺݐሻ,                                          (1) 

where ߩ௟ is the liquid density, ܣ௣௔௧௖௛ is the area of the selected patch, ௜ܷሺݐሻ is the velocity of 
the liquid composed of the three components in x, y, and z-direction.  
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Figure 4:  Illustration of the purpose of the different coupling methods. 

     The direction of the droplets leaving the nozzle exit is defined using the spray angle. These 
parameters are highly influenced by the degree of cavitation at the nozzle exit, as busting of 
cavitation bubbles leads to increased spray angle (߮௜ሻ. The degree of cavitation is expressed 
in terms of vapor volume fraction (ߙ௜ሻ , which is directly extracted from the internal flow 
simulations. The vapor volume fraction is described by a number from 0 to 1, for ߙ௜ < 1 the 
patch cavitates. The spray angle (߮௜ሻ is determined using eqn (2). 

߮௜ ൌ

ە
ۖ
۔

ۖ
ۓ

						

௜ߙ																																																0 ൌ 1
	
	

cosିଵ ൬
௎೔,೛೗ೌ೙೐∙	௎೔,೤

ฮ௎೔,೛೗ೌ೙೐ฮ∙ฮ௎೔,೤ฮ
൰		 ௜ߙ						 ൏ 1

,                                  (2) 

 
where ௜ܷ,௬	is the velocity vector of the liquid perpendicular to the nozzle exit, and is defined 
by ௜ܷ,௣௟௔௡௘ ൌ ௜ܷ,௫

ଶ ൅ ௜ܷ,௭
ଶ  and describes the velocity components parallel to the nozzle exit. 

2.2  Boundary conditions 

The internal flow and droplet breakup simulations are performed using the open source  
finite-volume CFD software OpenFoam 3.0. The proposed coupling model is a subroutine 
written in Matlab. 
     The boundary conditions for the simulations are based on experimental data, which are 
thoroughly described in [15]. However, the experimental conditions are summarised in  
Table 1. 

3  RESULTS AND DISCUSSION 
The results of the nozzle flow simulations are shown in Fig. 5. The velocity at the nozzle exit 
is shown in Fig. 5(a), where the fringe level indicates the velocity in y-direction ሺU୷ሻ and the 
vector field represents velocity components in the xz- plane ሺU୶ and U୸ሻ. It is seen that the 
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swirling flow is prominent at higher temperatures, whereas at low temperatures the flow is 
non-swirling and axisymmetric.  
     Fig. 6 shows the computational and experimental results of the spray formation for 
injection case 1. The numerical simulations are performed using	N௉ ൌ 100. The simulation 
results show a dense liquid core in the center of the spray, and smaller dispersed ligaments 
away from the center. These observations agree with the experimental observations. It is also 
important to highlight that the proposed model is capable of predicting the spray structure 
and asymmetrical shape apart from the spray tip penetration. 

Table 1:  Experimental test conditions. 

1. Pressure system Pressure pump HJ – Lubtronic 

 Pressure supply 70 bar 

 Piston diameter 6 mm 

 Oil temperature 60, 80, 100Ԩ 

 Oil type Mobilgaard 570 

   

2. Injector nozzle Injector type HJ - SIP 

 Opening pressure 40 bar 

 Ambient pressure 1 bar 

 Ambient temperature 25 

   

3. Camera Settings Camera type Photron Fastcam SA5 

 Illumination 1000 W LED-lamp 

 Frame rate 1/15000 fps 

 Shutter speed 1/15000 s 

 

 
(a) 

 
(b) 

Figure 5:  The results of the internal nozzle simulations. (a) Velocity vector field at nozzle 
exit; (b) The results of the internal nozzle simulations. 
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Figure 6:  Spray formation due to cavitation induced breakup (Comparison between 
experiment and numerical simulation). The temperature of the injected liquid is 
T୐ ൌ 100Ԩ. The numerical simulations are performed using 100 patches. 

 
(a) 

 
(b) 

Figure 7:  The results of the internal nozzle simulations. (a) Velocity vector field at nozzle 
exit; (b) The results of the internal nozzle simulations. 
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     The spray tip penetration L and cone angle φ	is shown in Fig. 7. There is a good agreement 
between the calculated and measured spray tip penetration, which is due to the good 
prediction of the liquid flow from the internal nozzle flow simulations. 
     Fig. 7(b) shows, that the computed spray angle for different nozzle flow cases can be 
predicted adequately. When the liquid temperature is	60Ԩ, there is no cavitation at nozzle 
exit, thus the exiting liquid is a jet. As the degree of cavitation increases in	T୐ ൌ 80Ԩ and 
T୐ ൌ 100Ԩ, the spray angle increases as well. There is a very good agreement between the 
calculated and measured spray cone angle. 

4  CONCLUSION 
In this study, a new method for simulating cavitation induced breakup for viscous liquids is 
proposed. The proposed model describes the transition from the flow inside the nozzle, 
modelled using a homogeneous equilibrium model (HEM) method, to the first primary 
droplets modelled using a Eulerian-Lagrangian method. Thus, providing all starting 
conditions for the calculation of the secondary break-up and spray formation.  
     The model is able to predict the spray angle and spray tip penetration sufficiently for 
different nozzle flow cases, where the degree of cavitation differs.  
Further investigations have to be performed in order to determine whether the droplet size 
can be predicted using the proposed method. Furthermore, the importance of the model 
constants used for the simulation is not discussed in this study. 
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