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ABSTRACT 1 

Motion capture through inertial sensors is becoming popular, but its accuracy to describe 2 

kinematics during changes in walking speed is unknown. The aim of this study was to 3 

determine the accuracy of trunk speed extracted using an inertial motion system compared to 4 

a gold standard optical motion system, during steady walking and stationary periods. Eleven 5 

participants walked on pre-established paths marked on the floor. Between each lap, a 1-6 

second stationary transition period at the initial position was included prior to the next lap. 7 

Resultant trunk speed during the walking and transition periods were extracted from an inertial 8 

(240 Hz sampling rate) and an optical system (120 Hz sampling rate) to calculate the 9 

agreement (Pearson’s correlation coefficient) and relative root mean square errors between 10 

both systems. The agreement for the resultant trunk speed between the inertial system and the 11 

optical system was strong (0.67 < r ≤ 0.9) for both walking and transition periods. Moreover, 12 

relative root mean square error during the transition periods was greater in comparison to the 13 

walking periods (>40% across all paths). It was concluded that trunk speed extracted from 14 

inertial systems have fair accuracy during walking, but the accuracy was reduced in the 15 

transition periods. 16 

 17 

 18 
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INTRODUCTION 20 

Technologies to record and analyse human movement are divided in optical and non-optical 21 

systems. Optical motion capture systems (OMC) consist of recording the displacement of 22 

passive or active markers using multiple cameras overlapping each other’s field of view 23 

(Robertson, Caldwell, Hamill, Kamen, & Whittlesey, 2014). Optical systems can be used 24 

outside of laboratory settings, but portability issues limit its use in the field (Thies et al., 2007). 25 

Non-optical motion capture systems measure motion based on the relative position of different 26 

segments. Inertial motion capture systems (IMC) consist of a group of inertial measurement 27 

units (IMUs) to acquire data from accelerometers, gyroscopes and magnetometers. Post-28 

processing using fusion algorithms can provide segment and joint kinematic parameters. In 29 

case of tracking object/segment displacement, it is advantageous to use multiple IMUs to 30 

reduce measurement errors and improve accuracy (Bancroft & Lachapelle, 2011; O’Reilly, 31 

Whelan, Ward, Delahunt, & Caulfield, 2017). Inertial systems have been considered a 32 

promising alternative to conduct motion analysis due to lower cost, simplified experimental 33 

setup and a vast array of possibilities to acquire data during natural conditions (Floor-34 

Westerdijk, Schepers, Veltink, van Asseldonk, & Buurke, 2012; Karatsidis et al., 2016; 35 

Laudanski, Yang, & Li, 2011). However, data acquired from IMCs are susceptible to magnetic 36 

interference and drift with respect to time when differentiating acceleration to obtain position 37 

(Damgrave & Lutters, 2009; de Vries, Veeger, Baten, & van der Helm, 2009). Therefore, 38 

assuring the accuracy of inertial motion capture systems to investigate human motion is 39 

essential to the future applications of this technology. 40 

 41 

The growing interest in the use of IMCs has led researchers to assess the accuracy of such 42 

systems. Laudanski and co-workers (Laudanski et al., 2011) have found acceptable estimates 43 

of walking speed using IMUs placed on the shank and foot in case of natural walking patterns, 44 



but not for modified patterns such as toe-out walking. Morrow et al. (2016) found acceptable 45 

accuracy for neck, trunk and shoulder angles calculated using IMCs, but accuracy should be 46 

interpreted as protocol specific. In addition, strong and excellent agreement between predicted 47 

and actual measures have been found when inertial systems were used to predict ground 48 

reaction forces (Karatsidis et al., 2016). These previous reports suggest that inertial motion 49 

capture systems are accurate for their specific purposes. 50 

 51 

Tracking the speed of an object and/or individual in space can be relevant for many research 52 

fields such as sports, ergonomics and medicine (Laudanski et al., 2011), but the accuracy of 53 

emerging motion capture technologies must be assured (Floor-Westerdijk et al., 2012; 54 

Karatsidis et al., 2016). Previous studies have found acceptable/good accuracy when 55 

determining gait parameters such as step length (Zijlstra & Hof, 2003), centre of mass 56 

displacement (Floor-Westerdijk et al., 2012), and walking speed using accelerometers 57 

(Aminian, Robert, Jequier, & Schutz, 1995; Song, Shin, Kim, Lee, & Lee, 2007; Zijlstra & 58 

Hof, 2003). It is noteworthy that all these previously cited studies base their experimental 59 

protocols on treadmill walking, or preferred overground walking speed. Therefore, the 60 

accuracy of inertial sensors in these studies has not been challenged by changes in walking 61 

speed or stationary periods, which frequently occur in our daily.  62 

 63 

Previous studies have shown that the accuracy of IMC measurements can be reduced when 64 

complex motion or changes in direction occur (Godwin, Agnew, & Stevenson, 2009; Robert-65 

Lachaine, Mecheri, Larue, & Plamondon, 2017a). Therefore, understanding the accuracy of 66 

inertial sensors to detect periods of stationarity and changes in direction in freely moving 67 

humans is relevant in several contexts, such as: defining the displacement and movement 68 

pattern of workers in factories (where global position systems [GPS] may not work), track the 69 



displacement, speed and stationary periods of patients undergoing rehabilitation in hospitals, 70 

clinics or at home (Beyea, McGibbon, Sexton, Noble, & O’Connell, 2017; Robert-Lachaine, 71 

Mecheri, Larue, & Plamondon, 2017a; Robert-Lachaine et al., 2017b; Zhou & Hu, 2007). The 72 

use of inertial sensors can help extracting information that has been neglected in clinical 73 

biomechanics, such as the sub-phases of a time to up-and-go test (Beyea et al., 2017). However, 74 

in case of insufficient accuracy, the predictions made from inertial sensors might provide 75 

misleading data and erroneous assumptions. In this sense, there is a lack of studies attesting the 76 

accuracy of IMCs in retrieving accurate segment position and velocity during fluctuations in 77 

walking speed or stationary periods.  78 

 79 

The aim of this study was to determine the accuracy of an IMC to determine trunk segment 80 

three-dimensional position and resultant speed in relation to a gold standard OMC in two 81 

conditions: (1) normal walking at preferred speed and (2) transition periods consisting of 82 

deceleration, standing and return to walk. It was hypothesised that the accuracy of the measures 83 

from IMCs during normal walking would be high. However, the accuracy during transition 84 

periods would be poor, as the acquisition based on accelerations for the inertial sensors can be 85 

compromised in the transition periods. 86 

 87 

METHODS 88 

Participants 89 

Eleven adults (24±1 years, height 180±13 cm, body mass 82±14 kg) volunteered to participate 90 

in this experiment. The exclusion criteria to participate in this experiment was any existent 91 

musculoskeletal disorder that could impair walking performance (i.e., lower limb muscle strain, 92 

tendinisis, ostearthrisis, etc.). The experiment was performed in accordance with the ethical 93 

guidelines of The North Denmark Region Committee on Health Research Ethics. 94 



 95 

Experimental design 96 

In a single session, participants were initially acclimatised to the lab environment and 97 

experimental setup. The task consisted of performing walking at self selected speed on three 98 

pre-established pathways marked on the floor: 1 x 1 m path, 2 x 2 m path and 2 x 3 m path 99 

located in the central area of a 12 x 8 m room. The order of the paths was randomised for each 100 

participant. For each path, participants were asked to perform four laps clockwise while briefly 101 

stopping for one second at the initial position, characterising a transitory period of deceleration 102 

and acceleration from and to a stationary position (DEC/ACC, Figure 1A). The DEC/ACC 103 

periods were included to provide data containing substantial changes in segment acceleration 104 

and a brief stationary period, contrasting to the rather stable segment displacement during 105 

normal walking. This procedure was repeated three times for each path, totalling 12 laps and 106 

nine DEC/ACC periods for each path. A rest interval of 5 minutes was provided between each 107 

set of recordings. During the walking tasks, motion data was recorded from an IMC and an 108 

OMC simultaneously, the latter being considered the gold standard for the purposes of this 109 

investigation. 110 

 111 

INSERT FIGURE 1 HERE 112 

 113 

Inertial motion capture system 114 

An IMC system (Xsens MVN Link, Xsens Technologies BV, Enschede, The Netherlands) and 115 

its respective software (Xsens MVN Studio version 4.2.4, Enschede, The Netherlands) were 116 

used to record full-body kinematics at a sampling rate of 240 Hz. The IMC consisted of 17 117 

IMU modules (25 x 35 x 8 mm, 30 g) mounted on a tight-fitting Lycra suit containing pre-118 

defined locations for sensor placement (Figure 2A). The IMUs were placed bilaterally on the 119 



following locations: shoulder, arm, forearm, hand, thigh, shank and foot. In addition, IMUs 120 

were placed on the head (using a headband), on the chest and on the sacrum. The 121 

manufacturer’s sensor calibration procedure was followed by asking participants to assume 122 

different body poses such as N-pose (quiet standing with arms alongside the body) and T-pose 123 

(quiet standing with arms abducted 90º and horizontally aligned in the frontal plane). This 124 

calibration procedure assured the different IMUs were correctly representing the body’s 125 

segments in the three-dimensional space. The manufacturer’s recommendations to avoid 126 

sources of electromagnetic fields were followed to assure the quality of the acquired data.  127 

 128 

INSERT FIGURE 2 HERE 129 

 130 

Standard optical motion capture system 131 

An eight infrared high-speed cameras system (Oqus 300 series, Qualisys AB, Gothenburg, 132 

Sweden) OMC was used to capture 7 retro-reflective markers that defined the participants’ 133 

trunk segment. The markers (12 mm diameter, Qualisys AB, Gothenburg, Sweden) were placed 134 

on top of the IMC Lycra suit in the following bone landmarks: left and right acromium, left 135 

and right anterior superior iliac spine, seventh cervical vertebrae, xiphoid process of the 136 

sternum and manubrium process of the sternum (Figure 2B). Considering that both the markers 137 

and the Lycra suit could move in relation to the bone landmarks, the marker and suit were 138 

periodically checked to assure the correct placement throughout the experiment. The sampling 139 

frequency of the OMC was set at 120 Hz. A synchronisation device (Xsens Sync station, 140 

Enschede, The Netherlands) was used to synchronise the IMC and OMC. The data from the 141 

IMC were resampled to 120 Hz to match the OMC sampling frequency. 142 

 143 

Data processing 144 



For the IMC, the orientation of each IMU was obtained by fusing accelerometer, gyroscope 145 

and magnetometer signals using an extended Kalman filter embedded in the IMC recording 146 

software (Roetenberg, Luinge, Baten, & Veltink, 2005). The IMC software computed the three-147 

dimensional position vectors for all sensors. Moreover, the IMC software partitioned the trunk 148 

kinematic data into four different segments (L3, L5, T8 and T12 vertebrae), and generated 149 

position vectors for each of these spine levels. The position vectors from these spine levels 150 

were low-pass filtered (6 Hz, second-order Butterworth zero-phase). A preliminary analysis 151 

using trunk position data from the sensor located on the chest did not reveal significant 152 

differences when compared to averaged position data extracted from all four spine levels (L3, 153 

L5, T8 and T12 vertebrae). Therefore, the trunk position in each direction was defined as the 154 

average across all four spine levels for each time frame. For the OMC, the marker position 155 

vectors were low-pass filtered (6 Hz, second-order Butterworth zero-phase) and processed with 156 

Visual 3D software (Visual3D V6 Professional, C-Motion, Germantown, USA) to calculate 157 

the trunk centre of mass position vectors. The trunk position vectors from IMC and the trunk 158 

centre of mass position vectors from OMC were derived to generate velocity vectors. The 159 

resultant trunk speed was subsequently defined as: 160 

 161 

𝑆𝑆(𝑖𝑖) =  �𝑥𝑥(𝑖𝑖)2 + 𝑦𝑦(𝑖𝑖)2 + 𝑦𝑦(𝑖𝑖)2 162 

 163 

where for each time frame (i), S was the resultant speed from the velocity vectors in the 164 

anterior-posterior (x), medial-lateral (y) and vertical directions (z). Data was analysed using 165 

custom scripts programmed in MATLAB® (R2015b, Mathworks Inc., Natick, MA USA). 166 

 167 

 168 

 169 



Data analysis 170 

The trunk resultant speed from OMC was used to define the walking periods (e.g., individual 171 

laps) and the DEC/ACC periods. The walking periods were segmented when the trunk resultant 172 

speed was > 0.2 m/s, and the DEC/ACC periods were defined as the periods in which speed 173 

was <= 0.2 m/s (Figure 1B). The total trunk displacement was computed from the beginning 174 

of the first lap to the end of the fourth lap in each of the three sets of recordings for each path. 175 

The segmentation extracted from the OMC data was used to segment the IMC data. Regarding 176 

the segmented walking and DEC/ACC periods, the average trunk speed was determined as the 177 

average across each trial, and subsequently averaged across all trials for each participant. 178 

 179 

Statistical analysis 180 

The Statistical Package for the Social Sciences (IBM SPSS Inc. Version 23.0, Chicago, IL, 181 

USA) was used for statistical analysis. The normality of the dependent variables (total 182 

distances, walking speed was assessed using Shapiro-Wilk tests. To evaluate the accuracy of 183 

IMC total trunk displacement and resultant trunk speed for the walking and DEC/ACC periods, 184 

the relative root mean square error (rRMSE) in relation to data from the OMC were calculated, 185 

as defined by Ren et al. (Ren, Jones, & Howard, 2008). In addition, the agreement between the 186 

total trunk displacement from both systems was derived from Pearson’s correlation 187 

coefficients, which were categorised as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong 188 

(0.67 < r ≤ 0.9) and excellent (r > 0.9), according to previous studies (Karatsidis et al., 2016; 189 

Taylor, 1990). The effects of different path lengths (1 x 1 vs 2 x 2 vs 2 x 3) and motion capture 190 

systems (IMC vs OMC) on the resultant trunk speed were assessed by using 2-way ANOVA 191 

for repeated measures. The significance level was set at p<0.05.  192 

 193 

 194 



RESULTS 195 

The total distances tracked during the sets of four laps including the DEC/ACC periods 196 

presented low rRMSE (<15%) for the 2 x 2 and 2 x 3 paths in the anterior-posterior and medial-197 

lateral directions (Table 1). However, the rRMSE was higher (32±24%) for the 1 x 1 path in 198 

these movement directions. In addition, the rRMSE for the vertical direction was high 199 

regardless the path length (117±79% across all paths). But there was a trend to reduced rRMSE 200 

for the longer paths (Table 1). The agreement between the IMC and OMC measurements was 201 

excellent (r > 0.9) for both the anterior-posterior and medial-lateral directions across all paths. 202 

For the vertical direction, the agreement was strong for the 1 x 1 path (0.67 < r ≤ 0.9), and it 203 

was moderate (0.35 < r ≤ 0.67) for the 2 x 2 and 2 x 3 paths.  204 

 205 

INSERT TABLE 1 HERE 206 

 207 

Resultant trunk speed 208 

There was no significant main effect of the different paths on the DEC/ACC speed (Figure 2, 209 

p>0.05). In contrast, there was a main effect of systems (F = 20.20; p = 0.0006; ŋp2 = 0.669) 210 

demonstrating that the resultant trunk speed calculated from the IMC was greater in comparison 211 

to the speed calculated from the OMC. Regarding walking speed, there was a main effect of 212 

paths (F = 134.32; p = 0.00002; ŋp2 = 0.968) demonstrating that the shorter the path, the slower 213 

the resultant trunk speed. Post-hoc test revealed significant differences among all paths (Figure 214 

2). There was no main effect of system for the walking speed (p>0.05). In addition, there were 215 

no interaction effects for both walking and DEC/ACC speed (p>0.05).  216 

 217 

INSERT FIGURE 2 HERE 218 

 219 



For the walking trials, there was a tendency for longer periods of recording as a function of 220 

longer distances to walk in a lap (Table 2), whereas the duration of the DEC/ACC periods 221 

ranged between 1.5-2 s across all paths. The agreement for the resultant trunk speed between 222 

IMC and OMC was strong for both walking and DEC/ACC periods across all paths. The 223 

rRMSE of the resultant trunk speed during the walking periods was 19.90±7.82% across all 224 

paths (Table 2). In contrast, the rRMSE during the DEC/ACC periods were consistently greater 225 

(51.16±14.88% across all paths) when qualitatively compared to the walking rRMSE. 226 

 227 

INSERT TABLE 2 HERE 228 

 229 

DISCUSSION AND IMPLICATIONS 230 

The main findings of the present study were that IMCs can retrieve similar total distances (in 231 

the anterior-posterior and medial-lateral directions) and resultant speed in comparison to a gold 232 

standard OMC during walking. However, there were overestimations of the speed computed 233 

from the IMC during transition periods of deceleration and acceleration from and to stationary 234 

positions, when compared to the gold standard OMC. In practice, these results suggest that 235 

inertial sensors can be used for defining segment displacement when speed is constant, but 236 

acceleration/deceleration patterns from and to stationary positions may lack accuracy. 237 

 238 

In the present study, there was a strong agreement between IMC and OMC for the total trunk 239 

centre of mass distances in the anterior-posterior and medial-lateral directions, but it was 240 

moderate in the vertical direction. A previous study found high accuracy for the vertical centre 241 

of mass displacement calculated from a inertial sensor located on the sacrum and OMC (Floor-242 

Westerdijk, Schepers, Veltink, van Asseldonk, & Buurke, 2012), but accuracy was moderate 243 

for the anterior-posterior and medial-lateral directions. The authors argued that the lower 244 



accuracy for the anterior-posterior and medial-lateral directions were caused by the influence 245 

of pelvic rotations on the inertial recordings. Our results do not corroborate this study, and the 246 

contrasting evidence might be related to the different data acquisition methods. The present 247 

study recorded only trunk kinematics using OMC, and full-body kinematics using IMC, 248 

whereas the referenced study recorded full-body OMC and one inertial sensor on the sacrum. 249 

The trunk movement substantially contributed to the centre of mass calculation (Floor-250 

Westerdijk et al., 2012), and the estimation of the centre of mass displacement using a single 251 

sacral markers can lead to poor precision (Gard, Miff, & Kuo, 2004). Therefore, estimating 252 

centre of mass kinematics using a single inertial sensor might not be optimal, but the lack of 253 

consistency across studies compromises further comparisons. In the present study, the 254 

displacement of four trunk segments form the IMC were used to describe the trunk 255 

displacement and speed, which were extracted from the manufacturer’s fusion algorithm. 256 

Future studies addressing the accuracy of IMC systems should focus on standardising recording 257 

methods, to facilitate comparison to previous validation studies. 258 

 259 

The validity of IMC has been investigated with fair estimates for centre of mass position (Floor-260 

Westerdijk et al., 2012), lower limb joint angles in the sagittal plane (Zhang, Novak, Brouwer, 261 

& Li, 2013) and ground reaction forces prediction during walking (Karatsidis et al., 2016). 262 

Laudanski et al. (2011) found rRMSE between 5% and 7.5% for walking speed computed using 263 

inertial sensors located in the shank and foot, but the comparison was performed between a 264 

pre-established treadmill speed and the inertial sensor’s speed. In the present study, it was 265 

found a greater rRMSE for the speed measured during walking (~17%, across all paths) 266 

compared to Laudanski and co-worker’s study (up to 7.5%). However, direct comparison 267 

between studies need caution, as the study of Laudanski and co-workers did not use a reference 268 

kinematic measurement for comparison. 269 



 270 

There was a remarkable rRMSE for the trunk speed measured during the DEC/ACC periods 271 

(~51%, across all paths), which was substantially greater than the error found during walking 272 

(~17%). Previous studies have reported greater measurement errors for IMC when participants 273 

performed upper limb movements with increased duration and complexity (Godwin et al., 274 

2009; Robert-Lachaine et al., 2017b). In addition, Godwin and Stevenson (2009) reported that 275 

the greater errors of their experiment occurred during changes in movement direction. This 276 

phenomenon has been also observed by previous studies using angular upper limb kinematics 277 

(Zhou & Hu, 2007), simple pendulum motion (Brodie, Walmsley, & Page, 2008) and whole-278 

body translational displacement involving acceleration and deceleration periods (Damgrave & 279 

Lutters, 2009). Damgrave and Lutters (2009) have suggested that changes in segment 280 

acceleration/deceleration, such as long-lasting postures (e.g. standing still) and high-speed 281 

movements (e.g. jumping), might compromise the accuracy of the IMC estimation. However, 282 

these authors did not provide any technical explanation for the reduced accuracy. However, 283 

Zhou et al. (2007) attributed the larger error of their IMC measurement to overshoots of the 284 

inertial sensors during periods of fast orientation change, which might have happened during 285 

the transition periods recorded in our study. Moreover, the reduced accuracy of IMC during 286 

changes in direction may be related to the ability of the sensors and fusion algorithm to detect 287 

and use gravity to produce accurate orientation estimations (Godwin et al., 2009). Our results 288 

corroborate these findings, as the accuracy during steady walking was greater than the accuracy 289 

from transition periods.  290 

 291 

Ultimately, these limitations resulted in overestimation of the walking speed in these transition 292 

periods. Previous studies have highlighted the potential limitations of using the Kalman filter 293 

to establish segment orientation, as it focuses on the prediction of orientation from motion with 294 



a known Gaussian-error distribution (Brodie et al., 2008; Zhou & Hu, 2007). This fact may 295 

pose a limitation for this tool to accurately describe complex motion patterns involving changes 296 

in direction and stationary periods. Therefore, our results provide relevant information for 297 

system developers to further enhance the extraction of position and velocities from inertial 298 

sensors. 299 

 300 

Despite the fact that IMCs can present limitations to accurately describe human kinematics, it 301 

is also important to highlight that OMC require appropriate processing to provide relevant 302 

results. Firstly, defining an appropriate calibration area is essential to maximise marker 303 

tracking and minimising errors. Our study was conducted in a large laboratory and the 3 x 2 m 304 

walking path was defined as the maximum area that could provide accurate trunk marker 305 

tracking (i.e., no missing markers) in the calibrated laboratory space. Secondly, the derivation 306 

of the trunk centre of mass speed from marker displacement data might amplify high-frequency 307 

noise present in the displacement data. This technical problem was minimised by the careful 308 

checking of the quality of all markers displacement offline for inconsistencies and data 309 

clipping. In addition, the low-pass filtering of the displacement data is another essential step to 310 

minimise the influence of high-frequency noise on the reported OMC trunk speed. Regarding 311 

inertial sensors, IMC systems require specific conditions for optimal performance, such as 312 

location of the experiment and gravitational attraction. Assuring that the location is free of 313 

magnetic interferences can improve the determination of the global reference frame, which 314 

subsequently allows for better accuracy of data extracted from the fusion algorithm (Lebel, 315 

Boissy, Hamel, & Duval, 2013). The increasing use of IMCs can expand the possibilities to 316 

perform human motion analysis, but more research is needed to deeply understand the 317 

limitations of such devices (Cutti, Giovanardi, Rocchi, & Davalli, 2006).  318 

 319 



CONCLUSION 320 

In summary, this study showed that the resultant trunk speed measured using an IMC is similar 321 

to the speed measured from a gold standard OMC in a standard walking task. However, the 322 

accuracy from IMCs to describe trunk speed was reduced during the transition phases that 323 

included short stationary periods. As a result, the trunk speed provided by the IMC during the 324 

transition phases was overestimated when compared to the OMC. It is likely that current 325 

limitations of the Kalman filter to correctly predict changes in directions have caused such 326 

reductions in accuracy. Inertial sensors currently represent an important advance to perform 327 

motion capture in real-world scenarios, but it is highly relevant to demonstrate its versatility 328 

and precision across all potential recording scenarios Therefore, future studies could apply 329 

different stationary periods, as well as different approaching/exit walking speed, to investigate 330 

the accuracy of IMC. This next step can contribute to the improvement of algorithms currently 331 

implemented in IMCs systems. 332 
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Table 1. Total trunk displacement measured from the inertial (Dist-IMC) and the optical 424 
motion capture system (Dist-OMC) in the anterior-posterior (AP), medial lateral (ML) and 425 
vertical directions (VERT) during the 4-lap recordings in three different paths. The relative 426 
root mean square error (rRMSE) and agreement between measures of the two systems were 427 
computed for each path. The agreement is categorised as weak (r ≤ 0.35), moderate (0.35 < r 428 
≤ 0.67), strong (0.67 < r ≤ 0.9) and excellent (r > 0.9). 429 
 430 

 431 

 432 

  433 

 1 x 1 m  2 x 2 m  2 x 3 m 
 Mean SD  Mean SD  Mean SD 

Dist-IMC-AP (m) 10.648 2.145  30.521 2.975  50.510 6.043 
Dist-OMC-AP (m) 11.136 2.424  30.705 2.479  50.093 5.429 
rRMSE (%) 50.602 24.281  13.541 8.264  8.203 3.491 
Agreement (r) 0.985 0.008  0.998 0.002  0.998 0.001 
         
Dist-IMC-ML (m) 13.065 2.959  31.148 3.187  35.363 5.413 
Dist-OMC-ML (m) 11.384 2.619  31.334 2.252  33.959 3.144 
rRMSE (%) 26.285 15.295  13.995 3.965  17.345 8.376 
Agreement (r) 0.985 0.023  0.995 0.004  0.996 0.003 
         
Dist-IMC-VERT (m) 0.439 0.099  0.858 0.176  1.100 0.419 
Dist-OMC-VERT (m) 0.439 0.123  0.669 0.180  0.811 0.181 
rRMSE (%) 173.292 112.171  97.236 46.385  80.999 19.632 
Agreement (r) 0.733 0.139  0.617 0.175  0.611 0.163 



Table 2. Duration of walking laps and DEC/ACC periods, as well as the agreement and relative 434 
root mean square error (rRMSE) between IMC and OMC for each path. The agreement is 435 
categorised as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.9) and excellent 436 
(r > 0.9). 437 
 438 
 Trunk speed - walking  Trunk speed - DEC/ACC 

 
Duration 

(s) 
Agreement 

(r) 
rRMSE 

(%)  
Duration 

(s) 
Agreement 

(r) 
rRMSE 

(%) 
1 x 1 m        
Mean 6.140 0.682 23.40  1.999 0.730 61.80 
SD 1.142 0.174 7.89  0.518 0.098 14.20 
2 x 2 m        
Mean 8.664 0.768 18.45  1.475 0.823 43.73 
SD 0.627 0.158 6.54  0.538 0.062 9.14 
2 x 3 m        
Mean 9.369 0.824 16.18  1.455 0.872 44.03 
SD 0.747 0.134 7.37  0.477 0.049 13.49 

 439 

  440 



Figure 1. Experimental design (A) in which human walking was recorded using an inertial 441 
(IMC) and an optical motion capture system (OMC). In B, resultant trunk speed extracted from 442 
the IMC (dashed lines) and the OMC (solid lines) throughout four laps on each of the three 443 
established paths (1 x 1, 2 x 2 and 2 x 3 m). 444 
  445 



Figure 2. Location of the 17 inertial measurement units from the inertial motion capture  (IMC) 446 
system (A). The IMC software automatically generated four spine segments (T8, T12, L3 and 447 
L5) based on the full- body recording. In B, location of the retro-reflexive markers used to track 448 
the trunk segment position. 449 
  450 



Figure 3. Mean (SD) resultant trunk speed during walking (A) and in the DEC/ACC periods 451 
(B) for the three different paths. Data was recorded from an inertial motion capture system 452 
(IMC, white bars) and an optical motion tracking system (OMC, black bars). * denotes 453 
significant difference in relation to the 2 x 2 and 2 x 3 paths for both systems (p<0.005); † 454 
denotes significant difference in relation to the 2 x 3 path for both systems (p<0.001); ‡ denotes 455 
significant difference in relation to the OMC for all paths (p<0.001).  456 
 457 
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