V ?


# Multilevel variance components and brain volume mediation of life stress on post-traumatic stress disorder symptoms in children via regularization 

Daniel Bustamante<br>Virginia Commonwealth University<br>Michael C. Neale

Follow this and additional works at: https://scholarscompass.vcu.edu/gradposters
Part of the Life Sciences Commons

## Downloaded from

Bustamante, Daniel and Neale, Michael C., "Multilevel variance components and brain volume mediation of life stress on post-traumatic stress disorder symptoms in children via regularization" (2020). Graduate Research Posters. Poster 38.
https://scholarscompass.vcu.edu/gradposters/38 mediation of life stress on post-traumatic stress disorder symptoms in children via regularization

Daniel Bustamante B.S.1,3, Michael Neale Ph.D.2,3
${ }^{1}$ Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA. U.S.A. ${ }^{2}$ Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA. U.S.A. ${ }^{3}$ Virginia Institute for Psychiatric and Behavioral Genetics

## Introduction

Exposure to traumatic events (TEs) is common ( $\sim 80 \%$ of the U.S. population have experienced at least one during their lifetime [1]).
Childhood TEs increase the risk for developing Post-Traumatic Stress Disorder (PTSD) symptoms [2].
Previous research showed that the heritability of TEs is $53 \%$ and $38 \%$ for PTSD symptoms in non-combat exposed populations [3].

Reduced volume in brain regions of interest (ROIs) is linked to increased risk for PTSD [4].

## Aims

Aim 1: To estimate the additive genetic (A), shared (C) and unique (E) environmental, and site (S) variance components of the variables, via multilevel (individual, group and study) structural equation modeling.
Aim 2: To assess the mediation effects of subcortical and cortical volume of regions of interest (ROIs), as well as the direct effects between traumatic events (TEs) and PTSD symptoms, via an agnostic perspective selecting the most informative ROIs using Elastic Net (EN) regularization on all subcortical and cortical ROIs.

## Methods

TEs and PTSD variables:_Measured using the KSADS for DSM-5 [5]. A count-level variable was created for each one. The PTSD symptoms variable only considered those with at least one TE (others coded as missing).
Volume (mm^3) of ROIs was assessed using structural magnetic resonance imaging (sMRI).
Subjects ( $N=11,869, M_{\text {age }}=9.92$, $S D=0.62, F=47.86 \%, M=52.14 \%$; $t w i n N=1729, m z N=774, d z N=985$, $M_{\text {age }}=10.11, S D=0.56, F=50.03 \%$, $M=49.97 \%$ ) came from the ABCD study, a U.S. nationwide representative sample. Zygosity was determined with pi-hat values ( $M Z=$. 89-1.0, DZ=.4-.6).
All variables were residualized based on age, sex, race, type of scanner and subcortical or cortical brain volume.
Cross-validation and regularization were performed under EN mixing parameter alpha (.75-.85) to: 1) estimate penalization lambda values that restrict the fit within the minimal increase of MSE, and 2) prevent extreme shrinkage due to possible correlation and selection of ROIs under high penalization.
Multiple testing was accounted for by adjusting the number of effective tests based on the eigenvalues of the correlation matrices [6].
R, OpenMx [7], mxregsem [8] and glmnet [9] were used for the analysis.


