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Abstract: Operation and maintenance costs are a major contributor to the Levelized Cost of Energy for
electricity produced by offshore wind and can be significantly reduced if existing corrective actions
are performed as efficiently as possible and if future corrective actions are avoided by performing
sufficient preventive actions. This paper presents an applied and generic diagnostic model for
fault detection and condition based maintenance of offshore wind components. The diagnostic
model is based on two probabilistic matrices; first, a confidence matrix, representing the probability
of detection using each fault detection method, and second, a diagnosis matrix, representing the
individual outcome of each fault detection method. Once the confidence and diagnosis matrices of a
component are defined, the individual diagnoses of each fault detection method are combined into
a final verdict on the fault state of that component. Furthermore, this paper introduces a Bayesian
updating model based on observations collected by inspections to decrease the uncertainty of initial
confidence matrix. The framework and implementation of the presented diagnostic model are further
explained within a case study for a wind turbine component based on vibration, temperature, and oil
particle fault detection methods. The last part of the paper will have a discussion of the case study
results and present conclusions.

Keywords: diagnostic; condition based maintenance; offshore wind; O&M; confidence matrix;
diagnosis matrix; Bayesian updating; vibration; temperature; oil particle

1. Introduction

By the end of 2016 wind energy with 153.7 GW installed capacity was the second largest power
generation capacity in Europe [1]. The majority (91.6%) of installed wind capacity in Europe is currently
in the form of onshore wind; however, recent rapid cost reductions within offshore wind has motivated
European governments to shift their focus into more and more offshore wind development tenders [1].
The offshore wind can be considered as a solid and sustainable business case only if the Levelized Cost
of Energy (LCoE) produced by offshore wind is reduced to its minimum. The LCoE of offshore wind
farms can be reduced by decreasing their CAPEX and OPEX, and increasing their energy yield.

The purpose of this paper is to provide a contribution to OPEX reduction and energy yield
increase of offshore wind farms by means of operation and maintenance (O&M) cost reductions. It is
possible to reduce the O&M costs of offshore wind farms if optimal O&M planning and decision
models for optimization of O&M resources and work orders are used, and future component failures
are avoided. In the past decades, several studies on O&M planning and optimization of offshore wind
farms are carried out. In [2], an extensive overview on 246 mainly academic studies focused on O&M
planning and optimization of wind energy assets published in the period 1997 to 2016 is given. Earlier
studies on offshore wind O&M optimization are typically based on long-term averaging of O&M costs.
In [3], an overview on mean-value and Monte Carlo based O&M cost models for long-term O&M
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optimization of offshore wind farms is given, see [4–9] for illustrative case studies on offshore wind
O&M cost models.

In recent years, more advanced models such as Markov, Petri net, Bayesian, and Artificial
Intelligence (AI) models are used in O&M optimization of wind energy assets. In [10], the application
of Markov models for downtime reduction and in [11], the application of Markov models for O&M
optimization of wind turbines are discussed. In [12–14], the O&M modelling and optimization of wind
turbines based on Petri nets is investigated. In [15–18] and Section 2.4 of this paper, the application
of Bayesian risk-based methods for optimal O&M planning of offshore wind turbines is discussed.
Furthermore, in [19,20], the application of Artificial Neural Networks (ANNs) for O&M optimization
of wind turbines and in [21], intelligent maintenance planning of wind energy assets based on a
combination of AI models are studied.

Next to optimal O&M planning and decision models, avoiding future component failures will
reduce the O&M costs of offshore wind farms. The majority of O&M costs of offshore wind farms is
due to unplanned failures of wind farm components, and subsequently their corrective maintenance
effort [6]. The O&M costs can be significantly reduced if the faults of wind farm components can
be predicted (before they occur) or be detected (as soon as they occur and before they lead to a
complete failure). The focus of this paper is only fault detection of components and not their fault
prediction. In [22], an overview of applicable prognostic models for offshore wind turbines is give,
see [23,24], [25–28] for illustrative case studies on fault prediction of wind turbine components.

The state-of-the-art and future trends of fault detection and condition monitoring of wind turbine
components are extensively reviewed in [29–39]. In [29], a systematic review on applicable fault
detection techniques for main wind turbine components is given. In [30–32], specific diagnostic
techniques for low-speed machinery, gearbox and bearings are discussed respectively. In [33],
a thorough introduction into vibration and SCADA based fault detection methods is given and
based on a cost-benefit analysis a recommended scope of condition monitoring for wind turbines is
discussed. In [34], applicable fault detection methods for each failure mode of each main system and
sub-component of wind turbines are discussed. In [35], an overview of condition monitoring sensors
and applicable signal processing methods is given and a fault tree for critical failure modes of wind
turbine components is briefly discussed. In [36], a survey of 23 commercial condition monitoring
systems is discussed, and it is concluded that future condition monitoring systems should be applicable
to all wind turbine types capable of reliable and low-cost fault detection of all mechanical and electrical
sub-components. In [37], applicable fault detection methods for main systems of wind turbines are
briefly discussed, and it is concluded that future studies should conduct more research on multi-agent
fault detection methods. In [38], applicable condition monitoring and fault detection methods for both
main systems and sub-components of wind turbines within several illustrative examples are discussed.
In [39], condition monitoring benefit for offshore wind turbines based on a variety probabilistic fault
detection methods is quantified.

In [40], an overview on failure frequency and maintenance effort of offshore wind turbine
components is given. As shown in Figure 1, based on failure data over a five-year period from
350 offshore wind turbines, authors in [40] have concluded that on average an offshore wind turbine
has 8.3 failures per year, of which 6.2 are minor repairs, 1.1 are major repairs and 0.3 are major
replacements, while 0.7 failures per turbine per year have no cost data so cannot be categorized.
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components. The last section contains a discussion of the case study results and presents conclusions. 

2. Diagnostic Model 

According to EN 13306:2010 [41], fault is the “state of an item characterized by inability to perform a 
required function, excluding the inability during preventive maintenance or other planned actions, or due to 
lack of external resources”. Faults in wind farm components are usually pre-existing, meaning that 
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Diagnostic or fault detection of offshore wind turbines and balance of plant components is 
mainly done for mechanical and electrical components as their faults can rapidly (days to months) 
lead to a complete failure, causing high maintenance costs and/or long downtime. Figure 1 also shows 

Figure 1. Failure frequency of offshore wind turbine components categorized by their maintenance
effort [40].

As highlighted in [36,37], existing academic literature pays limited attention to generic and
applied diagnostic models applicable for real-time fault detection of all mechanical and electrical wind
farm components. This paper introduces a generic diagnostic model applicable for all electrical and
mechanical wind turbines and the balance of plant components of an offshore wind farm. The following
will discuss first the probabilistic confidence and diagnosis matrices required for this diagnostic model,
and then present a case study for condition based maintenance of offshore wind components. The last
section contains a discussion of the case study results and presents conclusions.

2. Diagnostic Model

According to EN 13306:2010 [41], fault is the “state of an item characterized by inability to perform a
required function, excluding the inability during preventive maintenance or other planned actions, or due to lack
of external resources”. Faults in wind farm components are usually pre-existing, meaning that there is an
opportunity to detect faults before they lead to a failure. Figure 2 illustrates the state of a component
with undetected faults leading to failure and detected faults leading to condition based maintenance.
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Diagnostic or fault detection of offshore wind turbines and balance of plant components is mainly
done for mechanical and electrical components as their faults can rapidly (days to months) lead to a
complete failure, causing high maintenance costs and/or long downtime. Figure 1 also shows that
major repair or replacement is mostly done for mechanical and electrical components of offshore
wind turbines. This paper does not explicitly consider the offshore wind structural components
such as blades, tower, or foundation since they are designed according to high safety factors, and
typically their annual service will detect and maintain their potential faults, before these might lead to
a complete failure.

As discussed in the previous section, in the wind industry, the lack of a generic diagnostic model
suitable for all wind turbine and component types is evident. Since no single fault detection method is
able to detect faults of all component types accurately, a hybrid of several individual non-correlated
fault detection methods, or diagnostic agents for each component, or component failure mode are
required. Figure 3, presents a framework of such a generic multi-agent diagnostic model for fault
detection of one mechanical or electrical wind farm component.
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As shown in Figure 3, it is assumed that faults of this component can be optimally detected
by a hybrid of three diagnostic agents or fault detection methods. The probability of detection of
each diagnostic agent is defined within a Confidence Matrix. Once the individual diagnosis of each
diagnostic agent is estimated and placed in a Diagnosis Matrix, the total probability theorem can be
used to incorporate all probabilistic fault detection results into one final verdict. The following sections
will further discuss both confidence and diagnoses matrices.

2.1. Confidence Matrix

A confidence or Probability of Detection (PoD) matrix for diagnostics is a measure for reliability
or confidence level of diagnostic agents for a given component or component failure mode. At the
beginning of the wind farm lifetime, since no prior operational data is available, the confidence matrix
should be defined based on experts’ experience on confidence level of each diagnostic agent for
each component. Similarly, it is possible to use operational data of the same components in similar
operational wind farms to estimate the initial confidence matrix.
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Once sufficient operational data is available, based on Bayes’ rule and correctness of each fault
detection agent determined by inspections, the initial or prior confidence matrix can be updated.

2.2. Diagnosis Matrix

The probability diagnosis matrix is a hybrid placeholder for individual probabilistic diagnosis of
each diagnostic agent. The diagnosis of each diagnostic agent can be determined using several different
lifetime estimation techniques, e.g., a stochastic, physical, data-driven, or Artificial Intelligence (AI)
model. The diagnosis of components can be presented using a stochastic model if sufficient information
on the physics of failure is available, or if a diagnostic model with minimum implementation effort is
desired. The diagnosis of critical components can be presented using a physical or data-driven model
if higher level of accuracy is needed. In [42], a review on statistical data-driven approaches for lifetime
estimation techniques is given. In [43], optimal selection of a lifetime estimation technique based on
several classification methods and process flow diagrams is discussed. In [44], an overview of lifetime
estimation techniques with focus on applications to wind turbines is given.

This paper only considers stochastic diagnosis models for fault detection of mechanical and
electrical components. In [45–48], stochastic reliability models based on Weibull distribution, Gamma
distribution and Poisson process are discussed. In the diagnostic model discussed here, an exponential
CDF presents the diagnosis of anomaly detection agents:

P(D = Healthy|A) = e−λA∆A

P(D = Faulty|A) = 1− e−λA∆A
(1)

The Nomenclature appendix of this paper presents the variables used in equations. The diagnosis
exponential rates of anomaly detection agents can be estimated based on experts’ opinion or existing
operational data of similar offshore operational wind farms. For instance, the exponential rate of a
diagnostic agent can be calculated as:

λA =
− ln(1− P)
Deviation

(2)

The Deviation in Equation (2) is a ∆A, in which an expert is confident that a component
fault is certain. Section 3 of this paper further explains, within a case study, formulation of the
diagnostic matrix.

2.3. Total Probability of Fault

Once the probability confidence and diagnosis matrices are both known, based on a hybrid of
several non-correlated diagnostic agents and using the total probability theorem, the probability of a
component being in the faulty state can be calculated as:

P(D = Faulty) =
i=n

∑
i=1

P(D = Faulty|Ai)P(Ai) (3)

2.4. Decision Model

Once the total probability of a component being in fault condition is estimated, a decision has to
be made if an inspection is to be performed to confirm the fault and, subsequently, to repair/maintain
the fault. This process can be formulated within a Bayesian decision model where the objective is to
assist in decision-making that minimizes the total expected remaining lifetime O&M costs. Figure 4
shows a framework for a risk based Bayesian decision model to minimize the total expected costs in
the remaining lifetime of an offshore wind farm, based on [15].
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with permission of John Wiley and Sons [15].

This paper does not consider the ‘initial design (z)’ phase shown in Figure 4. In this paper, the
‘inspection/monitoring plan (e)’ phase of Figure 4 corresponds to the planning of which diagnostic
agents to use. The ‘inspection/monitoring result (S)’ corresponds to the output from the diagnostic
agents. Based on that, the probability of faulty condition is estimated by Equation (3). The decision
rule d(S) is related to the decision of whether or not it is necessary to perform an inspection and a
possible repair maintenance action. The decision rule is related to the probability of fault exceeding a
given probability threshold. The ‘state of nature’ represents all other uncertainties more or less directly
influencing the condition of a given component, e.g., wind speed. The total expected benefit (W) of the
model is the total benefit gained minus total costs in the remaining part of lifetime after the time of
the decision.

At each time step during the lifetime of an offshore wind farm, an updated decision (e) on which
agents to use and which probability threshold to use in the decision rule d(S) for repair/maintenance.
These decisions are made so as to optimize the total expected cost-benefit (W) in the remaining lifetime.
Additionally, using Bayesian updating the probabilistic model is continuously updated when new
information becomes available, see the next section.

2.5. Posterior Confidence

If an inspection outcome confirms that the state of the component is Faulty, then a condition based
maintenance work order should be created to maintain the component before its failure. Additionally,
since sufficient operational data is available after this inspection, the prior estimations of the confidence
matrix can be updated by Bayesian updating:

P(A|D = Faulty) = P(D = Faulty|A) P′(A)/P(D = Faulty) (4)

The P(D = Faulty) in Equation (3) is the total probability of a component being in a faulty
condition, based on diagnosis of all diagnostic agents calculated using Equation (3).

A posterior probability is a conditional probability taking into account all available observations
on the state of a variable. The updated posterior confidence levels of diagnostic agents should be used
for future diagnostics to reduce the model uncertainty and to enhance the fault detection accuracy.
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2.6. Diagnostic Model

Now that confidence and diagnosis matrices and a decision model are introduced, and the total
probability of fault and the posterior confidence levels can be calculated, a diagnostic model can be
defined. Figure 5 outlines a framework for a diagnostic model with Bayesian updating for offshore
wind components.
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The next section presents a case study for fault detection and condition based maintenance of an
offshore wind turbine component based on three diagnostic agents.

3. Case Study

As discussed in the previous section, instead of assessing results of each diagnostic agent
individually, a hybrid or multi-agent diagnostic approach can be used, which takes into account
the results of all available diagnostic agents at once and, as a result, the diagnosis (state of the
component) is determined. This case study discusses the outline and implementation steps of this
diagnostic model for an offshore wind turbine’s main bearing, based on three diagnostic agents. In this
case study, it is assumed that vibration, temperature, and oil particle are independent diagnostic agents
for this wind turbine main bearing. As a result from each agent, the diagnosis (state of the component)
can be estimated as a probability. The following sections will briefly explain these diagnostic methods.

3.1. Vibration Based

Vibration analysis is the most reliable method for diagnostic of drivetrain mechanical components.
The vibration analysis is based on data from 6 to 10 accelerometer, velocity, and displacements sensors
installed on bearings, shafts, gearbox, coupling, and generator of wind turbines. These sensors
are not a part of SCADA system and, therefore, a separate network infrastructure for their data
acquisition, transfer, and storage is required. As illustrated in Figure 6, the vibration analysis can
be done in time domain (such as trend analysis) or in frequency domain (such as envelop analysis).
In [33], the time and frequency domain analyses for vibration based condition monitoring are further
explained. In [38], several case studies for vibration based condition monitoring of two research wind
turbines are presented.
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Once the state of a component deviates considerably from its healthy vibration signature,
a warning is generated. The vibration based analysis can detect drivetrain mechanical faults a few
months prior to their potential failure, which provides sufficient time for preparation and planning of
the subsequent condition based work orders.

In the wind industry vibration analysis is incorrectly known as the Condition Monitoring System
(CMS) since it is the most used CMS for wind turbine components. However, besides vibration based
sensors there are several other wind turbine sensors which can be used for condition monitoring, such
as temperature or hydraulic oil sensors.

3.2. Temperature Based

The majority of drivetrain components of offshore wind turbines are equipped with temperature
sensors. The data acquisition of temperature sensors is typically handled by wind turbine SCADA
system. This makes temperature analysis an interesting diagnostic method as it can be done for almost
any turbine platform without demanding any additional sensor or network infrastructure.

There are several methods for temperature analysis of drivetrain components. A typical
temperature analysis is based on automated anomaly detection. Once the real-time temperature of a
component is considerably higher than its temperature profile, a warning is generated. The temperature
of a component is dependent on turbine accumulated active power and weather conditions such as
ambient temperature or humidity. It is possible to calculate the temperature profile of a component
based on data-driven models or AI models. Figure 7 shows the temperature sensor data of the main
bearing of the offshore wind turbine used in this case study.

As seen in Figure 7, prior to the main bearing failure, significant (more than 20 degrees)
temperature deviations are observed. The temperature based diagnostic of this bearing could be
used to initiate condition based maintenance to repair the bearing fault prior to its complete failure.

Another possible temperature analysis technique is to compare real-time component temperature
signals of a wind turbine to its neighbor wind turbines with similar wake condition. In [49], a case
study for temperature based condition monitoring of wind turbine gearbox is discussed in detail.

The temperature analysis can predict faults of mechanical and electrical components from a few
months to a few weeks prior to their potential failure. Once an anomaly in the temperature of a
component, a temperature based warning is triggered.
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3.3. Oil Based

The oil analysis is based on the lubrication system of the drivetrain components. The hydraulic
oil analysis can be done using online oil sensors (such as oil pressure, temperature, or particle counter)
or offline oil samples (to check oil cleanliness or oxidation).

The offline oil samples and online oil pressure data can be used for fault detection of the lubrication
system. However, the oil temperature and particle counter data can be used for fault detection of
drivetrain components. Similar to temperate analysis, oil temperature anomaly detection can be
triggered once the oil temperature deviates significantly from the oil temperature profile. In [33],
several illustrative examples for oil based condition monitoring of wind turbines are given.

The oil particle counter data can be used to monitor a sudden increase of particles (such as wear
debris) created by degradation of drivetrain mechanical components. An automated oil analysis will
generate an oil based warning once the oil particle rises unexpectedly in a given time.

Limited increase of oil particles (e.g., increase of 10 to 50 oil particles per month) is due to expected
fatigue of mechanical drivetrain components, but sudden increase of oil particles (e.g., increase of
200 oil particles in one hour) is most likely caused by sudden degradation of a drivetrain component.
Figure 8 visualizes the oil particle sensor data of the offshore wind turbine used in this case study.
As highlighted by orange dashed lines in Figure 8, the number of oil particles in the hydraulic oil of
the drivetrain of this offshore wind turbine increases suddenly by 136, which is typically a clear sign
for sudden degradation of one or several drivetrain components.

Similar to temperature signals, oil pressure, oil temperature, and particle counting sensor data are
collected by the SCADA system. The oil particle counters can detect faults from a few weeks to a few
days prior to their potential failure and are typically very reliable. However, the oil particle results
cannot identify the exact location of the fault, and typically the short time period between the diagnosis
and potential failure does not allow proper preparation and planning for follow up condition based
work orders.

Besides the discussed diagnostic methods, several other less well-known fault detection methods
are available (such as visual, acoustic, or ultrasonic), which are not covered in this case study. Now
that diagnostic agents are briefly explained, the confidence and diagnosis matrices associated with
these three diagnostic agents can be formulated.
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3.4. Initial Confidence Matrix

In Section 2.1, it was explained that the initial confidence matrix can be defined based on the
available operational data of the same components in similar operational wind farms. Table 1 provides
the fault detection history of the main bearing used in this case study based on operational data of
similar offshore wind farms. According to Table 1, in two occasions out of the total 10 available main
bearing fault detection records, the temperature based diagnostic method has detected the bearing
fault earlier than the vibration or oil particle based diagnostic methods.

Table 1. Fault detection history of the main bearing used in this case study based on operational data
of similar offshore wind farms.

Component Number of Early Fault Detections

Vibration Based Temperature Based Oil Particle Based Total

Main Bearing 3 2 5 10

Now, based on the fault detection history given in Table 1, the initial confidence level of vibration,
temperature, and oil particle based diagnostic agents for detection of faults in a wind turbine main
bearing can be estimated:

P(AV)Bearing = 3/10 = 0.3, P(AT)Bearing = 2/10 = 0.2, P(AO)Bearing = 5/10 = 0.5 (5)

Using inspection based observations in a Bayesian updating model, the uncertainty of the initial
confidence matrix can be significantly reduced. Furthermore, as discussed in Section 2.4 of this paper,
the update of the confidence matrix can be incorporated into the update of a risk based Bayesian
decision model.

3.5. Diagnosis Matrix

The next step is to define a diagnosis matrix for this diagnostic model. To do so, first the
exponential rates of temperature and oil particle based diagnostic agents should be estimated. In this
case study, it is assumed that once the temperature deviation of the main bearing is larger than
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20 degrees or once increase in oil particles of the drivetrain rises above 200, then with 90% probability
the main bearing is in fault condition. Therefore, using Equation (2), the exponential rates of the
temperature and oil particle based diagnostic agents for the main bearing can be calculated as:

λAT = − ln(1−0.9)
20 = 0.115 ( 1

◦C )

λAO = − ln(1−0.9)
200 = 0.0115

(6)

Figure 9 shows the probability of the main bearing being in fault condition, based on temperature
and oil particle diagnostic agents, in which 90% probability of fault in both graphs is highlighted.

Energies 2018, 11, x FOR PEER REVIEW  11 of 17 

 

= −ln(1 − 0.9)20 = 0.115 ( 1°C) = −ln(1 − 0.9)200 = 0.0115 
(6)

Figure 9 shows the probability of the main bearing being in fault condition, based on temperature 
and oil particle diagnostic agents, in which 90% probability of fault in both graphs is highlighted. 

 
Figure 9. Probability of fault for temperature and oil particle diagnostic agents of the main bearing 
based on exponential rates calculated in Equation (6). 

Now that the exponential rates are known, based on the condition monitoring data given in a 
time interval, the probability of the main bearing of this offshore wind turbine being in faulty state 
can be calculated. This case study focuses on the one-hour time interval highlighted with orange 
dashed line in Figure 8. In this one-hour time interval, based on temperature and oil particle graphs 
given in Figures 7 and 8, there is a maximum temperature deviation of 14.5 degrees and increase of 
136 oil particles. Therefore, based on Equation (1), the probability of the main bearing of this wind 
turbine being in faulty condition can be estimated as: ( = | ) = 1 − e ∆ = 1 − exp(−0.115 × 14.5) = 0.81 ( = | ) = 1 − e ∆ = 1 − exp(−0.0115 × 136) = 0.79 

(7)

The vibration based diagnosis of the main bearing of this wind turbine in the same time interval 
is in criticality level four, which can be translated into 80% probability of fault. Table 2 gives an 
overview of the diagnosis matrix of the main bearing of the wind turbine discussed in this case study. 

Table 2. Diagnosis matrix of the main bearing of the wind turbine discussed in this case study. 

Component 
Diagnosis of Diagnostic Agent—P(D|A)

Vibration Based Temperature Based Oil Particle Based 
Healthy Faulty Healthy Faulty Healthy Faulty 

Bearing 0.2 0.8 0.19 0.81 0.21 0.79 

Now that both probability confidence and diagnosis matrices are known, based on the total 
probability theorem given in Equation (3), the probability of this main bearing being in faulty condition 
can be estimated as:  
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Now that the exponential rates are known, based on the condition monitoring data given in a
time interval, the probability of the main bearing of this offshore wind turbine being in faulty state can
be calculated. This case study focuses on the one-hour time interval highlighted with orange dashed
line in Figure 8. In this one-hour time interval, based on temperature and oil particle graphs given
in Figures 7 and 8, there is a maximum temperature deviation of 14.5 degrees and increase of 136 oil
particles. Therefore, based on Equation (1), the probability of the main bearing of this wind turbine
being in faulty condition can be estimated as:

P(D = Faulty|AT) = 1− e−λAT ∆AT = 1− exp(−0.115× 14.5) = 0.81
P(D = Faulty|AO) = 1− e−λAO

∆AO = 1− exp(−0.0115× 136) = 0.79
(7)

The vibration based diagnosis of the main bearing of this wind turbine in the same time interval is
in criticality level four, which can be translated into 80% probability of fault. Table 2 gives an overview
of the diagnosis matrix of the main bearing of the wind turbine discussed in this case study.
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Table 2. Diagnosis matrix of the main bearing of the wind turbine discussed in this case study.

Component

Diagnosis of Diagnostic Agent—P(D|A)

Vibration Based Temperature Based Oil Particle Based

Healthy Faulty Healthy Faulty Healthy Faulty

Bearing 0.2 0.8 0.19 0.81 0.21 0.79

Now that both probability confidence and diagnosis matrices are known, based on the total
probability theorem given in Equation (3), the probability of this main bearing being in faulty condition
can be estimated as:

P(D = Faulty)Bearing
= P(D = Faulty|AV)P(AV) + P(D = Faulty|AT)P(AT)

+P(D = Faulty|AO)P(AO) = 0.8× 0.3 + 0.81× 0.2 + 0.79× 0.5
= 0.797

(8)

Therefore, based on a hybrid of all diagnostic agents, the probability of the main bearing of this
wind turbine is 79.7%. Figure 10 shows an overview of the case study results.
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As discussed in Section 2.6 and visualized in Figure 5, the estimated probability of being in fault
condition should be used in a decision model to initiate follow up inspection and condition based
maintenance actions. In the next section, it is assumed that based on the decision model outcome,
an inspection should be initiated to validate the diagnosis.

3.6. Posterior Confidence Matrix

If an inspection confirms that the state of the component is faulty, then the prior estimations of
the confidence matrix can be updated by Bayesian updating. For instance, based on Equation (4),
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the posterior confidence level of temperature based diagnostic agent for the main bearing given 0.797
as the total probability of the bearing being in fault condition is:

P(AT |D = Faullty) = P(D = Faulty|AT) P′(AT)/P(D = Faulty) = 0.81× 0.2/0.797

= 0.203
(9)

It should be noted that P(D = Faulty) is the total probability of a component being in faulty state
and not the probability of fault given the inspection outcome.

Table 3 shows the prior and posterior confidence levels of all diagnostic agents for the main
bearing. It also shows that posterior confidence levels can be easily calculated by dividing the Bayes
Numerator of each agent by total Bayes Numerator or P(D = Faulty) = 0.797 of the main bearing.

Table 3. Posterior confidence levels of diagnostic agents for the main bearing.

Diagnostic Agent Prior Confidence Diagnosis Bayes Numerator Posterior Confidence

A P(A) P(D = Faulty|A) P(A)P(D = Faulty|A) P(A|D = Faulty)

Vibration based 0.3 0.80 0.240 0.301
Temperature based 0.2 0.81 0.162 0.203
Oil particle based 0.5 0.79 0.395 0.496

Total 1.0 NA 0.797 1.0

The updated posterior confidence levels of diagnostic agents should be used for future diagnostics
to enhance the fault detection accuracy made by this holistic diagnostic model.

4. Discussion

The case study presented in this paper is based on three diagnostic agents for two component
states (healthy or faulty), and the probability of each diagnosis is modelled using an exponential
distribution. Future studies could explore the application of another diagnostic agent and more
accurate probabilistic diagnosis models for multiple component states or deterioration levels (such as
healthy, minor damaged, damaged, server damaged).

The confidence matrix of this case study shown in Table 1 is based on documented early
fault detection data of the main bearing in similar operational offshore wind farms. If sufficiently
documented fault detection data is not available, equal initial PoD or confidence levels for all diagnostic
agents can be assumed. In this respect, it should be noted that early results of this diagnostic model
are associated with high uncertainties, but after a few Bayesian updates of the model based on actual
fault detection data, the uncertainty of the confidence levels should be reduced to an acceptable level.
As instance, Table 4 shows that assumed equal confidence levels for vibration, temperature, and oil
particle based agents after two hypothetical fault detections are respectively updated to 0.15, 0.04,
and 0.81. The more this diagnostic model is used in practice, the less the associated uncertainties are.

Table 4. Sensitivity analysis of initial equal confidence levels after two hypothetical diagnoses.

Diagnostic Agent Assumed Confidence 1st Diagnosis 1st Updated Confidence 2nd Diagnosis 2nd Updated Confidence

Vibration based 0.33 0.2 0.18 0.6 0.15
Temperature based 0.33 0.1 0.09 0.3 0.04
Oil particle based 0.34 0.8 0.73 0.8 0.81

Total 1.0 NA 1.0 NA 1.0

Furthermore, the confidence model of such a diagnostic model can be based on each failure mode
of each single component to increase the accuracy of the model results.

As discussed in Section 2.4 and visualized in Figure 4, future studies could investigate application
of a risk based Bayesian decision model for optimal inspection and monitoring planning of an offshore
wind farm.
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Last but not least, it should be noted that the purpose of the discussed case study in this paper
is to demonstrate the framework and the implementation steps of the diagnostic model and not the
validation of the accuracy of the model. The fault detection accuracy of this diagnostic model is
depending on the accuracy of the applied diagnostic agents, which is not the focus of this paper.

5. Conclusions

The diagnostic model introduced in this paper is a hybrid multi-agent model, which can
incorporate results of multiple diagnostic agents into each other to detect faults of a single wind
farm component. This diagnostic model is based on the assumption that no diagnostic agent can
single-handedly optimally detect faults in a wind farm component. The probability of fault detection
of each diagnostic agent is defined within an initial confidence matrix. When the diagnosis of such a
diagnostic model is verified by inspections, based on the Bayes’ rule, the initial confidence matrix can
be updated to reduce the uncertainties associated with the initial confidence levels.

As elaborated in Section 4 of this paper, in future studies on this topic, application of more accurate
reliability models and fault detection techniques within the described diagnostic framework can be
further investigated. Additionally, financial benefit of this diagnostic model within a case study for
critical components of all wind turbines of an offshore wind farm can be quantified.

Once based on the hybrid diagnostic model defined in this paper, optimal condition based work
orders are created, a work order scheduling and prioritization model such as the one shown in
Figure 11 should be used to determine optimal short-term O&M planning for all outstanding work
orders in a working shift (including corrective, scheduled, predictive, and upgrade work orders).
In [50], scheduling and prioritization model is further discussed.
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Figure 11. Framework for optimal short-term O&M planning of offshore wind farms.

The application of the discussed decision and diagnostic models shown in Figures 4 and 5, within
the short-term O&M planning framework shown in Figure 11, can result in a significant O&M cost
reduction for offshore wind farms.

The presented generic diagnostic model can be implemented into any asset management or IT
infrastructure to detect faults, prevent failures, and reduce O&M costs and downtime of offshore wind
components. The discussed diagnostic model can also be used for onshore wind farms, but within
a cost-benefit analysis the optimal scope of the diagnostic model should be determined. The fault
detection and condition based maintenance of all sub-components of onshore wind farms can result
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in more cost than benefit since O&M costs of onshore wind farms are considerably lower than
offshore ones.

Author Contributions: Masoud Asgarpour introduced a probabilistic Bayesian method for multi-agent
diagnostics and condition based maintenance of offshore wind components and performed a case study to
demonstrate the model; Masoud Asgarpour defined, scoped and wrote the paper and John Dalsgaard Sørensen
reviewed the paper and contributed to the Section 2.4 of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A fault detection or diagnostic agent A
∆A deviation of the actual signal compared to its profile for diagnostic agent A
λA exponential rate of diagnostic agent A
P probability level of the expert’s judgement
P(Ai) confidence level of diagnostic agent Ai
P′(A) prior confidence level of diagnostic agent A
P(D|A) probability of the component diagnosis D being faulty or healthy given agent A
P(D = Faulty) probability of a component being in faulty state
P(D = Faulty|Ai) probability of component being faulty given diagnostic agent Ai
P(A|D = Faulty) posterior confidence level of diagnostic agent A
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