

Aalborg Universitet

Application of Energy Performance Indicators for Residential Building Stocks

Experiences of the EPISCOPE project

Stein, Britta; Wittchen, Kim Bjarne; Kragh, Jesper; Diefenbach, Nikolaus; Loga, Tobias; Arcipowska, Aleksandra; Rakušek, Andraž; Zavrl, Marjana Šijanec; Altmann, Nagmeh; Hulme, Jack; Riley, John; Dascalaki, Elena; Balaras, Costas; Cuypers, Dieter; Van Holm, Marlies; Corrado, Vincenzo; Ballarini, Ilaria; Vimmr, Tomás; Hanratty, Michael; Sheldrick, Bill; Roarty, Charles; Csoknyai, T.; Szendr, G.; Hrabovszky-Horváth, S.; Ortega, L.; Serghides, D.; Katafygiotou, M.; Nieboer, N.; Filippidou, F.; Rochard, U.; Shanthirabalan, S.; Brattebö, Helge; Jovanovic Popovic, M.; Ignjatovic, D.

Creative Commons License Unspecified

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

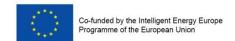
Link to publication from Aalborg University

Citation for published version (APA):

Stein, B. (Ed.), Wittchen, K. B., Kragh, J., Diefenbach, N., Loga, T., Arcipowska, A., Rakušek, A., Zavrl, M. Š., Altmann, N., Hulme, J., Riley, J., Dascalaki, E., Balaras, C., Cuypers, D., Van Holm, M., Corrado, V., Ballarini, I., Vimmr, T., Hanratty, M., ... Ignjatovic, D. (2016). *Application of Energy Performance Indicators for Residential Building Stocks: Experiences of the EPISCOPE project*. EPISCOPE.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

[?] Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?



Application of Energy Performance Indicators for Residential Building Stocks

Experiences of the EPISCOPE project

(Deliverable D4.1b)

EPISCOPE Project Team
March 2016

Contract N°: IEE/12/695/SI2.644739

Coordinator:

► IWU Institut Wohnen und Umwelt, Darmstadt / Germany Project duration: April 2013 - March 2016

Authors	Partner	City / Country
N. Diefenbach, T. Loga, B. Stein (ed.)	IWU - Institut Wohnen und Umwelt / Institute for Housing and Environment	Darmstadt / Germany
A. Arcipowska	BPIE - Buildings Performance Institute Europe	Brussels / Belgium
A. Rakušček, M. Šijanec Zavrl	Building and Civil Engineering Institute ZRMK	Ljubljana, Slovenia
K. B. Wittchen, J. Kragh	SBi - Danish Building Research Institute, AAU	Aalborg / Denmark
N. Altmann-Mavaddat	AEA -Austrian Energy Agency	Vienna / Austria
J. Hulme, J. Riley	BRE - Building Research Establishment Ltd.	Watford / United Kingdom
E. Dascalaki, C. Balaras	NOA - National Observatory of Athens	Athens / Greece
D. Cuypers, M. Van Holm	VITO - Flemish Institute for Technological Research	Mol / Belgium
V. Corrado, I. Ballarini	POLITO - Politecnico di Torino – Energy Department	Torino / Italy
T. Vimmr	STU-K	Prague / Czech Republic
M. Hanratty, B. Sheldrick, C. Roarty	Energy Action Limited	Dublin / Ireland
T. Csoknyai, G. Szendrő, S. Hrabovszky-Horváth	BME - Budapest University of Technology and Economics	Budapest / Hungary
L. Ortega	IVE - Valencian Institute of Building	Valencia / Spain
D. Serghides, M. Katafygiotou	CUT - Cyprus University of Technology	Limassol / Cyprus
N. Nieboer, F. Filippidou	DUT - Delft University of Technology	Delft / Netherlands
U. Rochard, S. Shanthirabalan	Pouget Consultants	Paris / France
H. Brattebø	NTNU - Norwegian University of Science and Technology	Trondheim / Norway
M. Jovanovic Popovic, D. Ignjatovic	University of Belgrade	Belgrade / Serbia

Application of Energy Performance Indicators for Residential Building Stocks - Experiences of the EPISCOPE project

EPISCOPE Project Team, March 2016

EPISCOPE website: www.episcope.eu

The sole responsibility for the content of this deliverable lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

Contents

1	EPISCOPE Indicator Concept: General Approach	1
1.1	Principles of energy performance indicators for residential building stocks	1
1.2	Application of energy performance indicators of building stocks in the EPISCOPE project	4
1.3	Published EPI-Tables	6
2	Summary Indicators	7
3	Concept of "Average Buildings"	10
4	References	13
Apı	pendix A: Example of "EPI Tables"	15
Apı	pendix B: Example of "Average Buildings" Calculation	31

1 EPISCOPE Indicator Concept: General Approach

The focus of the EPISCOPE project (April 2013 ... March 2016, supported by the IEE programme) is on mapping, monitoring and modelling of European housing stocks. Two branches were followed:

- The predecessor IEE project TABULA was continued during EPISCOPE. National building typologies were elaborated or improved.
- In case studies on national, regional or local level building stocks energy balance models
 were elaborated and scenarios for future energy saving and climate protection were calculated. Examinations are based on available empirical data, concepts for improving the
 information base were developed.

A major task of the project was to collect basic data on the building stocks concerned and to provide understandable information and calculation results. In this context, but also for the purpose of comparisons, energy performance indicators played a central role at different stages of the project. In particular, indicators for building stocks (and not for single buildings only) had to be considered.

Chapters 1.1 and 1.2 give an overview of the basic ideas and the concrete approaches which were followed in the EPISCOPE project. Some more details were already documented in an earlier report [EPISCOPE Project Team 2014]. In chapters 2 and 3 the concepts of "Summary Indicators" and "Average Buildings" are introduced which had not yet been elaborated in the former report.

1.1 Principles of energy performance indicators for residential building stocks

Energy performance indicators of residential building stocks can either describe existing empirical data of a building stock or the input and outcome of building stock modelling. In EPI-SCOPE both types of quantities are clearly separated by distinguishing monitoring indicators and scenario indicators:

- "Monitoring Indicators" are empirically justified. They are always based on reliable primary data on the observed building stocks. Due to a lack of empirical information they may draw an incomplete picture of the building stocks.
- "Scenario Indicators" describe the input data as well as the results of scenario analysis. Based on the monitoring indicators and additional assumptions they provide a complete picture of model analysis.

There is a direct link between monitoring and scenario indicators: A subset of the scenario indicators describes the building stock in its current state which is usually at the same the "basic case", i. e. starting point of model formation and scenario analysis. Those **basic case indicators** should as far as possible be based on the monitoring indicators (i.e. on reliable data), but often additional assumptions will be necessary to fill information gaps. The scenario indicators of future years of modelling will anyway largely be based on such assumptions.

The regular collection of reliable and representative primary data is seen as a key instrument of climate protection strategies: Those strategies are based on more or less uncertain projections and scenarios. Furthermore, the effect of climate protection instruments can hardly be predicted. Therefore, the whole process needs a regular "earthing" by observing the real development as shown in Figure 1: Monitoring is delivering necessary input data for model formation and calculation of (trend) scenarios. At the same time it is a success control of the effect of climate protection policies in the past.

Figure 1: The role of monitoring in climate protection strategies

In the EPISCOPE Synthesis Report No. 4 the issue of collecting representative data and monitoring building stocks is discussed in general and in particular for the EPISCOPE case studies [EPISCOPE Project Team 2016a]. For the success of such approaches it is crucial to be transparent about which parts of the applied information are based on (completely) reliable primary data and which are (at least partly) based on model assumptions. This is the reason why the clear separation of monitoring indicators (which are based on empirical data) and scenario indicators (which are widely based on assumptions) is emphasised in the indicator scheme.

A further distinction is made between **structural indicators** and **energy balance indicators**. Structural data concerns the "physical" state of the building stock in general (like construction age bands, types of wall construction, for example) and in particular with respect to energy efficiency (fraction of insulated building elements, average quality of insulation, structure of applied main heating systems, fraction of solar thermal systems, see Figure 2). With regard to monitoring indicators, structural data is needed as input for model formation, but also for success control of climate protection strategies. Observing only the energy consumption of building stocks (e.g. consumption of the different energy carriers) would not provide the necessary information to assess the reasons of the development. Moreover data on energy consumption of building stocks are often difficult to handle because of uncertainties of weather correction, for example. In EPISCOPE structural as well as energy balance indicators were considered at the level of monitoring as well as scenario indicators.

Overview of necessary structural data

Basic data of the buildings

- Building location and type (construction period, single-/multi-family house, detached/ semi-detached/...)
- Additional information: wall construction type, roof type, historical monument, ...

Information on building insulation

- Walls, roofs/upper floor ceiling, ground floor/cellar ceiling, windows
- Existing insulation
- Quality of insulation (thickness, U-values)

Information on heat supply

- Main heating systems (gas/oil/biomass boilers, heat pumps, district heating, ...)
- Additional systems (solar systems, stoves)
- Domestic hot water supply
- Insulation of heat distribution pipes
- Ventilation / air conditioning systems

State indicators

Current state of the residential building stock e.g. "How many walls have already been insulated?"

- ⇒ Starting point of scenarios
- ⇒ Success control: "What has been achieved in the past?"

Trend indicators

Current dynamics of the residential building stock e.g. "How many walls are insulated per year?"

- ⇒ Trend scenario
- ⇒ Looking ahead: "Will we reach the future targets with that speed?"

Figure 2: Structural indicators / state and trend indicators

Especially among the structural indicators a further separation of **state indicators** and **trend indicators** is made. This concerns in the first place the monitoring indicators (as described below), but in principle it applies also to scenario indicators (also of future years and future time periods).

The state indicators describe the building stock in its actual state, for example answering the question "How many walls have already been insulated?" This kind of data delivers basic information for energy balance models of buildings stocks, defining the status quo and starting point of scenario calculations. At the same time the state indicators show which progress of energy efficiency measures could already achieved, i.e. they serve for success control of climate protection policies in the past.

On the other hand trend indicators answer questions like "How many walls are insulated every year?" They provide input for the definition of trend scenarios. From a more general point of view they show if the current speed of implementing energy efficiency measures or renewable energies in the building sector is sufficient to reach the future targets or if an acceleration will be necessary.

1.2 Application of energy performance indicators of building stocks in the EPISCOPE project

Figure 3 provides an overview of the application of energy performance indicators at different levels during EPISCOPE. In the following, the procedure will be explained step by step.

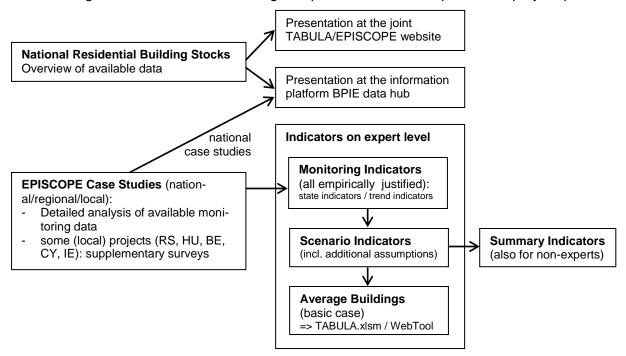


Figure 3: Overview of the EPISCOPE scheme of building stock energy performance indicators

Presentation of national empirical data at the TABULA website

Already in the predecessor IEE project TABULA which was focused on the elaboration of residential building typologies, national statistical data was collected and presented at the project website. In the "typology" branch of EPISCOPE, the TABULA project was continued by updating building typologies and extending the underlying concept to further countries. In that framework also new or updated statistical data of the national residential building stocks was collected. Both projects are presented on a common website¹. The statistical data on national building stocks is documented at the TABULA country pages².

For data presentation a common scheme is applied distinguishing between different types of statistical data [TABULA Project Team 2010]. Even if under the given headlines the partners were very free to choose their own way of data presentation and indicators, the scheme can be seen as a first rough approach of a monitoring indicator concept.

Compiled during both projects, TABULA and EPISCOPE, statistical data from 20 European countries is now available at the project website.

Presentation of national empirical data at the BPIE data hub

The BPIE data hub is a comprehensive internet information platform about energy efficiency in European building stocks³. During the EPISCOPE project the data of the national residen-

http://episcope.eu/building-typology/country/

www.episcope.eu

http://www.buildingsdata.eu/

tial building stocks was transferred to this interactive tool. Those partners who carried out their EPISCOPE case studies on national (i.e. not on regional or local) level delivered more detailed supplementary data. The input from EPISCOPE / TABULA is presented in a separate section of the data hub ("EPISCOPE tool"⁴).

More information on the data hub and the data transfer is provided in [EPISCOPE Project Team 2016a, chapter 3].

Indicators on expert level

In the EPISCOPE case studies, which were applied to national, regional or local level, a detailed analysis of residential building stocks was carried out including evaluation of monitoring data, elaboration of building stock energy balance models and the implementation of scenario analysis. To make concepts of that type transparent and comparable on an expert level an indicator scheme was elaborated at an early stage of the EPISCOPE project. It is documented in detail in a separate report [EPISCOPE Project Team 2014]. The scheme includes all types of indicators (monitoring as well as scenario indicators, structural and energy balance indicators, state and trend indicators).

In contrast to the statistics scheme at the TABULA website the structural monitoring indicators are more precisely defined to facilitate comparison between the projects. Moreover, they are fairly harmonised with the scenario indicators which document the input and the results of scenario analysis.

Due to the large variety of individual characteristics of building stocks and scenario models it was not intended to predefine the exact data format of the concerned quantities and the way of partitioning the respective building stocks. So the harmonised concept is open for individual adaptations. Explanations should be provided to make such deviations transparent.

In future applications the original concept documented in [EPISCOPE Project Team 2014] can serve as a basis. During the EPISCOPE case studies experiences were made which leaded to some extensions and clarifications, for example:

- Ventilation heat recovery should be explicitly included as an additional line in the energy balance scheme [ibidem, chapter 3.3], either at the "demand-side" or at the "supply-side" (recommended) of the energy balance.
- A scheme for the documentation of some basic model parameters like the assumed mean indoor temperatures and climate parameters should be added to the scenario indicator scheme.

Further small modifications and adaptations were made. They have been considered in the final versions of the "EPI Tables" (see below).

Summary Indicators

The summary indicators form a simplified and condensed indicator scheme aiming at providing basic information of the scenarios at a glance and also easy to understand for "non-experts" – that means an audience which cannot get into details of the applied models, parameters and indicators. First ideas of such a scheme were already presented in [ibidem] and then concretised in the course of the project. It was decided to concentrate on the most relevant outcome of scenario analysis only to keep the scheme simple and illustrative: The CO₂ emissions (overall outcome), the total heat demand (= heat output of heat generators,

⁴ http://www.buildingsdata.eu/data-sources/episcope-data

solar systems and heat recovery) and the CO_2 emission factor of heat supply. The total heat demand is reflecting the quality of the building fabric the CO_2 emission factor the quality of the supply system including the processes for producing and transporting the energywares. A more detailed introduction to the summary indicators is given in chapter 2.

Connection to the "Average Buildings" Concept

The average buildings scheme is a special and more elaborated version of the structural scenario state indicators. Here the complete building stock is divided in a manageable number of subsets, each of which is represented by a synthetical building. These buildings represent average values of the building stocks' subsets and can be used for energy balance calculations and simplified model formation of building stocks.

The average buildings concept provides a link between model calculations for building stocks (e.g. the EPISCOPE case studies) and the TABULA typology approach.

In EPISCOPE this was carried out for the basic case, i. e. the starting point of the scenarios: All partners translated the basic case to the average buildings scheme. Then energy balance calculations of the average buildings were carried out with the TABULA tool. The results (weighted by the size of the subsets which were represented by the average buildings) were than compared to the results of the partners' individual model calculations.

Chapter 3 provides more detailed information of the definition and application of average buildings. The average buildings reflecting the basic case of all case studies can be viewed by means of the "Building Stock" area of the TABULA WebTool⁵.

1.3 Published EPI-Tables

The energy performance indicators described above have been determined by EPISCOPE partners and are publicly available in form of "EPI Tables" for a number of case studies at the EPISCOPE website⁶. The "EPI Table" is a sort of data appendix for the national reports summarised in [EPISCOPE Project Team 2016b] and [EPISCOPE Project Team 2016c]. They also include textual explanations of individual adaptations and describe the quality of empirical data sources: To which extent is data reliable, representative and up-to-date? Are there remaining uncertainties?

The template for these EPI-tables is available at the download area of the EPISCOPE website⁷ – for experts who wish to use the harmonised EPISCOPE structure for reporting the input and output numbers of their scenario calculations.

_

http://webtool.building-typology.eu/

⁶ http://episcope.eu/monitoring/case-studies/

⁷ http://episcope.eu/communication/download/

2 Summary Indicators

The summary indicators can give a first and basic overview of the results of scenario analyses of residential building stocks. In EPISCOPE they were applied to the case studies to make the results transparent and comparable. Figure 4 shows an example.

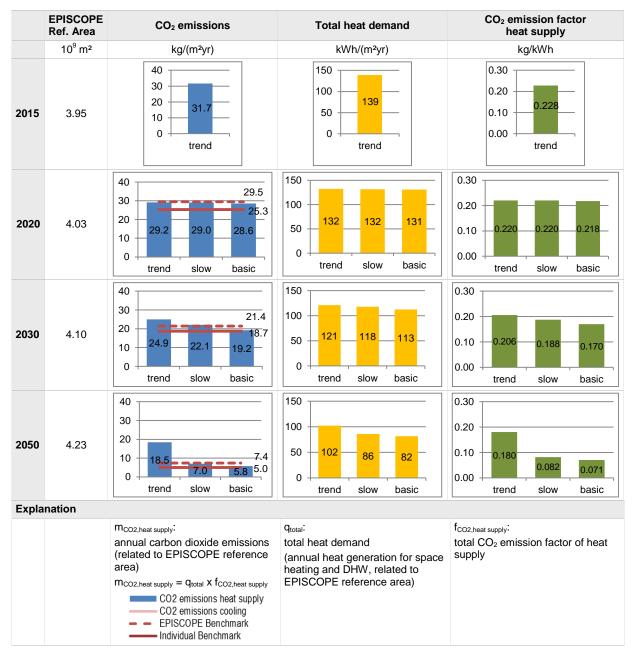


Figure 4: Summary Indicators: Example

The central indicator is $m_{CO2,heat\ supply}$, that means the CO_2 emissions (related to the EPI-SCOPE reference area) which are caused by heat supply (for heating and hot water, including auxiliary electric energy, also for ventilation). Not only the on-site CO_2 emissions of heating systems but also the CO_2 emissions for district heating and for electricity production

(used for heat supply and auxiliary energy) are being considered. But only pure CO₂ emissions are taken into account, equivalents of other greenhouse gases are not included⁸.

Further indicators are the total heat demand q_{total} (related to the EPISCOPE reference area⁹) and the total CO_2 emission factor of heat supply $f_{CO2,heat\ supply}$. They document the overall outcome of the buildings (demand-side) and the applied heat supply technologies (supply side) to the CO_2 emissions.

The three quantities are related by the following equation:

```
f_{CO2, heat supply} = m_{CO2, heat supply} / q_{total}
```

 q_{total} is the sum of the energy need for heating and DHW and of the heat distribution and emission losses. It is equal to the total heat output of heat generators, solar systems and heat recovery.

In the diagram of m_{CO2,heat supply} also benchmarks are shown:

- dashed lines: common EPISCOPE benchmarks (see explanations below)
- continuous lines (optional): individual benchmarks of the pilot actions

The CO_2 -emissions $m_{CO2,cooling}$ for cooling / air conditioning are usually not included. They may optionally be added in the scheme as an additional bar (see example below for the trend scenario 2015. But the cooling energy demand and the CO_2 emission factor of cold generation are not considered in the concept so far. So q_{total} and $f_{CO2,heat\ supply}$ are always related to heat supply only (excluding cooling/air conditioning). If $m_{CO2,cooling}$ is added in the diagram, the benchmarks may be either related to the total CO_2 emissions ($m_{CO2} = m_{CO2,heat\ supply} + m_{CO2,cooling}$) or to heat supply only ($m_{CO2,heat\ supply}$). In the diagram additional information has to be provided about which of the two options applies.

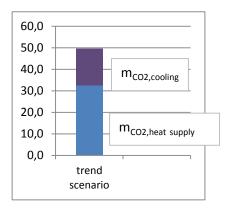


Figure 5: Introduction of CO₂ emissions for cooling to the summary indicators (optional)

EPISCOPE benchmarks

To enable comparisons between different scenarios and building stocks the following benchmarks are defined:

benchmark 2020 = 0,95 x m_{2015} x $A_{ref,2015}/A_{ref,2020}$ ("2015 minus 5 %") benchmark 2030 = 0,70 x m_{2015} x $A_{ref,2015}/A_{ref,2030}$ ("2015 minus 30 %") benchmark 2050 = 0,25 x m_{2015} x $A_{ref,2015}/A_{ref,2050}$ ("2015 minus 75 %")

In principle the scheme could also be applied to the total greenhouse gas emissions with CO₂ equivalents. But in the project it turned out that information of CO₂ equivalents might sometimes not be easily available.

Because of differing national definitions of reference area (e. g. living space) a common TABULA / EPISCOPE reference area was introduced [TABULA Project Team 2013].

with: $m_{2015} = m_{CO2,heat supply,2015}$ (area-related CO_2 emissions of the year 2015)

A_{ref,vear} = EPISCOPE reference area of the building stock in the observed year

The benchmarks are derived from a rough and straightforward translation of general EU climate protection targets: EU has decided a 20 % emission reduction until 2020 and a 40 % reduction until 2030 (compared to 1990). A not officially decided but widely agreed minimum climate protection target for industry countries until 2050 is a reduction of 80 % (again related to 1990) [COM 2011].

According to [UBA 2014] the EU greenhouse gas emissions were reduced by around 12 % (energy-related emissions) or 15 % (all emissions without land use changes) in the period 1990 to 2012. Carrying out a short extrapolation one could assume that until 2015 an emission reduction of 13 % (energy-related) / 17 % (all) – or roughly speaking altogether of 15 % would be reached (related to 1990). So the gap to be closed until 2020 / 2030 / 2050 would be 5 % / 25 % / 65 % (related to 1990) – or (rounded) 5 % / 30 % / 75 % related to the emission level of the year 2015. This defines the EPISCOPE benchmarks above.

Of course the role of the benchmarks may not be over-interpreted (and that is the reason why they are called "benchmarks" and not "targets"): The straightforward breakdown of EU global emission targets to the CO₂ emissions of concrete (even local) residential building stocks does not consider the individual situation and reductions potentials compared to other countries with other climates, other sectors (like industry or traffic) or other building stocks. So a "really fair" burden sharing of emission targets – if it could ever be found – might lead to different numbers. But the EPISCOPE benchmarks provide the rough common scale which is necessary for getting a "quantitative understanding" of the situation in the observed international building stocks.

3 Concept of "Average Buildings"

The determination of energy performance indicators includes a certain effort of summarising and condensing. The EPISCOPE idea of "Average Buildings" is to take advantage of the existence of the scenario indicators from building stock models to set up a very simple calculation scheme: The total values of all relevant input, interim and output quantities (number of dwellings, floor area, envelope area, energy need for heating, final energy consumption, ...) are divided by the number of buildings counted in the building stock subgroup. So, "average buildings" are defined, which are theoretical (synthetical) buildings with geometrical and thermo-physical characteristics equal to the average of the building stock subset which they represent. The annual energy balances for heating and DHW of average buildings are calculated in the same manner as for real buildings. Projections to the building stock can be done by multiplying the single average building related figures with the total number of buildings included in the investigated stock.

The advantages of the definition and calculation of "average buildings" are:

- for the making of a model: The simplified parallel calculation enables plausibility controls of more complex models.
- for the communication of results: The statements about the total building stock are more seizable, large numbers can be pictured. The datasets can also be used in conventional EPC rating software.
- for the practical relevance of the model output: The results can be used as benchmarks to compare features and energy consumptions of distinct real buildings. Projections can be easily done for other subsets of the same building stock.

Against that background the EPISCOPE experts decided to use the average buildings concept for dissemination of parts of their results: For all case studies the basic case (existing state) was transformed to the TABULA data structure, entered in the TABULA.xlsm master file to be displayed in form of average buildings by the "Building Stocks" section of the TAB-ULA WebTool¹⁰. Thus, the documented average buildings provide a rough picture of the starting point of scenario calculations.

The WebTool section "Building Stocks" includes the following areas

- Menu item "Overview": This table displays the key values of the observed building stocks in the present state. These are the scale level, the basic data (e.g. reference areas), the calculation results from the TABULA WebTool and from the individual building stock models.
- Menu items for the case studies of the different countries, subsumed under "National", "Regional" and "Local". Here the TABULA building stock calculation can be viewed including all input and output data. This calculation is performed using standard TABULA boundary conditions. At the end the relation of the results from the individual building stock model and from the TABULA standard calculation is determined. Under the precondition that the scenario models are validated or calibrated by real consumption values the relation separate model to simplified TABULA provides ratios for the calibration of the TABULA calculation to the typical level of measured consumption (for the given average state of the building stock subgroups).

An example for the average buildings calculation can be found in Appendix B.

¹⁰ http://webtool.building-typology.eu

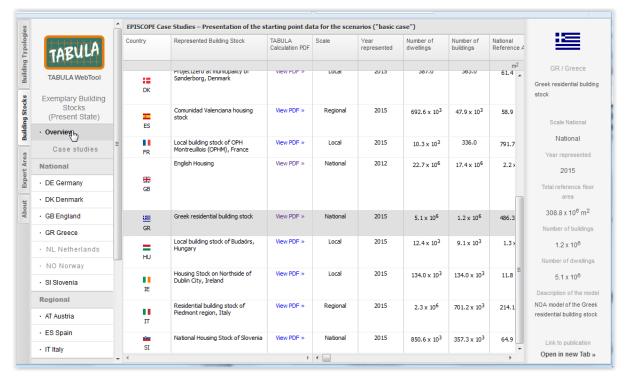


Figure 6: Overview table of the "Building Stocks" section of the TABULA WebTool (http://webtool.building-typology.eu/)

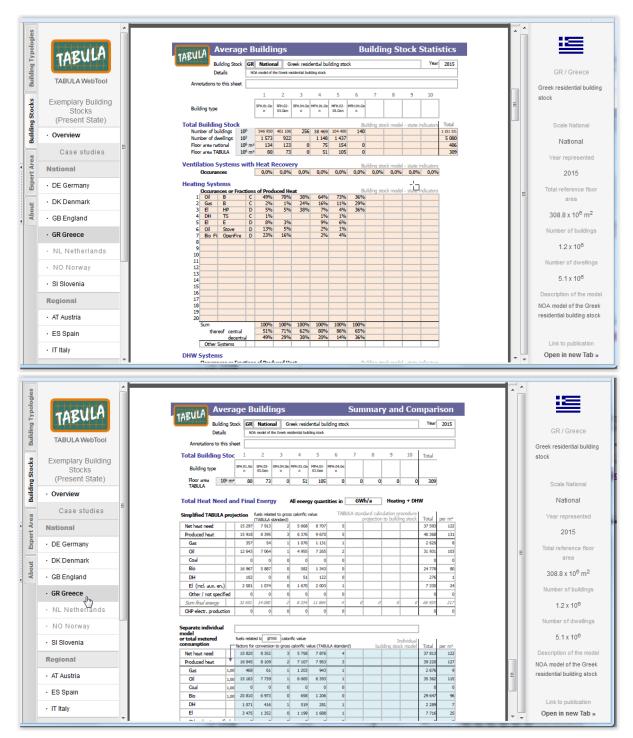


Figure 7: Example of an "Average Buildings" calculation in the "Building Stocks" section of the TABU-LA WebTool (http://webtool.building-typology.eu/)

Above: Building Stocks Statistics / scenario indicators (extract)

Below: Comparison of the simplified building stock calculation with the individual scenario model

4 References

Sources / References

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[COM 2011]	European Commission (2011): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Roadmap for moving to a competitive low carbon economy in 2050. Available at: http://eur-lex.europa.eu/resource.html?uri=cellar:5db26ecc-ba4e-4de2-ae08-dba649109d18.0002.03/DOC_1&format=PDF [2015-06-08]	With its "Roadmap for moving to a competitive low-carbon economy in2050" the European Commission is looking beyond the 2020 objectives for climate and energy and sets out a plan to meet the long-term target of reducing domestic emissions by 80 to 95 % by mid-century.
[EPISCOPE Project Team 2014]	Diefenbach, N., Loga, T., Stein, B. (ed.) (2014): Energy Performance Indicators for Building Stocks. First version / starting point of the EPI- SCOPE indicator scheme, March 2014. Available at: http://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_Indicators_FirstConcept.pdf [2015-12-18]	EPISCOPE report (working paper) on energy performance indicators for building stocks, first version / starting point
[EPISCOPE Project Team 2016a]	Stein, B., Loga, T., Diefenbach, N. (ed.) (2016): Tracking of Energy Performance Indicators in Residential Building Stocks – Different Approaches and Common Results. EPISCOPE Synthesis Report No. 4, Institut Wohnen und Umwelt, Darmstadt; available at: http://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE SR4 Monitoring.pdf	EPISCOPE Synthesis Report No. 4 on the availability and quality of data sources with regards to the EPISCOPE case studies, suggestions for improvements and regular monitoring approaches
[EPISCOPE Project Team 2016b]	Stein, B., Loga, T., Diefenbach, N. (ed.) (2016): Scenario Analyses Concerning Energy Efficiency and Climate Protection in Local Residential Building Stocks. Examples from Eight European Countries – EPISCOPE Synthesis Report No. 2, Institut Wohnen und Umwelt, Darmstadt; available at: http://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE SR2 LocalScenarios.pdf	EPISCOPE Synthesis Report No. 2 on scenario analyses in local building stocks (portfolios of housing companies, municipalities, city quarters)
[EPISCOPE Project Team 2016c]	Stein, B., Loga, T., Diefenbach, N. (ed.) (2016): Scenario Analyses Concerning Energy Efficiency and Climate Protection in Regional and National Residential Building Stocks. Examples from Nine European Countries – EPISCOPE Synthesis Report No. 3, Institut Wohnen und Umwelt, Darmstadt; available at: http://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_SR3_RegionalNationalScenarios.pdf	EPISCOPE Synthesis Report No. 3 on scenario analyses in regional and national residential building stocks
[TABULA Project Team 2010]	Loga, T.; Diefenbach, N. (ed.) (2010): Use of building typologies for energy performance assessment of national building stocks. Existent Experiences in European Countries and Common Approach. First TABULA Synthesis Report, Institut Wohnen und Umwelt, Darmstadt; Available at: http://www.building-typolo-gy.eu/downloads/public/docs/report/TABULA_SR1.pdf [2016-02-03]	TABULA Synthesis Report No. 1 summarising existing experiences, application fields and target groups for building typologies as well as a definition of a common typology structure used in the framework of the TABULA and EPISCOPE projects
[TABULA Project Team 2013]	Loga, T.; Diefenbach, N. (2013): TABULA Calculation Method – Energy Use for Heating and Domestic Hot Water. Reference Calculation and Adaptation to the Typical Level of Measured Consumption.Institut Wohnen und Umwelt, Darmstadt. Available at: http://episcope.eu/fileadmin/tabula/public/docs/report/TABULA_CommonCalculationMethod.pdf [2015-09-17]	Description of the calculation method developed in the course of the IEE project TABULA

Application of Energy Performance Indicators

Reference shortcut	Concrete reference (in respective language)	Short description (in English)
[UBA 2014]	Umweltbundesamt (2014): Treibhausgas-Emissionen der EU-15 nach Quellkategorien in Mio. t CO ₂ -Äquivalenten. Available at: http://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/2 tab thgemieu15 kategorien 2014-08-14.pdf [2015-06-08] Based on: European Environment Agency (EEA) (2014): Annual European Union greenhouse gas inventory 1990–2012 and inventory report 2014. Submission to the UNFCCC Secretariat, Publications Office of the European union, Luxembourg	Table summarising EU-15 greenhouse gas emissions in $\rm CO_2$ -equivalents by source categories; Results in- and excluding Land Use activities and Land-Use Change and Forestry (LULUCF) activities

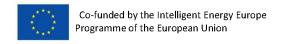
Appendix A: Example of "EPI Tables"

EPISCOPE Case Study GB-N *Energy Efficiency Scenarios to 2050: England*

Documentation of Energy Performance Indicators

More information about case studies at: www.episcope.eu/monitoring/case-studies/

EPISCOPE Case Study: Energy Efficiency Scenarios to 2050: England


"EPI Tables"

Documentation of Energy Performance Indicators

Prepared in the framework of the European project EPISCOPE www.episcope.eu

February 2016

Template for Documentation of Energy Performance Indicators ("EPI Tables")

Template version: 2016-03-08

The template for documentation of energy performance indicators has been prepared in the framework of the project EPISCOPE which was mainly funded by the programme Intelligent Energy Europe. The purpose is to report in a concerted way on input and output data of the building stock models and scenario calculations.

The usage of the EPI concept as well of this workbook by third parties is intended and desirable.

Energy Performance Indicator Tracking Schemes for the Continuous Optimisation of Refurbishment Processes in European Housing Stocks

Co-funded by the Intelligent Energy Europe Programme of the European Union

Contract N°: IEE/12/695/SI2.644739 – EPISCOPE

Coordinator: Institut Wohnen und Umwelt, Darmstadt / Germany

Project duration: April 2013 - March 2016

The sole responsibility for the content of this deliverable lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.

EPISCOPE Case Studies - Documentation of Energy Performance Indicators

General Information

General Information about the monitoring and scenario data documented in this workbook

Country GB/ENG Great Britain (England only)

Building stock National residential building stock

Person in charge Jack Hulme

Organisation BRE, Building Research Establishment Bucknalls Lane, Garston, Watford, Herts.

Country UK
URL www.bre.co.uk

Date 2016-03-09

Documented study

EPISCOPE Pilot Project: England

 $http://episcope.eu/fileadmin/episcope/public/docs/pilot_actions/GB_EPISCOPE_National CaseStudy_BRE.pd$

Explanations

Monitoring Indicators

The monitoring indicators are based on published data from the English Housing Survey (principally dating from 2011). This is a high quality dataset, used for National Statistics in the UK.

See https://www.gov.uk/government/collections/english-housing-survey

Scenario Indicators

Scenario <1> National report scenario 1 (Trend scenario)

The trend scenario is based on installing those measures which are currently being installed, and have been installed under current energy efficiency schemes and programmes. See National Report for more details

Scenario <2> National report scenario 4 (Ambitious - Long Term Scenario)

See National Report for details.

This scenario is the most ambitious modelled, and includes a comprehensive programme of energy efficiency improvements, including wide scale fuel switching to electric heat pumps accompanied by decarbonisation of the electricity grid.

See National Report for details.

Further scenarios not documented in this workbook

National report scenario 2 and 3 which are long-term scenarios including insulation and boiler upgrades, but without large scale fuel switching except for off-gas network properties.

Energy Balance Indicators

Figures correspond to the ouptuts from Scenarios 1 and 2 and include adjustments using "real ratio" technique. See national report for details.

Basic Case Details - Scenario and Energy Balance Indicators by Building Type

Nine building types are used for the definition of the TABULA "average buildings".

Summary Indicators

Information about the summary indicators can be found in the description of the England national report.

References

[1] Summers, C & Hulme, J; EPISCOPE Pilot Project: England. September 2015.

http://episcope.eu/fileadmin/episcope/public/docs/pilot actions/GB EPISCOPE NationalCaseStudy BRE.pdf

[2] The English Housing Survey.

https://www.gov.uk/government/collections/english-housing-survey

M.1 Basic data of the building stock	Complete building stock
	bs
number of buildings	N/A
number of apartments	~22 million
national reference area [10 ⁸ m²]	2.1
sources / remarks	EHS data (2010-2013).

	Complete building stock
walls	<u> </u>
insulation improved (from original state)	~40%
insulation improved (area-weighted)	-
average thickness of improved insulation	N/A
annual rate of insulation improvement	2.00%
annual rate of insulation improvement (area-weighted)	-
average thickness of insulation (recent modernisation)	-
roofs / upper floor ceilings	
insulation improved (from original state)	~90%
insulation improved (area-weighted)	-
average thickness of improved insulation	Unknown
annual rate of insulation improvement	4.00%
annual rate of insulation improvement (area-weighted)	-
average thickness of insulation (recent modernisation)	270mm
ground floors / cellar ceilings	
insulation improved (from original state)	Very low
insulation improved (area-weighted)	Very low
average thickness of improved insulation	Very low
annual rate of insulation improvement	Very low
annual rate of insulation improvement (area-weighted)	Very low
average thickness of insulation (recent modernisation)	Very low
windows	
insulation improved (from original state)	~75%
insulation improved (area-weighted)	-
average quality of improved windows	
annual rate of insulation improvement	3.00%
annual rate of insulation improvement (area-weighted)	
average quality of improved windows (recent modernisations)	
sources / remarks:	
EHS data (2010-2013).	
https://www.gov.uk/government/collections/english-housing-surve	<u>Y</u>

	Complete building stock
levels of wall insulation (area-weigthed):	Complete ballaling stock
, ,	250
Cavity Uninsulated (U ~ 1.7)	~25%
Cavity Insulated (U ~ 0.5)	~40%
Solid Uninsulated (U ~ 2.1)	~30%
Solid Insulated (U ~ 0.5)	<0.5%
roofs / upper floor ceilings	
Flat roof or no loft	~10%
None	<5%
< 100mm	~15%
100 to 150mm	~25%
> 150mm	~50%
ground floors / cellar ceilings	
Insulated floors	Very low
windows	
Full double glazing	~75%
More than half double glazing (not full)	~10%
Less than half double glazing	~5%
No double glazing	~10%
sources / remarks	
EHS data (2010-2013).	

M.3.1 Main Heat Supply Systems for Space Heating		
		modernisation
	Complete building stock	Complete building stock
M.3.1.1 Centralisation of space heating system		net modernisation rates
district heating	Very low	
building / apartment heating	95%	+ < 1% per annum
room heating	5%	
M.3.1.2 Main energy carrier for space heating		net modernisation rates
district heating	Very low	
gas (natural / liquid gas)	~85%	
oil	~5%	+ < 1% per annum
coal	Very low	Verylow
wood/biomass	Very low	
electricity	~10%	- < 1% per annum
M.3.1.3. Main heat generation system for space heating		gross modernisation rates
condensing boiler system	30%	+ approx 7% per annum
non-condensing boiler system	60%	
room heater	~5%	- < 1% per annum
storage radiators	~5%	Approx 0%
other (communal, warm air, other)	Very low	Very low
sources / remarks EHS data (2010-2013).		
https://www.gov.uk/government/collections/english-housing-surv	rey	1

		modernisation trends (gross rates)
	Complete building stock	Complete building stock
solar thermal systems	Very low	Very low
for hot water supply only	Very low	Very low
for heating and hot water supply	Very low	Very low
photovoltaic systems	Very low	Very low
ventilation systems (for buildings/apartments, not only kitchen/WC ventilation)	Very low	Verylow
with heat recovery	Very low	Very low
without heat recovery	Very low	Very low
sources / remarks EHS data (2010-2013).		
https://www.gov.uk/government/collections/english-housing-sur	<u>vey</u>	

M.3.3 Main System of Hot Water Supply apart from additional solar thermal systems (see above)

apart nom additional solar inclinial systems (see above)	
	Complete building stock
M.3.3.1 Main Energy carrier for hot water supply	
district heating	Very low
gas	~85%
oil	~5%
coal	Very low
wood/biomass	Very low
electricity	~10%
M.3.3.2 Main heat generation system for hot water supply	
hot water generation combined with heating system:	
separate system of hot water generation:	
- direct electric heat generation	~10%
- electric heat pump	0%
- combustion of fossil fuels	~90%
- combustion of wood/biomass	0%
sources / remarks	
EHS data (2010-2013).	
https://www.gov.uk/government/collections/english-housing-survey	

M.4 Final Energy balance: Measured values	Complete building stock
energy consumption in TWh/a (10 ⁹ kWh/a)	
district heating	5
gas	2465
oil	261
coal	74
wood/biomass	58
electricity	937
, ,	

sources / remarks

Energy Consumption in the UK data (adjusted to England), 2011. https://www.gov.uk/government/collections/energy-consumption-in-the-uk

Trend scenario (National report scenario 1)	Residential Buildings constru	cted before 2012	
	2012: Basic Case	2050	Remarks
	bs ₂₀₁₂ = bs _{2012 2012}	bs 2012 2050	
Number of buildings	N/A	N/A	Analysis completed as dwellings
Number of dwellings	21.9	30.7	
National reference area [10 ⁹ m²]	2.1	2.94	
TABULA/EPISCOPE reference area [10 ⁹ m ²]	2.1	2.94	
Building insulation: state of modernisation			
Walls			percentages related to
insulation installed	42%	61%	Number of dwellings
Roofs / upper floor ceilings			percentages related to
insulation improved (from original state)	0001	are.	Number of dwellings with some
Cround floors (college spilings	83%	85%	insulation
Ground floors / cellar ceilings	00/	00/	percentages related to Number of dwellings
insulation improved (from original state)	0%	0%	· ·
Windows			percentages related to
insulation improved (from original state)	90%	90%	Number of dwellings with double glazing
Building insulation: Detailed information			
levels of wall insulation:			percentages related to
Cavity insulated	40%	60%	Number of dwellings
Cavity uninsulated	28%	9%	
Solid insulated	2%	2%	
Solid uninsulated	28%	28%	
Other	2%	2%	
levels of roof/upper floor ceiling insulation:	270	270	percentages related to
No loft	13%	13%	Number of dwellings
None	4%	3%	Number of dwellings
0-99mm	15%	4%	
100-199mm	34%	10%	
200-300mm	25%	3%	
>300mm	9%	68%	
levels of window insulation:	370	0670	percentages related to
	90%	90%	Number of dwellings
Double glazed			Number of dwellings
Single glazed	11%	11%	
Main Heat Supply Systems for Space Heating	00/		
Centralisation of space heating system	2%	20/	percentages related to
district heating	2%		Number of dwellings
building / apartment heating	95%	95%	
room heating	3%	3%	
Main energy carrier for space heating	2%	1.0	percentages related to
district heating			Number of dwellings
gas (natural / liquid gas)	85% 4%	84.7 2.1	
oil coal	1%	0.3	
coai wood/biomass	0%	0.3	
electricity	9%	10.8	
electricity Main heat generation system for space heatin			percentages related to
district heating	2%		Number of dwellings
boiler system	88%		
storage radiators	6%		
warm air system	1%		
room heaters	3%		
heat pumps	0%	0%	
Special Systems			percentages related to
solar thermal systems	1%		Number of dwellings
photovoltaic systems	1%	1%	
remarks		I .	
Modelling was undertaken to 2050 only (2020 and	d 2030 data not available)		

Trend scenario (National report scenario 1) Residential Buildings constructed until 2012 2012: 2050 Basic Case bs₂₀₁₂ = bs_{...2012|2012} bs_{...2012|2050} Internal and external boundary conditions for energy balance calculation Directly heated part of the reference floor area 100 in % Daily operating time of heating system 8hrs weekday, 16hrs weekend 8hrs weekday, 16hrs weekend h/d Set-point temperature heating system Average temperature directly heated part °С 21 21 °C (heating period) Average temperature not directly heated part N/A N/A °C (heating period) SAP 2012 SAP 2012 Climate dataset Length of heating period 8 Months Adaptation factor final energy (for calibration to typical level of measured consumption) Variable factor Variable factor fuels Factor varied based on energy performance of dwelling district heating Variable factor Variable factor Factor varied based on energy performance of dwelling electric energy Variable factor Variable factor Factor varied based on energy performance of dwelling

Ambitious Long Term (National Report Scenario 4)	Residential Buildings const	ructed before 2012		
	2012:	2050		Pamado
	Basic Case	2030		Remarks
	bs ₂₀₁₂ = bs _{2012 2012}	bs _{2012 2050}		
lumber of buildings	N/A	N/A		Analysis completed as dwellings
lumber of dwellings	21.9)	30.7	
lational reference area [10 ⁹ m²]	2.1		2.94	
ABULA/EPISCOPE reference area [10 ⁹ m ²]	2.1		2.94	
Building insulation: state of modernisation		†		
Valls				percentages related to
sulation installed	42%		94%	Number of dwellings
oofs / upper floor ceilings	12.		0170	percentages related to
nsulation improved (from original state)	83%		88%	Number of dwellings
Ground floors / cellar ceilings	65 /	,	00 70	percentages related to
nsulation improved (from original state)	0%		N%	Number of dwellings
/indows	0-%)	076	
	000/		1000/	percentages related to Number of dwellings
sulation improved (from original state)	90%	,	100%	ramber of aweilings
uilding insulation: Detailed information	+			
evels of wall insulation:		.	050	percentages related to
avity insulated	40%			Number of dwellings
avity uninsulated	28%		4%	
olid insulated	2%		29%	
olid uninsulated	28%		1%	
Other	2%	, and the second	2%	
evels of roof/upper floor ceiling insulation (area-weigt	hed):			percentages related to
o loft	13%		13%	Number of dwellings
one	4%		0%	
-99mm	15%		0%	
00-199mm	34%	0	0%	
00-299mm	25%		0%	
300mm	9%		88%	
evels of window insulation (area-weigthed):				percentages related to
ouble glazed	90%		100%	Number of dwellings
lain Heat Supply Systems for Space Heating		1		<u> </u>
entralisation of space heating system				percentages related to
istrict heating	2%		2%	Number of dwellings
uilding / apartment heating	95%		98%	rtanibor of arrollings
oom heating	3%		0%	
lain energy carrier for space heating	3 /		0.70	percentages related to
istrict heating	2%		1.8	Number of dwellings
as (natural / liquid gas)	85%		19.6	
il	4%		13.0	
oal	1%		0	
oai /ood/biomass	0%		0.3	
lectricity	9%		78.4	
	370	<u> </u>	7 0.4	nercentages related to
lain heat generation system for space heating istrict heating	2%		20/	percentages related to Number of dwellings
oiler system	88%		20%	
torage radiators	6%		20% 0%	
/arm air system	1%		1%	
oom heaters	3%		3%	
eat pumps	0%)	78%	
pecial Systems				percentages related to
olar thermal systems	1%		68%	Number of dwellings
hotovoltaic systems	1%		68%	
	-	1		

Ambitious Long Term (National Report Scenario 4)	Residential Buildings consti			
	2012: Basic Case	2050		
	bs ₂₀₁₂ = bs _{2012 2012}	bs _{2012 2050}		
Internal and external boundary conditions for energy				
balance calculation				
Directly heated part of the reference floor area	100		100	in %
Daily operating time of heating system	8hrs weekday, 16hrs weekend	8hrs weekday, 16hrs weekend		h/d
Set-point temperature heating system	21		21	°C
Average temperature directly heated part	21		21	°C (heating period)
Average temperature not directly heated part	N/A	N/A		°C (heating period)
Climate dataset	SAP 2012	SAP 2012		
Length of heating period	8		8	d/a
Average external air temperature during heating period				°C
Adaptation factor final energy (for calibration to typical				
level of measured consumption)	Variable factor	Variable factor		
fuels	Variable factor	Variable factor		
district heating	Variable factor	Variable factor		
electric energy			ĺ	
			,	

Trend scenario (National report scenario 1)	2012: Basic Case	2050
	bs ₂₀₁₂	bs ₂₀₅₀
TABULA/EPISCOPE reference area [10 ⁹ m²]	2.10	2.94
Required heat amounts		
Q _{nd} Net heat need (space heating and DHW)*	132012.44	131062.31
Q _{total} Supplied heat (space heating and DHW)**	190201.56	173649.91
Final energy demand by energy carrier (delivered energy, gross calorific value)		
1 natural gas	161166.58	150128.23
² liquid gas	911.25	644.50
3 oil	8890.62	5091.80
⁴ coal	7349.05	4886.61
5 wood / biomass	419.88	418.15
6 district heating	294.19	293.78
⁷ electric energy (used for heat supply)***	11169.98	12186.83
Sum of energy carriers (1-7)	190201.56	173649.91
CO ₂ emissions (e.g. in million tons / year)	124	86.2

Remarks:

^{***)} e.g. auxiliary electric energy for control, pumps, fans of heat supply and ventilation systems is included Modelling was undertaken to 2050 only (2020 and 2030 data not available)

Indicators Related to the Reference Area in kWh/(m²a)	2012: Basic Case	2050
Trend scenario (National report scenario 1)	bs ₂₀₁₂	bs ₂₀₅₀
TABULA/EPISCOPE reference area [10^9m²]	2.1	2.94
Required heat amounts		
Q _{nd} Net heat need (space heating and DHW)*	62.86	44.58
Q _{total} Supplied heat (space heating and DHW)**	90.57	59.06
Final energy demand by energy carrier (delivered energy, gross ca 1 natural gas 2 liquid gas	76.75 0.43	51.06 0.22
3 oil	U.43 4.23	1.73
4 coal	3.50	1.66
5 wood / biomass	0.20	0.14
6 district heating	0.14	0.10
⁷ electric energy (used for heat supply)***	5.32	4.15
	90.57	59.06
Sum of energy carriers (1-7)		

Remarks:

^{*)} Energy need for heating and DHW

^{**)} Total amount of heat generated by technical installations in the building (for heating and DHW: sum of net heat need + storage losses + distribution and emission losses + heat recovered by ventilation systems).

^{*)} Energy need for heating and DHW

^{**)} Total amount of heat generated by technical installations in the building (for heating and DHW: sum of net heat need + storage losses + distribution and emission losses + heat recovered by ventilation systems).

^{**)} e.g. auxiliary electric energy for control, pumps, fans of heat supply and ventilation systems is included

Ambitious Long Term (National Report Scenario 4)	2012: Basic Case	2050		
	bs ₂₀₁₂	bs ₂₀₅₀		
TABULA/EPISCOPE reference area [10 ⁹ m²]	2.10	2.94		
Required heat amounts				
Q _{nd} Net heat need (space heating and DHW)*	132012.44	123645.04		
Q _{total} Supplied heat (space heating and DHW)**	190201.56	81883.31		
Final energy demand by energy carrier (delivered energy	gross calorific value)			
¹ natural gas	161166.58	29105.99		
² liquid gas	911.25	2.72		
³ oil	8890.62	0.00		
⁴ coal	7349.05	374.89		
⁵ wood / biomass	419.88	376.06		
⁶ district heating	294.19	290.08		
⁷ electric energy (used for heat supply)***	11169.98	51733.56		
Sum of energy carriers (1-7)	190201.56	81883.31		
CO ₂ emissions (in million tons / year)	124	16		

Remarks:

- *) Energy need for heating and DHW
- **) Total amount of heat generated by technical installations in the building (for heating and DHW: sum of net heat need + storage losses + distribution and emission losses + heat recovered by ventilation systems).
- ***) e.g. auxiliary electric energy for control, pumps, fans of heat supply and ventilation systems is included

IIIIUILA	itors Related to the Reference Area	2012: Basic Case	
in kWh			2050
		bs ₂₀₁₂	bs ₂₀₅₀
TABUL	A/EPISCOPE reference area [10^9m²]	2.1	2.94
Require	ed heat amounts		
Q_{nd}	Net heat need (space heating and DHW)*	62.86	42.06
Qtotal	Supplied heat (space heating and DHW)**	90.57	27.85
Final e	nergy demand by energy carrier (delivered energy	, gross calorific value)	
	1 natural gas	76.75	9.90
	² liquid gas	0.43	0.00
	3 oil	4.23	0.00
	4 coal	3.50	0.13
	5 wood / biomass	0.20	0.13
	6 district booting	0.14	0.10
	6 district heating	0.	
	7 electric energy (used for heat supply)***	5.32	17.60
Sum of	<u> </u>		

Remarks:

- *) Energy need for heating and DHW
- **) Total amount of heat generated by technical installations in the building (for heating and DHW: sum of net heat need + storage losses + distribution and emission losses + heat recovered by ventilation systems).
- **) e.g. auxiliary electric energy for control, pumps, fans of heat supply and ventilation systems is included Modelling was undertaken to 2050 only (2020 and 2030 data not available)

Year			2012	2050
Reference	National reference area	[m²]	2 100 000 000	2 940 000 000
area	EPISCOPE reference area	erence [m²] 2 100 000 0	2 100 000 000	2 940 000 000
	<1> Scenario "Trend"	kg/m²yr	42	25.0
co₂	<2> Scenario "Target- oriented / basic"	kg/m²yr		5.0
emissions	EPISCOPE benchmark	kg/m²yr		8.0
	National benchmark	kg/m²yr		9.0
Total heat	<1> Scenario "Trend"	kWh/(m²yr)	171	112
demand	<2> Scenario "Target- oriented / basic"	kWh/(m²yr)		52
CO ₂ emission	<1> Scenario "Trend"	kg/kWh	0.246	0.223
factor heat supply	<2> Scenario "Target- oriented / basic"	kg/kWh	-	0.096

Values related to EPISCOPE Reference Area

TABULA Average Buildings

EPISCOPE Monitoring Indicators

10^6 m²

Building Sto	ock GB	Nation	al Er	English Housing						Year	2012	
Details	Ma	Main English building type and age merged into smaller type and age band to give 9 average building types, br								ore model		
Annotations to this sh	eet											
		1	2	3	4	5	6	7	8	9	10	
Building type / label		TH.01	TH.02-03	TH.04-08	SFH.01	SFH.02-03	SFH.04-08	AB .01	AB.02-03	AB.04-08		
Building size cate	gory											
Construction time	band											
General Data	Total											
Number of buildings	17 428	2 771	5 601	4 020	522	1 305	2 862	135	76	137		10^3
Number of dwellings	22 720	2 970	5 800	4 270	570	1 430	3 070	930	1 120	2 560		10^3
Floor area national		305	511	344	113	195	413	67	67	148		10^6 m

Building Insulation

Floor area TABULA

Original state / not refurbished fraction of the envelope area

305

511

344

2 163

U-values of the original state

Roof	0.88	0.64	0.52	0.88	0.64	0.52	0.32	0.32	0.19	W/(m²K)
Wall	1.93	1.77	0.93	1.93	1.77	0.93	1.93	1.77	0.93	W/(m²K)
Window	4.06	3.59	3.74	4.13	3.62	3.89	4.22	3.71	4.25	W/(m²K)
Floor	0.59	0.59	0.59	0.72	0.72	0.72	0.45	0.45	0.45	W/(m²K)

113

195

413

67

67

148

Refubishments (averages)

Refurbished fraction of envelope areas

Roof	42%	55%	56%	52%	56%	60%	7%	13%	19%		
Wall	11%	52%	54%	17%	55%	57%	7%	40%	46%		
Window	62%	76%	74%	57%	75%	81%	48%	86%	91%		
Floor											
Total (indicative)	23%	43%	43%	26%	43%	46%	11%	41%	48%		

U-values of the refurbished fraction (averages)

Roof	0.16	0.15	0.15	0.16	0.15	0.15	0.12	0.12	0.10	W/(m²K)
Wall	0.74	0.47	0.31	0.74	0.47	0.31	0.74	0.47	0.31	W/(m²K)
Window	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	W/(m²K)
Floor										W/(m²K)

Main Heat Supply Systems

Ventilation Systems with Heat Recovery

Occurances

Heating Systems

Occurances or Fractions of Produced Heat

_													
1	Gas	B_C	С	90%	100%	90%	50%	90%	90%	80%	85%	60%	
2	El	E_Storage	D	10%		10%	10%			20%	15%	40%	
3	Oil	B_C	С				40%	10%	10%				
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
	Sum			100%	100%	100%	100%	100%	100%	100%	100%	100%	
	ther	eof central		90%	100%	90%	90%	100%	100%	80%	85%	60%	
		decentra	ı	10%		10%	10%			20%	15%	40%	
	Other	Systems											

DHW Systems

Occurances or Fractions of Produced Heat

1	Gas	B_C	С	90%	95%	90%	50%	80%	80%	80%	90%	60%	
2	El	E_Immersi	С	10%	4%	10%	10%	10%		20%	10%	40%	
3	Oil	B_C	С		1%		40%	10%	10%				
4		_											
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
	Sum			100%	100%	100%	100%	100%	90%	100%	100%	100%	
	ther	eof central		100%	100%	100%	100%	100%	90%	100%	100%	100%	
		decentra	ı [
	Other	Systems							10%				

Heating + DHW **Energy Balance** All energy quantities in GWh/a bre model of English housing fuels related to gross calorific value Total per m² Net heat need 59 100 86 200 47 100 22 700 33 100 53 500 13 100 10 900 16 900 342 600 158 80 700 116 600 61 700 31 700 45 900 72 900 16 000 13 300 19 000 0 457 800 212 Produced heat 71 100 111 000 57 500 12 200 11 100 12 400 0 393 700 182 15 800 39 200 63 400 Gas 1.00 0 4 100 12 200 3 800 7 400 100 29 686 Oil 1.00 1 500 500 36 50 14 0 0 0 Coal 1.00 0 0 0 0 0 0 0 0 0 Bio 1.00 DH 3 300 2 200 3 300 1 500 1 400 1 200 3 000 1 400 5 400 0 22 700 Εl 10 0 0 0 0 0 0 0 0 0 0 0 Other / not specified

44 400

228

0

72 000

174

0

15 300

228

0

12 536

187

0

17 850

121

0

0

0

446 086

0

206

0

Version: 2016-01-21

Sum final energy

CHP electr. producti

per m²

78 500

257

0

114 700

224

0

61 300

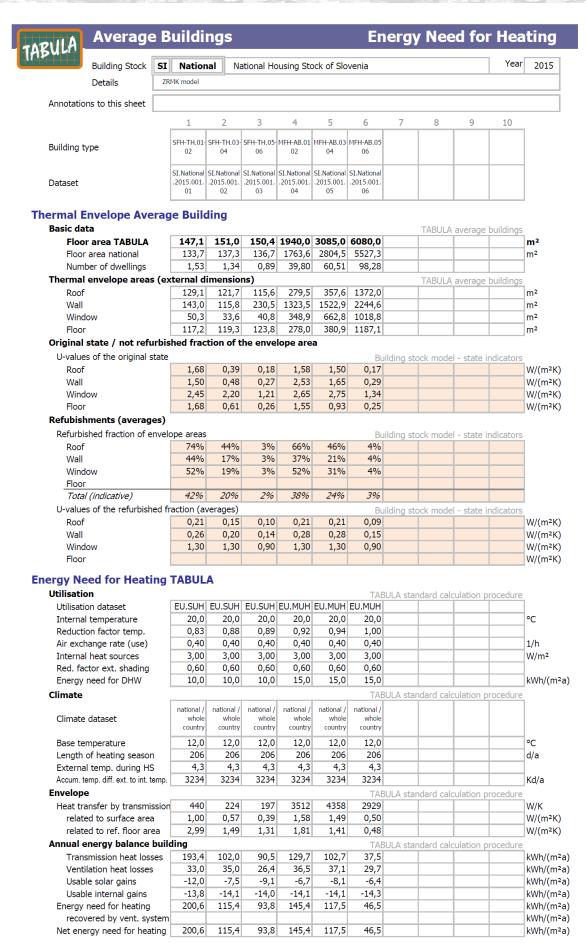
178

0

29 500

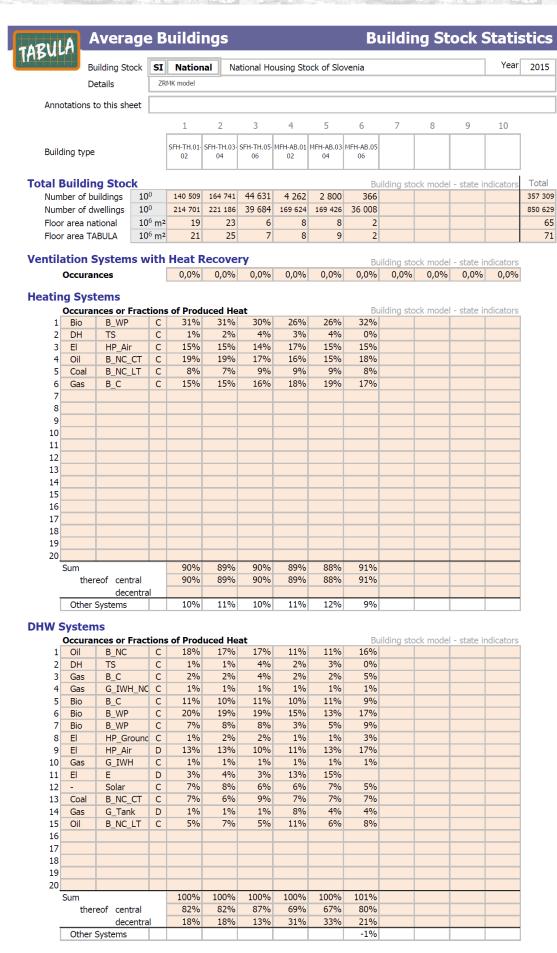
261

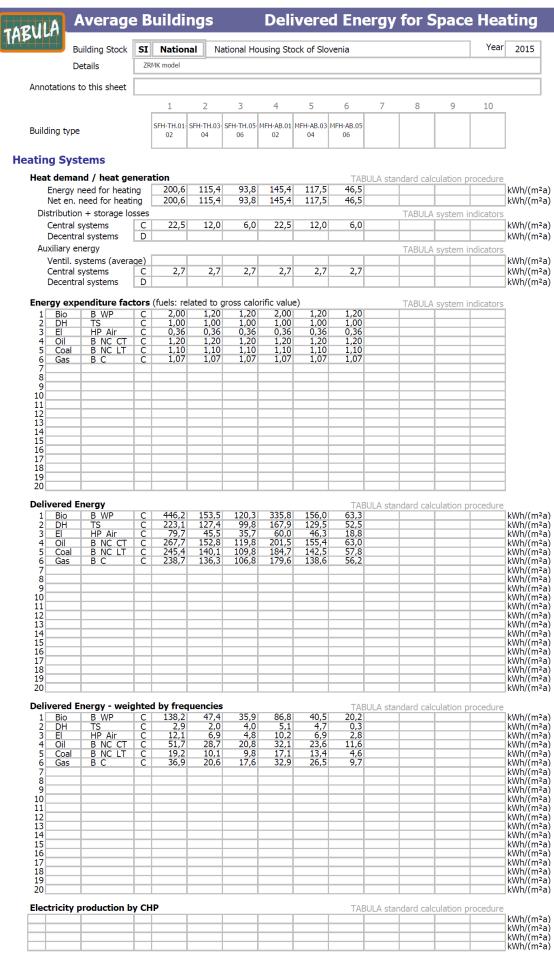
0


Appendix B: Example of "Average Buildings" Calculation

EPISCOPE Case Study SI-N
National Housing Stock in Slovenia

Simplified TABULA Building Stock Model


www.episcope.eu/monitoring/average-buildings



Version: 2015-11-12

	A	allata er i				atau ter							Year 20
		uilding Stock etails	SI	Nation MK model	al Na	tional Ho	ousing Sto	ock of Slo	venia				rear 20
Anno		to this sheet											
AHIIC	lations	to this sheet		1	2	3	4	5	6	7 8	<u> </u>	9 10	0
				SFH-TH.01						,			
Build	ling type			02	04	06	02	04	06				
w s	Systen	าร											
		nd / heat ge			10.0	10.0	45.0	45.0		JLA standard	calculat	ion proced	
	• ,	need for DHW n + storage lo		10,0	10,0	10,0	15,0	15,0	15,0	I TAB	ULA sys	tem indica	kWh tors
	Central s	systems al systems	C	1,1 0,8	1,5 1,2	1,5 1,2	1,1 0,8	1,5 1,2	1,5 1,2				kWh kWh
Au	xiliary e	nergy		5,0						TAB	ULA sys	tem indica	tors
	Central s Decentra	systems al systems	C D		1,7 1,7	1,7 1,7	1,7 1,7	1,7 1,7	1,7 1,7				kWh
		enditure fac								TAB	ULA sys	tem indica	tors
2	Oil DH	B NC TS	C	1,35	1,35 1,00	1,35 1,00	1,35 1,00	1,35 1,00	1,35				
3 4 5	Gas Gas Bio	B C G IWH NO B C	C	1,18 1,18 0,98	1,18 1,18 0,98	1,18 1,18 0,98	1,18 1,18 0,98	1,18 1,18 0,98	1,18 1,18 0,98				=
6	Bio Bio	B WP B WP	C	2,00 1,20	2,00 1,20	2,00 1,20	2,00 1,20	2,00 1,20	2,00 1,20				
8	El El	HP Ground HP Air	C	0,29 0,36	0,29 0,36	0,29 0,36	0,29 0,36	0,29 0,36	0,29 0,36				
10 11	Gas El	G IWH	D	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00				
12 13 14	Coal Gas	Solar B NC CT G Tank	C C	1,20 1,00	1,20 1,00	1,20 1,00	1,20 1,00	1,20 1,00	1,20 1,00				
15 16	Oil	B NC LT	Č	1,10	1,10	1,10	1,10	1,10	1,10				
17 18													
19 20													
	vered E			45.0	45.51	15.5	24.0	22.2		JLA standard	calculat	ion proced	
1 2 3	Oil DH	B NC TS B C	C	15,0 11,1 13,1	15,5 11,5 13,5	15,5 11,5 13,5	21,8 16,1 18,9	22,3 16,5 19,4	22,3 16,5 19,4				kWh kWh kWh
4	Gas Gas Bio	G IWH NO		13,1 10,9	13,6 11,3	13,6 11,3	19,0 15,8	19,5 16,2	19,5 16,2				kWh
6 7	Bio Bio	B WP B WP	C	22,2 13,4 3,2	23,0 13,9	23,0 13.9	32,2 19,4	33,0 19,9	33,0 19,9				kWh kWh
8	El El	HP Ground	D	3,9	3,3 4,0	3,3 4,0	4,6 5,6	4,7 5,8	4,7 5,8				kWh
10 11	Gas El	G IWH	D C	11,1 10,8	11,5 11,2	11,5 11,2	16,1 15,8	16,5 16,2	16,5 16,2				kWh kWh kWh
12 13 14	Coal Gas	Solar B NC CT G Tank	C	13,3 10,8	13,8 11.2	13,8 11.2	19,3 15,8	19,8 16.2	19,8 16,2				kWh
15 16	Oil	B NC LT	Č	12,2	11,2 12,7	11,2 12,7	17,7	16,2 18,2	18,2				kWh kWh
17 18													kWh kWh
19 20													kWh
		nergy - weig				2 6	2,4	2,5	TABI	JLA standard	calculat	ion proced	
2 3	Oil DH Gas	B NC TS B C	C	2,7 0,1 0,3	2,6 0,2 0,3	2,6 0,5 0,5	0,3 0,4	0,4	0,1 1,0				kWh kWh kWh
4	Gas Bio	G IWH NO	C	0,1	0,1 1,1	0,3 0,2 1,3	0,2 1,5	0,4 0,2 1,7	0,1				kWh
6 7	Bio Bio	B WP B WP	C	1,2 4,5 0,9	4,3 1,1	4,4 1,1	4,7 0,6	4,3 1,0	1,4 5,5 1,8				kWh kWh
8 9	El El	HP Ground HP Air	D	0,0	0,1 0,5	0,1 0,4	0,0 0,6	0,1 0,8	0,1 1,0				kWh kWh
10 11	Gas El	G IWH E	D	0,1 0,4	0,1 0,4	0,1 0,3	0,2 2,0	0,2 2,5	0,2		+		kWh
12 13 14	Coal Gas	Solar B NC CT G Tank	C	1,0 0,1	0,9 0,1	1,2 0,1	1,3 1,2	1,4 0,7	1,3 0,7				kWh kWh kWh
15 16	Oil	B NC LT	C	0,6	0,9	0,7	1,9	1,1	1,5				kWh
17 18													kWh kWh
19 20													kWh kWh
Flec	tricity p	roduction b	y CH	IP.					TABI	JLA standard	calculat	ion proced	dure

Version: 2015-11-12

ABUL	AA	verage	В	uildi	ngs		Sim	plifie	d Bu	ildin	g Sto	ck P	rojec	tion
	Bui	ilding Stock	SI	Nation	al N	ational Ho	ousina Sto	ock of Slo	venia				Year	2015
		tails	ZR	MK model										
	50	cans												
Anno	otations to	this sheet												
Total I	Buildin	g Stock		1	2	3	4	5	6	7	8	9	10	Total
Build	ding type			SFH-TH.01- 02	SFH-TH.03 04	SFH-TH.05- 06	MFH-AB.01 02	MFH-AB.03	MFH-AB.05 06					
Flo	oor area T	ABULA 10	⁶ m²	21	25	7	8	9	2	0	0	0	0	71
Heatin	ng Syst	ems				All ener	gy quan	tities in	GW	h/a				
		d for Heati	ng			TABU	I A standa	ard calcula	ation prod	edure / r	rojection	to buildi	na stock	Total
	Energy ne	eed for heati	ng	4 145	2 871	630	1 202	1 015	104	,				9 966
	Net en. n	eed for heati	ng	4 145	2 871	630	1 202	1 015	104					9 966
	Produced	heat		4 564	3 135	666	1 369	1 106	116					10 956
Deli	ivered Er	ergy TABU	LA			TABU	LA standa	ard calcul	ation prod	edure / p	rojection	to buildi	ng stock	Sum
1	Bio	B_WP	С	2 857	1 180		718	350	45					5 390
2	DH	TS Air	С	59	51		43 84	41	1					221
3	El Oil	HP_Air B NC CT	C	250 1 069	171 713	32 140	266	204	6 26					603 2 418
5	Coal	B_NC_LT	C	398	253		142	116	10					983
6	Gas	B_C	С	764	512		272	229	22					1 916
7														
8														
9														
10			H				_							
11 12														
13														
14														
15														
16														
17														
18 19														
20														
20	Not spe	cified system	าร	410	325	62	127	120	10					1 053
		y energy		50	60	16	20	21	5					172
	CHP ele	ectr. producti	on											0
	System It Deman	s d for DHW				TABU	LA standa	ard calcul	ation prod	cedure / r	projection	ı to buildi	ng stock	Total
		eed for DHW		207	249	67	124	130	33					810
	Produced			228	285	77	132	142	37					901
Deli		ergy TABU							ation prod	cedure / p	rojection	to buildi	ng stock	Total
1	Oil	B_NC	С	55	64									186
2	DH	TS	С	3	4									17
3	Gas Gas	B_C G_IWH_NC	С	7	8		2	2	0					26 12
5	Bio	B_C	C	24	28			15	3					92
6	Bio	B_WP	С	94	106		39		12					318
7	Bio	B_WP	С	19	27				4					70
8	El	HP_Ground	С	1	1		_		0					4
9	El	HP_Air	D	11	13				2					40
10	Gas	G_IWH	C	2	3				0					9
11 12	El -	E Solar	D C	7	11			21	0					58 0
13	Coal	B_NC_CT	С	20	22				3					75
14	Gas	G_Tank	D	2	3									22
15	Oil	B_NC_LT	С	13	23	4	16	10	3					70
16														
17														
18			-											
19 20														
20	Not spe	cified system	าร	0	0	0	0	0	0					0
		y energy		0	42				4					86
		ctr. producti	on											0

Version: 2015-11-12

A C - T H P H P H M	AVG	ıa	ge b	uildi	ngs				Sun	IIIIai	y dilid	COI	npar	
	Building			Nation		ational Ho	using Sto	ock of Slov	venia				Year	2015
	Details			MK model										
Annotations	s to this	cho	ot 🔚											
Total Buildi	ing St	oc 「	1	2	3	4	5	6	7	8	9	10	Total	
Building typ	oe .		SFH-TH.01- 02	SFH-TH.03- 04	SFH-TH.05- 06	MFH-AB.01- 02	MFH-AB.03 04	MFH-AB.05 06						
Floor area TABULA	106	m²	21	25	7	8	9	2	0	0	0	0	71	
Total Heat	Need	an	d Fina	l Energ	у	All energ	y quant	ities in [GW	h/a	Heating	g + DH\	v	
Simplified TAE	BULA pr	roje	ction			s calorific	/alue	TAB			lation pro		Total	nor m
Net heat need	1	Т	4 352	(TABULA :	standard) 697	1 326	1 144	137		projection	to building	g Stock	Total 10 776	per m
Produced heat		\dashv	4 793	3 420	743	1 501	1 248	152					11 857	16
Gas		\dashv	777	528	123	288	241	26					1 984	2
Oil		\dashv	1 138	801	161	302	235	37					2 674	3
Coal		\dashv	417	275	73	152	127	13			$\neg \uparrow$		1 058	1
Bio		\dashv	2 993	1 341	286	775	411	64					5 870	8
DH		\forall	62	55	30	45	45	1					237	
El (incl. aux	x. en.)		320	297	65	140	123	18					964	1
Other / not		d	410	325	62	127	120	9					1 053	1
Sum final ene	ergy		6 116	3 623	802	1 829	1 302	168	0	0	0	0	13 840	19
CHP electr. pr	oduction	n	0	0	0	0	0	0					0	
nodel r total metere			fuels relat	ed to gro	oss calor	ific value					Inc	dividual	I	
nodel r total metere	ed			_			alue (TABL 736	JLA standal 97	rd)	buil	Inc		Total 7 611	
nodel r total metere onsumption	e d		factors fo	r conversio	n to gross	calorific v			rd)	buil				10
nodel r total metere onsumption Net heat need	e d		factors fo 2 906	r conversion 2 721	n to gross 284	calorific v	736	97	rd)	buil			7 611	10
nodel r total metere onsumption Net heat need Produced heat	ed t		factors fo 2 906 3 192	2 721 2 970	284 314	calorific vi 868 1 006	736 794	97 103	rd)	buil			7 611 8 379	10 11 2
r total metere onsumption Net heat need Produced heat Gas	ed t 1	.,00	2 906 3 192 420	2 721 2 970 506	n to gross 284 314 136	268 2006 1006	736 794 201	97 103 54	rd)	buil			7 611 8 379 1 485	10 11 2 2
nodel r total metere consumption Net heat need Produced heat Gas Oil	t 1	.,00	factors fo 2 906 3 192 420 443	2 721 2 970 506 533	284 314 136	868 1 006 167 178	736 794 201 214	97 103 54 58	rd)	buik			7 611 8 379 1 485 1 570	10 11 2 2
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal	t 1	.,00	factors fo 2 906 3 192 420 443	2 721 2 970 506 533	284 314 136 144	2 calorific vi 868 1 006 167 178	736 794 201 214	97 103 54 58 0	rd)	buil			7 611 8 379 1 485 1 570 2	10 11 2 2
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio	t 1	.,00	factors fo 2 906 3 192 420 443 1 1 477	2 721 2 970 506 533 1 1 778	284 314 136 144 0 480	2 calorific va 2 868 1 006 167 178 0 653	736 794 201 214 0 786	97 103 54 58 0 212	rd)	buil			7 611 8 379 1 485 1 570 2 5 385	10 111 2 2 7
rodel rotal metere consumption Net heat need Produced heat Gas Oil Coal Bio DH	i t 1 1 1 1 1 1	,,00	factors fo 2 906 3 192 420 443 1 1 477 250	2 721 2 970 506 533 1 1 778 301	284 314 136 144 0 480	2 calorific vo 868 1 006 167 178 0 653 101	736 794 201 214 0 786 121	97 103 54 58 0 212 33	rd)	buil			7 611 8 379 1 485 1 570 2 5 385 886	10 111 2 2 7
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El	t 1 1 1 specified	,,00	factors fo 2 906 3 192 420 443 1 1 477 250	r conversion 2 721 2 970 506 533 1 1 778 301 346	n to gross 284 314 136 144 0 480 81	calorific v. 868 1 006 167 178 0 653 101 122	736 794 201 214 0 786 121 147	97 103 54 58 0 212 33 40	o (0	build			7 611 8 379 1 485 1 570 2 5 385 886 1 036	10 11 2 2 7
nodel r total meters consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not	t 1 1 1 1 specified	.,00 .,00 .,00	factors fo 2 906 3 192 420 443 1 1 477 250 287 136	2 721 2 970 506 533 1 1 778 301 346 164 3 628	n to gross 284 314 136 144 0 480 81 93	calorific vo 868 1 006 167 178 0 653 101 122	736 794 201 214 0 786 121 147 38	97 103 54 58 0 212 33 40			ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425	10 111 2 2 7 1 1
Produced heat Gas Oil Coal Bio DH El Other / not s	t 1 1 1 1 specified	,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013	2 721 2 970 506 533 1 1 778 301 346 164 3 628	n to grosson to grosso	calorific v. 868 1 006 167 178 0 653 101 122 32 1 253	736 794 201 214 0 786 121 147 38 1 509 0	97 103 54 58 0 212 33 40 10 407	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425	10 111 2 2 7 1 1
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ener CHP electr. pro	t 1 1 1 1 1 specified with a specified w	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0	n to grosson to grosso	calorific v. 868 1 006 167 178 0 653 101 122 32 1 253	736 794 201 214 0 786 121 147 38 1 509 0	97 103 54 58 0 212 33 40 10 407	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425	10 111 2 2 7 1 1
rodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ener CHP electr. pr	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0	n to grosson to grosso	calorific v. 868 1 006 167 178 0 653 101 122 32 1 253	736 794 201 214 0 786 121 147 38 1 509 0	97 103 54 58 0 212 33 40 10 407	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0	10 11 2 2 7 1 1
rodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ene. CHP electr. pro Ratio of indivications TABULA balan	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0	n to gross 284 314 136 144 0 480 81 93 44 979 0	1 006 167 178 0 653 101 122 32 1 253 0 umption	736 794 201 214 0 786 121 147 38 1 509 0	97 103 54 58 0 212 33 40 10 407 0	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0	per m ¹⁰ 11 2 2 7 1 1 1 15
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ener CHP electr. pri Ratio of indivi TABULA balar Net heat need	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or totation factors 67%	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0	284 314 136 144 0 480 81 93 44 979 0	1 006 167 178 0 653 101 122 32 1 253 0 cumption	736 794 201 214 0 786 121 147 38 1 509 0 to simple	97 103 54 58 0 212 33 40 10 407 0	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0	10 11 2 2 7 1 1
rodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ene CHP electr. pro Ratio of indivi TABULA balar Net heat need Produced heat	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or totation factors 67%	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 87%	284 314 136 144 0 480 81 93 44 979 0 ed consi	1 006 167 178 0 653 101 122 32 1 253 0 101 155% 65% 67%	736 794 201 214 0 786 121 147 38 1 509 0 to simpl 64% 64%	97 103 54 58 0 212 33 40 10 407 0 iffied TAI	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0	10 11 2 2 7 1 1
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not : Sum final ene CHP electr. pn Ratio of individual in the company of the compan	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or total tition factors 67% 67% 54%	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 96%	284 314 136 144 0 480 81 93 44 979 0 ed consi 41% 42%	1 006 167 178 0 653 101 122 32 1 253 0 0 14 17 10 10 10 10 10 10 10 10 10 10 10 10 10	736 794 201 214 0 786 121 147 38 1509 0 to simpl 64% 64% 84%	97 103 54 58 0 212 33 40 10 407 0 iified TAI 71% 68% 208%	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0	10 11 2 2 7 1 1
rodel r total meters consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ene CHP electr. pn Ratio of indivit TABULA balan Net heat need Produced heat Gas Oil	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or totation factorion factorio factor	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 87% 96% 67%	284 314 136 144 0 480 81 93 44 979 0 ed const 41% 42% 110% 89%	calorific v. 868 1 006 167 178 0 653 101 122 32 1 253 0 Limption 65% 67% 58%	736 794 201 214 0 786 121 147 38 1509 0 to simpl 64% 64% 84%	97 103 54 58 0 212 33 40 10 407 0 lified TAI 71% 68% 208%	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0 Total 71% 71% 75% 59%	10 111 2 2 7 1 1
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ene. CHP electr. pro Ratio of indivi TABULA balar Net heat need Produced heat Gas Oil Coal	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or tota 67% 67% 54% 39% 0%	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 87% 96% 67%	n to gross 284 314 136 144 0 480 81 93 44 979 0 ed consi 41% 42% 110% 89% 0%	1 006 167 178 0 653 101 122 32 1 253 0 24mption 65% 67% 58% 59% 0%	736 794 201 214 0 786 121 147 38 1509 0 to simpl 64% 64% 91% 0%	97 103 54 58 0 212 33 40 10 407 0 iified TAI 71% 68% 208% 156% 1%	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0 Total 71% 75% 59%	10 111 2 2 7 1 1
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not a Sum final enea CHP electr. pro Ratio of indivi TABULA balar Net heat need Produced heat Gas Oil Coal Bio Bio	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 el or totation factor facto	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 87% 96% 67% 0%	284 314 136 144 0 480 81 93 44 979 0 ed const 41% 42% 110% 89% 0%	calorific vs. 868 1 006 167 178 0 653 101 122 32 1 253 0 cmption 65% 67% 58% 59% 0% 84%	736 794 201 214 0 786 121 147 38 1 509 0 to simpl 64% 84% 91% 0%	97 103 54 58 0 212 33 40 10 407 0 iified TAI 71% 68% 208% 156% 1% 330%	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0 Total 71% 75% 59% 0%	10 111 2 2 7 1 1
nodel r total metere consumption Net heat need Produced heat Gas Oil Coal Bio DH El Other / not Sum final ene CHP electr. pro Ratio of indivir TABULA balar Net heat need Produced heat Gas Oil Coal Bio DH Coal Bio DH	t 1 1 1 1 specified	,,00 ,,00 ,,00 ,,00 d	factors fo 2 906 3 192 420 443 1 1 477 250 287 136 3 013 0 67% 67% 54% 39% 49% 405%	2 721 2 970 506 533 1 1 778 301 346 164 3 628 0 87% 87% 96% 67% 0% 133%	284 314 136 144 0 480 81 93 44 979 0 ed consi 41% 89% 10% 89% 168% 269%	calorific v. 868 1 006 167 178 0 653 101 122 32 1 253 0 umption 65% 67% 58% 59% 0% 84% 222%	736 794 201 214 0 786 121 147 38 1509 0 to simpl 64% 64% 91% 0% 191% 272%	97 103 54 58 0 212 33 40 10 407 0 iffied TAI 71% 68% 208% 156% 1% 330% 4467%	0	0	ding stock	model	7 611 8 379 1 485 1 570 2 5 385 886 1 036 425 10 789 0 71% 75% 59% 0% 92%	10 111 2 2 7 1 1