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Optics of multiple grooves in metal: transition from high
scattering to strong absorption

Enok J.H Skjølstrupa, Thomas Søndergaarda, Kjeld Pedersena, and Thomas G. Pedersena

aDepartment of Materials and Production, Aalborg University, Skjernvej 4A, DK-9220
Aalborg East, Denmark

ABSTRACT

This paper studies theoretically how the optics of multiple grooves in a metal change as the number of grooves
is increased gradually from a single groove to infinitely many arranged in a periodic array. In the case of a
single groove the out-of-plane scattering (OUP) cross section at resonance can significantly exceed the groove
width. On the other hand a periodic array of identical grooves behaves radically different and is a near-perfect
absorber at the same wavelength. When illuminating multiple grooves with a plane wave the OUP cross section
is found to scale roughly linearly with the number of grooves and is comparable to the physical array width even
for widths of many wavelengths. The normalized OUP cross section per groove even exceeds that of a single
groove, which is explained as a consequence of surface plasmon polaritons generated at one groove being scattered
out-of-the-plane by other grooves. In the case of illuminating instead with a Gaussian beam, and observing the
limit as the incident beam narrows and is confined within the multiple-groove array, it is found that the total
reflectance becomes very low and that there is practically no out-of-plane scattering. The well-known result for
periodic arrays is thus recovered. All calculations were carried out using Greens function surface integral equation
methods taking advantage of the periodic nature of the structures. Both rectangular and tapered grooves are
considered.

Keywords: Surface plasmons, diffraction and gratings, scattering theory, metal optics

1. INTRODUCTION

Optics of grooves in metal have attracted attention due to their interesting scattering and absorption properties.
The optical cross sections of a single sub-wavelength ultrasharp or tapered groove in metal has been theoretically
studied in detail in1 establishing several fundamental results describing how the cross sections depend on the
groove dimension. Here it was found that the out-of-plane scattering cross section can exceed the physical width
of the groove in a broad wavelength interval. For a rectangular and tapered groove instead, the cross sections
are found to be significantly large only for a narrow band of wavelengths.2–4 A periodic array of ultrasharp
grooves is on the other hand found to give rise to broadband absorption, thus turning a shiny, highly reflecting
surface into a black surface.5,6 Thus a single groove and multiple grooves behave quite different, and in1 it
was suggested that the very low reflectance of the periodic array was due to mutual destructive interference
between the scattered fields from the individual grooves. This hypothesis was recently tested in7 where the
optics of multiple ultrasharp grooves in metal was studied as the transition from one to infinitely many grooves.
Surprisingly, it was found that the hypothesis was not correct when the incident field is a plane wave. The OUP
cross section was found to scale approximately linear with the number of grooves and to be approximately 1.5
times larger than the physical width of the grooves even for widths of many wavelength. Instead it was found
that when illuminating 20 grooves with a Gaussian beam entirely focused within the grooves, the reflectance is
the same as for a periodic array illuminated by a plane wave. In this paper we explore the same transition as
in7 but for rectangular and tapered (not ultrasharp) grooves and show that the same principles apply for these
types of grooves when they are combined in an array of multiple grooves.

An application for arrays of tapered grooves in metal is to use them in constructing broadband omnidirectional
absorbers and angularly selective emitters.8 As only p-polarized light will be efficiently absorbed in the grooves,
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while s-polarized light will be almost perfectly reflected, an array of ultrasharp grooves can be applied as polarizers
for ultrashort laser pulses.9 As the rectangular and tapered grooves only absorb light for wavelengths close to
the resonance, an application for those grooves is in selective thermal emitters10,11 which can be advantageous
in thermophotovoltaics.12,13

The structure of interest in this paper is illustrated in Fig. 1(c), where the grooves can be either rectangular
(Fig. 1(a)) or tapered (Fig. 1(b)). The rectangular grooves have a depth of 500 nm and a width of 50 nm while
the tapered grooves have a depth of 350 nm, a top width of 100 nm, and a bottom width of 60 nm, where all the
corners are rounded by a circle with radius of 4 nm as in2 implying that the top width of the rectangular grooves
is 58 nm. The incident field in Fig. 1(c) is a normal Gaussian beam with beam waist radius w0 centered at x = x0
in the middle of the array of N identical grooves. There is a distance d between the grooves and the total length
of the groove array is denoted L. The beam waist radius is related to the array length by w0 = γL/2, where
γ is a ratio parameter determining the width of the Gaussian beam, and γ = 1 has been applied in illustrating
Fig. 1(c). The incident light can be either reflected or scattered upwards, absorbed in the metal, or scattered
into surface plasmon polaritons (SPPs) which are electromagnetic waves bounded to and propagating along the
metal surface. As in7 the magnetic field only has a z-component (H(r) = ẑH(r) = ẑH(x, y)) and the structure
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Figure 1. Schematic of N identical rectangular grooves in metal separated by the distance d. The incident field is a
normal Gaussian beam with beam waist radius w0 centered in the middle of the groove array (x = x0).

is considered invariant in the z-direction, which implies that 2D-calculations are performed. Gold is applied as
the metal and the dielectric constant of gold is from.14 The calculations are performed using the Greens function
surface integral equation method (GFSIEM) as presented in appendix B in.2 See7 for a further description of
how the matrix equation is constructed and solved using the iterative method GMRES.15,16

The paper is organized in the following way. Section 2 contains the case with a plane wave (w0 = ∞) as
the incident field, and here extinction, scattering, and absorption cross sections are calculated for a structure
of varying N where the grooves are rectangular with the aforementioned dimensions. A Gaussian beam is used
as the incident field in Section 3 where the grooves are still rectangular. Here the beam waist radius is varied,
and angular reflection spectra and total out-of-plane reflected power is calculated. In Section 4 the grooves are
tapered, and here both optical cross sections and reflectance as a function of wavelength is presented.

2. PLANE WAVE AS INCIDENT FIELD

In this section the incident field is a plane wave, which means that the beam waist radius w0 in Fig. 1(c) tends
to infinity. When light is incident on the multiple grooves, scattering occurs and some light is coupled into SPPs
propagating along the metal surface away from the grooves, some light is scattered out of the plane, and some
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light is absorbed in the metal. Extinction (EXT) refers to the amount of power removed from the reflected
beam due to scattering and absorption. The corresponding EXT, OUP, and SPP cross sections are obtained by
normalizing the respective powers by the power per unit area of the incident light. The absorption (ABS) cross
section is given by the EXT cross section minus the OUP and SPP cross sections. See appendix B in2 for a
description of how the cross sections are calculated using the GFSIEM.
The rectangular shape of the grooves is found to give rise to a narrowband resonant behaviour in all the cross
sections.2 For the particular dimensions of the grooves considered here, the cross sections of a single groove are
found to be resonant at a wavelength of 660 nm as seen in Fig. 5(a). Before multiple grooves are considered it is
chosen to study cross sections for a structure of only two grooves depending on the distance between them. It is
chosen to fix the wavelength at λ0 =660 nm, and the EXT, OUP, and SPP cross sections are seen in Fig. 2 as a
function of distance between the two grooves. All the cross sections are oscillating with certain extreme values to
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Figure 2. EXT, OUP, and SPP cross sections for a structure of 2 grooves with varying distance d between the grooves.
The inset shows the differential OUP cross section at d = 600 nm. The wavelength is 660 nm.

be explained. For the SPP cross section the first minimum is found at d =260 nm. With a top width of a single
groove at 58 nm (see Fig. 1(a)), the period of the structure for this d is 318 nm, which equals a half plasmon
wavelength, where λSPP =

√
(ε1 + ε′2)/ε1ε′2λ0 = 635 nm where ε′2 is the real part of ε2.17 Hence at d = 260

nm the SPPs generated at the different grooves interfere destructively implying that the SPP cross section is
practically 0. When this happens much of the light is instead coupled out of the plane, as seen by the fact that
the OUP cross section is a maximum at almost the same d as SPP is minimized. When d increases towards a
plasmon wavelength, plasmons generated at the different grooves interfere constructively implying that SPP has
a maximum, and at approximately the same d both the OUP and EXT have a minimum. At d = 300 nm the
EXT cross section has a maximum, and at d = 600 nm it has a mimimuim, and therefore it is chosen to consider
these distances in the following. The inset in Fig. 2 shows the differential OUP cross section for d = 600 nm.
Here interference similar to a double slit predicts that destructive interference occurs at 60 and 120◦, which is
verified in the inset.18

For multiple grooves the EXT, OUP, and ABS cross sections are seen at a wavelength of 660 nm in Fig. 3 when
the distance d is 300 nm in (a) and 600 nm in (b). Especially in Fig. 3(a) the cross sections are almost linear
functions of the number of grooves, while in Fig. 3(b) the linear behaviour first begins after approximately 10
grooves. It is clearly seen that the cross sections in Fig. 3(a) are much larger than those in Fig. 3(b), and this
large difference is not entirely caused by the fact that the EXT and OUP cross sections are smaller for d = 600
nm than for d = 300 nm according to Fig. 2. As will be shown in Fig. 5(b) for d = 600 nm the resonance
wavelength is blue-shifted from the 660 nm being the resonance wavelength of a single groove and, furthermore
a smaller peak occurs around 700 nm. Hence, when the wavelength is 660 nm as is the case in Fig. 3 there is
no resonance for d = 600 nm which implies that the cross sections are much smaller compared to Fig. 3(a). For
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Figure 3. EXT, OUP, and ABS cross sections at λ = 660 nm, where d = 300 nm in (a) and d = 600 nm in (b).

N = 40 grooves the OUP cross section is approximately 12 µm for d = 300 nm, and here the total length of the
groove array is L ≈ 14µm. However, the grooves themselves only occupy approximately 1/6 of the length, as the
distance d between the grooves is much larger than the groove width. The OUP cross section per groove is seen
in Fig. 4 where again d = 300 nm in (a) and d = 600 nm in (b). In Fig. 4(a) the OUP per groove converges to
approximately 300 nm which is approximately 0.85 times the groove period, but more than 5 times larger than a
single groove width. For d = 600 nm the OUP cross section for 40 grooves is approximately 1µm as seen in Fig.
3(b), and the OUP per groove thus converges to approximately 25 nm as seen in Fig. 4(b). This much smaller
cross section per groove is again due to the fact that for d = 600 the wavelength at 660 nm is not resonant.
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Figure 4. SPP and OUP cross sections per groove at λ = 660 nm, where d = 300 nm in (a) and d = 600 nm in (b)

The linear behaviour of the EXT, OUP, and ABS cross section as a function of number of grooves was recently
found for ultrasharp grooves in,7 where the OUP per groove was found to be approximately 1.5 times the groove
period. In that study the grooves had a wide opening at 240 nm in the top and a bottom width of only 0.3
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nm with only d = 10 nm between the grooves. Furthermore, the reflectance of an infinite array of the same
grooves illuminated by a plane wave was found in5 to be 16% for this particular wavelength at 770 nm, and the
extraordinary large OUP cross section for a structure consisting of 40 grooves was therefore a surprising and
remarkable result. For the rectangular grooves considered in this paper the OUP cross section per groove is thus
comparable to,7 but with the difference that it is smaller than the groove period (by the factor ≈ 0.85) but much
larger than a single groove width (by the factor > 5).
The SPP cross section is shown by the triangles in Fig. 4 being a damped oscillatory function in Fig. 4(a) and
an increasing function in Fig. 4(b). According to Fig. 2 the distance d = 300 nm is close to the minimum
where the plasmons generated at different grooves interfere destructively resulting in a small SPP cross section.
Another phenomena which implies a small SPP cross section is the fact that a plasmon generated at one groove
can be coupled out of the plane by another groove as examined in.19–21 In7 this effect was studied in more detail
and was found to be a contributing cause to the out of plane scattering when the structure consists of multiple
grooves. In Fig. 4(b) the distance d is close to the maximum of SPP cross section according to Fig. 2. Here
plasmons generated at different grooves interfere constructively resulting in an overall increase of the total SPP
cross section. Hence if the purpose of the structure is to efficiently excite plasmons the groove period should be
close to the plasmon wavelength as studied in.22,23 In addition it was found in24,25 that the dimensions of the
individual grooves can be optimized in such a way that most of the incident light is excited into SPPs.
While only a wavelength of 660 nm has been considered so far, the EXT cross section is seen as a function
of wavelength for a structure consisting of 1, 5, 10, and 20 grooves in Fig. 5 for d = 300 nm in (a) and
d = 600 nm in (b). Especially in Fig. 5(a) the EXT cross section scales approximately linear with N for
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Figure 5. EXT cross sections for 1, 5, 10, and 20 grooves as a function of wavelength, where d = 300 nm in (a) and
d = 600 nm in (b).

all considered wavelengths, and the same is found for the OUP and ABS cross sections (not shown). Here the
resonance wavelength has slightly changed from 660 nm for one groove into 657 nm for 20 grooves. This change in
resonance wavelength is more pronounced in Fig. 5(b) where it is blue-shifted by approximately 30 nm compared
to the spectrum for a single groove, but as N increases the resonance wavelength slightly red-shifts again. As in
Fig. 5(a) the EXT cross section scales roughly linear with N at most wavelengths. However, in Fig. 5(b) the
groove period is comparable to the wavelength, which implies that Rayleigh-Wood anomalies splits the resonance
wavelength into two peaks instead of one.26–28 This splitting is more pronounced for N = 20 implying that the
linear scaling of EXT with N fails for wavelengths around 700 nm for N < 20.

The same linear scaling of EXT cross section for many wavelengths was recently found in7 for ultrasharp
grooves, where the cross sections were large in a much broader wavelength interval. Based on this linear scaling
for a specific groove dimension and the study of the cross sections of a single groove for many different groove
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dimensions in1 it was postulated in7 that the linear scaling will also be valid for other groove dimensions, and
Fig. 5(a) seems to confirm this for a rectangular groove being a narrowband resonator.

As seen in Fig. 3 the OUP cross section scales approximately linear with the number of grooves. To further
study the out of plane scattering from multiple grooves the differential OUP cross section is shown in Fig. 6 for
a structure consisting of 1, 5, 10, and 20 grooves with d = 300 nm and λ = 660nm. The differential cross sections
have all been normalized such that they have a maximum of 1. When many grooves are present the angular
distribution clearly becomes much more narrow. Notice that the OUP cross section is found by integrating the
differential OUP cross section from 0-180◦.
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Figure 6. Normalized differential OUP cross sections for 1, 5, 10, and 20 grooves for λ = 660 nm and d = 300 nm.

3. GAUSSIAN BEAM AS INCIDENT FIELD

In this section the incident field is a Gaussian beam with beam waist radius w0 = γL/2 as illustrated in Fig. 1(c)
for γ = 1. The same type of calculations as in7 are performed, see e.g the appendix in7 for a further explanation
of the relevant terms.
First it is studied how the incident field and reflected field depend on the ratio parameter γ which determines
the width of the Gaussian beam. A structure consisting of 20 grooves with d = 300 nm between the grooves is
considered and the wavelength is chosen to be 660 nm. The incident power per angle is seen by the bright lines
(blue online) in Fig. 7 for γ = 0.5 and 2 and even for such small γ the beam is still paraxial (meaning that
2πw0/λ >> 1) as the structure has been chosen to be sufficiently wide such that this is achived for γ ≥ 0.5. It
is clearly seen that a smaller γ implies that the angular distribution is broader. The reflected power per angle
is seen in black in the same figure when γ = 0.5, 2, and 100. For γ = 100 the incident field is so wide that it
mostly hits the planar surface surrounding the grooves and the grooves themselves only marginally contribute.
Therefore the incident and reflected beams are almost the same, why only the reflected field is shown in Fig. 7,
and it is very narrow in angular distribution as it behaves almost like a plane wave. The reflectance is found as
the area under the black curve divided by the area under the corresponding blue curve and is found to be 0.03,
0.31, and 0.95 when γ = 0.5, 2, and 100, respectively. Hence the reflectance strongly depends on γ since a high
γ implies that the Gaussian beam also hits the planer surface and not entirely the grooves. This is found not
to be the case for γ ≤ 0.5 why in this case the calculated reflectance is entirely due to the grooves and not the
surrounding planar surface.

The reflectance is thus calculated as a function of γ and is shown by the asterisks in Fig. 8(a) for the same
structure consisting of 20 grooves with d = 300 nm, notice that the γ-axis in the figure is on a log scale. As
mentioned in Sec. 2 the resonance wavelength for the structure consisting of 20 grooves has slightly changed
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Figure 8. (a) Reflectance and power fraction as a function of γ for 20 grooves with d = 300 nm. (b) Reflectance and
power fraction as a function of number of grooves for a fixed beam waist w0 = 1715 nm. The wavelength is 657 nm in
both (a) and (b).

into 657 nm, why this wavelength has been used in Fig. 8(a) while 660 nm was the wavelength in Fig. 7. The
reflectance is seen to converge for both small and large γ, where it converges to the proper reflectance which is
entirely due to the grooves when γ ≤ 0.5 and converges to that of a flat gold surface when γ is large, as illustrated
by the black horizontal line in the figure. The power fraction illustrated by the triangles in the same figure show
the geometric fraction of the incident power that actually hits the grooves. This fraction is practically 1 for
γ ≤ 0.5 and is practically 0 for γ ≥ 500. Importantly notice that the reflectance and power fraction converge for
the same γ

3.1 Reflectance as a function of number of grooves

In this subsection it is studied how the reflectance depends on the number of grooves for a fixed beam waist
radius w0 which is set to 1715 nm corresponding to γ = 0.5 for 20 grooves. In Fig. 8(b) the reflectance as a
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function of number of grooves is seen for λ = 657 nm and converges to practically 0 when 20 grooves are present.
Thus it is found that 20 grooves are sufficient to obtain the same reflectance as a structure consisting of infinitely
many grooves. As in Fig. 8(a) the triangles show the power fraction and it converges to 1 when 20 grooves
are present as was also observed in Fig. 8(a). Hence Fig. 8 shows that the reflectance converges to the proper
reflectance of the grooves when all the incident light hits the groove array. The same result was obtained in7 for
ultrasharp grooves.

While Fig. 8 only considered λ = 657 nm the reflectance as a function of wavelength is seen in Fig. 9 for 5
to 20 grooves, where again d = 300 nm in (a) and d = 600 nm in (b). It is clearly seen that the reflectance at
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Figure 9. Reflectance as a function of wavelength for 5 to 20 grooves, where d = 300 nm in (a) and d = 600 nm in (b).
Inset in (a) shows the reflectance in a smaller wavelength interval.

resonance is much lower for d = 300 nm than for d = 600 nm. From Fig. 5 the EXT cross sections was found
to be roughly 1.5 times larger for d = 300 nm than for d = 600 nm, and this relatively small factor can not
itself be responsible for the much higher reflectance for d = 600 nm in Fig. 9(b). When d = 600 nm the grooves
themselves only occupy approximately 1/11 of the total array length L, and the most of the array is thus pure
gold which explains why the reflectance in Fig. 9(b) is relatively close to that of pure gold even when 20 grooves
are present. In Fig. 9(a) the reflectance is shown for 5, 7, 10, and 20 grooves, and here the reflectance is low close
to the resonance wavelength and comparable to that of pure gold for longer wavelengths. Here more grooves
imply that the reflectance at resonance becomes lower as was also observed in Fig. 8(b) but off resonance the
reflectance is almost independent on the number of grooves. The inset in Fig. 9(a) shows the reflectance for
a smaller wavelength interval close to the resonance wavelength, and here it is possible to see the difference in
reflectance between 10 and 20 grooves. It is remarkable that the reflectance of 20 grooves when illuminating
with a Gaussian beam becomes practically 0 when the same groove structure illuminated with a plane wave has
a very large OUP cross section as observed in Sec. 2. The same kind of result was found in7 for ultrasharp
grooves and there it was postulated to be valid for other groove dimensions as well, and Fig. 9(a) confirms this
for rectangular grooves.

3.2 Energy Transportation

As in7 the energy transportation is investigated based on the time-averaged Poynting vector 〈S〉 = 1/2Re (E×H∗)
where E and H are the complex electric and magnetic field, respectively, and where ∗ denotes complex conju-
gation. The interpretation of the Poynting vector is that it points in the direction of the power flow with a
magnitude describing the power flow per unit area.17 Fig. 10 illustrates the magnitude of the time-averaged
Poynting vector when a Gaussian beam with ratios of 0.5, 1, 2, and ∞ (plane wave) is incident on a structure
consisting of 20 grooves with d = 300 nm between the grooves and with a wavelength of 660 nm. The black
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horizontal lines in the figure illustrate the length of the groove array. Both the reference field and the scattered
field have been included in the calculation of the Poynting vector. When γ = 0.5 the incident field is entirely
focused within the grooves (see Fig. 8(a)) which implies that there is almost no light scattered out of the plane.
This is clearly observed in Fig. 10(a) where the magnitude of the Poynting vector is zero for all other positions
than right above the groove array. When γ increases more light is scattered out of the plane as observed in Fig.
10(b)-10(d). When the incident field is a plane wave as in Fig. 10(d) most of the incident light hits the planar
surface surrounding the grooves where they experience almost total reflectance as pure gold is almost a perfect
mirror at this wavelength. Hence far outside the grooves the net power flow is very low. The angular distribution
of the scattered field is broader for γ =∞ than for γ = 2 (Fig. 10(c)) which was also partly observed in Fig. 7
as the oscillations in differential powers for angles deviating from 90◦.

x x

(a) (c)

(d)

y
μ
m

y
μ
m

Figure 10. (Color online) Magnitude of time-averaged Poynting vector when a Gaussian beam is incident on a structure
consisting of 20 grooves at a wavelength of 660 nm. The horizontal black lines denote the groove array and the ratios are
γ = 0.5 in (a), γ = 1 in (b), γ = 2 in (c), and γ = ∞ (plane wave) in (d).

4. TAPERED GROOVES

Until now rectangular grooves have been examined as illustrated in Fig. 1(a). In this section tapered grooves
are considered with a depth of 350 nm, a top width of 100 nm, and a bottom width of 60 nm as seen in Fig.
1(b). In2 tapered grooves are found to give rise to broader resonances compared to rectangular grooves, which
can be understood in terms of the resonator formalism presented therein. The tapered grooves are studied here
following the same procedure as for the rectangular grooves studied in Sec. 2 and 3. Thus first two grooves are
studied and the cross sections found as a function of distance between the grooves. The result is found to be
very similar to Fig. 2 and with approximately the same d giving rise to the extrema. The EXT cross section as
a function of wavelength is seen in Fig. 11(a) for a structure consisting of 1, 5, 10, and 20 grooves with d = 300
nm between the grooves, where the resonance wavelength is 704 nm. The spectra are quite similar to those of
the rectangular grooves in Fig. 5(a) but with a broader resonance. Again the EXT cross section scales almost
linear with the number of grooves for the considered wavelengths. The reflectance of the same structure when
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illuminating with a Gaussian beam is seen in Fig. 11(b) and follow the same principles as the rectangular grooves
in 9(a). Here the beam waist radius w0 has been fixed at 1925 nm which corresponds to γ = 0.5 for a structure
consisting of 20 grooves. Here the reflectance at resonance is 0.34 even when 20 grooves are present. Hence for
the tapered grooves considered here the resonance is broader but it is not possible to achieve perfect absorption
as is the case for rectangular grooves.
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Figure 11. (a) EXT cross section as a function of wavelength for 1, 5, 10, and 20 tapered grooves. (b) Reflectance as a
function of wavelength for 5, 10, and 20 tapered grooves. The distance d between the grooves is 300 nm in both (a) and
(b).

5. CONCLUSION

The optics of multiple rectangular and tapered grooves in metal have been studied theoretically in order to
examine the transition from a single groove to infinitely many grooves arranged in a periodic array. When the
incident field is a plane wave the OUP cross section almost depends linearly on the number of grooves, a result
that was also recently found for multiple ultrasharp grooves. The OUP cross section per groove is comparable to
the groove period even though the scattering structure has a width of many wavelengths. A structure consisting
of infinitely many grooves in a periodic array illuminated by a plane wave has a very low reflectance at resonance,
but this is not due to destructive interference occurring between the scattered fields of different grooves. Instead
a narrow Gaussian beam focused entirely within the grooves has to be used as the incident field in order for the
reflectance of multiple grooves to be the same as for an infinite array of grooves illuminated by a plane wave.
When the distance between the rectangular grooves is 300 nm a structure consisting of 20 grooves is found to
be a near-perfect absorber for wavelengths close to 657 nm, while it for longer wavelengths is a nearly perfect
mirror. When the distance between the grooves increases to 600 nm the reflectance is found to be close to that
of pure gold independent on the number of grooves in the structure. For tapered grooves instead the resonance
is broader but the minimal reflectance is found to be 0.34 even when 20 grooves are present, and the tapered
grooves considered here can therefore not be used a perfect absorber.
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