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ABSTRACT

Introduction: Few prognostic biomarkers are available for pancreatic cancer. 
The aim of this study is to examine the correlation between the survival of pancreatic 
adenocarcinoma patients and hypermethylated genes in plasma-derived cell-free DNA.

Methods: Consecutive patients with pancreatic adenocarcinoma were 
prospectively included and staged according to the TNM classification. Methylation-
specific PCR of 28 genes was conducted. A survival prediction model independent 
of cancer stage and stage-specific survival prediction models were developed by 
multivariable Cox regression analysis using backward stepwise selection.

Results: Ninety-five patients with pancreatic adenocarcinoma were included. 
Patients with more than 10 hypermethylated genes had a HR of 2.03 (95% CI; 
1.15-3.57) compared to patients with fewer hypermethylated genes. Three survival 
prediction models were developed: Total group; (American Society of Anesthesiologists 
score (ASA)=3, GSTP1, SFRP2, BNC1, SFRP1, TFPI2, and WNT5A) Risk groups 2, 3 and 
4 had a HR of 2.65 (95% CI; 1.24-5.66), 4.34 (95% CI; 1.98-9.51) and 21.19 (95% 
CI; 8.61-52.15), respectively, compared to risk group 1. Stage I-II; (ASA=3, SFRP2, 
and MESTv2) Risk groups 2, 3 and 4 had a HR of 4.83 (95% CI; 2.01-11.57), 9.12 
(95% CI; 2.18-38.25) and 70.90 (95% CI; 12.63-397.96), respectively, compared to 
risk group 1. Stage IV; (BMP3, NPTX2, SFRP1, and MGMT) Risk group 2 had a HR of 
5.23 (95% CI; 2.13-12.82) compared to risk group 1.

Conclusion: Prediction models based on cell-free DNA hypermethylation stratified 
pancreatic adenocarcinoma patients into risk groups according to survival. The models 
have the potential to work as prognostic biomarkers. However, further validation of 
the results is required to substantiate the findings.
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INTRODUCTION

Pancreatic cancer is the 4th leading cause of 
cancer death in developed countries [1], with a five-year 
survival rate between 5-7% [2]. The current standard for 
determining patient prognosis for pancreatic cancer is the 
extent of the disease, defined by the primary tumor (T), 
lymph node (N) and distant metastasis (M) staging system  
[3]. Patients undergoing intended curative treatment have 
a five-year survival rate of approximately 14%, whereas 
only 1% of patients with distant metastases are alive after 
five years  [2]. Furthermore, there is a significant range 
in survival time within individual clinical stage. This 
intra-stage variance might reflect different tumor biology, 
caused by various gene expression profiles  [4].

There are few prognostic markers available for 
pancreatic cancer. CA-19-9, which is not suitable as 
a diagnostic marker for pancreatic cancer, has been 
suggested as a prognostic marker [5], [6]. However, the 
utility of CA-19-9 is limited, as 10% of the population 
lack the ability to express CA-19-9 [5], [6]. Performance 
status is also used as a prognostic factor for pancreatic 
cancer, as patients with a poor performance status are 
less likely to overcome extensive surgery or benefit from 
intensified chemotherapy regimens [7], [8].

It would be of great benefit to patients if additional 
markers for prognosis were available, to identify patients 
with more aggressive tumor biology upfront. It would 
optimize therapeutic decision-making and promote 
individualized therapy.

During the development of pancreatic cancer, a 
variety of genetic and epigenetic changes occurs. Genetic 
alterations change the DNA sequence, whereas epigenetic 
modifications change the DNA conformation and the 
chromatin structure, and consequently, the gene expression 
changes. DNA hypermethylation is an epigenetic mechanism, 
where a methyl (CH3) residue is added to cytosines preceding 
guanosines (CpGs) [9–12]. Hypermethylation in the promoter 
region is one of the mechanisms that can lead to inactivation 
of tumor suppressor genes associated with carcinogenesis [9], 
[10], [13], [14].

In different types of cancer, DNA hypermethylation 
has been reported to have prognostic value and to be 
an independent predictor of survival [15–18]. We have 
previously performed a literature review regarding 
genes aberrantly methylated in pancreatic cancer [19]. 
Furthermore, we have shown that hypermethylated genes 
in plasma is useful as a diagnostic marker for pancreatic 
adenocarcinoma [20].

The aim of this study is to examine the 
correlation between survival of patients with pancreatic 
adenocarcinoma and hypermethylated genes in plasma-
derived cell-free DNA, both as a general predictive marker 
for survival and as stage-specific predictive survival 
markers.

RESULTS

In this study, 95 patients with pancreatic 
adenocarcinoma were included. Table 1  lists the baseline 
characteristics of the patients.

Survival analyses

Survival analyses according to staging

The Kaplan-Meier curves in Figure 1 show survival 
according to pancreatic cancer staging.
Survival analysis according to the total number of 
hypermethylated genes

Patients were divided into quartiles based on the 
total number of hypermethylated genes: 1st quartile (1-5 
hypermethylated genes), 2nd quartile (6-7 hypermethylated 
genes), 3rd quartile (8-10 hypermethylated genes) and 4th 
quartile (11-20 hypermethylated genes). There was no 
significant difference in HR of the 1st, 2nd and 3rd quartiles. 
However, the 4th quartile had a HR of 2.78 (95% CI; 
1.53-5.05), which was significantly different (p-value < 
0.001) from the 1st quartile (Figure 2A). We combined 
the 1st, 2nd and 3rd quartiles (1-10 hypermethylated 
genes) and compared them to the 4th quartile (more than 
10 hypermethylated genes). In an analysis adjusted for 
staging and age, a HR of 2.03 (95% CI; 1.15-3.57) was 
found for patients with more than 10 hypermethylated 
genes. Patients with 0-10 hypermethylated genes had a 
better six-month, one-year and two-year survival (73% 
(95% CI; 61%-82%), 56% (95% CI; 43%-66%), and 28% 
(95% CI; 19%-39%)), compared to patients with more 
than 10 hypermethylated genes, who had a six-month, 
one-year and two-year survival of 28% (95% CI; 12%-
46%), 12% (95% CI; 3%-28%), and 4% (95% CI; 0.3%-
17) (Figure 2B).
Prognostic prediction model development for the total 
group of patients

We first analyzed the total group of cancer 
patients, without taking into account the subsequent 
stage classification. The purpose was to develop a 
prognostic prediction model, usable prior to the final 
stage classification. By univariate screening, eight genes 
(BNC1, GSTP1, MLH1, SFRP1, SEPT9v2, SST, TFPI2, 
and WNT5A) yield a significant HR (Table 2). In addition, 
patients with an ASA score of three compared to an ASA 
score of one had a HR of 2.63 (95% CI; 1.49-4.63), and 
PS > 0 compared to PS = 0 was associated with a HR of 
2.49 (95% CI; 1.61-3.84). The HRs for age and gender 
were insignificant.

All of the potential predictors (14 genes out of the 
28-gene panel), including an ASA score of three and PS 
> 0, were used to develop a prognostic prediction model. 
A model containing the following variables, an ASA score 
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of three, GSTP1, SFRP2, BNC1, SFRP1, and TFPI2, was 
determined as the final model with a Harrell’s c of 0.73 
(Table 3). PS was eliminated in the stepwise selection. 
Hypermethylation of all the genes in the model yield a HR 
greater than one, except for SFRP2 hypermethylation (HR 
= 0.45 (95% CI; 0.27-0.73)), indicating a positive impact 
of SFRP2 hypermethylation on survival. There were no 
significant interactions between variables in the model, 
and the model was well calibrated (p-value = 0.9956). 
The final model had by internal validation an optimism 
of 0.07, resulting in an optimism corrected Harrell’s c of 
0.66. Based on the model, patients were divided into four 
risk groups. The survival curves of the risk groups are 
illustrated in Figure 3A. The gene combination together 
with the corresponding HR is shown in Figure 3B.
Prognostic prediction model development for stage I 
and II pancreatic adenocarcinoma

We performed a subgroup analysis of patients 
with potentially resectable disease. The objective was to 
develop a survival prediction model for this particular 
subgroup of patients. Hypermethylation of two genes 
(SFRP2 and CDKN2A) (Table 2) was, by univariate 
screening, significantly associated with impaired survival 
of stage I and II disease, with CDKN2A yielding a HR 
of 9.24 (95% CI; 1.03-82.68). The HRs for age and 
gender were insignificant. Patients with an ASA score of 
three compared to an ASA score of one had an increased 
HR of 4.85 (95% CI; 1.85-12.76). In addition, PS > 0 
was associated with a HR of 3.39 (95% CI; 1.64-7.02) 
compared to PS = 0. In the multivariable analysis, we 
only included ASA score, as treatment of stage I and II 

disease primarily is handled by surgeons routinely using 
ASA score and not PS in the evaluation of operability. 
Nine hypermethylated genes were potential predictors 
for survival. These together with an ASA score of three 
were used to develop a prognostic prediction model 
for stage I and II pancreatic adenocarcinoma. The final 
model was an ASA score of three, hypermethylation 
of SFRP2 and MESTv2, reaching a Harrell’s c of 0.75 
(Table 3). There were no significant interactions between 
variables in the model. The final model had by internal 
validation an optimism of 0.10, resulting in an optimism 
corrected Harrell’s c of 0.65. An ASA score of three 
was the variable with the greatest negative impact on 
survival of patients with stage I and II disease (Table 3). 
SFRP2 hypermethylation had a highly positive influence 
on survival (HR = 0.18 (95% CI; 0.07-0.45)), whereas 
hypermethylation of MEST1v2 was associated with a 
negative impact on survival (HR = 2.39 (95% CI; 0.97-
5.94)). We divided the patients into four risk groups 
based on the prediction model for stage I and II disease. 
Figure 4 illustrates survival of the risk groups. Patients 
in risk group 1 had a two-year survival of 80% (95% CI; 
50%-93%) and a three-year survival of 47% (95% CI; 
21%-69%) compared to a two-year survival of only 22% 
(95% CI; 7%-43%) and none of the patients alive after 
three years in risk group 2. After five years of follow-
up, three patients were alive without residual disease or 
recurrence. All three patients had an ASA score below 
three and hypermethylation of SFRP2 at the time of 
diagnosis. Patients with an ASA score of three (risk group 
3 and risk group 4) had poor survival independent of 
hypermethylation status (Figure 4).

Table 1: Baseline characteristics of patients with pancreatic adenocarcinoma (N=95)

Stage I (Ia+Ib) II (IIa+IIb) III IV

N 11 29 13 42

Age (mean) (SD) 70 (10.81) 67 (8.21) 65 (8.25) 65 (9.21)

Sex (men:women) 6:5 19:10 10:3 22:20

ASA 1 (n) (%) 4 36% 14 48% 8 62% 0 0%

ASA 2 (n) (%) 4 36% 11 38% 3 23% 18 43%

ASA 3 (n) (%) 3 27% 4 14% 2 15% 12 29%

Intendent curative 
surgery (n) (%) 5 45% 24 83% 4 31% 1 2%

Preoperative 
chemotherapy (n) (%) - - 3 10% - - - -

Palliative 
chemotherapy (n) (%) 3 27% 9 31% 10 77% 27 64%

SD: Standard deviation
ASA: American Society of Anesthesiologists score.
Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.
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Prognostic prediction model development for stage III 
pancreatic adenocarcinoma

Only hypermethylation of one gene (WNT5A) was 
significantly associated with survival in patients with stage 
III disease. Due to the limited number of patients in this 
subgroup, no further analysis was performed.
Prognostic prediction model development for stage IV 
pancreatic adenocarcinoma

We performed a subgroup analysis of stage IV 
disease, with the purpose of developing a model to 
predict the survival of patients with distant metastases. 
In the univariate screening, three genes (BMP3, SFRP1, 
and TFPI2) (Table 2) were associated with a significant 
increased HR. SFRP1 yield the greatest HR of 4.57 (95% 
CI; 2.02-10.34)). The HRs for age, gender and ASA score 
were insignificant. Patients with a PS > 0 had a HR of 
1.78 (95% CI; 0.95-3.36) compared to patients with a PS 
= 0. PS was excluded from the multivariable analysis, 
because it was insignificantly associated with survival of 
stage IV disease (p-value = 0.074). A prognostic model 
was developed based on hypermethylation of 11 potential 
predictor genes. The final model (BMP3, MGMT, NPTX2, 
and SFRP1) reached a Harrell’s c of 0.71 and was well 
calibrated (p-value = 0.3517) (Table 3). There were no 
significant interactions in the model. The final model had 
by internal validation an optimism of 0.12, resulting in an 
optimism corrected Harrell’s c of 0.59. All of the variables 
were associated with impaired survival, except NPTX2 

yielding a HR of 0.45 (95% CI; 0.17-1.18). Based on the 
prediction model, patients with stage IV disease were 
divided into two risk groups (Figure 5). Patients in risk 
group 2 had a HR of 5.23 (95% CI; 2.13-12.82) compared 
to patients in risk group 1. Patients in risk group 1 had 
a better 6-month and one-year survival (64% (95% CI; 
38%-82%), and 59% (95% CI; 33%-78%), respectively) 
compared to patients in risk group 2 with a 6-month 
survival of 14% (95% CI; 3%-30%), and unfortunately, 
none of the patients were alive after one year (Figure 5).

DISCUSSION

Promoter hypermethylation of tumor suppressor 
genes is a hallmark of cancer [11–13]. In the context of 
pancreatic cancer, aberrant DNA hypermethylation has 
been detected in cell lines [21], tumor tissue [22], stool 
[23], pancreatic juice [24– 26] and cell-free DNA [20], [27], 
[28]. The majority of studies have determined the diagnostic 
value, and only very few studies have investigated the 
prognostic value of hypermethylated DNA [29], [30].

In this study, we analyzed promoter hypermethylation 
of 28 genes in plasma-derived cell-free DNA of patients 
with pancreatic adenocarcinoma according to survival. We 
found significantly shorter survival time of patients with 
more than 10 hypermethylated genes in cell-free DNA, 
compared to patients with fewer hypermethylated genes. To 
our knowledge, this has not previously been described with 
regard to pancreatic cancer. However, a similar finding was 

Figure 1: Survival according to stage.  Kaplan-Meier survival estimates based on American Joint Committee on Cancer stage 
classification.
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Figure 2: Survival according to the total number of hypermethylated genes. For each patient, the total number of hypermethylated 
genes was calculated. Based on that calculation, the patients were divided into quartiles. The Kaplan-Meier curves illustrate the survival 
estimates according to the total number of hypermethylated genes in plasma-derived cell-free DNA. (A) Blue line: 1st quartile (1-5 
hypermethylated genes). Red line: 2nd quartile (6-7 hypermethylated genes). Green line: 3rd quartile (8-10 hypermethylated genes). Yellow 
line: 4th quartile (>10 hypermethylated genes). There was no significant difference in HR between the 1st, 2nd and 3rd quartile. However, the 
4th quartile had a HR of 2.78 (95% CI; 1.53-5.05). (B) Blue line: 1st quartile, 2nd quartile and 3rd quartile (1-10 hypermethylated genes) were 
combined as the survival estimates were identical for the first three quartiles (see Figure 2A). Red line: 4th quartile (>10 hypermethylated 
genes) The 4th quartile had a HR of 2.88 (95% CI; 1.78-4.65) compared to the combined group of the 1st, 2nd and 3rd quartiles.
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described regarding head and neck squamous cell carcinoma, 
where hypermethylation in tumor tissue of more than six out 
of 11 genes was associated with poor overall survival [17].

We found that the survival of pancreatic adenocarcinoma 
patients was associated with hypermethylation of several 
individual genes, varying with cancer stage.

Hypermethylation of SFRP1, BNC1, and TFPI2 
were in the univariate screening associated with poor 
survival for stage IV pancreatic adenocarcinoma. SFRP1 
hypermethylation had the greatest HR. The SFRP1 gene 
encodes for secreted frizzled-related protein 1, which 
acts as a modulator of the Wnt signaling pathway [31]. 
Upregulation of the Wnt pathway due to promoter 

hypermethylation of SFRP genes has been associated 
with cancer formation. SFRP1 promoter hypermethylation 
has previously been detected in tumor tissue [32], 
pancreatic juice [24] and cell-free DNA [27] from patients 
with pancreatic cancer. A prognostic value of SFRP1 
hypermethylation has, to our knowledge, not previously 
been described regarding pancreatic adenocarcinoma. 
However, in line with our findings, studies on tumor tissue 
regarding breast cancer [18] and renal cancer [33] have 
suggested SFRP1 hypermethylation to be an independent 
risk factor for low overall survival.

We also showed that hypermethylation of BMP3 was 
associated with decreased survival in stage IV pancreatic 

Table 2: Hazard ratio for each gene based on univariate Cox regression analysis
Gene All stages (N = 95) Stage I/II (N = 40) Stage III (N = 13) Stage IV (N = 42)

HR P 95% CI HR P 95% CI HR P 95% CI HR P 95% CI

ALX4 1.43 0.20 (0.83-2.47) 0.82 0.78 (0.19-3.43) 1.00 - - 0.96 0.91 (0.50-1.86)

APC 0.99 0.97 (0.58-1.70) 0.88 0.76 (0.38-2.01) 0.40 0.21 (0.09-1.69) 1.34 0.51 (0.56-3.19)

BMP3 1.41 0.13 (0.91-2.18) 0.80 0.59 (0.37-1.77) 0.71 0.58 (0.21-2.41) 3.21 0.00 (1.58-6.53)

BNC1 2.10 0.00 (1.36-3.25) 1.26 0.61 (0.52-3.06) 1.93 0.30 (0.55-6.75) 1.69 0.11 (0.88-3.21)

BRCA1 0.76 0.44 (0.38-1.52) 0.88 0.82 (0.31-2.52) 0.00 1.00 - 2.42 0.16 (0.70-8.34)

CDKN2B 0.80 0.49 (0.42-1.51) 0.79 0.59 (0.33-1.90) 1.18 0.84 (0.25-5.63) 1.82 0.33 (0.55-6.03)

CHFR 0.38 0.34 (0.05-2.76) 0.53 0.53 (0.07-3.90) 1.00 - - 1.00 - -

ESR1 1.21 0.45 (0.74-1.99) 0.89 0.75 (0.44-1.82) 0.68 0.64 (0.14-3.40) 1.27 0.57 (0.56-2.89)

EYA2 1.41 0.26 (0.78-2.55) 1.93 0.15 (0.79-4.71) 0.54 0.57 (0.07-4.37) 1.31 0.54 (0.55-3.16)

GSTP1 6.91 0.00 (2.08-22.96) 1.00 - - * 1.00 (0.00- --) 2.33 0.26 (0.54-9.99)

HIC1 1.37 0.27 (0.78-2.39) 1.49 0.46 (0.51-4.34) 1.00 - - 0.92 0.82 (0.45-1.88)

MEST1v2 1.45 0.16 (0.86-2.45) 1.97 0.13 (0.81-4.79) 1.88 0.36 (0.49-7.22) 1.21 0.63 (0.56-2.64)

MGMT 2.21 0.09 (0.88-5.54) 3.02 0.29 (0.39-23.38) 0.71 0.75 (0.09-5.71) 3.45 0.06 (0.96-12.44)

MLH1 1.85 0.04 (1.03-3.32) 1.54 0.49 (0.46-5.18) 0.95 0.94 (0.24-3.70) 1.79 0.15 (0.81-3.96)

NPTX2 1.05 0.85 (0.65-1.68) 1.12 0.75 (0.55-2.29) 0.70 0.55 (0.22-2.26) 0.62 0.26 (0.27-1.42)

NEUROG1 1.41 0.32 (0.72-2.74) 2.51 0.22 (0.57-11.00) 0.38 0.37 (0.05-3.13) 0.85 0.70 (0.38-1.93)

RARB 1.07 0.73 (0.71-1.62) 1.03 0.93 (0.53-1.99) 1.64 0.42 (0.49-5.43) 0.98 0.95 (0.53-1.82)

RASSF1A 1.30 0.22 (0.86-1.97) 1.35 0.39 (0.68-2.68) 1.08 0.90 (0.34-3.49) 1.33 0.38 (0.70-2.51)

SFRP1 2.11 0.00 (1.38-3.23) 1.60 0.17 (0.82-3.13) 3.50 0.08 (0.86-14.22) 4.57 0.00 (2.02-10.34)

SFRP2 0.73 0.17 (0.46-1.14) 0.31 0.01 (0.14-0.71) 2.47 0.28 (0.48-12.86) 1.08 0.81 (0.58-2.02)

SEPT9v2 2.37 0.00 (1.32-4.27) 3.37 0.25 (0.43-26.37) 1.00 - - 1.22 0.55 (0.63-2.38)

SST 1.63 0.03 (1.06-2.51) 1.15 0.67 (0.60-2.23) 2.44 0.15 (0.72-8.33) 1.67 0.23 (0.73-3.80)

TFPI2 2.22 0.00 (1.34-3.68) 1.39 0.50 (0.53-3.63) 5.48 0.17 (0.50-60.52) 2.59 0.01 (1.25-5.39)

TAC1 1.44 0.09 (0.95-2.20) 1.06 0.87 (0.55-2.04) 1.28 0.69 (0.37-4.45) 1.69 0.16 (0.81-3.52)

VIM 1.55 0.46 (0.49-4.94) 1.20 0.86 (0.16-8.94) 1.00 - - 1.89 0.39 (0.45-8.00)

WNT5A 2.32 0.03 (1.09-4.94) 3.02 0.29 (0.39-23.38) 7.05 0.05 (0.97-51.19) 1.05 0.91 (0.41-2.72)

CDKN2A 1.71 0.22 (0.73-3.97) 9.24 0.05 (1.03-82.68) 1.00 - - 0.76 0.56 (0.29-1.95)

PENK 2.03 0.33 (0.49-8.40) 1.00 - - 1.00 - - 0.96 0.95 (0.23-4.02)

Variable analyzed by simple Cox regression analysis.
Bold marks the genes with a statistically significant HR.
HR: Hazard ratio.
CI: Confidence interval.
Note: Stage is in accordance with The American Joint Committee on Cancer stage classification.
*One patients with stage III disease had hypermethylation of GSTP1. This patient died only eight days after the diagnosis, resulting in a HR of 
19.32x10^16 (p-value = 1) for GSTP1 hypermethylation in stage III disease.



Oncotarget93948www.impactjournals.com/oncotarget

adenocarcinoma. The BMP3 gene encodes methylated bone 
morphogenetic protein 3, related to the TGF-beta pathway. 
[34]. Previous studies on cholangiocarcinoma [35] and 
colorectal cancer [36] have suggested a tumor suppressor 
function of BMP3. In addition, studies have indicated that 
BMP3 hypermethylation has diagnostic value in stool from 
patients with pancreatic cancer [23] and colorectal cancer 
[23], [37]. To our knowledge, we are the first to describe a 
prognostic value of BMP3 hypermethylation with regard to 
stage IV pancreatic adenocarcinoma.

Furthermore, our study indicates that TFPI2 
hypermethylation has a negative impact on survival in 
stage IV disease. The TFPI2 gene encodes for tissue factor 
pathway inhibitor 2 protein, which is associated with cell 
adhesion and the clotting cascade [38]. The gene has been 

identified as a tumor suppressor gene in several types of 
cancer, where promoter hypermethylation has been the 
cause of gene silencing [39–41]. TFPI2 hypermethylation 
has been detected in tissue from intraductal papillary 
mucinous neoplasms [42], in pancreatic cancer tissue 
[43] and in pancreatic juice [26] from pancreatic cancer 
patients. The prognostic value of TFPI2 hypermethylation 
has not previously been evaluated in pancreatic 
cancer. However, consistent with our finding, TFPI2 
hypermethylation in tissue from hepatocellular carcinoma 
has been found to correlate with advanced cancer stage 
and a significantly shorter survival time [39]. Furthermore, 
hypermethylation of TFPI2 in the serum of melanoma 
patients has been suggested as a biomarker for metastatic 
disease [41].

Figure 3:Survival analysis for the total group of patients prior to stage classification. (A) Survival prediction model for the 
total group of patients prior to stage classification, developed by multivariable Cox regression analysis using backward stepwise selection. 
Patients in risk group 2, risk group 3 and risk group 4 had a HR of 2.65 (95% CI; 1.24-5.66), 4.34 (95% CI; 1.98-9.51) and 21.19 (95% CI; 
8.61-52.15), respectively, compared to risk group 1. (B) The gene combination together with the corresponding the HR is illustrated for the 
survival prediction model (ASA=3, BNC1, GSTP1, TFPI2, SFRP1, and SFRP2). Blue: Risk group 1. Red: Risk group 2. Green: Risk group 
3. Yellow: Risk group 4. Note: Stage is in accordance with The American Joint Committee on Cancer stage classification.
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Our study suggests that hypermethylation of 
SFRP2 has a positive impact on survival in stage I and 
II pancreatic adenocarcinoma. The SFRP2 gene, which 
like SFRP1, modulates the Wnt signaling pathway 
[31]. Hypermethylation of SFRP2 has previously been 
associated with the development of colorectal cancer 
[44–46], gastric cancer [47], and pancreatic cancer [20], 
[23], [32]. However, to our knowledge, hypermethylation 
of SFRP2 in cell-free DNA has not previously been 
associated with improved prognosis.

Based on the 28-gene panel, we developed 
prognostic prediction models, which enabled us to 
stratify patients into risk groups according to survival. 
We developed a prognostic prediction model based on the 
total group of patients with pancreatic adenocarcinoma, 
without considering stage classification. In addition, we 
developed stage specific prognostic prediction model that 
further our knowledge of disease aggressiveness within 
each cancer stage. ASA score was significant in the model 
for early stage cancer. This finding is consistent with the 
survival of patients with early stage pancreatic cancer 
being dependent on surgical treatment, as patients with a 
high ASA score are more likely not to overcome extensive 
surgery [48]. Both of the cancer stage-specific prediction 
models contained a hypermethylated gene with a positive 
impact on survival. SFRP2 hypermethylation had a 
positive influence on survival of stage I and II pancreatic 
adenocarcinoma. We showed a similar positive trend 
for NPTX2 hypermethylation in stage IV disease. The 
NPTX2 gene encodes for the neuronal pentraxin 2 protein 
[49]. Previous studies have shown a diagnostic value of 
NPTX2 hypermethylation in pancreatic cancer [27], [50]. 
In contrast to our finding, hypermethylation of NPTX2 
has been correlated with poor survival in glioblastoma 
[51]. The conflicting results might reflect a tissue-specific 
response or result from different parts of the promoter 
sequence being analyzed. Furthermore, it may suggest that 
the impact of NPTX2 hypermethylation differs according 
to cancer stage.

There is evidence that hypermethylation in cell-free 
DNA reflects the tumor biology and the heterogeneity of 

pancreatic cancer [52]. Our study indicates a biological 
variation in tumors that influences patient outcome and 
prognosis. Overall, hypermethylation has a negative 
impact on the survival. However, hypermethylation of a 
few specific genes seems to have a positive impact. Our 
findings are consistent with a study by Thomson et al. on 
pancreatic adenocarcinoma tissue, describing a “survival-” 
methylation signature associated with short survival time 
and a “survival+” methylation signature associated with 
a long survival time [53]. Two previous studies also 
managed to stratify patients in a low-risk and a high-risk 
group based on the gene expression profile in pancreatic 
adenocarcinoma tissue [54],[55]. Our prediction models 
also enabled stratification of patients in risk groups 
according to survival. However, the previously described 
prognostic studies are all tissue-based. Our prognostic 
prediction models are blood-based tests. Blood-based 
markers have several advantages compared to tissue-based 
markers, as retrieving plasma is a minimally invasive 
procedure without discomfort or risk of complications. 
In addition, representative tissue samples from small 
pancreatic tumors can be difficult to obtain [56]. Our 
survival prediction models have the potential to work as 
prognostic markers as a supplement to existing clinical 
tools, which clearly would benefit patients and facilitate 
tailored treatment.

Our study has some limitations. The study was 
exploratory, only analyzing a single group of patients. 
The finding need to be interpreted very carefully. 
External validation in an independent cohort is required 
to verify the result and is considered the gold standard for 
biomarker validation. However, it was impossible for us 
to reach this standard during the development phase, as 
pancreatic adenocarcinoma is a relatively rare disease. 
Therefore internal validation using a bootstrap model was 
performed, which revealed a relatively large optimism of 
the prediction models. This most likely reflects the fact 
that the stage-specific subgroups only contained a limited 
number of patients, which definitely is a significant 
limitation of this current study. Larger subgroups would 
have improved the power of the study and might enabled 

Table 3: Survival prediction models according to stage
Harrel’s c ASA=3 BMP3 BNC1 GSTP1 MESTv2 MGMT NPTX2 SFRP1 SFRP2 TFPI2

All 
patients* 0.73 HR 95% CI 3.34  

(1.91-5.84)
2.00  

(1.26-3.18)
9.55 

(2.70-33.82)
1.94 

(1.24-3.02)
0.45 

(0.27-0.73)
2.52 

(1.42-4.47)

Stage I, 
II** 0.75 HR 95% CI 14.13  

(4.56-43.81)
2.39 

(0.97-5.94)
0.18 

(0.07-0.45)

Stage IV** 0.71 HR 95% CI 2.65 
(1.11-6.29)

2.11 
(0.57-7.87)

0.45 
(0.17-1.18)

2.77 
(1.15-6.67)

Survival prediction models developed by multivariable Cox regression analysis using backward stepwise selection.
*Survival prediction model for the total group of patients with pancreatic adenocarcinoma without taking stage into account.
**Stage specific survival prediction model.
HR: Hazard ratio
CI: Confidence interval
ASA: American Society of Anesthesiologists score.
Note: Stage is in accordance with The American Joint Committee on Cancer stage classification.
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Figure 4: Survival analysis for stage I and II pancreatic adenocarcinoma patients. (A) Survival prediction model for the 
stage I and II patients, developed by multivariable Cox regression analysis using backward stepwise selection. Patients in risk group 2, risk 
group 3 and risk group 4 had a HR of 4.83 (95% CI; 2.01-11.57), 9.12 (95% CI; 2.18-38.25) and 0.90 (95% CI; 12.63-397.96), respectively, 
compared to risk group 1. (B) The gene combination together with the corresponding HR is illustrated for the survival prediction model 
(ASA=3, MESTv2, and SFRP2). Blue: Risk group 1. Red: Risk group 2. Green: Risk group 3. Yellow: Risk group 4. Note: Stage is in 
accordance with The American Joint Committee on Cancer stage classification.
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detection of genes significantly associated with the 
survival of stage III pancreatic adenocarcinoma.

For methylation analysis, we performed bisulfite 
treatment followed by a first and second round of 
methylation-specific PCR, which is a quantitative 

method [57]. However, we analyzed hypermethylation 
as a binary variable after dichotomization, as the study 
lacked sufficient power to conduct a quantitative statistical 
analysis. Furthermore, the method we used did not provide 
information regarding the numbers or proportion of 

Figure 5: Survival analysis for stage IV pancreatic adenocarcinoma patients. (A) Survival prediction model for the stage IV 
patients, developed by multivariable Cox regression analysis using backward stepwise selection. Patients in risk group 2 had a HR of 5.23 
(95% CI; 2.13-12.82), compared to patients in risk group 1. (B) The gene combination together with the corresponding HR is illustrated for 
the survival prediction model (BMP3, MGMT, NPTX2, and SFRP1). Blue: Risk group 1. Red: Risk group 2. Note: Stage is in accordance 
with The American Joint Committee on Cancer stage classification.
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methylated CpGs methylated in the investigated part of the 
promoter sequence. Detailed information about methylated 
CpGs could have been achieved by DNA sequencing of 
the PCR products. Unfortunately, this was not possible in 
our set up [58].

MATERIALS AND METHODS

Study design

The study was conducted as a prospective 
observational cohort study of patients with pancreatic 
adenocarcinoma, who were admitted to the Department 
of Gastrointestinal Surgery, Aalborg University Hospital, 
from February 2008 until February 2011 [59]. All of the 
participants gave written informed consent. The study 
was registered in ClinicalTrails.gov: NCT02079363 and 
approved by the Research Ethics Committee for the North 
Denmark Region (N-2013037).

Participants

Consecutive patients with pancreatic adenocarcinoma 
were included prospectively [59]. Blood samples were 
collected on admission before the diagnostic work-up and 
treatment. WHO performance status (PS) and American 
Society of Anesthesiologists (ASA) scores were registered 
at inclusion. Patients were excluded if they had concomitant 
or previous cancer (within three years), previous venous 
thromboembolism, ongoing anticoagulant, known 
congenital thrombophilia or connective tissue disease. 
Patients were followed for five years. Data from the same 
patients were used in a previous study [20].

Diagnosis and stage classification

Computed tomography (CT) and positron emission 
tomography (PET) scans of the thorax and abdomen were 
performed in the diagnostic work-up of all the patients. 
The cancer diagnosis was confirmed by histopathological 
analysis of biopsy specimens obtained by percutaneous, 
endoscopic or laparoscopic ultrasound. Patients were 
staged according to TNM classification 7th Edition [3]. The 
T and N categories were determined by histopathological 
analysis for patients who underwent intended curative 
surgery. If surgery was not performed, the final clinical 
decision determined the TNM stage. Consensus was 
achieved for staging and treatment of all the patients at 
multidisciplinary team conferences [59].

Blood sampling and analytical method

Skilled technicians obtained the blood samples 
by peripheral venipuncture [60]. EDTA plasma was 
centrifuged for 20 min (4000 rpm) at 4˚C and stored 
within two hours after sampling in a biobank at -80˚C until 
further methylation analysis [20].

A single skilled laboratory scientist performed all 
of the methylation analyses. The analyses were performed 
blinded. Extraction and deamination of cell-free DNA was 
performed as previously described by our group [20], [57].

To expand the amount of relevant deaminated DNA, 
a first round PCR amplification was performed with a 
mix of methylation-specific outer primers for all of the 
investigated promoter regions. Thereafter, a second round 
of PCR was performed, using inner methylation-specific 
primers and methylation-specific probes in individual 
reactions for each investigated promoter region. The 
primer and probe sequences is previously described [20].

We analyzed a panel of 28 selected genes. The 
selection of genes has been described previously by our 
group [20]. Hemi-methylated MEST transcript variant 1 was 
used as a reference gene in both the first and second round 
PCR. The selected panel of genes was previously tested as 
diagnostic markers for pancreatic adenocarcinoma [20].

Outcome

The primary outcome of the study was overall 
survival of patients with pancreatic adenocarcinoma. 
Survival time was calculated as the difference between 
date of inclusion in the study (the date the patient was 
referred to the hospital suspected of or with symptoms of 
pancreatic cancer) and the date of censoring/ date of death.

Statistical analysis methods

We analyzed each gene in the panel as binary 
variables after a dichotomization. A threshold cycle (Ct) 
of zero was interpreted as a non-methylated gene, and a 
Ct above zero was interpreted as a hypermethylated gene.

Patients were divided into groups according to the 
TNM classification [3]. Survival according to stage was 
assessed using Kaplan-Meier survival curves.

For each patient, the total number of 
hypermethylated genes was calculated, and based on those 
calculations, patients were divided into quartiles. Survival 
according to the total number of hypermethylated genes 
was evaluated using Kaplan-Meier survival curves.

Survival analysis was performed using Cox 
proportional hazards regression as described below for the 
total patient group and for subgroups according to cancer 
stage ((I and II), (III) and (IV)). Unless otherwise stated, 
a p-value < 0.05 was considered statistically significant.
Survival prediction model development

1. Screening of each individual variable as a 
predictor of survival: Cox regression was performed for 
each gene in the panel and for age > 65, gender, PS and 
ASA score. The hazard ratios (HR) and p-values were 
calculated. Variables with a p-value < 0.3 were considered 
as potential predictors and selected for further analysis.

2. Variable selection: Stepwise backward elimination 
in Cox regression models was performed to select the 



Oncotarget93953www.impactjournals.com/oncotarget

relevant variables using 0.05 as the significance level for 
removal from the model. For each intermediate model, 
Harrell’s overall concordance (c) statistic was calculated [61].

3. Determination of the best model: The model with 
the best performance measure according to Harrell’s c was 
determined as the final model.

4. Interactions between the variables: The 
interaction between all of the variables was assessed in 
the final models. Interactions with a p-value < 0.01 were 
considered statistically significant.

5. Validation: The May-Hosmer goodness-of-fit test 
was performed for calibration performance. Bootstrap 
procedure was used for internal validation of the models.

Patients were divided into risk-groups with regard to 
the final survival prediction models.

The risk groups for each survival prediction model 
serve for illustration purposes only and were defined as 
follows:

- For each gene combination observed in the data 
the hazard ratio was calculated and Kaplan-Meier survival 
curves were used to illustrate the corresponding survival.

- Patients were stratified into risk groups according 
to their gene combination based on what visually seemed 
as the most natural grouping of the survival curves of each 
gene combination.

- Finally, Kaplan-Meier survival curves were used 
to illustrate the survival according to the defined risk-
groups of each survival prediction model.

All of the data were analyzed using STATA 14.0 
software [StataCorp LP, Texas].

All of the authors had full access to the study data, 
reviewed and approved the final manuscript.

CONCLUSION

We found that hypermethylation of more than 10 
genes in plasma-derived cell-free DNA is an independent 
risk factor of poor overall survival in patients with pancreatic 
adenocarcinoma. Furthermore, survival of pancreatic 
adenocarcinoma patients is associated with promoter 
hypermethylation of several specific genes, varying 
with cancer stage. Prediction models based on cell-free 
DNA hypermethylation enabled us to stratify pancreatic 
adenocarcinoma patients into risk groups according to 
survival. The models have the potential to provide additional 
information to the TNM classification as prognostic biomarkers 
and thereby facilitate tailored treatment. Furthermore, genes 
in these models, or the pathways they are involved in, may 
represent future therapeutic targets. Validation of the finding 
is, however, required to substantiate the results.
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