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Estimation of Rician Channels From
Indoor Measurements at 26 GHz

Jesper Ødum Nielsen, Gert Frølund Pedersen

APMS, Dept. of Electronic Systems, Technical Faculty of IT and Design, Aalborg University, Denmark

Abstract—The aim of this work is to evaluate amplitude
distributions of narrow-band channels based on sounding
measurements made at 26 GHz. The setup is with an omni-
directional antenna moving in different indoor environ-
ments with an access point (AP). Rician channel model
parameters are obtained via maximum likelihood (ML)
estimation and the k-factors are obtained as well as mean
power levels. Depending on the type of environment and
the location of the mobile with respect to the used AP, the
found k-factors varies from about −10 dB up to about
9 dB.

I. INTRODUCTION

With the aim of supporting an increased network

capacity and speeds, future communication systems like

5G are expected to utilize frequency spectrum at much

higher frequencies than the typically below 6 GHz

used in today’s systems. Frequencies near 28 GHz have

been considered attractive due to available spectrum and

expected reasonable propagation conditions [1].

So far only relatively few publications exist that are

based on measurements of the radio channel in this band,

e.g., [2], yet the radio propagation in the new band is

expected to be very different from that in legacy bands

where many works exist. Hence new empirical results

are required to quantify the properties of the new type

of channels. The current work focuses on the amplitude

distribution of a moving mobile station being served by

an AP in an indoor environment. Related previous works

include [3], [4] for bands about 30 GHz and [5] about

60 GHz.

II. CHANNEL MEASUREMENTS

A. Setup

The measurements used in the current work were

obtained as part of a campaign previously described in

[6], but the particular data needed for the analyses of the

current work was not processed in [6]. The below text

describes the measurements obtained with the channel

sounder, with emphasis on the data used in the current

work.

The sounder is configured to have one Tx channel

(with either vertical polarization (VP) or horizontal

polarization (HP), see below) and five Rx channels. The

bandwidth is about 100 MHz and centered at 26 GHz.

Each channel snapshot last 41 µs and the channel

TABLE I
OVERVIEW OF TX HORN ORIENTATIONS.

Env. Tx Orient. Description
Lab O1 Towards Rx, South

O2 66◦ from Rx dir., South-East
Corr O3 Towards Rx along corridor, North

O4 48◦ from Rx dir., North-West
Hall O1 Towards Rx, West

O2 66◦ from Rx dir., towards South-West
O4 48◦ from Rx dir., towards North-West

snapshot rate is 90 Hz, allowing fast azimuthal sweeps,

as described below.

The single Tx antenna was a linearly polarized 10 dB

standard gain horn antenna (Pasternack PE9851/2F-10)

which has a 3 dB beamwidth of 54◦ and 53◦ in the E-

and H-plane, respectively. The Tx horn was mounted on

a wooden mast 2.07 m above the floor, mimicking an

access point in an indoor radio network. The horn was

manually rotated, so that the Tx had either VP or HP.

As described further below, three different locations of

the Tx mast were used, one for each of the Lab, Corr,

and Hall environments. For each location, 2-3 azimuthal

orientations of the horn were used, as described in

Table I.

At the Rx end of the sounder, four horn antennas

and one omni-directional antenna were mounted on a

pedestal which can rotate in azimuth, controlled by

software in synchronicity with the channel sounding.

Only data from the omni-directional antenna are used

in the current work.

The omni-directional antenna (AINFO SZ-2003000/P)

was mounted on top of the horns with the antenna center

at a horizontal distance of 0.165 m from the rotation

center and 1.0 m above the floor. During a measurement,

the pedestal rotated 180◦ in azimuth, so that the antenna

was moved along a half-circle path of length 0.52 m or

about 45 wavelengths. The pedestal with the antennas

mounted are shown left in Fig. 1. A single scan lasted

about 2.9 s, during which time 525 channel snapshots

were obtained from the omni-directional antenna.

B. Measurement Series

For each combination of location and orientation of

the Tx horn and the Rx pedestal, two measurements were
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Fig. 1. Left: The pedestal with four horn antennas (three visible) and
one omni-directional antenna mounted. Right: The corridor environ-
ment.

carried out; one with the Tx horn configured for VP, and

one with the Tx horn configured for HP. This allows

a characterization of all four possible combinations of

channels when transmitting and receiving in one of the

two polarizations. However, in the current work only

data resulting from using the VP of the Tx horn is

utilized, since the omni-directional Rx antenna has VP

and the cross-polarization coupling in the channel is low,

leading to a generally unsatisfactorily measurement qual-

ity. Results on cross-coupling in the channel, obtained

using the horn antennas, may be found in [6].

Below a few measurement series are defined by the

location and orientation of the Tx and Rx in a given

overall environment. In each case, the Tx location was

fixed, but with a few different orientations. The pedestal

with the Rx was moved to different locations in order to

induce large-scale changes in the channel, with changes

in both propagation path lengths and angles. The Rx

locations are described below with the notation “Ln”,

where n is an integer number.

In order to also allow investigation of channel changes

due to small-scale changes in the location, for each

large-scale location four sub-locations are defined by the

corners of a 10 cm by 10 cm square. Measurements were

carried out at each of the sub-locations, except for some

of the Hall series. In addition, some measurements were

repeated.

In the campaign, four different measurement series

were carried out, as described below

1) Lab: The Tx was located at the end of the lab-

oratory environment, shown as T1 in Fig. 2, while the

Rx pedestal was in five overall locations, L1, L2, . . . ,

L5. For each of those locations, four sub-locations were

used. Two orientations of the Tx were used, one directly

towards the Rx (South) and one with the horn main

direction partly towards the East wall of the lab. The

lab environment is shown in Fig. 3.

2) Corr: The Tx was located near the wall in the cor-

ridor outside the laboratory, shown as T2 in Fig. 2. The

7.7m 
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L10 L11 L12

L9L8L7L6

T2

Fig. 2. Sketch of the Lab and Corr environments, including Tx and
Rx locations.

Fig. 3. The laboratory environment.

Rx pedestal was in seven overall locations distributed

along the corridor, of which L10, L11, L12 were in line

of sight (LOS) from the Tx. Locations L6, L7, L8, L9 are

in non line of sight (NLOS) since there is a bend in the

corridor. The Tx was oriented both along the corridor as

well as with the main direction partly towards the West

corridor wall. The corridor is seen to the right in Fig. 1.

3) Hall: The Tx was located near one of the pillars

in the East side of the Hall, below the overhanging first

floor, see T3 in Fig. 4 and Fig. 5. The Rx pedestal

was located at seven overall locations distributed along

a radial line, shown in the sketch as L13, L14, . . . , L19,

all of which were in LOS from the Tx. Two orientations

of the Tx were used, one directly towards the Rx and

one where the horn main direction points partly towards

the North wall.

In a second part of the Hall series of measurements,

the Rx pedestal was located at the seven locations L19,

L20,. . . , L25, distributed along an North-South line. For

those locations both the length and angle of the LOS

varies. Three orientations of the Tx were used, with the

horn main direction pointing towards West, North-West,

and South-West, thus focusing on different parts of of

the hall.

Note that in the previous work [6] the two parts of

the Hall series were treated separately, but are presented

together here for simplicity.

III. DATA PROCESSING

A Rician channel is characterized by a specular

component ss(t) and a zero-mean Gaussian distributed
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Fig. 4. Sketch of the Hall environment including Tx and Rx locations.

Fig. 5. The hall environment with the Tx visible on the left and the
Rx pedestal in front of the stairs to the right.

random component sr(t), both complex. The received

signal is the sum of the two components, so that the

observed signal is

r(t) = ss(t) + sr(t) (1)

in noise-less conditions. The amplitude |r(t)| is Rician

distributed [7]. Conventionally, the Rician channel is

described by the k-factor defined as

k = 10 log
10

(

σ2

s

2σ2
r

)

(2)

in dB and where σ2

s
and σ2

r
are the power in the specular

and random components, respectively. The k-factor is

convenient since it in one figure describes the degree of

randomness when a stable specular component is also

present.

When dealing with measurements we only have ac-

cess to a noise contaminated version of the amplitude,

r′(t) = r(t) + w(t), where w(t) is the added noise.

Assuming the channel is correctly described by the

Rician model, the task is to estimate σ2

s
and σ2

r
from

the noisy measurement. In this work the ML approach is

used to estimate the Rice distribution parameters, since it

outperforms the often used so-called method of moments

[8]. Specifically, the ML estimation implementation in

MATLAB R2017a was used for the processing.
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Fig. 6. Statistics of the estimated k-factors assuming known (solid
lines) and unknown (dashed lines) noise levels in a simulated channel.
The correct k-factors are shown with dotted lines.

In general terms, denoting R(σs, σr) as the Rice cu-

mulative distribution function (CDF) and given a vector

of measured amplitude samples, the parameters σs and

σr are jointly optimized for best fit in the ML sense

to the CDF of the data. When both sr(t) and w(t) are

random and present in measured data, the estimated σ̃r

will approximate
√

σ2
r
+ σ2

n
instead of the desired σr,

since the noise component cannot be distinguished from

the signal component. If we are able to estimate the

noise power separately as σ̃2

n
then a better approach is

to optimize using the model CDF R(σs,
√

σ2
r
+ σ̃2

n
) thus

taking into account the random noise component.

The performances of the estimators are evaluated

using simulated Rician channels assuming different k-

factors and signal to noise ratios (SNRs). For each chan-

nel 2.5 ·104 samples are simulated and used for the ML

estimation, with and without assuming a known noise

level. Each estimation is repeated 100 times and Fig. 6

shows median values with 10% and 90% percentiles

defining the error bars. It is noticed that the estimator not

incorporating the noise level has an increasing bias when

the SNR reduced, the other estimator gives the correct k-

factor, at least in median. However, the variation seems

to be small for SNRs above 5 dB.

In the processing of each measurement, the noise

power was estimated as the average power in the impulse

responses (IRs) for delays in the range 1.5–2.4 µs where

any signal components are far below the noise floor. The

average is over both delay and snapshots.

Narrow-band data is obtained from the IRs using dis-

crete Fourier transforms (DFTs) and useful sub-channels

were defined as those within 15 dB of the max average

power. For each useful sub-channel the samples were

normalized, and samples from all useful sub-channels

were used as input to the ML estimation procedure,

together with the estimated noise power. The number

of samples used for the estimation is about 1.33 · 105
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to 1.58 · 105, depending on the measurement. Using the

estimated Rice parameters, the k-factor was computed

using (2).

In addition, the mean total power was computed as

Ptot =
∑

N

n=1

∑

M

m=1
|h(n,m)|2/M where h(n,m) is

the IR at delay index n and snapshot index m, and where

N = 960 and M = 525 are, respectively, the number of

samples in delay and space/time.

IV. RESULTS

Fig. 7 shows the measured mean total power when

using the omni-directional antenna at the different lo-

cations and environments. The individual results for the

sub-locations and any repetitions are shown with crosses,

with lines connecting the mean of the values at the same

location. All values are normalized to the maximum

power level observed at L19 in the Hall.

The orientation of the Tx antenna has a significant

impact on the power in the Lab and Hall where a

LOS exists. This variation is partly due to the radiation

pattern of the Tx antenna, but this alone cannot explain

the variations over locations, since the about 6 dB of

difference in the Lab is less than what would be expected

from the pattern. The importance of the LOS is also

illustrated at L19–L24, where the power varies according

to the location relative to the main beam of the Tx

antenna.

Fig. 8 shows some examples of the CDFs for the

measured and estimated Rice models. When the noise

is not taken into account in the estimation, the power in

the random part is overestimated, leading to the (dotted)

CDFs closest to the measured curves. When including

the noise in the estimation, the k-factor is effectively

increased (dashed curves). It is noted that in either

case the Rician model is not a perfect match to the

measured data, perhaps with the near-Rayleigh case as

an exception. The Rician model should be viewed as

a simplification of the actual channel and the k-factors

as indicators of the general type of channel measured.

Better fitting models may exist, but is not explored

further in this work. Other optimization goals (non-ML)

may also be employed, e.g., for a better fit in the low-

power CDF region.

An overview of the estimated Rician models is pre-

sented in Fig. 9 in the form of k-factors. The plots show

the k-factors estimated at the different sub-locations and

repetitions (when available), with lines connecting mean

values. Curves are shown both for estimates taking into

account measurement noise as well as for estimates

obtained ignoring noise. As expected, the k-factor is

highest when noise is considered, by about 0–1 dB,

depending the location.

In the Lab and Hall environments the k-factor is

highly dependent on whether or not the location is within

or near the main beam of the Tx horn, with relatively
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Fig. 7. Mean total power for different Tx antenna orientations and
locations in the Lab (top), Corridor (middle), and Hall (bottom)
environment. All values are normalized to the maximum observed in
the Hall environment.

high values in the range 2–9 dB, or low values in the

range −10 to 0 dB outside the main direction.

The k-factors in the Corr environment is generally

below 2 dB, with the highest values in LOS conditions.

The relatively low k-factors in LOS, compared to those

in the Lab and Hall environments, may be partly due

to the Rx being close to the Tx, so that the LOS is

affected by elevation pattern due to the height difference.

However, the power level at L10–L12 is in fact higher

than that obtained at L20–L23, where the k-factors are

in the range 6–8 dB.
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also shown using the same color, where dashed-line CDFs are obtained
using ML optimization taking into account the measurement noise and
dotted-line CDFs are for optimization ignoring the noise.

V. CONCLUSIONS

Based on 26 GHz channel measurements at many

indoor locations it was found that the mean power is

strongly influenced by the presence of LOS and the

radiation pattern of the AP, with variations up to 10 dB

in one environment. Similarly, the orientation of the

AP is important. Rician models were optimized to fit

the measured narrowband amplitude data. The model fit

is generally reasonable, but not perfect, with the best

result for low k-factors. In two relatively large room

environments the k-factor is highly dependent on the

mobile unit being in the main beam of the AP antenna

where values are in the range 2–9 dB. Elsewhere the

k-factor is −10 to 0 dB. In a more confined corridor

environment the k-factors are generally below 2 dB, even

in LOS conditions.
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and R. S. Thomä, “On the stochastic and deterministic behavior
of mmwave channels,” in 11th European Conference on Antennas

and Propagation (EUCAP), 2017, pp. 1813–1817.
[4] M. K. Samimi, G. R. MacCartney, S. Sun, and T. S. Rappaport,

“28 GHz millimeter-wave ultrawideband small-scale fading mod-
els in wireless channels,” in 83rd Vehicular Technology Conference

(VTC Spring), May 2016, pp. 1–6.

L1 L2 L3 L4 L5

Rx Location

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

k
-f

a
c
to

r 
[d

B
]

O1, Ver

O2, Ver

L6 L7 L8 L9 L10 L11 L12

Rx Location

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

k
-f

a
c
to

r 
[d

B
]

O3, Ver

O4, Ver

L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

Rx Location

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

k
-f

a
c
to

r 
[d

B
]

O1, Ver

O2, Ver

O4, Ver

Fig. 9. Estimated k-factors for different locations in the Lab (top),
Corridor (middle) and Hall (bottom) environment. The solid lines
connect mean values of estimates taking into account the noise power,
while dashed lines connects mean values of points (not shown)
estimated ignoring the effects of noise.

[5] M.-T. Martinez-Ingles, J.-M. Molina-Garcia-Pardo, J.-V.
Rodrguez, J. Pascual-Garca, and L. Juan-Llcer, “Experi-
mental comparison between centimeter- and millimeter-wave
ultrawideband radio channels,” Radio Science, vol. 49,
no. 6, pp. 450–458, 2014, 2014RS005439. [Online]. Available:
http://dx.doi.org/10.1002/2014RS005439

[6] J. Ø. Nielsen and G. F. Pedersen, “Dual-polarized indoor propa-
gation at 26 GHz,” in 2016 IEEE 27th Annual International Sym-

posium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), Sept 2016, pp. 1–6.
[7] R. Vaughan and J. B. Andersen, Channels, propagation and

antennas for mobile communications. London, United Kingdom:
The Institution of Electrical Engineers, 2003.

[8] J. Sijbers, A. J. den Dekker, P. Scheunders, and D. V. Dyck,
“Maximum-likelihood estimation of Rician distribution parame-
ters,” IEEE Trans. on Medical Imaging, vol. 17, no. 3, pp. 357–
361, June 1998.

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Accepted for The 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).


