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Introduction

The L1-Norm Regularized L1-Norm 
Best-Fit Line Problem
Paul Brooks, Xiao Ling
Department of Supply Chain Management and Analytics, Department of Statistical Sciences and Operations Research

Procedures and Algorithm Results

Methodology

Subspace estimation can be used for dimension reduction by projecting data in a
high dimensional feature space to a low dimensional subspace. It sheds light on a
board range of tasks from computer vision to pattern recognition. Conventional
Principal Component Analysis (PCA) is a widely used technique to fit the
subspace. PCA finds linear combinations of the original features capturing
maximal variance of data via Singular Value Decomposition (SVD). However,
SVD is sensitive to outliers. Some Robust PCA procedures, subspaces are fitted to
the data using the L1 criterion. In our work, we are using same criterion to fit
subspace. Additionally, we apply an L1-norm regularization in order to achieve a
sparser solution.

An optimal solution to (2) can be
constructed as follows. If 𝑥𝑥�̃�𝚤�̂�𝚥 = 0 for all
𝑖𝑖, then set 𝑣𝑣 = 0. Otherwise, for each
𝑗𝑗 ≠ ̂𝚥𝚥,
• Take points 𝑥𝑥𝑖𝑖, such that 𝑥𝑥𝑖𝑖�̂�𝚥 ≠ 0 and

sort the ratios
𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖�𝚥𝚥

in increasing order,

• If there is an ̃𝚤𝚤 where

sgn 𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖�𝚥𝚥

𝜆𝜆 + ∑𝑖𝑖<�̃�𝚤 𝑥𝑥𝑖𝑖�̂�𝚥 − ∑𝑖𝑖>�̃�𝚤 𝑥𝑥𝑖𝑖�̂�𝚥 ≤

𝑥𝑥�̃�𝚤�̂�𝚥 , then set 𝑣𝑣𝑗𝑗 = 𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥�̃�𝚤�𝚥𝚥

,

• If no such ̃𝚤𝚤 exists, then set 𝑣𝑣𝑗𝑗 = 0.

Algorithm

We describe a method to fit a lower-dimensional subspace by approximating a
non-linear, non-convex, non-smooth optimization problem called L1-Norm
Regularized L1-Norm Best-Fit line problem. The procedure can be performed
using ratios and sorting. Also we present applications in the area of video
analytics.

Problem Formulation

Consider the optimization problem to find L1-Norm Regularized L1-Norm Best-
Fit Line given data 𝑥𝑥𝑖𝑖 ∈ ℝm, i = 1,…,n.

min
𝑣𝑣,𝛼𝛼

�
𝑖𝑖=1

𝑛𝑛
𝑥𝑥𝑖𝑖 − 𝑣𝑣𝛼𝛼𝑖𝑖 1 + 𝜆𝜆 𝑣𝑣 1 (1)

The vector 𝑣𝑣 determines the line through the origin. The 𝛼𝛼𝑖𝑖 are the scaling factors
that locate the projection of each point on the fitted line. The 𝜆𝜆 is a positive
penalty on the L1 norm of 𝑣𝑣.

By introducing four sets of goal variables and preserving one of the coordinates ̂𝚥𝚥, 
the optimization problem in (1) can be recast as the following constrained linear 
programming:

min
𝑣𝑣,𝜖𝜖,𝜁𝜁,𝑣𝑣�𝚥𝚥=1

�
𝑖𝑖=1

𝑛𝑛
�

𝑗𝑗=1

𝑚𝑚
𝜖𝜖𝑖𝑖𝑗𝑗+ + 𝜖𝜖𝑖𝑖𝑗𝑗− + 𝜆𝜆�

𝑗𝑗=1

𝑚𝑚
𝜁𝜁𝑗𝑗+ + 𝜁𝜁𝑗𝑗− (2)

Subject to:

𝑣𝑣𝑗𝑗𝑥𝑥𝑖𝑖�̂�𝚥 + 𝜖𝜖𝑖𝑖𝑗𝑗+- 𝜖𝜖𝑖𝑖𝑗𝑗− = 𝑥𝑥𝑖𝑖𝑗𝑗 , 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑚𝑚, 𝑗𝑗 ≠ ̂𝚥𝚥

𝑣𝑣𝑗𝑗 + 𝜁𝜁𝑗𝑗+- 𝜁𝜁𝑗𝑗− = 0, 𝑗𝑗 = 1, … ,𝑚𝑚

𝜖𝜖𝑖𝑖𝑗𝑗+ , 𝜖𝜖𝑖𝑖𝑗𝑗− , 𝜁𝜁𝑗𝑗+, 𝜁𝜁𝑗𝑗− ≥ 0, , 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑗𝑗 = 1, … ,𝑚𝑚

We compared our performance with SVD on synthetic data. The numerical results
showed our algorithm successfully found a better principal component from a
grossly corrupted data than SVD in terms of discordance. Moreover, our
algorithm provided a sparser principal component than SVD. However, we expect
it to be faster on multi-node environment.

Conclusions
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2:  for ( ̂𝚥𝚥 = 1; ̂𝚥𝚥 = ̂𝚥𝚥+1) do
3:    Solve LP in 2.
4:    if 𝑧𝑧�̂�𝚥 < 𝑧𝑧∗, then 
5:      Set 𝑧𝑧∗ = 𝑧𝑧�̂�𝚥; 𝑗𝑗∗ = ̂𝚥𝚥.
6:    end if
7:  end for

This work proposes a new algorithm able to estimate a best-fit line as efficiently
as several sorting of data. When subspaces are projected from contaminated data,
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solution is robust and sparser than that of traditional PCA.
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Data(n×m) Outliers Measures PCA Sparse L1

1000 100 0 L0 100 100 96.8

discordance 3.2×10-5 3.0×10-5 3.6×10-4

1000 100 100 L0 100 100 97.2

discordance 0.93 3.3×10-5 4.9×10-4

10000 100 0 L0 100 100 97.2

discordance 2.8×10-6 6.4×10-6 3.3×10-4

10000 100 1000 L0 100 100 96.2

discordance 0.83 6.8×10-6 4.6×10-4

Table 1: Mean L0 is the number of non-zero components in solutions. Mean discordance between the true 
line v and the fitted line v*, measured as 1-vTv*.

𝜆𝜆=8Original 𝜆𝜆=0 𝜆𝜆=14
Figure 1: We show three frames of a highway video in the first column. The background images
for these frames extracted with different 𝜆𝜆𝑠𝑠 are shown in the rest of columns. Larger 𝜆𝜆 tends to
produce more sparser solution, in another word causes more black pixel area.
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