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Abstract

Background

Experimental models have been used extensively to evaluate pain using e.g., visual ana-

logue scales or electroencephalography (EEG). Stimulation using tonic pain has been

shown to better mimic the unpleasantness of chronic pain, but has mainly been evoked by

non-clinical stimuli. This study aims to, evaluate the EEG during clinical pain in patients

scheduled for total hip replacement with control and resting conditions.

Methods

The hip scheduled for replacement was moved by the examiner to evoke pain for 30 sec-

onds while recording EEG. The control condition entailed movement of the opposite hip in a

similar fashion and holding it for 30 seconds. In addition, EEG was recorded during the rest-

ing condition with open eyes. The relative spectral content was calculated from the EEG as

well as functional connectivity using phase-lag index for frequency bands delta (1–4Hz),

theta (4–8Hz), alpha (8–12Hz) and beta (12–32Hz). A mixed model was used for statistical

comparison between the three recording conditions.

Results

Spectral content differed between conditions in all bands. Functional connectivity differed in

delta and theta frequency bands. Post-hoc analysis revealed differences between the pain-

ful and control condition in delta, theta and beta for spectral content. Pain during the hip rota-

tion was correlated to the theta (r = -0.24 P = 0.03) and beta (r = 0.25 P = 0.02) content in

the EEG.

Conclusion

EEG differences during hip movements in the affected and unaffected hip appeared in the

spectral beta and theta content. This was correlated to the reported pain perceived, pointing

towards pain specific brain activity related to clinical pain.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186400 October 30, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gram M, Erlenwein J, Petzke F, Falla D,

Przemeck M, Emons MI, et al. (2017) The cortical

responses to evoked clinical pain in patients with

hip osteoarthritis. PLoS ONE 12(10): e0186400.

https://doi.org/10.1371/journal.pone.0186400

Editor: Philip Allen, University of Akron, UNITED

STATES

Received: November 21, 2016

Accepted: September 29, 2017

Published: October 30, 2017

Copyright: © 2017 Gram et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is available at

https://figshare.com/s/e46c0eb76c9dcd98f6a2.

Funding: This study was funded from Innovation

Fund Denmark - Individuals, Disease and Society,

grant number 10–092786 http://

innovationsfonden.dk/en.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186400
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0186400&domain=pdf&date_stamp=2017-10-30
https://doi.org/10.1371/journal.pone.0186400
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/s/e46c0eb76c9dcd98f6a2
http://innovationsfonden.dk/en
http://innovationsfonden.dk/en


Introduction

Evaluation of pain in experimental and clinical studies relies mostly on subjective pain ratings

such as the visual analogue scale [1,2]. However, due to the shortcomings with subjective

methods a quantifiable and objective method, both for evoking pain and for evaluation—

preferably linked to the physiological processing of pain—is needed [2]. Experimental pain

models attempt to control the painful stimulus intensity, so as to standardize and quantify the

state of the pain system [1]. A myriad of models exist, each with their own advantages and dis-

advantages depending on the application [1]. Although the input to the models (e.g., pain

intensity, modality and temporal pattern) is highly standardised, the output (e.g., subjective

pain assessment, electrophysiological and imaging methods) has more variability and needs

improvement [1].

Electroencephalography (EEG) has been used for objective quantification of cortical pro-

cessing of nociception in both healthy volunteers and patient populations [1,3,4]. EEG can be

recorded either during rest or painful stimulations. The most common method to assess the

pain response by EEG is evoked brain potentials, which measure the cortical responses to

repetitive short, phasic painful stimuli. However, this method has drawbacks since the phasic

stimuli poorly reflect clinical pain conditions [5], and findings also indicate that major parts of

the EEG response are in fact not pain specific but possibly related to saliency [6,7]. In contrast,

tonic pain stimuli may better mimic clinical pain conditions due to the persevering nature of

the pain stimulus. However, tonic stimulation, has mainly been used in studies of healthy sub-

jects and evoked by a non-clinical stimulus (e.g. the cold pressor test) [5]. Therefore, investiga-

tions of the continuous EEG response during evoked and controlled clinical pain conditions

are of great interest.

Continuous EEG has been investigated in the clinic in various chronic pain conditions [3,8]

and recent developments of EEG analysis have allowed advanced assessment of EEG networks

through functional connectivity [9]. However, chronic pain imposes the limitation that no

pain-free control condition can be recorded to compare to the painful condition, and the anal-

ysis is usually limited to comparison to healthy volunteers. So far, little work has been done

using evoked clinical pain and no studies have compared the evoked pain responses to non-

painful clinical stimuli [10].

We hypothesized that pain elicited by standardized and controlled hip rotation in patients

with hip joint osteoarthritis would induce changes in the EEG which are associated with the

sensation of pain. To investigate this the study aims were: a) to evaluate the EEG response in

patients with hip joint osteoarthritis by evoking clinical pain from rotating the affected hip in a

controlled manner (i.e. painful condition), b) to compare the EEG response during evoked

pain to the EEG recorded during controlled rotation of the contra-lateral less or unaffected

hip (i.e. control condition) and the EEG recorded during resting state (i.e. resting state

condition).

Methodology

The study was conducted by the Department of Pain Medicine, Clinic for Anesthesiology,

University Hospital, Georg-August-University of Göttingen, Germany and the Department of

Orthopedic Surgery at the Orthopedic University Hospital of the Medical School Hannover,

Germany. The study was approved by the Ethical committees of the University Hospital of

Göttingen (No 19/2/13) and the Medical School Hannover (No. 1483–2012). The study was

conducted according to the recommendations of the Declaration of Helsinki. Patients pro-

vided informed written consent.

Evoked clinical pain in hip osteoarthritis
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Study subjects

Patients with osteoarthritis admitted to the Orthopaedic University Hospital Annastift in Han-

nover for scheduled total hip replacement were recruited between April and August 2013.

Inclusion criteria were patients above 18 years of age and able to give informed consent.

Exclusion criteria were 1) severe neurological disease, which might interfere with the EEG

recordings or experimental pain testing (including dementia); 2) Severe psychiatric disease

such as major depression or schizophrenia or active drug abuse; 3) High dose of preoperative

opioid therapy (> 30 mg/day oral morphine equivalent); 4) participation in other studies con-

ducted at the same time.

Study procedures

All clinical tests were conducted in the afternoon by the same examiner (MR). Patients were

placed on an examination bed in a semi-recumbent position, and the EEG cap was mounted

on their head with conducting gel inserted for each electrode. Resting EEG (see later) was

recorded followed by EEG recording during the painful condition (affected hip) and lastly, the

control condition (unaffected hip).

Medication

The patients preoperative pain medication (type and dosage) was noted and the Medication

Quantification Score, which is a reliable and validated score for quantifying analgesics, was cal-

culated in order to obtain a comparable metric for different analgesic classes [11]. It was calcu-

lated for each non-opioid and opioid based on weights assigned by medication class and

dosage level (level 1 = sub-therapeutic dosage and/or on demand, level 2 =<50% of the daily

dosage, level 3>50% of the daily dosage, level 4 = over dosage) using the 1998 detriment

weights [12]. These scores were summed to provide a quantitative index for analgesic usage

suitable for statistical analysis. In addition, percentage of patients on opioids and average dose

were recorded.

EEG recordings

EEG was recorded from a 34-channel cap (34ch prewired cylindrical Ag/AgCl electrodes,

MEQNordic A/S, Jyllinge, Denmark) and amplified on a Nuamp system (NuAmp, Neuroscan,

El Paso, TX, USA) and recorded for later analysis (Neuroscan 4.5, Neuroscan, El Paso, TX,

USA). The cap was placed symmetrically in a standardized position 3 cm above the nasium.

Electrode gel was applied into each of the recording channels to reduce the electrode imped-

ance below 5 kO. Recordings were done in a dimmed light room with all unnecessary electrical

equipment turned off to avoid 50 Hz contamination. Sampling frequency was 1000 Hz.

Resting EEG

Patients were instructed to not speak or move as well as minimize eye-blinking during the

recording. Open or closed eyes were alternated between in 4 sequences of 2.5 min, starting

with eyes open. For this study, only the first recording of 2.5 min eyes open was used.

Hip rotations

The pain detection threshold by rotation of the hip was determined by the patient while the

examiner brought the hip scheduled for replacement into a 90˚flexed position with knee flex-

ion of 90˚ where it was held shortly. Then, internal rotation was performed until the pain

threshold was reached. Next the EEG recording was started and the hip rotated slightly further

Evoked clinical pain in hip osteoarthritis
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and maintained in this painful position for a duration of 30 seconds. Afterwards the patients

were asked to rate their pain on a numerical rating scale (NRS) from 0–10. The procedure was

repeated for the less or non-affected hip serving as a control condition; EEG was recorded for

30 seconds and pain was rated using the NRS. In patients who could not tolerate this choreog-

raphy (i.e. with severe clinical pain already with hip flexion), hip flexion was used as the clinical

stimulus with the same procedure for EEG recording. In a few subjects external rotation served

as pain evoking stimulus. In all these cases the less or unaffected was stimulated in the same

way as the affected side.

Pre-processing

The data were pre-processed in the Neuroscan software (Neuroscan 4.5, Neuroscan, El Paso,

TX, USA) in the following steps: 1) zero-phase shift notch filtering (49–51 Hz) using a finite

impulse-response filter with a slope of 24 dB/octave; 2) zero-phase shift band-pass filtering

(1–80 Hz) using a finite impulse-response filter with a slope of 12 dB/octave; 3) blinded visual

inspection of data quality for all channels using linked-ear reference. Channels with abnormal

signals were discarded and replaced by signals interpolated from neighbouring electrodes; 4)

Re-referencing to the average electrode.

Spectral analysis

EEG amplitudes were calculated using the wavelet transform as this has a better time-fre-

quency resolution than the more common Fourier transform [13]. A software package for

Matlab 2012a (The Matworks, Inc., Natick, MA, USA) was used. The continuous wavelet

transform was applied to EEG from each channel using the complex Morlet wavelet as a

mother wavelet function with a bandwith of 10 Hz and a centre frequency of 1 Hz. Scales for

the mother wavelet was chosen to match frequencies ranging from 1 to 32 Hz with a 0.5 Hz

between-scale frequency interval. The absolute values of the obtained wavelet coefficients were

then used for the following analysis: First, the wavelet coefficients were divided into the follow-

ing standardized bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and beta (12–32 Hz).

Next, the wavelet coefficients were averaged over time and scales contained within each fre-

quency band were summed together to yield the absolute activity within each frequency band.

Finally, the relative activity was calculated separately for each channel by dividing each fre-

quency band with the total energy of all bands and multiplying by 100. The values then repre-

sent the percentage of total amplitude contained in each frequency band.

Functional connectivity

Spectral analysis reduces the complex data from the EEG to simples measures of rhythmicity

and therefore does not assess the complex connections between electrodes [9]. Functional con-

nectivity can assess complex brain networks, and has been used within structural and func-

tional magnetic resonance imaging, but is now finding use within EEG research as well [14].

Functional connectivity considers the brain as a complex network of inter-connected nodes

rather than assessing the rhythmicity of each node individually [14]. Several methods exist for

estimation of functional connectivity within EEG analysis and most methods work by investi-

gating the phase-relationships between EEG signals for different electrodes, where electrodes

with similar phases are thought to be exchanging information [15]. The phase-lag index (PLI)

is based on a consistent lag between instantaneous phases between two signals and thus

ignores most zero-phase phase-relations in order to discard volume conduction noise, and was

therefore selected for the current study [15].

Evoked clinical pain in hip osteoarthritis
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The PLI was calculated for the same frequency bands as used for the spectral analysis, using

the implementation from The Neurophysiological Biomarker Toolbox (NBT) (http://www.

nbtwiki.net/). The signal was divided into time windows and the PLI was calculated for each

window. Lastly, the results for all time windows were averaged. The window width was set to

twice the sampling frequency (2000 samples) as this provides a frequency resolution of 0.5 Hz,

which is equal to the spectral analysis. The band-pass filter was a 1st order butterworth filter

[16].

Statistical analysis

Data are presented as mean±SD unless otherwise indicated. Single channel EEG parameters

(amplitudes and PLI) were analysed using a repeated measures ANOVA with the experimental

condition (painful vs. control vs. resting) and EEG channels as within-subject factors. The

analysis was corrected using the Greenhouse-Geisser method. A post-hoc tukey HSD was per-

formed in the experimental condition or and interaction between experimental condition and

EEG channel was present. Correlations were investigated for channels where differences were

present between the painful and control condition, using a Pearson’s linear correlation coeffi-

cient. The average were taken for all significant channels in a frequency band, and correlated

to the reported pain. A P-value below 0.05 was considered statistically significant.

Results

Out of 175 patients screened for the study 63 were excluded (24 patients declined to partici-

pate, 1 was below 18 years of age, 1 was already participating in another study, 1 due to replace-

ment of both hips in the same surgery, 1 because informed consent could not be obtained, 13

for planned spinal anaesthesia during surgery, 4 due to high preoperative opioid use, 1 due to

drug abuse and 17 due to a history of neurological conditions). Out of the 112 patients who

were eligible for the study and signed the informed consent, 85 were included in the final anal-

ysis (15 excluded because surgery was cancelled or consent was withdrawn and 12 patients for

having one or more unusable EEG recordings due to poor quality). Clinical and demographic

characteristics for the 85 patients are reported in Table 1.

Hip rotation test

Forty-eight patients (55%) had pain elicited by internal hip rotation; two patients by external

hip rotation (2%), while 38 patients (42%) had pain elicited by flexion of the hip. The average

pain intensity during movement of the affected hip was 5.5 ± 2.0 NRS, which was significantly

more compared to pain scores during movement of the unaffected hip 0.5 ± 1.2 NRS

(P< 0.001). In fact, 74 patients (84%) reported no pain during rotation of the unaffected hip.

Spectral analysis

Statistical comparison for all electrodes: Differences within recording conditions were seen for

the delta (P < 0.001), theta (P = 0.03), alpha (P = 0.001) and beta (P< 0.001) bands. Values for

individual electrodes and the results from the post-hoc test are shown in Fig 1. Post-hoc test

revealed differences between painful and control condition in delta, theta and beta. Reported

pain during hip rotation were correlated to the channels revealed by post-hoc analysis in the

theta (r = -0.24, P = 0.03) and beta (r = 0.25, P = 0.02) bands. The raw correlations are pre-

sented in Fig 2

Compared to the resting state condition, a slowing of the EEG was seen during the painful

and control hip rotation conditions. This was evidenced by increased theta and delta EEG

Evoked clinical pain in hip osteoarthritis
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amplitudes, with corresponding decreases in the alpha and beta amplitudes. Topographical
comparisons: The topographical illustration of the differences in spectral content between rest-

ing EEG, EEG recorded during rotation of the affected and the control condition is shown in

Fig 3. Visual inspection of the topographical plots show a frontal increase in the delta band as

well as a decrease in the beta band during both the painful rotation and control condition.

Functional connectivity

Recording condition was a significant factor in the delta (P = 0.003) and theta (P = 0.05)

bands. Values for individual electrodes and results from the post-hoc test are shown in Fig 4.

Mainly, increased PLI were seen during the control condition compared to resting state in

the delta band. The topographical representation is shown in Fig 5.

Discussion

This study investigated the cortical response, as assessed by multidimensional EEG analysis, to

evoked clinical pain by means of controlled hip rotations in people with osteoarthritis sched-

uled for total hip replacement surgery. Differences were seen in the spectral EEG following

rotation of both the affected hip (painful condition) as well as the non-affected hip (control

condition). Differences were also seen (although to a lesser degree) in the cortical response

between the two hip rotation conditions (i.e. painful vs. non-painful), and these differences

were correlated (although weakly) to the pain reported during hip rotation. These findings,

indicates at connection between the degree of reported pain during evoked clinical pain, and

Table 1. Demographic and clinical characteristics of patients scheduled for total hip replacement.

Since some patients had missing data, the percentage of available is given in a separate column for each

parameter. Measures for chronic pain severity are included as the chronic pain grade and MPSS, while sever-

ity of arthritis is included as the WOMAC.

Available data, n (% of total cohort)

Age (years) 64.9 ± 12.1 88 (100%)

Male sex, n (%) 41 (47%) 88 (100%)

BMI (kg/m2) 28.1 ± 5.1 85 (97%)

WOMAC 53.8 ± 18.6 70 (80%)

Hip-pain duration, n (%) 88 (100%)

- 0–6 months 14 (16%)

- 6–12 months 12 (14%)

- 1–2 years 19 (22%)

- 2–5 years 24 (27%)

- More than 5 years 19 (22%)

Chronic pain grade, n (%) 85 (97%)

- Grade I-II 36 (42%)

- Grade III-IV 49 (58%)

MPSS, n (%) 88 (100%)

- Stage I 38 (43%)

- Stage II 29 (33%)

- Stage III 21 (24%)

Preoperative MQS—non-opioids 5.3 ± 4.5 87 (99%)

Preoperative MQS—opioids 0.6 ± 1.6 88 (100%)

WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index; MPSS = Mainz Pain Staging

System; MQS = Medication Quantification Scale.

https://doi.org/10.1371/journal.pone.0186400.t001
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the spectral EEG response. Differences were also seen in the connectivity of the EEG, indicat-

ing some change in network characteristics. However, differences were almost exclusively seen

between resting and the control condition. This indicates that the changes in network connec-

tivity as related to other factors than the feeling of pain.

Methodological considerations

The spectral analysis in this study used the continuous wavelet transform. This method has a

better temporal resolution and is less sensitive to noise compared to the more commonly used

Fourier transform [13]. A novel measure for assessment of functional connectivity, the phase-

Fig 1. Graph showing the spectral indices under the resting state, rotation of the unaffected hip and rotation of the affected hip for each

electrode with indication of significant differences based on the post-hoc test. Values are shown for A) delta band; B) theta band; C) alpha band and

D) beta band. Error bars indicate standard error.

https://doi.org/10.1371/journal.pone.0186400.g001
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lag index, was used as it has been shown to be largely resistant to volume conduction [14],

which can interfere with signals as opposed to more simple measures such as coherence [17].

The sequence of EEG recordings in this study was fixed; first EEG during resting state was

recorded, next EEG during painful hip rotation was performed and lastly EEG recording dur-

ing hip rotation of the non-affected hip was performed. It was necessary to use a fixed protocol

to establish the exact rotation paradigm necessary to evoke pain in the affected hip prior to

applying it on the unaffected side. The fixed sequence paradigm may introduce long-lasting

effects caused by the painful stimulation in the EEG recorded during the control condition.

However, this effect is not specific to the sensation of pain, since there was almost no sensation

of pain during rotation of the unaffected hip.

The stimulus in this study was evoked by rotating the hip of patients scheduled to undergo

total hip replacement surgery. The pain stimulus in this case is less precise compared to

Fig 2. Correlations between the NRS and A) Theta band and B) Beta band indices. The correlation line is shown, indicating the relationship of the

correlation.

https://doi.org/10.1371/journal.pone.0186400.g002

Fig 3. Topographical representation of the differences in relative EEG spectral content during rotation of the unaffected hip and rotation of

the affected hip when subtracted the resting EEG as baseline. Warm colours indicate increases in spectral content compared to resting EEG,

while cold colours indicate decreases.

https://doi.org/10.1371/journal.pone.0186400.g003
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conventional experimental pain stimuli (e.g. heat, pressure and electric stimulation) since it is

dependent on the clinical condition of the individual patient, which may introduce a high

degree of inter-individual variability in the controlled stimulus. However, the stimulus and

nociceptors involved are clinically relevant and may therefore provide information which

would not be possible with conventional tonic pain models such a cold/heat pain.

Many studies have used experimental pain models to objectively investigate changes in pain

processing underlying acute and chronic pain disorders. Thereby confounding factors con-

nected to the clinical condition, including social, psychological and cognitive aspects of the

disease can be minimized [18]. The current study suffers from these confounding factors due

to lack of healthy subject since the patients have been suffering from chronic pain with an

accompanying decrease in quality of life [19]. When comparing the results of the current study

Fig 4. Graph showing PLI under the resting state, rotation of the unaffected hip and rotation of the affected hip for each electrode with indication

of significant differences based on the post-hoc test. Values are shown for A) delta band; B) theta band; C) alpha band and D) beta band. Error bars

indicate standard error.

https://doi.org/10.1371/journal.pone.0186400.g004
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to results from a previous study on healthy volunteers using a tonic painful stimulus (the cold

pressor test) with the same methods for analysis [20], the painful stimulus in the current study

evoked less changes in EEG activity. However, even though the difference in the current study

is smaller, the general trend is the same with increase in delta activity and decreased alpha.

This could be due to the confounding factors found in patient populations, and possibly also

due to increased brain activity due to motor and proprioceptive brain activation in the current

pain model while rotating the hip.

Many recent studies have pointed to the gamma band as a frequency band of interest when

dealing with EEG and pain perception [21,22]. This study did not include the gamma band

due to high-frequency EMG artifacts induced during the painful tonic stimulation. Including

the gamma band while riddled with noise would have affected all of the frequency bands due

to the relative content being of interest in this study. Even so, the lack of gamma band data is

to be considered a limitation of this study.

Brain response to pain

Brain responses to painful stimuli have been investigated extensively using various methods

such as functional magnetic resonance imaging and EEG based methods including evoked

brain potentials. Many studies have revealed an array of cortical and subcortical areas involved

in pain processing subsequently named the pain matrix [23]. Due to the strong correlation

between pain matrix activity and the intensity of the stimulus used to evoke experimental pain

as well as the perceived pain (subjective pain reporting), it was hypothesized that activation of

the pain matrix was distinct and essential for pain perception [23]. However, recent studies

have shown that pain perception and pain matrix activation can be disassociated under certain

experimental paradigms, thus questioning the connection between activation of the pain
matrix and pain perception [6]. It is speculated that a large part of brain activity in the pain
matrix can actually be attributed to the saliency of the stimulus [6,23]. This development is

similar to the findings in the current study, in that large amount of differences found in the

EEG between the resting condition and clinical pain condition are non-specific to pain. How-

ever, since the clinical stimulation is tonic, it is likely not attributed to saliency alone. Further

experiments are needed to properly determine the cause of these findings.

With advanced methods emerging for EEG analyses, investigations using continuous EEG,

e.g. during resting or tonic pain, have become increasingly common. Most studies on tonic

Fig 5. Topographical representation of the differences in phase-lag index during rotation of the unaffected hip and rotation of the affected

hip when subtracted the resting EEG as baseline. Warm colours indicate increases in connectivity compared to resting EEG, while cold colours

indicate decreases.

https://doi.org/10.1371/journal.pone.0186400.g005
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pain have reported decreased alpha activity and increased beta activity during tonic cold pain

[20,24–26]. This is partially in concurrence with the current study, where alpha activity also

decreased during tonic pain. However, beta activity decreased which is in contrast to previous

findings. It is not possible to expose the exact reason for this discrepancy, but it could be specu-

lated that the relatively high age of the population in this study could explain the difference

since increased age has been shown to induce widespread slowing of the EEG [27,28].

The current study found differences in EEG activity between resting state and painful rota-

tion of the hip in patients scheduled for hip replacement surgery. Differences were also found

between the painful condition and the non-painful condition and although the differences

were numerically small. If a control condition had not been included in the study, it could be

tempting to conclude that the observed difference in the EEG was mainly caused by pain elic-

ited by hip rotation. This clearly underlines the need for a control condition in pain studies

investigating pain EEG, as results can easily be interpreted incorrectly without. In experimen-

tal thermal tonic pain models, a control condition with an innocuous temperature is not

always part of the experimental procedure [20,25]. However, more studies are including the

control condition, and immersion of the hand in water with innocuous temperature has been

shown to induce differences in the EEG compared to resting state [10,26,29]. With clinical

pain the use of control conditions are rare, in many cases because inclusion of a valid control

condition can be difficult especially considering visceral or deep pain. In line with this argu-

ment our control condition had relevant limitations. In a subgroup of patients rotation on the

less or unaffected side was painful, which has to be suspected in hip osteoarthritis that quite

commonly affects both sides. Thus the small differences between the two conditions may be

caused by bilateral disease, even if there was a relevant difference in clinical pain.

Conclusions

This study shows that the EEG effects evoked by painful rotation of the hip in patients sched-

uled for hip replacement surgery could contain pain related activation. This is supported by

the correlation between EEG activity and reported pain. Furthermore, the large differences

when rotation the other hip which evoked no or minor pain, underlines the importance of

including proper control conditions in EEG studies with the aim to investigate pain mecha-

nisms in evoked clinical pain, to reduce the risk of misinterpretation of results.
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