Working Paper No. 328

Asset price indices for Japanese art auction market: An application to the Japanese artist

Koji Karato

March 26, 2020

SCHOOL OF ECONOMICS UNIVERSITY OF TOYAMA

Asset price indices for Japanese art auction market:

An application to the Japanese artist

Koji Karato Faculty of Economics, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan kkarato@eco.u-toyama.ac.jp

(Very preliminary version)

March 26, 2020

Abstract

This research is one of the few to analyzed a Japanese art auction market. We found the hedonic price index of artworks in Japan's art auction market, between 2006 and 2019. Considering the sample selection bias in the auction and the price index measurement by the traditional hedonic time dummy model of log-price, we presented the estimation of the hammer price by the exponential type II Tobit model. Using the difference between the conditional expectation of the logarithmic price, a new price index that takes into account the variation of selection bias was defined. Art price index by the ordinary least squares estimation without considering the sales selection has a negative bias in the Japanese art auction market.

Keywords: Japanese art auction market, Hedonic price, Art price index, Exponential type II Tobit model

JEL classification: C10, C24, G12, Z11

1. Introduction

Investors always explore alternative investments to raise the variety of their portfolio as the financial market globalizes. For assets except for financial products, the works of art have been chosen as investments for a long time. As stated in Singer and Lynch (1997), the highest category of art is a quasi substitute for financial instruments (liquid wealth). Global turnover of 1.89 billion \$ in 2019 has doubled in 10 years in the art markets of the world¹. Those circumstances of conspicuous price increasing are that unprecedented large-scale monetary easing was carried out in the United States, European countries, China, Japan, and other countries to escape from the stagnant economy after the financial crisis of 2008.

Japanese art market represents another important marketplace in Asia after China and Hong Kong. The art market of Japan expands for three consecutive years (2016-2018), and the amount of domestic art auction sales reached \$124 million in 2018². Most Japanese collectors are interested in the Impressionists and Modern Western Arts and payout many masterpieces. Therefore, the import of artworks the amount of money is about \$300 million. Because the art price in Japan also correlates with the economic indicators such as the stock prices or the GDP growth rate, the import amounts of money of the art exceeded \$5.5 billion for the bubble economy period in the late 1980s. However, the size of the art auction market in Japan is not significant compared to the size of the Japanese economy. The two major auction houses, Sotheby's and Christie's do not hold even periodical auction in Tokyo.

Japan was opened from the closed-door policy in the 1860s. Western culture rapidly influenced in Japan. Since then, the western technique of art has been adopted in Japanese art. Although Western Arts have the majority in the art market of Japan, another genre based on Japanese art history (Japanese-style painting, ceramic sculpture, artifact, hanging scroll, folding screen, etc.) is famous, too. Recently, several Japanese artists are evaluated in the international art market. For example, Tsuguharu Foujita, Yayoi Kusama, Takashi Murakami, Yoshitomo Nara, and Kazuo Shiraga, the other outstanding Japanese artists have strong market demand.

This research is one of the few to analyzed a Japanese fine art auction market. We present the hedonic price index of artworks in Japan's art auction market, between 2006 and 2019. The hedonic regression model has been widely applied to the analysis of the effect of artworks' characteristics on the hammer price of artworks. There is Chanel et al. (1996) as a study that analyzes famous Impressionists and Post-impressionists artists. Ginsburgh et al. (2019) is a research focused on a particular artist (Pieter Brueghel the Younger). Some studies have focused on the domestic art market of a particular country. For example, Rengers and Velthuis (2002),

¹ According to *The Contemporary Art Market Report* 2019, from https://www.artprice.com/ retrieved January 31, 2020.

² Japanese Art Industry Market Research Report 2018 by Art Tokyo Association

Witkowska (2014), Pradier, Gardes, Greffe and Mendoza (2016), Galbraith and Hodgson (2018), Garay (2019), and Fedderke and Li (2020) analyzed using auction data from the domestic market (Netherlands, Poland, France, Canada, Venezuela, and South Africa). No study measures the price index of artworks by Japanese artists in the Japanese domestic home market.

As is often the case with the auctions, the items are unsold without a successful bid, not just for art auction markets. In many cases, the reason is that the bidding does not reach the reserve price level set by the seller. Ashenfelter and Graddy (2011) show that price variations of artworks at auction are highly correlated with the art auction sale rate. Even as mentioned above, there is no research examining the price index, including whether or not the items are sold using the hedonic approach. Price indices measured only for sold items may have a sample selection bias. Taking this into account, Collins, Scorcu, and Zanola (2009) estimate the type II Tobit model of hedonic price function (i.e., outcome function) using Heckman's (1979) two-step estimation procedure. However, their estimated prices do not take into account the conditional expected value of the hammer price, and the price index measurement does not capture the change in the inverse Mills ratio or truncated joint distribution of selection and outcome errors. Therefore, in this paper, considering the sample selection bias in the auction and the price index measurement by the traditional hedonic time dummy model of log-price, we show the maximum likelihood estimation of the hammer price by the exponential type II Tobit model (Wooldridge 2010). Then we present a new approach to measuring the price index by the conditional marginal effects.

The paper proceeds as follows. In the next Section 2, we offer the estimation methodology used in the paper. Section 3 describes the data and its characteristics, while the empirical results obtained are presented in section 4. Finally, section 5 concludes.

2. Hedonic price index

Even if commodities to be out on the markets had the same purpose of use, they have much differentiation aspects of features, qualities, and functions. The differences in features, qualities, and functions are often reflected in the market price of the commodities. Meanwhile, the market prices reflect consumers' evaluations of the characteristics. The price is a bundle of attributes or characteristics, which are the aggregate value of qualities and functions. Such a characteristic is common to the asset price determination, not only the consumption goods.

The hedonic approach is the method of estimating the attributes prices with regression analysis. We express art asset prices as hedonic price regression models that consist of factors such as characteristics of works, the genre of works, the individuality of artists, and some other factors.

We regress logarithmic price on categorical variables to be related to characteristics of the

works, and express the hedonic price model as follow³:

log $P_{it} = \alpha + \beta_t + Q'_i \gamma_1 + G'_i \gamma_2 + S'_i \gamma_3 + H'_i \gamma_4 + R'_i \gamma_5 + A'_i \gamma_6 + \epsilon_i$ (1) where the dependent variable log P_{it} is the logged hammer price of a work $i = 1, 2, \dots, n$ and period of year $t = 0, 1, 2, \dots, T$; α is a coefficient of a constant term; β_t is the time effect of sold year t (i.e., coefficient of year dummy variable); Q_i is the dummy vector for the quarter of the year; G_i is the dummy vector for the genre of works such as Oil painting, print, ceramic art, among other things; S_i is the dummy vector for the size of works as numero category (length of long side); H_i is the dummy vector for transacted auction house; R_i is the dummy vector for comments included in the condition report of works such as cracking, defect, damage, among other things; A_i is the dummy vector for the name of artists; $\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6$ are the coefficients vector for the characteristic vectors; and ϵ_i is the error term independently and identically normally distributed $N(0, \sigma^2)$. Using the notation of explanatory variable vectors $X_i = (\mathbf{1}', Q'_i, G'_i, S'_i, H'_i, R'_i, A'_i)'$ and the coefficients vectors $\gamma = (\alpha, \gamma'_1, \gamma'_2, \gamma'_3, \gamma'_4, \gamma'_5, \gamma'_6)'$, The model in (1) can be rewritten as $\log P_{it} = \beta_t + X'_i \gamma + \epsilon_i$.

The expectation of log-price is $E(\log P_{it} | \mathbf{X}_i) = \beta_t + \mathbf{X}'_i \mathbf{\gamma}$. Given the explanatory variables, log-price change between period 0 and t is $\Delta_t = E(\log P_{it} | \mathbf{X}_i) - E(\log P_{i0} | \mathbf{X}_i) = \beta_t$, where $\beta_0 = 0$ since a time dummy variable for the initial period is omitted to escape the dummy variable trap. Therefore, we define the hedonic price index in reference period t relative to base period 0 as follow:

$$HPI_t = \exp(\hat{\beta}_t). \tag{2}$$

Due to auctions having high proportions of unsold works, ordinary least squares estimation of the equation (1) results in selection bias because they observe when an artwork is sold. Let the selection function whether it was sold be given by

$$Z_{it}^* = b_t + \boldsymbol{W}_i' \boldsymbol{c} + u_i \tag{3}$$

where Z_{it}^* is the latent variable that unobserved propensity to select into the sample; b_t is the time effect of sold year t (i.e., coefficient of year dummy variable); W_i is the vector of regressors containing common components with (1); c is the coefficients vector for the W_i ; u_i is the error term identically normally distributed with mean zero and variance one. Replacing equation (1) with exponential outcome function as

$$P_{it}^* = \exp(\beta_t + \mathbf{X}_i' \mathbf{\gamma} + \epsilon_i). \tag{4}$$

Binary variable Z_{it} and hammer price P_{it} is given by:

$$Z_{it} = \begin{cases} 1 & \text{if } Z_{it}^* > 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad P_{it} = \begin{cases} P_{it}^* & \text{if } Z_{it}^* > 0 \\ \text{N.A. otherwise} \end{cases}$$

The hammer price is equal to P_{it}^* if the artwork is sold; otherwise, it is the missing value (or

³ Most empirical findings favour the logarithmic model over its counterpart (Diewert 2003, de Haan 2004).

zero). The errors u_i and ϵ_i are conditional on explanatory variables, jointly normal, $E(u_i) = 0$, $E(u_i^2) = 1$, $E(\epsilon_i) = 0$, $E(\epsilon_i^2) = \sigma^2$, and $E(\epsilon_i u_i) = \rho\sigma$. The probability of sale is $\Pr(Z_{it}^* > 0) = \Pr(b_t + W_i'c + u_i > 0) = \Pr(b_t + W_i'c + (\rho/\sigma)\epsilon_i + v_i > 0)$, where we use $u_i = (\rho/\sigma)\epsilon_i + v_i$ and $v_i \sim N(0, 1 - \rho^2)$. Because $\epsilon_i = \log P_{it}^* - \beta_t - X_i'\gamma$, we have selection probability (i.e., sale rate of artworks) given $\log P_{it}^*, X_i, W_i$:

$$\Pr(Z_{it} = 1 | \log P_{it}^*, \boldsymbol{X}_i, \boldsymbol{W}_i) = \Phi\left(\frac{b_t + \boldsymbol{W}_i'\boldsymbol{c} + (\rho/\sigma)(\log P_{it}^* - \beta_t - \boldsymbol{X}_i'\boldsymbol{\gamma})}{\sqrt{1 - \rho^2}}\right),$$

and density of ϵ_i given X_i : $\phi((\log P_{it} - \beta_t - X'_i \gamma) / \sigma) / \sigma P_{it}$, where Φ and ϕ are respectively, the normal distribution function and normal density function. Combining the expression with the density $Z_{it} = 0$ gives the full log-likelihood function for this exponential type II Tobit model as (see Wooldridge 2010, pp.697-703)

$$\log L = \sum_{Z_{it}=0} \log \Phi(-b_t - \boldsymbol{W}_i'\boldsymbol{c}) + \sum_{Z_{it}=1} \log \Phi\left(\frac{b_t + \boldsymbol{W}_i'\boldsymbol{c} + (\rho/\sigma)(\log P_{it} - \beta_t - \boldsymbol{X}_i'\boldsymbol{\gamma})}{\sqrt{1 - \rho^2}}\right) + \sum_{Z_{it}=1} \left\{ \log \Phi\left(\frac{\log P_{it} - \beta_t - \boldsymbol{X}_i'\boldsymbol{\gamma}}{\sigma}\right) - \log \sigma - \log P_{it} \right\}.$$
(5)

We can estimate the parameters by maximum likelihood method.

The unconditional expectation of log-price (UELP) is a weighted sum of conditional on X_i , W_i and Z_{it}^* expected value: $E(\log P_{it} | X_i, W_i) = E(\log P_{it}^* | X_i, W_i, Z_{it}^* > 0) \cdot \Phi(b_t + W_i'c)$ since the price is unobserved ($Z_{it}^* \leq 0$) when the item is unsold with probability $\Phi(-b_t - W_i'c)$. Accordingly, we can write the UELP as

$$E(\log P_{it} | \mathbf{X}_i, \mathbf{W}_i) = \{\beta_t + \mathbf{X}_i' \mathbf{\gamma} + \rho \sigma \lambda (b_t + \mathbf{W}_i' \mathbf{c})\} \Phi(b_t + \mathbf{W}_i' \mathbf{c}).$$

where $E(\epsilon_i | \mathbf{X}_i, \mathbf{W}_i, Z_{it}^* > 0) = \rho \sigma \lambda(b_t + \mathbf{W}'_i \mathbf{c})$ since the error term ϵ_i in (4) has truncated normal distribution under the condition $Z_{it}^* > 0$ and the function $\lambda(\cdot)$ is inverse Mills ratio: $\lambda(b_t + \mathbf{W}'_i \mathbf{c}) = \phi(b_t + \mathbf{W}'_i \mathbf{c}) / \Phi(b_t + \mathbf{W}'_i \mathbf{c})$. Considering $\lambda(b_t + \mathbf{W}'_i \mathbf{c}) \Phi(b_t + \mathbf{W}'_i \mathbf{c}) = \phi(b_t + \mathbf{W}'_i \mathbf{c})$, the UELP becomes $E(\log P_{it} | \mathbf{X}_i, \mathbf{W}_i) = (\beta_t + \mathbf{X}'_i \mathbf{\gamma}) \Phi(b_t + \mathbf{W}'_i \mathbf{c}) + \rho \sigma \phi(b_t + \mathbf{W}'_i \mathbf{c})$. The difference in UELP between period 0 and t is $\Delta_t^U = E(\log P_{it} | \mathbf{X}_i, \mathbf{W}_i) - E(\log P_{i0} | \mathbf{X}_i, \mathbf{W}_i)$, namely:

$$\Delta_t^U = \beta_t \Phi(b_t + \boldsymbol{W}_i' \boldsymbol{c}) + \boldsymbol{X}_i' \boldsymbol{\gamma} \big(\Phi(b_t + \boldsymbol{W}_i' \boldsymbol{c}) - \Phi(\boldsymbol{W}_i' \boldsymbol{c}) \big) + \rho \sigma \big(\phi(b_t + \boldsymbol{W}_i' \boldsymbol{c}) - \phi(\boldsymbol{W}_i' \boldsymbol{c}) \big).$$

We omit the time dummy variables of the base period at the equation (3) and (4) to escape the dummy variable trap ($\beta_0 = b_0 = 0$). Using the difference of UELP Δ_t^U , the unconditional hedonic price index in reference period t relative to base period 0 is defined as follows:

$$JHPI_t = \exp\left[\hat{\beta}_t \overline{\Phi}_t + \overline{X}' \hat{\gamma} (\overline{\Phi}_t - \overline{\Phi}_0) + \hat{\rho} \widehat{\sigma} (\overline{\Phi}_t - \overline{\Phi}_0)\right].$$
(6)

where $\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \quad \overline{\Phi}_{t} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\hat{b}_{t} + \mathbf{W}_{i}'\hat{c}), \quad \overline{\Phi}_{0} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{W}_{i}'\hat{c}), \quad \overline{\Phi}_{t} = \sum_{i=1}^{n} \Phi(\hat{b}_{t} + \mathbf{W}_{i}'\hat{c})$ and $\overline{\Phi}_{0} = \sum_{i=1}^{n} \Phi(\mathbf{W}_{i}'\hat{c}); \quad \hat{\beta}_{t}, \quad \hat{\mathbf{\gamma}}, \quad \hat{\rho}, \quad \hat{\sigma}, \quad \hat{b}_{t} \text{ and } \hat{c} \text{ are maximum likelihood estimators in (5).}$

Conditional expectation of log-price (CELP) is $E(\log P_{it}^* | \mathbf{X}_i, Z_{it}^* > 0) = \beta_t + X_i'\gamma + \rho\sigma\lambda(b_t + \mathbf{W}_i'\mathbf{c})$. The difference in CELP between period 0 and t is $\Delta_t^C = E(\log P_{it}^* | \mathbf{X}_i, Z_{it}^* > 0)$

0) – $E(\log P_{i0}^* | X_i, Z_{it}^* > 0)$, namely:

$$\Delta_t^C = \beta_t + \rho \sigma [\lambda(b_t + W'_i c) - \lambda(W'_i c)]$$

Using the difference of CELP Δ_t^C , the conditional hedonic price index in reference period *t* relative to base period 0 is defined as follows:

$$CHPI_t = \exp[\hat{\beta}_t + \hat{\rho}\hat{\sigma}(\overline{\lambda}_t - \overline{\lambda}_0)].$$
⁽⁷⁾

where $\bar{\lambda}_t = (1/n) \sum_{i=1}^n \{ \Phi(\hat{b}_t + \boldsymbol{W}'_i \hat{\boldsymbol{c}}) / \Phi(\hat{b}_t + \boldsymbol{W}'_i \hat{\boldsymbol{c}}) \}$, $\bar{\lambda}_0 = (1/n) \sum_{i=1}^n \{ \Phi(\boldsymbol{W}'_i \hat{\boldsymbol{c}}) / \Phi(\boldsymbol{W}'_i \hat{\boldsymbol{c}}) \}$. We can consider that $\hat{\beta}_t$ is the time effect concerning sold artworks and $\hat{\rho}\hat{\sigma}(\bar{\lambda}_t - \bar{\lambda}_0)$ is the adjusted term of selectivity bias.

Table 1. Descriptive statistics

Note: Works (1) is the number of exhibited works. Works (2) is the number of sold works. Ratio is sale rates: Works (2)/Works (1). "Hammer price" is the final price in auction. SD is standard deviation of hammer price. CV is coefficient of variation of hammer price. IQR is interquartile range of hammer price. Works Works Pretice Hammer price (¥1,000)

	Works	Works	Datio					
	(1)	(2)	Ratio	Mean	Median	SD	CV	IQR
Year								
2006	3,880	3,517	0.91	1,245	240	3,867	3.1	715
2007	4,889	4,236	0.87	1,049	210	3,818	3.6	595
2008	4,337	3,435	0.79	920	210	3,379	3.7	570
2009	3,818	3,171	0.83	724	190	3,109	4.3	475
2010	4,529	3,667	0.81	863	220	2,827	3.3	560
2011	4,503	3,473	0.77	764	240	2,079	2.7	520
2012	4,106	3,097	0.75	922	265	3,388	3.7	613
2013	4,214	3,535	0.84	1,000	300	3,083	3.1	680
2014	4,662	3,665	0.79	960	280	3,420	3.6	590
2015	5,175	4,125	0.80	920	260	4,310	4.7	550
2016	4,913	3,682	0.75	958	260	3,307	3.5	630
2017	5,069	3,747	0.74	1,070	260	4,000	3.7	640
2018	4,997	3,771	0.75	1,262	260	5,662	4.5	655
2019	2,842	2,022	0.71	862	220	2,557	3.0	543
Quarter of the year								
1st quarter	16,976	13,891	0.82	979	240	3,967	4.1	560
2nd quarter	14,779	11,636	0.79	1,008	250	3,804	3.8	610
3rd quarter	14,547	11,366	0.78	934	280	3,022	3.2	650
4th quarter	15,632	12,250	0.78	971	230	3,632	3.7	595
Genre of works								
Others	3,635	3,023	0.83	1,185	180	4,811	4.1	670
Oil painting	11,901	9,136	0.77	1,821	640	5,292	2.9	1,180
Watercolor and acrylic painting	11,104	8,755	0.79	817	170	3,726	4.6	400
Japanese-style painting (Nihonga)	24,569	19,212	0.78	929	260	3,138	3.4	580
Print	10,261	8,661	0.84	286	120	702	2.5	200
Ceramic art, sculpture and artifact	464	356	0.77	353	110	1,225	3.5	190

	Works Works Hammer price (¥1,000)							
	(1)	(2)	Katio	Mean	Median	SD	CV	IQR
Size of works								
Numero [mm (Length of long side)]								
0 [180]	2,596	2,123	0.82	460	150	2,064	4.5	250
1 [220]	2,149	1,763	0.82	849	200	2,078	2.4	535
2 [240]	1,034	850	0.82	656	180	1,810	2.8	383
3 [273]	2,156	1,721	0.80	922	260	2,877	3.1	580
4 [333]	6,298	5,064	0.80	737	235	2,123	2.9	500
5 [350]	2,358	1,887	0.80	693	180	1,977	2.9	500
6 [410]	8,272	6,395	0.77	746	260	2,198	2.9	555
8 [455]	8,225	6,524	0.79	812	240	2,586	3.2	530
10 [530]	8,474	6,567	0.77	846	280	3,092	3.7	578
12 [606]	5,342	4,191	0.78	999	250	3,126	3.1	602
15 [652]	2,531	2,073	0.82	1,312	350	4,022	3.1	890
20 [727]	5,288	4,243	0.80	1,304	240	4,645	3.6	723
25 [803]	2,102	1,692	0.80	931	150	3,859	4.1	432
30 [910]	2,346	1,850	0.79	1,668	380	6,108	3.7	980
40 [1000]	843	666	0.79	1,243	214	4,112	3.3	799
50 [1167]	825	672	0.81	2,084	580	7,523	3.6	1,239
60 [1303]	226	188	0.83	2,666	680	8,327	3.1	1,863
80 [1455]	162	128	0.79	1,970	845	4,148	2.1	1,473
100 [1620]	202	155	0.77	2,788	1,200	4,542	1.6	2,070
120 [1940]	100	72	0.72	5,815	1,100	21,512	3.7	1,667
150 [2273]	171	141	0.82	4,578	550	17,980	3.9	1,650
200 [2590]	21	15	0.71	2,590	1,400	4,184	1.6	2,800
300 [2910]	50	36	0.72	2,489	930	4,628	1.9	1,500
500 [3333]	163	127	0.78	6,593	1,600	15,806	2.4	3,725
Auction houses								
[A] (Koto Ward, Tokyo)	45,315	34,218	0.76	657	200	2,302	3.5	470
[B] (Chuo Ward, Tokyo)	14,188	12,764	0.90	1,617	360	5,039	3.1	970
[C] (Koto Ward, Tokyo)	2,431	2,161	0.89	2,175	656	7,909	3.6	1,415
Comments included in the								
condition report of works								
(multiple comment)	10.250	7 700	0.75	200	1.00	1.200	25	210
No comments	10,256	/,/00	0.75	390	160	1,366	3.5	310
Cracking	1,990	1,2/2	0.64	805	400	1,261	1.6	5/0
Defect	232	105	0.71	4//	190	704	1.0	430
Scratch	255	254	0.70	000	260	2757	2.7	500
Fold	1 369	1 0 0 7	0.72	295	145	4.58	2.0	230
Stain	14 483	10 503	0.74	254	140	967	2.7	230
Wrinkle	1 799	1 3 0 5	0.73	343	160	704	2.7	260
Fading	14 027	10 360	0.75	313	150	688	2.1	260
Tears	404	273	0.68	426	170	752	1.2	320
Flaking	1.368	819	0.60	872	300	4.158	4.8	450
Adhesive/Tape stains	872	652	0.75	382	180	503	1.3	350
Cratering	112	79	0.71	447	210	722	1.6	425
Insects	109	68	0.62	275	170	334	1.2	275
Soiled	824	616	0.75	479	165	1,824	3.8	340
Mold	17	17	1.00	1,069	350	1,414	1.3	1,560
Discoloration	274	186	0.68	244	135	326	1.3	223
Retouching/Repairing	489	298	0.61	892	345	1,613	1.8	660
No frame	227	171	0.75	536	150	1,501	2.8	265

Table 1. Descriptive statistics, continued

3. Data

Our dataset consists of the price and characteristics of 61,934 artworks created by Japanese artists presented for auction by the three Japanese auction houses A (Koto Ward, Tokyo), B (Chuo Ward, Tokyo) and C (Koto Ward, Tokyo) from first quarter 2006 to third-quarter 2019 period. The number of sold artworks is 49,143, and the sale rate is 79%.

Table 1 shows the descriptive statistics of the characteristics of artworks. "Works (1)" is the number of exhibited works. "Works (2)" is the number of sold works. "Ratio" is the sale rate: Works (2)/Works (1). "Hammer price" is the final price in the auction. We summaries the number of works and hammer prices of sold works concerning characteristics of works, which are classified by transaction period (year and a quarter), the genre of works, size of works, auction houses, and remarks about the conditions of works.

Figure 1. Boxplot of hammer price (¥1,000) of sold artworks

The number of exhibited works is stable in each year from 2006 to 2019. Approximately 4,000-5,000 works are observed every year in Table 1. The data size has slightly much in the first and fourth periods among the quarter of the year. Japanese-style painting (Nihonga) is characterized by its being the most a lot in the genre. There are many observations of #6, #8 and #10 at the size (numero) of works. The tendency that the mean of hammer prices becomes high is seen so that size becomes big. The artworks more than 70% are given by auction house [A]. Comments are referred to works, stain and fading are outstanding in the condition report. Additionally, descriptive statistics of 255 artists are shown in Table A1 (see appendix).

Figure 1 shows the box plot diagram of (logarithmic scale) hammer price (\pm 1,000) at auction from 2006 to 2019. The height of the lower limit is $Q1 - 1.5 \times IQR$, and of the upper limit is $Q3 + 1.5 \times IQR$, where Q1 is the first quartile, IQR is Interquartile range, and Q3 is the third quartile. We observed some outliers every year.

Figure 2 shows the quarterly buy-in rate, which is one minus sale rate, and the sample mean of price change rate, which is against the same quarter of the previous. The correlation coefficient between the two variables is 0.0349 (*p*-value = 0.8097), which is not significant. It is not possible to find a relationship between the buy-in rate and the price change per quarterly. The exponential type II Tobit model estimation tests the correlation between the error terms of these two variables after controlling characteristic variables of artworks.

Figure 2 Buy-in rate and mean price change

Note: Buy-in rate is one minus sale rate. Mean price change rate is against to the same quarter of the previous year.

4. Empirical results

Table 2 shows the estimation results of (5), which was performed using full sample (sold and unsold 61,934 artworks) by the maximum likelihood method (outcome part in the exponential type II Tobit) and the estimation results of (1) using uncensored observations (sold 49,143 artworks) by the ordinary least squares method with White's heteroscedasticity-consistent standard error. We present the result of the different estimated method in parallel for comparison.

Time effects, which are coefficients of the year dummy variable, are significantly negative. Hammer price is showing a tendency to decrease as compared to reference year, 2006. Artworks prices tend to be sold at significantly lower in the fourth quarter compared to the first quarter. "Oil-painting," "Watercolor and acrylic painting," and "Japanese-style painting (Nihonga)" are sold at higher on comparison with reference category "others" in the genre of works. Hammer price of "Print" and "Ceramic art, sculpture, and artifact" is significantly lower than "others." The difference in the size of works is significantly reflected in the hammer price. The bigger the size of works becomes, the higher the price of works increases. The artwork is bought at the price that exhibited one is higher than the auction house [A] in [B] or [C]. If there are the comments such as "Cracking," "Fold," "Stain," "Wrinkle," "Fading," "Flaking," "Discoloration," "Retouching/Repairing" and "No frame" in the condition report of works, the works tend to be sold at a significantly lower price. Two hundred fifty-four artist dummy variables were included in regression but not reported in the table. One hundred seventy-four of the 254 artist dummies in equation (4) and One hundred seventy-seven of the 254 artist dummies in equation (1), were significant at 5% level.

Table 3 shows the estimation results of the selection part in the exponential type II Tobit model and what kind of characteristic of the effects of the work on sale rate. The explanatory variables in equation (3) are the same as in equation (4), except that the artist dummy variables are not used. The categorical variables of years, quarters of the year, and the genre of works are significant for sale rate. If the comments such as "Cracking," "Fold," "Stain," "Fading," "Flaking," "Insects," "Discoloration," and "Retouching/Repairing" are included in the condition report of works, the sale rate of the works falls significantly.

Table 2. Estimation results of hedonic price

Note: The *, **, and *** symbols denote statistical significance at the 5%, 1%, and 0.1% levels. (a) Maximum likelihood estimation results of outcome equation part of (5) using full sample 61,934. (b) Ordinary least square estimation results of hedonic price model (1) using uncensored observations 49,143. (c) White's heteroscedasticity-consistent standard error.

December (actors in a	17 1.1.	Exponent	ial Type II	OLS ^(b)		
Parameter/categories	Variable	100			(c)	
~	constant torm	10.012	S.e.	10 002	S.e.(c)	
a R/Voor		10.015	0.101 ***	10.002	0.104	
p/ Teal	2007	-0.074	0.020 ***	-0.030	0.020	
(Telefence category.	2008	-0.207	0.029	-0.104	0.027	
2000)	2009	-0.287	0.030 ***	-0.221	0.028	
	2010	-0.289	0.029 ***	-0.192	0.027 ***	
	2011	-0.359	0.029 ***	-0.220	0.027 ***	
	2012	-0.409	0.030 ***	-0.248	0.028 ***	
	2013	-0.181	0.029 ***	-0.118	0.027 ***	
	2014	-0.332	0.029 ***	-0.209	0.027 ***	
	2015	-0.269	0.029 ***	-0.179	0.027 ***	
	2016	-0.308	0.029 ***	-0.158	0.028 ***	
	2017	-0.398	0.030 ***	-0.232	0.028 ***	
	2018	-0.350	0.029 ***	-0.194	0.028 ***	
	2019	-0.571	0.035 ***	-0.311	0.034 ***	
γ_1 / Quarter of the year	2nd quarter	0.017	0.015	0.049	0.014 ***	
(reference category:	3rd quarter	-0.027	0.015	0.035	0.014 *	
1st quarter)	4th quarter	-0.091	0.015 ***	-0.031	0.014 *	
γ_2 / Genre of works	Oil painting	1.656	0.037 ***	1.845	0.039 ***	
(reference category:	Watercolor and acrylic painting	0.093	0.035 **	0.224	0.037 ***	
others)	Japanese-style painting (Nihonga)	0.589	0.112 ***	0.690	0.139 ***	
	Print	-1.033	0.035 ***	-0.985	0.035 ***	
	Ceramic art. sculpture and artifact	-0.448	0.082 ***	-0.291	0.085 ***	
v_2 / Size of works	#1	0.264	0.039 ***	0.239	0.035 ***	
(reference category:	#2	0.325	0.049 ***	0.298	0.046 ***	
numero #0)	#3	0.415	0.040 ***	0.417	0.034 ***	
,	#4	0 4 3 7	0.033 ***	0 4 2 4	0.028 ***	
	#5	0.137	0.039 ***	0.121	0.036 ***	
	#6	0.150	0.031 ***	0.552	0.027 ***	
	#8	0.515	0.031	0.532	0.027	
	#10	0.550	0.032	0.547	0.020 ***	
	#10	0.034	0.032	0.097	0.029	
	#1Z #1F	0.737	0.034	0.762	0.031	
	#15	0.010	0.037	0.023	0.037	
	#20	0.774	0.034	0.007	0.032	
	#25	0.676	0.042 ***	0.708	0.041 ***	
	#30	1.131	0.040 ***	1.186	0.038 ***	
	#40	0.976	0.056 ***	1.026	0.053 ***	
	#50	1.430	0.055 ***	1.460	0.052 ***	
	#60	1.484	0.092 ***	1.485	0.096 ***	
	#80	1.545	0.110 ***	1.618	0.110 ***	
	#100	1.658	0.100 ***	1.740	0.104 ***	
	#120	1.721	0.142 ***	1.859	0.165 ***	
	#150	1.619	0.106 ***	1.635	0.140 ***	
	#200	1.937	0.306 ***	2.012	0.265 ***	
	#300	1.670	0.201 ***	1.884	0.309 ***	
	#500	2.010	0.110 ***	1.990	0.129 ***	

Table 2	Estimation	results	of hedonic	price,	continued
---------	------------	---------	------------	--------	-----------

Note: The *, **, and *** syn	mbols denote statistical significance at the 5%, 1%, and 0.1% levels	. (d)	Standard
error of the regression of (1).		

Paramotor /catogorios	Variable	Туре І	I Tobit	OLS		
Tarameter/categories	Variable	coef.	s.e.	coef.	s.e.	
γ_4 / Auction houses	Auction house [B]	0.539	0.015 ***	0.369	0.015 ***	
(reference category: [A])	Auction house [C]	1.263	0.037 ***	1.066	0.039 ***	
$\gamma_5/$ Comments included in	Cracking	-0.084	0.037 *	-0.002	0.027	
the condition report of	Defect	-0.081	0.092	-0.057	0.087	
works	Damage	-0.200	0.120	-0.217	0.120	
(reference category:	Scratch	0.202	0.074 **	0.238	0.074 **	
No comments)	Fold	-0.174	0.039 ***	-0.149	0.033 ***	
	Stain	-0.182	0.017 ***	-0.129	0.014 ***	
	Wrinkle	-0.108	0.035 **	-0.113	0.030 ***	
	Fading	-0.151	0.017 ***	-0.154	0.015 ***	
	Tears	-0.087	0.073	-0.080	0.069	
	Flaking	-0.117	0.044 **	0.033	0.036	
	Adhesive/Tape stains	0.205	0.048 ***	0.211	0.041 ***	
	Cratering	0.193	0.133	0.227	0.121	
	Insects	-0.212	0.141	-0.110	0.111	
	Soiled	-0.006	0.049	0.012	0.047	
	Mold	0.601	0.301 *	0.242	0.289	
	Discoloration	-0.318	0.086 ***	-0.201	0.068 **	
	Retouching/Repairing	-0.151	0.068 *	-0.008	0.060	
	No frame	-0.258	0.092 **	-0.263	0.094 **	
γ_6 / Artist						
(reference category:	254 dummy variables	(Yes)		(Yes)		
Toshinobu Onosato)						
	Number of observations	61,934		49,143		
	Censored observations	12,791		-		
	Loglikelihood	-103,699		-		
	Adjusted R-Squared	-		0.439		
σ	sigma	1.237	0.006 ***	1.097 ^(d)		
ρ	rho	0.745	0.009 ***	-		

Categories	Variable	coef.	s.e.
	constant term	1.617	0.049 ***
Year	2007	-0.191	0.036 ***
(reference category:	2008	-0.450	0.035 ***
2006)	2009	-0.274	0.037 ***
	2010	-0.373	0.035 ***
	2011	-0.490	0.035 ***
	2012	-0.559	0.036 **
	2013	-0.305	0.037 **
	2014	-0.461	0.035 **
	2015	-0.380	0.035 **
	2016	-0.491	0.035 **
	2017	-0.499	0.035 **
	2018	-0.454	0.035 **
	2019	-0.746	0.039 **
Quarter of the year	2nd quarter	-0.074	0.016 **
(reference category:	3rd quarter	-0.166	0.016 **
1st quarter)	4th quarter	-0.162	0.016 **
Genre of works	Oil painting	-0.586	0.029 **
(reference category:	Watercolor and acrylic painting	-0.344	0.029 **
others)	Japanese-style painting (Nihonga)	-0.276	0.027 **
	Print	-0.203	0.030 **
	Ceramic art, sculpture and artifact	-0.386	0.068 **
Size of works	#1	0.096	0.043 *
(reference category:	#2	0.124	0.054 *
numero #0)	#3	0.020	0.042
	#4	0.045	0.034
	#5	0.022	0.041
	#6	-0.069	0.032 *
	#8	-0.010	0.033
	#10	-0.088	0.033 **
	#12	-0.070	0.035 *
	#15	0.003	0.041
	#20	-0.027	0.035
	#25	-0.047	0.043
	#30	-0.097	0.041 *
	#40	-0.086	0.057
	#50	-0.024	0.058
	#60	0.104	0.104
	#80	-0.071	0.114
	#100	-0.077	0.103
	#120	-0.183	0.141
	#150	0.278	0.121 *
	#200	-0.254	0.297
	#300	-0.059	0.200
	#500	0.282	0.113 *

Table 3. Estimation results of selection part in exponential type II Tobit Note: *** *p*-value<0.001, ** *p*-value<0.01, * *p*-value<0.05.

2	, <u>p</u>		
Categories	Variable	coef.	s.e.
Auction houses	Auction house [B]	0.588	0.017 ***
(reference category: [A])	Auction house [C]	0.487	0.036 ***
Comments included in	Cracking	-0.101	0.032 **
the condition report of works	Defect	-0.037	0.088
(reference category:	Damage	0.079	0.122
No comments)	Scratch	-0.037	0.071
	Fold	-0.076	0.038 *
	Stain	-0.140	0.016 ***
	Wrinkle	-0.002	0.033
	Fading	-0.053	0.017 **
	Tears	-0.009	0.067
	Flaking	-0.269	0.037 ***
	Adhesive/Tape stains	-0.003	0.047
	Cratering	-0.050	0.125
	Insects	-0.245	0.122 *
	Soiled	-0.039	0.048
	Mold	4.553 16	541.000
	Discoloration	-0.273	0.078 ***
	Retouching/Repairing	-0.265	0.058 ***
	No frame	0.076	0.092

Table 3. Estimation results of selection part in type II Tobit, continued

Note: *** *p*-value<0.001, ** *p*-value<0.01, * *p*-value<0.05

Table 4. Art price index

	exponential type II Tobit									
Year	$\exp(\hat{\beta}_t)$	$\exp[\widehat{ ho}\widehat{\sigma}(\overline{\lambda}_t-\overline{\lambda}_0)]$	$CHPI_t$	UHPI _t	HPI_t					
2006	1.000	1.000	1.000	1.000	1.000					
2007	0.929	1.067	0.991	0.578	0.964					
2008	0.750	1.187	0.891	0.207	0.849					
2009	0.751	1.125	0.844	0.321	0.801					
2010	0.749	1.155	0.865	0.258	0.825					
2011	0.698	1.220	0.852	0.158	0.803					
2012	0.664	1.256	0.834	0.120	0.780					
2013	0.834	1.118	0.933	0.365	0.889					
2014	0.718	1.203	0.863	0.179	0.811					
2015	0.764	1.188	0.908	0.210	0.836					
2016	0.735	1.258	0.924	0.128	0.854					
2017	0.672	1.263	0.848	0.115	0.793					
2018	0.705	1.231	0.867	0.148	0.824					
2019	0.565	1.317	0.744	0.072	0.733					

Table 4 shows the art price index that calculates using equation (2), (6), and (7). Some complex effects are arising from auction buy-ins on the overall market price dynamics. The $CHPI_t$ by the exponential type II Tobit model has two-fold elements: price variations related to the entire art market and fluctuations in truncated bias. The $UHPI_t$ are much smaller than the $CHPI_t$ since the sales rate tends to decrease during the observation period. The HPI_t calculated by OLS estimation has a bias, its value tends to be slightly lower than $CHPI_t$.

Figure 3. Art price indices (base year 2006 = 1)

Figure 4. Actual and predicted sale rate

Figure 5. Predicted buy-in rate and difference of conditional expectation of log-price

Figure 3 shows the two art price indices. It can be seen that the level of the $CHPI_t$. by the exponential type II Tobit, which takes into account the selection bias, is slightly higher than the HPI_t based on OLS estimation that was calculated using only samples of sold works. The average rate of price change per year is -2.0% for $CHPI_t$ (7.0% standard deviation) and -2.1% for HPI_t (7.2% standard deviation). These indicate that the hedonic price index based on OLS estimation has a lower bias because the change in sales rate is not taken into account. HPI_t is 4.3% lower on average than $CHPI_t$.

Figure 4 shows the actual and predicted sale rate which is the mean of $\Phi(\hat{b}_t + W'_i \hat{c})$. It turns out that the fit of the sale rate function is almost perfect. In Table 2, the correlation coefficient $\rho = E(\epsilon_i u_i)/\{E(u_i^2) \cdot E(\epsilon_i^2)\}^{1/2}$ is significantly estimated to be $\hat{\rho} = 0.745$ (*p*-value: 0.009) by maximum likelihood method. In other words, it can be seen that the selection mechanism has an outcome for art price determination. In Figure 5, we plot the buy-in rate which is calculated as $\{1 - \Phi(\hat{b}_t + W'_i \hat{c})\} \times 100\%$ against the difference of conditional expectation of log-price Δ_t^C in each year from 2006 to 2019. When artwork prices tend to fall, the buy-in rate tends to rise.

5. Concluding remarks

We derived the hedonic price index of artworks in Japan's art auction market, between

2006 and 2019. The number of Japanese artists analyzed was 255, and 61,934 artworks were auctioned during the period, of which 49,143 artworks were made successful bids. The sale rate of artworks in auctions is not always stable, which may have affected the price of works. Naturally, there may be regarded as the bias in the price index of a sample that selects only sold artworks. This paper presented a revised price index.

The hedonic approach is very commonly used in estimating auction prices. In this paper, year, the quarter of the year, the genre of works, size of works, auction houses, condition reports, and the artist names were used as explanatory variables for the log price hedonic model. Considering the sample selection bias in the auction, measuring the price index also needs to be reconsidered. Besides, the outcome function in the sample selection model can be expressed by replacing the traditional hedonic time dummy model of log-price with an exponential function. Therefore, we presented the maximum likelihood estimation of the hammer price by the exponential type II Tobit model. Using the difference between the conditional expectation of the logarithmic price, conditional hedonic price index that takes into account the variation of selection bias was defined.

The hedonic price index based on OLS estimation has a lower bias because the change in sales rate is not taken into account. The hedonic price index based on OLS is 4.3% lower on average than the conditional hedonic price index in the Japanese art auction market. We found that the error terms in the selection function and the error terms in the outcome hammer price equation are significantly correlated. When artwork prices tend to fall, the buy-in rate tends to rise.

Acknowledgments

This research has greatly benefited from many helpful suggestions by Akihito Takei (Quick Corp.) and Atsushi Kato (Kyoto University of Art & Design).

Appendix A

Table A1 shows descriptive statistics of 255 Japanese artists as the sample for this research.

	Veen	Veen	Maula	Maula	quartite	Lange of	lammor r	rico (¥1	000)	
Artist name	fear	rear	(1)	(2)	Ratio	Maan	Modion		CV	IOD
	1001	10.00	(1)	(2)		Mean	Meulan	50		IQR
Tsuguharu Foujita	1886	1968	2,333	1,939	0.83	1,898	180	6,801	3.6	590
Yayoi Kusama	1929	-	2,326	2,110	0.91	2,666	840	7,951	3.0	1,820
Shiko Munakata	1903	1975	2,061	1,642	0.80	1,029	500	2,281	2.2	900
Kaii Higashiyama	1908	1999	1,558	1,381	0.89	1,652	230	7,082	4.3	380
Ikuo Hirayama	1930	2009	1,389	1,182	0.85	916	240	3,167	3.5	340
Matazo Kayama	1927	2004	1,313	1,061	0.81	1,271	180	4,214	3.3	475
Hiro Yamagata	1948	-	1,081	1,043	0.96	128	65	263	2.1	60
Hiroshi Senju	1958	-	967	829	0.86	1,190	320	1,851	1.6	1,580
Takashi Murakami	1962	-	928	814	0.88	436	140	5,051	11.6	217
Chinami Nakajima	1945	-	894	785	0.88	386	110	1,074	2.8	95
Hiroki Oda	1914	2012	871	762	0.87	216	140	266	1.2	223
Tamako Kataoka	1905	2008	849	705	0.83	1,176	480	2,133	1.8	480
Yozo Hamaguchi	1909	2000	845	677	0.80	257	140	416	1.6	135
Kivoshi Saito	1907	1997	836	650	0.78	185	130	194	1.1	155
Rvuzaburo Umehara	1888	1986	832	607	0.73	2.351	170	6.080	2.6	1.895
Kivoshi Hasegawa	1891	1980	761	598	0.79	465	280	560	1.2	430
Takanori Ogisu	1901	1986	745	581	0.78	1 9 8 9	150	3 805	19	2 3 1 5
Gvokudo Kawai	1873	1957	677	555	0.70	1,055	440	1 5 5 7	1.5	1 200
Masuo Ikeda	1934	1997	659	552	0.02	1,000	90	185	1.5	146
Sojiji Togo	1007	1070	630	504	0.04	745	600	702	0.0	1 050
Vacuo Kagulti	1011	1970	621	504	0.79	1 4 2 0	550	2042	1 /	1,030
Vashitama Nara	1911	19/4	607	505	0.60	1,420	006	Z,04Z	1.4	1,020
	1959	-	607 507	527	0.87	2,343	200	5,455	2.5	2,095
Ryonei Koiso	1903	1988	597	424	0.71	1,340	200	4,418	3.3	533
Morikazu Kumagai	1880	1977	580	449	0.77	915	240	2,588	2.8	410
Yuki Ugura	1895	2000	5/6	461	0.80	345	90	968	2.8	/5
Shinsui Ito	1898	1972	554	409	0.74	1,004	360	2,183	2.2	1,035
Togyu Okumura	1889	1990	507	412	0.81	613	110	1,507	2.5	624
Koji Kinutani	1943	-	495	409	0.83	1,182	800	1,272	1.1	1,760
Kazumasa Nakagawa	1893	1991	466	377	0.81	1,470	440	1,980	1.3	2,200
Taikan Yokoyama	1868	1958	460	406	0.88	3,808	1,600	6,679	1.8	4,130
Reiji Hiramatsu	1941	-	460	382	0.83	436	380	432	1.0	515
Hirosuke Tasaki	1898	1984	442	333	0.75	496	450	500	1.0	450
Insho Domoto	1891	1975	434	310	0.71	334	195	415	1.2	300
Yukio Kodama	1916	1992	432	344	0.80	665	500	556	0.8	590
Shoen Uemura	1875	1949	431	376	0.87	1,592	65	6,212	3.9	1,357
Sumio Goto	1930	2016	426	346	0.81	672	500	577	0.9	745
Sadamasa Motonaga	1922	2011	425	363	0.85	1,548	580	2,883	1.9	1,300
Toshiyuki Hasekawa	1891	1940	420	372	0.89	881	360	1,978	2.2	640
Yasushi Sugiyama	1909	1993	390	299	0.77	2,777	360	7,014	2.5	1,250
Takeshi Hayashi	1896	1975	382	266	0.70	1,652	470	3,497	2.1	1,130
Teppei Sasakura	1954	-	371	316	0.85	162	95	161	1.0	126
Seison Maeda	1885	1977	363	259	0.71	1.563	640	2.964	1.9	1.540
Kokuta Suda	1906	1990	336	213	0.63	221	150	215	1.0	190
Setsuko Migishi	1905	1999	326	243	0.05	1 1 8 9	600	1 406	1.0	1 864
Byonosuke Fukui	1923	1986	326	261	0.75	370	290	381	1.0	415
Kojactsu Matsubawashi	1976	1062	220	201	0.00	100	120	204	1.0	162
Shinichi Saita	1070	100/	210	240	0.75	120	120	204	1.1 0.6	210
Vancatan Uashimata	1002	1045	319 311	107	0.61	424	160	204 1 252	2.0	224
	1003	1945	311	19/	0.03	433	205	1,252	2.9	433
	1940	1982	306	2/4	0.90	1,087	395	2,440	2.2	050
nirosilige Utagawa	1020	1020	303	26/	0.88	088	190	2,35/	3./	540
Seigo Takatsuka	1930	200/	293	238	0.81	454	260	414	0.9	510

Table A1 Descriptive statistics of 255 artists (decreasing order of the number of works) Note. Works (1) is the number of exhibited works. Works (2) is the number of sold works. Ratio is sale rates: Works (2)/Works (1). "Hammer price" is the final price in auction. SD is standard deviation of hammer price. CV is coefficient of variation of hammer price. IQR is interquartile range of hammer price.

Artist name	Year	Year	Works	Works	Datio]	Hammer	price (¥1	L,000)	
Altist hame	born	died	(1)	(2)	Ratio	Mean	Median	SD	CV	IQR
Saburo Miyamoto	1905	1974	291	221	0.76	1,032	520	1,905	1.8	870
Toshimitsu Imai	1928	2002	289	222	0.77	937	195	2,333	2.5	575
Wasaku Kobayashi	1888	1974	288	221	0.77	296	250	234	0.8	240
Kiyoshi Yamashita	1922	1971	287	229	0.80	514	210	1,048	2.0	400
Atsushi Uemura	1933	-	285	219	0.77	450	70	690	1.5	650
Yumeji Takehisa	1884	1934	276	215	0.78	788	285	1,301	1.6	770
Kumi Sugai	1919	1996	270	190	0.70	450	85	1,008	2.2	299
Hitone Noma	1901	1979	264	178	0.67	579	520	359	0.6	508
Katsumi Ukita	1930	1989	262	212	0.81	1,367	1,100	1,220	0.9	1,210
Saneatsu Mushanokoji	1885	1976	253	188	0.74	116	100	73	0.6	69
Taro Okamoto	1911	1996	247	204	0.83	390	130	1,515	3.9	238
Takeo Yamaguchi	1902	1983	247	196	0.79	1,430	250	3,177	2.2	1,531
Ryushi Kawabata	1885	1966	247	173	0.70	670	400	906	1.4	540
Tessai Tomioka	1837	1924	246	165	0.67	611	320	865	1.4	410
Seiho Takeuchi	1864	1942	244	185	0.76	568	250	988	1.7	430
Kazuo Shiraga	1924	2008	244	205	0.84	5,137	480	18,325	3.6	2,139
Keiko Minami	1911	2004	242	228	0.94	90	80	55	0.6	56
Shoko Uemura	1902	2001	241	196	0.81	659	80	1,531	2.3	607
Tsutomu Fujii	1948	2017	240	189	0.79	326	220	391	1.2	300
Toshio Matsuo	1926	2016	236	168	0.71	542	460	438	0.8	600
Shigeru Morita	1907	2009	235	158	0.67	577	440	439	0.8	415
Horin Fukuoji	1920	2012	232	161	0.69	678	530	602	0.9	550
Chusaku Oyama	1922	2009	231	172	0.74	531	390	563	1.1	625
Kojiro Kosugi	1944	-	228	175	0.77	427	360	380	0.9	395
Joichi Hoshi	1913	1979	228	186	0.82	204	150	239	1.2	173
Masaaki Yamada	1929	2010	221	179	0.81	1,069	610	1,484	1.4	1,030
Junkichi Mukai	1901	1995	220	157	0.71	1,356	800	1,531	1.1	1,760
Keika Kanashima	1892	1974	219	121	0.55	308	190	532	1.7	250
Nampu Katayama	1887	1980	218	152	0.70	273	200	251	0.9	270
Tadanori Yokoo	1936	-	216	179	0.83	186	70	792	4.3	90
Kibo Kodama	1898	1971	213	141	0.66	505	320	688	1.4	380
Tatsuo Takayama	1912	2007	212	175	0.83	1,150	700	1,666	1.4	1,295
Genso Okuda	1912	2003	210	156	0.74	1,160	420	2,424	2.1	1,405
Tetsuro Komai	1920	1976	207	171	0.83	281	170	346	1.2	238
Toko Shinoda	1913	-	205	158	0.77	294	120	582	2.0	160
Tadahiko Nakayama	1935	-	204	155	0.76	923	600	1,043	1.1	1,388
Takehiko Miyanaga	1919	1987	202	140	0.69	545	400	575	1.1	570
Sanryo Sakai	1897	1969	200	149	0.75	181	120	221	1.2	130
Hitoshi Komatsu	1902	1989	200	136	0.68	306	200	306	1.0	250
Zenzaburo Kojima	1893	1962	199	130	0.65	1,435	960	2,004	1.4	1,380
Chikkyo Ono	1889	1979	199	143	0.72	1,143	400	2,539	2.2	890
Shoha Ito	1877	1968	198	142	0.72	415	300	466	1.1	318
Shintaro Suzuki	1895	1989	197	151	0.77	383	380	340	0.9	365
Kayo Yamaguchi	1899	1984	192	135	0.70	895	400	2,437	2.7	805
Toshinobu Onosato	1912	-	191	140	0.73	718	411	1,085	1.5	676
Keisuke Serizawa	1895	1984	191	154	0.81	126	75	177	1.4	90
Katsura Funakoshi	1951	-	185	147	0.79	209	140	200	1.0	130
Noriko Tamura	1944	-	181	154	0.85	806	605	820	1.0	1,040
Tatsuoki Nambata	1905	1997	180	123	0.68	585	219	910	1.6	490
Nori Shimizu	1962	-	173	142	0.82	384	375	280	0.7	410
Iwami Furusawa	1912	2000	172	139	0.81	79	55	71	0.9	55
Tamiji Kitagawa	1894	1989	172	130	0.76	319	150	443	1.4	422
Akira Akizuki	1929	-	172	117	0.68	88	80	54	0.6	70
Kiyokata Kaburaki	1878	1972	171	122	0.71	893	410	1,108	1.2	900
Hoshun Yamaguchi	1893	1971	170	121	0.71	430	240	551	1.3	420

Artist name	Year	Year	Works	Works	Datio]	Hammer	price (¥1	,000)	
Artist name	born	died	(1)	(2)	Ratio	Mean	Median	SD	CV	IQR
Yoson Ikeda	1895	1988	168	93	0.55	218	160	196	0.9	235
Kazu Wakita	1908	2005	168	117	0.70	363	300	298	0.8	400
Heihachiro Fukuda	1892	1974	167	121	0.72	1,427	560	2,759	1.9	1,040
Kiyonaga Ito	1911	2001	165	113	0.68	706	500	756	1.1	620
Yasuo Kunivoshi	1889	1953	160	99	0.62	996	170	2,640	2.7	398
Munehiro Nakamura	1950	-	159	126	0.79	359	305	174	0.5	208
Rieko Morita	1955	-	156	137	0.88	528	90	951	1.8	240
Hiroshi Sugimoto	1948	-	155	134	0.86	870	403	1.028	1.2	1.139
liro Takamatsu	1936	1998	150	134	0.89	1.445	230	3.505	2.4	650
Rvusuke Nishimura	1920	2005	149	114	0.77	621	500	625	1.0	423
Keizo Kovama	1897	1987	148	111	0.75	1.643	1.150	1.638	1.0	2.458
Naobumi Seimiva	1917	1991	147	115	0.78	544	420	416	0.8	365
Nobuo Sekine	1942	2019	145	116	0.80	389	293	402	1.0	399
liro Yoshihara	1905	1972	143	103	0.72	2.889	575	9.121	3.2	1.785
Konosuke Tamura	1903	1986	143	129	0.90	266	200	243	0.9	265
Chimei Hamada	1917	2018	143	110	0.77	279	123	501	1.8	178
Kiichiro Havashi	1919	1999	142	110	0.77	412	360	269	0.7	240
Yuiin Nakaii	1933	2017	141	97	0.69	572	500	367	0.6	460
Kaoru Yamaguchi	1907	1968	140	106	0.76	1.356	545	2.212	1.6	1.378
Saburo Saito	1917	1996	138	112	0.81	348	200	384	1.1	330
Seiji Chokaj	1902	1972	136	87	0.64	807	580	998	1.2	610
Kunio Makino	1925	1986	136	120	0.88	1.542	1.375	1.492	1.0	2.390
Daijo Aoki	1891	1979	134	95	0.00	154	120	115	0.7	115
Rei Kamoi	1928	1985	133	100	0.75	2 1 7 6	1 825	1 741	0.8	2 200
Michio Fukuoka	1949	-	132	105	0.80	664	600	545	0.8	520
Toichi Kato	1916	1996	131	99	0.00	379	120	599	1.6	255
Kyujin Yamamoto	1900	1986	131	98	0.75	504	320	527	1.0	380
Eien Iwahashi	1903	1997	130	83	0.64	576	400	667	12	635
Gakurvo Nakamura	1890	1969	127	79	0.62	294	160	344	1.2	290
Tekison Uda	1896	1980	125	84	0.67	235	88	724	3.1	134
Rvo Hirano	1927	1992	125	107	0.86	256	240	220	0.9	343
Eijin Suzuki	1948	_	124	120	0.97	106	85	68	0.6	65
Sotaro Yasui	1888	1955	122	93	0.76	2.194	240	5.585	2.5	1.395
Chuta Kimura	1917	1987	122	91	0.75	640	400	670	1.0	460
Norivuki Ushijima	1900	1997	121	90	0.74	1.539	1.375	996	0.6	1.150
Shuho Ikegami	1874	1944	121	73	0.60	190	120	217	1.1	175
Mitsuo Kano	1933	_	119	101	0.85	226	100	374	1.7	120
Rvusei Kishida	1891	1929	118	98	0.83	3.218	430	14.477	4.5	875
Shinsen Tokuoka	1896	1972	117	73	0.62	1.228	480	1.996	1.6	640
Buzan Kimura	1876	1942	117	83	0.71	370	150	516	1.4	343
Katsuzo Satomi	1895	1981	117	90	0.77	459	330	524	1.1	365
Kei Shibusawa	1949	2012	115	100	0.87	686	490	715	1.0	901
Gaho Hashimoto	1835	1908	112	77	0.69	490	260	797	1.6	320
Ichiro Fukuzawa	1898	1992	112	82	0.73	208	160	179	0.9	211
Susumu Maki	1936	_	112	79	0.71	687	560	584	0.9	620
Kohei Morita	1916	1994	109	88	0.81	466	270	596	1.3	546
Ichinen Somiva	1893	1994	108	82	0.76	450	280	511	1.1	634
Kunio Komatsuzaki	1931	1992	107	76	0.71	232	80	338	1.5	275
Keivu Nishimura	1909	2000	105	91	0.87	206	140	195	0.9	185
Iun Nakao	1917		104	93	0.89	320	350	183	0.6	270
Hiroshi Kanosue	1927	1991	104	75	0.72	1.002	650	981	1.0	815
Masavoshi Nakamura	1924	1977	103	77	0.75	302	160	372	1.2	210
Daido Morivama	1938		100	67	0.67	464	300	891	1.9	326
Kagaku Murakami	1888	1939	100	65	0.65	3,079	1.050	6.531	2.1	2,300
Kojin Kudo	<u>1915</u>	2011	99	80	0.81	318	280	245	0.8	290

Autistusus	Year	Year	Works	Works	Ratio	Hammer price (¥1,000)				
Ai ust name	born	died	(1)	(2)		Mean	Median	SD	CV	IQR
Manjiro Terauchi	1890	1964	99	70	0.71	991	800	743	0.7	825
Seiji Nakamura	1935	2011	98	81	0.83	490	400	530	1.1	460
Kanuemon Asai	1901	1983	98	64	0.65	675	430	772	1.1	483
Meiji Hashimoto	1904	1991	97	69	0.71	348	150	435	1.2	350
Umetaro Azechi	1902	1999	97	83	0.86	74	60	60	0.8	53
Yonezo Shibata	1926	2006	97	83	0.86	198	100	232	1.2	215
Toshio Tabuchi	1941	-	96	66	0.69	1.186	200	1.661	1.4	1.745
Heihachiro Togo	1848	1934	96	70	0.73	, 114	70	120	1.1	109
Taisuke Hamada	1932	_	96	75	0.78	377	320	296	0.8	385
Keigo Kimura	1944	-	96	70	0.73	623	625	414	0.7	575
Shozo Shimada	1933	2016	95	77	0.81	304	260	269	0.9	270
Akira Kaho	1927	2018	92	67	0.73	164	120	133	0.8	145
Shohei Matsuda	1913	2004	92	66	0.72	536	260	573	1.1	690
Kanzan Shimomura	1873	1930	91	73	0.80	858	580	1 5 3 2	1.8	700
Rvohei Miwa	1929	2011	91	69	0.00	326	310	216	0.7	370
Sumio Kawakami	1895	1972	91	58	0.64	95	75	91	1.0	67
Keisen Tomita	1879	1936	91	58	0.64	107	70	107	1.0	80
Kivoshi Nakashima	1943	-	89	71	0.80	429	280	461	11	555
Shikanosuke Oka	1898	1978	88	58	0.00	4 850	2 2 5 0	6 5 0 5	13	7 824
Shiho Sakakihara	1887	1971	88	61	0.00	442	260	511	1.0	480
Fuku Akino	1908	2001	87	63	0.07	586	380	619	11	355
Hoan Kosugi	1881	1964	87	66	0.72	278	200	266	1.1	215
Yukihiko Yasuda	1884	1978	86	59	0.70	1 0 2 7	680	1 013	1.0	1 4 3 0
Wasahuro Itozono	1911	2001	86	68	0.09	446	410	232	0.5	250
Makoto Takada	1913	1992	85	62	0.73	699	580	415	0.5	453
Kunitaro Suda	1891	1961	85	50	0.75	1 607	360	2 7 2 8	17	1 755
Kuntaro Suua Kyosuko Chinai	10/1	1701	85	68	0.37	1,007	345	2,720	0.0	1,733
Hyoichi Vamamoto	1912	1999	84	74	0.00	281	270	159	0.5	203
Toshio Hirakawa	1974	2006	84	69	0.00	149	130	109	0.0	160
Saburosuko Okada	1924	1030	83	62	0.02	2 5 6 9	1 0 2 5	1.94.8	1 0	2 5 8 5
Makoto Masuda	1920	1080	83	65	0.73	2,307	340	203	0.6	2,303
Takeji Fujishima	1920	1943	83	65	0.70	1 649	660	203	15	2 0 2 0
Naondo Nakamura	1905	1081	81	58	0.70	1,047	135	2,717 1 <i>1</i> .8	0.8	2,020
Rakusen Tsuchida	1905	1936	81	50 64	0.72	271	200	271	1.0	313
Vuii Micu	1007	2010	01 01	66	0.79	622	565	420	1.0	100
Voko Vamamoto	1952	2010	79	59	0.05	83	70	56	0.7	
Konkichi Sugimoto	1905	2004	79	13	0.75	4.01	150	568	1 /	300
Konii Vochioka	1006	1001	70	43 62	0.55	110	150	112	1.4	97
Toshiro Aoki	1947	1770	77	60	0.01	1 3 4 9	1 0 2 5	1 1 5 4	0.0	663
Suiseki Ohashi	1865	1945	77	42	0.78	1,340	1,025	317	0.7	395
Kokki Miyako	1874	1954	76	57	0.55	98	70	76	0.7	80
Sahuro Aso	1013	2000	70	58	0.75	511	425	404	0.0	525
Centaro Koito	1915	1978	73	4.2	0.77	974	610	972	1.0	608
Koichi Takeuchi	1007	1770	74	12	0.57	554	530	321	0.6	475
Miematsu Tanahe	1997	1971	74	59	0.50	247	250	159	0.0	165
Hiroshi Olzutani	102/	19/1	74	57	0.00	616	550	159	0.0	550
Somoi Vulzi	1934	-	73	51	0.70	120	230	1/1	0.7	105
Sho Ishimoto	1075	2015	73	55	0.70	12J 851	320	992	1.1	1 1 6 0
Kokoj Kobavachi	1920	1057	73	53	0.73	1 1 0 7	455	1 1 1 5	1.2	1,100
Vataro Noguchi	1003	1076	72	52	0.72	1,10/ 201	455 255	7,412	1.5	1,400 205
Iataro Noguciii	1077	1070	71	52	0.73	541 202	200 1E0	33U 721	1.0	303 121
Miszo Vokowana	1000	1072	70 60	55	0.79	202	2 000	231	1.1	2 204
Cyoshy Hayami	1920	1025	09 20	50 EF	0.01	2,34/	2,000 75	2,420 1 706	1.0	3,203 1E0
Gyusiiu Hayalill Sojin Nakabata	1074	1000	00 20	55 17	0.81	1,440 610	70 500	4,200 605	5.0 1.0	43U QAA
Kazuho Hieda	1970	1777	60	47 52	0.09	2019	220	240	0.0	280
nazuno meua	1740	-	00	53	0.70	504	520	540	0.7	500

Artist name	Year born	Year died	Works (1)	Works (2)	Ratio	Hammer price (¥1,000)				
						Mean	Median	SD	CV	IQR
Hideo Nishiyama	1911	1989	66	51	0.77	116	80	116	1.0	92
Koichi Nabatame	1933	-	66	44	0.67	566	580	421	0.7	575
Harumi Tateishi	1908	1994	66	54	0.82	180	140	169	0.9	131
Kinosuke Ebihara	1904	1970	65	44	0.68	991	775	1,290	1.3	1,278
Bakuzan Sakaki	1926	2010	65	43	0.66	173	150	122	0.7	125
Yoshio Tsuruoka	1917	2007	65	54	0.83	343	240	401	1.2	255
Eisaku Wada	1874	1959	65	52	0.80	1,392	1,200	1,003	0.7	985
Seiichi Kasai	1932	-	64	54	0.84	436	400	229	0.5	250
Hisako Kajiwara	1896	1988	64	44	0.69	160	130	143	0.9	163
Keisho Imao	1902	1993	64	42	0.66	86	70	58	0.7	59
Chikuhaku Suzuki	1918	-	63	48	0.76	225	160	187	0.8	243
Sanzo Wada	1883	1967	63	39	0.62	87	55	117	1.3	80
Sentaro Iwata	1901	1974	61	49	0.80	117	80	94	0.8	90
Yoshihiro Shimoda	1940	-	60	45	0.75	623	600	466	0.7	530
Narashige Koide	1887	1931	59	44	0.75	3,263	440	7,357	2.3	3,078
Teruo Onuma	1933	-	59	48	0.81	127	100	104	0.8	103
Junichi Goto	1948	-	58	46	0.79	200	115	286	1.4	141
Tomohide Koizumi	1944	-	58	44	0.76	766	625	505	0.7	548
Manshu Kawamura	1880	1942	58	36	0.62	149	103	143	1.0	119
Seitoku Igarashi	1937	-	55	51	0.93	60	45	51	0.9	60
Chuichi Konno	1915	2006	53	41	0.77	239	190	195	0.8	230
Genjin Sugihara	1912	2009	53	42	0.79	88	68	66	0.7	50
Shosuke Osawa	1903	1997	53	52	0.98	87	63	76	0.9	77
Eibin Otsu	1943	-	53	47	0.89	94	65	100	1.1	68
Sai Morita	1898	1993	49	32	0.65	73	70	55	0.8	87
Mutsuo Kawashima	1940	-	47	40	0.85	219	140	214	1.0	250
Toshihiko Oya	1940	-	47	39	0.83	178	130	124	0.7	160
Masayuki Miyata	1926	1997	45	39	0.87	79	60	64	0.8	48
Seiichi Hara	1908	1986	45	36	0.80	122	60	184	1.5	108
Suiun Komuro	1874	1945	45	41	0.91	66	50	50	0.8	60
Jippo Araki	1872	1944	42	34	0.81	97	63	108	1.1	80
Satoshi Odagiri	1943	-	42	38	0.90	160	115	132	0.8	119
Hideo Hagiwara	1913	2007	40	30	0.75	58	40	60	1.0	44
Banka Maruyama	1867	1942	39	29	0.74	144	85	138	1.0	147
Gon Nishimura	1877	1938	39	29	0.74	95	55	87	0.9	50
Nobutaka Oka	1932	-	38	31	0.82	189	150	125	0.7	150
Kotaro Migishi	1903	1934	38	28	0.74	1,817	1,500	1,434	0.8	1,750
Susumu Kobori	1904	1975	37	30	0.81	140	115	80	0.6	74
Shimei Terashima	1892	1975	28	22	0.79	164	100	149	0.9	120

Reference

John W. Galbraith and Douglas J. Hodgson (2018). Econometric Fine Art Valuation by Combining Hedonic and Repeat-Sales Information. *Econometrics MDPI Open Access Journal* 6(3), 1-15. DOI:10.3390/econometrics6030032.

Dorota Witkowska (2014). An Application of Hedonic Regression to Evaluate Prices of Polish Paintings. *International Advances in Economic Research* 20(3), 281–293. DOI:10.1007/s11294-014-9468-x.

Fabian Y.R.P. Bocarta, Christian M. Hafnera (2012). Econometric analysis of volatile art markets. *Computational Statistics and Data Analysis* 56, 3091–3104. DOI:10.1016/j.csda.2011.10.019.

- Johannes W. Fedderke and Kaini Li (2020). Art in Africa: Hedonic price analysis of the South African fine art auction market, 2009–2014. *Economic Modelling* 84, 88-101. DOI:10.1016/j.econmod.2019.03.011.
- Péter Erdos and Mihály Ormos (2010). Random walk theory and the weak-form efficiency of the US art auction prices. *Journal of Banking & Finance* 34, 1062–1076.
 DOI:10.1016/j.jbankfin.2009.11.001.
- Urbi Garay (2019). Determinants of art prices and performance by movements: Long-run evidence from an emerging market. *Journal of Business Research* DOI:10.1016/j.jbusres.2019.03.057.
- Victor Ginsburgh, Anne-Sophie Radermecker and Denni Tommasi (2019). The effect of experts' opinion on prices of art works: The case of Peter Brueghel the Younger. *Journal of Economic Behavior & Organization* 159 36-50. DOI:10.1016/j.jebo.2018.09.002.
- Roman Kräussl, Thorsten Lehnert and Nicolas Martelin (2016) Is there a bubble in the art market? *Journal of Empirical Finance* 35, 99-109. DOI:10.1016/j.jempfin.2015.10.010.
- Rachel A.J. Pownalla, Stephen Satchellc and Nandini Srivastava (2019). A random walk through Mayfair: Art as a luxury good and evidence from dynamic models. *Journal of International Money and Finance* 95, 112–127.
- Alan Collins, Antonello Scorcu and Roberto Zanola (2009). Reconsidering hedonic art price indexes. *Economics Letters* 104(2), 57-60. DOI:10.1016/j.econlet.2009.03.025.
- Chanel, O., Gérard-Varet, L.-A. and Ginsburgh, V. A. (1996). The relevance of hedonic price indices: The case of paintings, *Journal of Cultural Economics* 20, 1–24. DOI: 10.1007/BF00148268.
- Rengers, M. and Velthuis, O. (2002). Determinants of prices for contemporary art in Dutch galleries, 1992-1998, *Journal of Cultural Economics* 26(1), 1–28. DOI:10.1023/A:1013385830304.
- Pradier, P.-C., Gardes, F., Greffe, X. and Mendoza, I. M. (2016). Autographs and the global art market: The case of hedonic prices for French autographs (1960-2005), *Journal of Cultural Economics* 40(4), 453–485. DOI:10.1007/s10824-015-9259-0.
- Leslie P. Singer and Gary a. Lynch (1997). Are Multiple Art Markets Rational? *Journal of Cultural Economics* 21, 197–218. DOI:10.1023/A:1007447326729.
- Orley Ashenfelter and Kathryn Graddy (2011). Sale Rates and Price Movements in Art Auctions, *The American Economic Review*, 101(3), (PAPERS AND PROCEEDINGS OF THE One Hundred Twenty Third Annual Meeting OF THE AMERICAN ECONOMIC ASSOCIATION), 212-216. DOI: 10.1257/aer.101.3.212.
- James J. Heckman (1979), Sample Selection Bias as a Specification Error, Econometrica 47(1),

153-161. DOI:10.2307/1912352.

- Jeffrey M. Wooldridge (2010). *Econometric Analysis of Cross Section and Panel Data*, 2nd ed., The MIT Press, 697-703.
- Jan de Haan (2004). Direct and indirect time dummy approaches to hedonic price measurement, *Journal of Economic and Social Measurement* 29(4), 427-443. DOI: 10.3233/JEM-2004-0235.
- Erwin Diewert (2003). Hedonic regressions: A review of some unresolved issues. (unpublished; Vancouver: Department of Economics, University of British Columbia)