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Abstract

Virtualization is a well-established technology in the server and desktop space
and has recently been spreading across different embedded industries. Facing
multiple challenges derived by the advent of the Internet of Things (IoT) era,
these industries are driven by an upgrowing interest in consolidating and isolating
multiple environments with mixed-criticality features, to address the complex IoT
application landscape. Even though this is true for majority mid- to high-end
embedded applications, low-end systems still present little to no solutions proposed
so far.

TrustZone technology, designed by ARM to improve security on its processors,
was adopted really well in the embedded market. As such, the research com-
munity became active in exploring other TrustZone’s capacities for isolation, like
an alternative form of system virtualization. The lightweight TrustZone-assisted
hypervisor (LTZVisor), that mainly targets the consolidation of mixed-criticality
systems on the same hardware platform, is one design example that takes advan-
tage of TrustZone technology for ARM application processors. With the recent
introduction of this technology to the new generation of ARM microcontrollers, an
opportunity to expand this breakthrough form of virtualization to low-end devices
arose.

This work proposes the development of the lLTZVisor hypervisor, a refactored
LTZVisor version that aims to provide strong isolation on resource-constrained
devices, while achieving a low-memory footprint, determinism and high efficiency.
The key for this is to implement a minimal, reliable, secure and predictable vir-
tualization layer, supported by the TrustZone technology present on the newest
generation of ARM microcontrollers (Cortex-M23/33).
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Resumo

Virtualização é uma tecnologia já bem estabelecida no âmbito de servidores e
computadores pessoais que recentemente tem vindo a espalhar-se através de várias
indústrias de sistemas embebidos. Face aos desafios provenientes do surgimento
da era Internet of Things (IoT), estas indústrias são guiadas pelo crescimento
do interesse em consolidar e isolar múltiplos sistemas com diferentes níveis de
criticidade, para atender ao atual e complexo cenário aplicativo IoT. Apesar de
isto se aplicar à maioria de aplicações embebidas de média e alta gama, sistemas
de baixa gama apresentam-se ainda com poucas soluções propostas.

A tecnologia TrustZone, desenvolvida pela ARM de forma a melhorar a segurança
nos seus processadores, foi adoptada muito bem pelo mercado dos sistemas em-
bebidos. Como tal, a comunidade científica começou a explorar outras aplicações
da tecnologia TrustZone para isolamento, como uma forma alternativa de virtu-
alização de sistemas. O "lightweight TrustZone-assisted hypervisor (LTZVisor)",
que tem sobretudo como fim a consolidação de sistemas de criticidade mista na
mesma plataforma de hardware, é um exemplo que tira vantagem da tecnologia
TrustZone para os processadores ARM de alta gama. Com a recente introdução
desta tecnologia para a nova geração de microcontroladores ARM, surgiu uma
oportunidade para expandir esta forma inovadora de virtualização para disposi-
tivos de baixa gama.

Este trabalho propõe o desenvolvimento do hipervisor lLTZVisor, uma versão
reestruturada do LTZVisor que visa em proporcionar um forte isolamento em dis-
positivos com recursos restritos, simultâneamente atingindo um baixo footprint de
memória, determinismo e alta eficiência. A chave para isto está na implementação
de uma camada de virtualização mínima, fiável, segura e previsível, potencializada
pela tecnologia TrustZone presente na mais recente geração de microcontroladores
ARM (Cortex-M23/33).
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1. Introduction

The embedded domain started recently following the computing industry, in which
system virtualization is nowadays a mainstream tool, as indicated by billion-dollar
Initial Public Offerings (IPOs) and sales of startup companies for hundreds of mil-
lions [Hei08]. Despite that some years ago adopting virtualization techniques in
Embedded Systems (ESs) seemed to be both a distant and unnecessary reality
[AH10], the rise of computational power of these ESs and consequentially, the
demand for newer and modern functionalities, proved wrong. It is then assumed
that modern ESs are increasingly taking on characteristics of general-purpose sys-
tems [Hei08]. For example, mobile phones and consumer electronics products are
becoming very sophisticated, in contrast to former days, where most ESs just had
simple functionalities and were providing only a few services [KYK+08].

Since new services are being added to ESs and the functionalities are becoming
rich year after year [KYK+08], while simultaneously its usage in our daily lives is
seriously increasing, attackers will try to take advantage of any weak link in their
security [FA16] in order to compromise the system. A security breach thus can
result in physical side effects, including property damage, personal injury, and even
death, due to the direct interaction of an embedded device with the physical world.
Backing out financial transactions can repair some enterprise security breaches,
but reversing a car crash is not possible [Koo04, FMR11]. This is where security
shows as a new and emerging area of research on the ESs field, in which not
too long ago its devices were considered secure and out of reach of attacks, as
opposed to general purpose digital systems which were prone to various types of
attacks [FA16]. The situation then turned upside down after several incidents
related to ESs were reported, and consequently ESs security gained importance
in 1990s. Since then, embedded devices could be subjected to remote attacks, a
result of the emergence of networked ESs and the source of most security breaches
[FA16, PW08]. In addition, many of the inherent characteristics of ESs have direct
impact on security-related issues [PW08]. These characteristics are directly tied
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2 Chapter 1. Introduction

to the following vulnerabilities:

• Limited Resources - These limitations provide an avenue of attack that
can easily cause a Denial of Service (DoS) attack by consuming any of these
resources, e.g. with the intuition of seeking to drain the battery (if device
is battery powered) to then cause system failure [FA16, Koo04, FMR11,
PW08].

• Timing Deadlines - By attacking an embedded device aiming to disrupt
system timing, just a matter of a fraction of seconds could cause a deadline
miss and a loss of control loop stability, thus resulting on property or even
life loss [FA16, Koo04].

This trend attracted the industry’s and academia’s attention in recent years to
develop and present a new variety of different solutions to address these security
problems [PW08].

Succeeding the technological advance, multi-core devices started being developed,
justified by the requirements of low-power and multi-tasking from systems that
make use of new and demanding functionalities like networking, communications,
signal processing, multimedia and others. These type of devices emerged in the
past two decades, and are technically called Multiprocessor System-on-Chips (MP-
SoCs). They use multiple Central Processing Units (CPUs) along with other hard-
ware subsystems, which is basically a Very Large Scale Integration (VLSI) system
that incorporates most or all the components necessary for an application, a unique
branch of evolution in computer architecture [WJM08]. This multi-processed plat-
forms trend is being increasingly adopted in ESs and becoming each more a viable
choice to implement. Embedded developers are for this reason forced to change
the way they design their systems, since the use of multi-core processors and
virtualization techniques bring several key advantages [AH10].

Virtualization is a technique that was first adopted on general-purpose systems,
and only recently became popular in the ESs space. Traditionally, ESs were char-
acterized by simple functionality, a single purpose, no or very simple user interface,
and no or very simple communication channels. Although, modern ESs feature a
wealth of functionality. Being that advanced and offering various relevant features,
it is understandable the attraction of virtualization in the ESs context [Hei08],
since it is a great solution that allows the consolidation of different workloads
on the same platform, fitting practically and efficiently on recent sophisticated
embedded devices. For instance, applications of the Internet of Things (IoT)



Chapter 1. Introduction 3

industry, which typically communicate over closed industrial networks, are con-
nected to the Internet and contain code from multiple developers. Thus, effort not
only must be done in order to guarantee the classic hard timing requirements of
critical control tasks, but also to ensure the integrity of the multiple tasks related
to maintenance and configuration updates. Problems that motivate the creation
of execution environments such as the IIoTEED [PGP+17], a way of guarantee-
ing reliability, security and predictability to modern smart sensor nodes, which
contain environments of mixed-criticality.

1.1 Problem Statement

Nowadays, virtualization in ESs presents as a solution for the next-generation
embedded devices, allowing concurrent existence and operation of multiple Oper-
ating Systems (OSs) on the same hardware platform, despite its several differences
and limitations implied by embedded devices, in comparison to general-purpose
systems and enterprise servers [Hei08]. Also, software complexity dramatically
increased due to growing functionality of the embedded devices. That is why it is
very common to run general-purpose applications on ESs as well as to use applica-
tions written by developers that have little or no acknowledge at all about the ESs
constraints, creating a demand for high-level application-oriented operating sys-
tems with commodity Application Programming Interfaces (APIs) [AH10, Hei08].
Nevertheless, embedded devices are still real-time systems and have concerns on
energy consumption, memory usage and factoring cost. At the same time, they
are increasingly used in mission- and life-critical scenarios due to their ubiquity, in
a degree that is becoming hard to imagine living without them. So, it is possible
to say that virtualization could bring advantages by increasing modern embedded
devices’ safety, reliability and security, which represent the highest and growing
modern ESs’ requirements [AH10, Hei08].

Furthermore, virtualization technology stood as a major assist to address recent
demands on embedded devices, by providing a solid infrastructure to combine
uneven real-time characteristics with general-purpose applications, allowing the
co-existence and execution of a Real-Time Operating System (RTOS) and Gen-
eral Purpose Operating System (GPOS) on the same hardware platform. Not
only this addresses the conflicting requirements of high-level APIs for application
programming and real-time constraints, but it is also a way to save engineering
cost and development time, since GPOSes already provide highly abstracted APIs
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and software resources such as middleware, network applications and development
tools [KYK+08, Hei08, Hei07]. Therefore, if the RTOS is able to meet its tim-
ing deadlines, providing real-time functionality to the device, the application OS
can provide the required commodity APIs and high-level functionality suitable for
application programming [Hei08]. Simultaneously, this ability to run concurrent
OSes on a single processor core can reduce the bill of materials, especially for
lower-end devices [Hei07].

Security presents as another strong motivation towards virtualization adoption.
As said previously, the likelihood of an application OS being compromised by an
attacker increased dramatically. By recurring to virtualization technology, dam-
age can be minimized by running such an OS in a Virtual Machine (VM) which
limits access to the rest of the system [Hei08]. This is done by providing strong
isolation between guest OSes (or VMs), running under a Virtual Machine Mon-
itor (VMM) (or hypervisor), assuring the availability of the device even when a
guest OS fails, since any compromised OS cannot be propagated and interfere with
other OS domains. User attacks will only be able to cause damages at the user
OS, thus keeping the RTOS and specific components safe [HSH+08, Hei07, AH10].
With virtualization, the high-level OS is de-privileged and unable to interfere with
data belonging to other subsytems, because each subsystem is encapsulated into
a VM. Hence, virtualization can be used to enhance security [Hei07]. Moreover,
ARM TrustZone [ARM09], an hardware security extension introduced to ARM
processors, is a technology centered around the concept of separating the system
execution into the secure and non-secure worlds. Being ARM processors highly
adopted in the embedded market, TrustZone became a very hot topic because al-
lowed manufacturers to improve the security of their products. As such, research
community started being active in exploring ways to leverage TrustZone for isola-
tion, including the use of TrustZone to implement an alternative form of system
virtualization [SHT10, PPG+17c] which combines both the topics discussed.

As multi-core chips proliferate, as the incremental cost of a core is dropping dra-
matically and as two lower-performance cores are likely to have lower average
power consumption than a single higher-perfomance one, virtualization techniques,
which can be easily migrated from a single-core architecture, will suit even better
a platform incorporating this multi-core architecture [Hei08]. Efficiently manag-
ing power consumption and workload balancing are emphasizing characteristics
that can be explored by multiprocessing configurations like Asymmetric Multi-
processing (AMP) and Symmetric Multiprocessing (SMP). In a real hypervisor
application, the former configuration would dictate that each core had its own
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separate OS and thus the responsibility for scheduling its own tasks. On the
other hand, the latter configuration could mean that a guest OS was allowed to be
mapped onto multiple cores, enabling load balancing across the processors [AH10].
This is a great example where a hypervisor could dynamically add cores to an ap-
plication domain which requires extra processor power, or could manage power
consumption by removing processors from domains and shutting down idle cores
[Hei08].

Summing up, virtualization presents as an essential technology to the actual em-
bedded enterprise world, mainly by granting reduction of costs due to its encour-
ageable to use inherent advantages [AH10].

1.1.1 Goals

Several virtualization solutions have been studied to address recent demands of
modern embedded devices to consolidate on the same platform uneven heteroge-
neous environments with different requirements. Developing a virtualization layer
in order to combine mixed-criticality environments is the approach used by some
hypervisors [PPG+17c, KYK+08, HSH+08, SHT10, KLJ+13]. However, these ex-
isting solutions focus on high-end platforms and depend on hardware features
which typically are not available on Microcontroller Units (MCUs).

The in-house developed lightweight TrustZone-assisted hypervisor [PPG+17c] (LTZ-
Visor) is one of the solutions stated previously. This open-source hypervisor
exploits the ARM TrustZone security extensions [ARM09] to implement an in-
frastructure that is capable of consolidating mixed-criticality systems. However,
low-end devices are not supported. The main goal of this thesis is to develop
an hypervisor for the new-generation of low-end ARM devices (Cortex-M23/33),
which contain a similar version of the TrustZone security extension exploited by
LTZVisor. Therefore, this thesis aims to benefit from LTZVisor’s design ideas by
creating a completely re-factored version of the LTZVisor. A virtualization layer
that borrows the LTZVisor’s design principles but that targets instead the mod-
ern low-end ARM processors family, the low-end lightweight TrustZone-assisted
hypervisor (lLTZVisor).

From a high-level perspective, modern ARM MCUs contain a similar version of
the TrustZone security extensions present on other higher-end ARM processors.
However, the two versions present different underlying mechanisms, which makes
it impossible to directly apply the same type of assisted virtualization to every
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ARM MCU processor. This means that the lLTZVisor hypervisor will face several
key challenges in order to shift to a TrustZone-assisted virtualization version for
MCUs, along with coping with real-time determinism and the typical size and
timing characteristic constraints of the low-end devices.

lLTZVisor aims to bring virtualization for the newer ARM microcontroller plat-
forms with single or multi-core processors, and to prove that these devices can
also retrieve advantages as [AH10]:

• Allow two OSes (RTOS + application OS) to run on a single platform;

• Improve security by isolating the VMs, and;

• Increase system flexibility.

Finally, this thesis has the intent to prove whether or not virtualization could be
adopted in the enterprise market of microcontrollers and IoT devices. And, most
importantly, to start a discussion about the exploitation of TrustZone technology
on low-end ARM devices aiming virtualization, presenting the drawbacks of this
approach, along with its advantages.

1.2 Document Structure

The structure of this remaining document is as described next. Second chapter is
composed by an analysis overview of concepts and ideas of virtualization technol-
ogy, along with the study of some available hypervisor solutions on the market.
Still part of this chapter, is the description of the target CPU’s architecture,
the technology (ARM TrustZone security extensions) supporting the hypervisor
(lLTZVisor) and a description of the LTZVisor, from which it was borrowed the
virtualization technique and its core principles that are fundamental for the work
developed in this thesis. Third chapter presents the research tools and platforms
used on the development of the lLTZVisor hypervisor. Fourth chapter provides
the overview, design and implementation of the lLTZVisor, with details that re-
late from the initial stage design of the project to every implemented detail. Fifth
chapter presents the extensive evaluations performed to the developed hypervi-
sor, accompanied by the results that demonstrate the overall performance that an
application running above the lLTZVisor can reach, along with a deep study of
possible impacts on predictability and determinism. Ending the document, the
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Sixth chapter resumes the developed work of this thesis, and concludes discussing
both future potential improvements to the hypervisor.





2. State of the Art

In this chapter, the theoretical virtualization principles are presented, following
with an overview focused on available embedded hypervisors solutions. Addition-
ally, the recent ARM CPU architecture for microcontrollers and ARM TrustZone
technology is laid out. The subsequent order of topics intends to first introduce
the reader to the groundwork concepts and only then to focus on the recent ARM
technological advances, that potentially allow the practical use of those concepts.

2.1 Virtualization

Virtualization was first introduced in the 1960s by researchers at IBM, where
they made the first ever Virtual Machine (VM), an efficient and isolated duplicate
of a real machine [Hei07], to enable repeated interface access to a mainframe
computer. Since then, virtualization has been a well-covered research topic [Sch14,
OS15]. Nowadays, this technology is a mainstream tool in the server and desktop
space, presenting huge benefits in terms of load balancing, power managing and
service consolidation. In ESs space, virtualization has also the potential to be a
game-changer, thus it is likely to become more widespread in the next few years
[PPG+17a, Hei11].

"Virtualization is a framework or methodology of dividing the resources
of a computer into multiple execution environments, by applying one or
more concepts or technologies such as hardware and software partition-
ing, time-sharing, partial or complete machine simulation, emulation,
quality of service, and many others." [Ami04]

Despite the concept of virtualization being very broad, simply put, virtualization
is a technique that separates a resource or request for a service from the underlying
physical delivery of that service [VMW06, IBM07]. It is a technique that targets
the efficient use of the available computing resources. With the use of it, resources

9
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can be consumed more effectively than conventional bare-metal setups, which
use physical machines for isolating different parts of application infrastructure
[Sch14]. The main advantage is that, if a VM fails, the other ones are kept safe
at a reasonable cost [AH10].

Among many ways in which virtualization can be used and implemented, two of
them really stand out. These two leading software virtualization approaches to
date have been full virtualization and paravirtualization [VMW07, OS15, Sch14].
Both of which differ in terms of trade-offs between flexibility and performance, re-
spectively incurring a higher performance cost and a higher design cost [PPG+17a].

Full Virtualization
This approach allows VMs to run unmodified, not requiring a single kernel adjust-
ment. It maintains the existing investments in operating systems and applications,
together with providing a non-disruptive migration to virtualization environments
[Sch14, VMW07]. A complete look-alike of the real hardware is virtualized to
embrace this no VM modifications policy [OS15].

Para-virtualization
Although requiring special modifications to the VMs’ kernels, as opposing to the
previous approach, this approach targets to optimize for performance in the virtual
environment. It eliminates the need for binary translation of a VM and offers
potential performance advantages for certain workloads. Hardware limitations
and efficiency reasons led to the widespread use of para-virtualization [Sch14,
VMW07, HL10]. One potential downside of this approach is that such modified
VMs cannot ever be migrated back to run on physical hardware [VMW06]. This
approach organizes the access to hardware resources in aid of the VM, rather than
emulating the entire hardware environment in the software [OS15].

2.1.1 Hypervisor

The hypervisor, also known as the Virtual Machine Monitor (VMM), is the basic
software, firmware or hardware which implements virtualization. It provides the
means to run multiple OSes on a single physical machine, each isolated from one
another [AH10], by creating an environment where resources are provided virtu-
ally, either by temporarily mapping them to physical resources, or emulating them
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[HL10]. Its main purpose is to monitor the VMs (which can also be called as do-
mains or guests) running on top of the hypervisor, see Figure 2.1. Fundamentally,
this enables more than one guest machine to utilize the hardware resources of a
single host machine [Sch14, OS15].

VM

VMM

Hardware

Figure 2.1: The Virtual Machine Monitor. Adapted from [PG74].

In order to contribute to making virtualization highly useful in practice, an hy-
pervisor needs to ideally have three fundamental characteristics [Hei07, PG74]:

1. Compatibility - Provide the VMs an identical environment as to the orig-
inal machine, so software that runs on the real machine will run on the
hypervisor and vice-versa;

2. Reliability - Guarantee minor decreases in speed to the VMs running on
the hypervisor, achieving practicability from a performance point of view,
and;

3. Security - Ensure that software cannot break out of the VM by giving total
control of the systems resources do the hypervisor.

Furthermore, para-virtualization supporting hypervisors have to provide extra
APIs, called hypercalls, which generally are more high-level than the hardware
Application Binary Interface (ABI), in order to fit the guest OSes ports [HL10].

Generally, an hypervisor can be classified as either one of two distinct types,
namely: Type 1 - Native or Bare-metal (Figure 2.2a), and; Type 2 - Hosted
(Figure 2.2b) [OS15, AH10].

Native hypervisors (see Figure 2.2a) run directly above the hardware of the host
machine, hence they are also known as hardware level virtualization or bare-metal.
In this scope, the hypervisor itself can be considered as an OS, since this piece of
software is supposed to run on the highest privilege mode and will be in charge of
managing multiple VMs, just like an OS manages different tasks [AH10, OS15].
This approach is used mostly by embedded devices.
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Hypervisor

Hardware
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OS

APP

OS

(a) Native hypervisor.

Hypervisor

Operating System

APP

OS

APP

OS

Hardware

(b) Hosted hypervisor.

Figure 2.2: The two hypervisor types. Adapted from [Web].

On the other hand, hosted hypervisors (see Figure 2.2b) are installed on already ex-
isting OSes and virtualize other OSes that are above them. Thus, it gets commonly
called as an Operating System level virtualization. All the VMs are abstracted
from the host OS. As this hypervisor architecture heavily relies on the host OS for
device support and physical resource management, any problem occurring with
the host will affect the VMs and the hypervisor itself [AH10, OS15].

In both cases the VMs must behave exactly the same as if they were running
on real hardware. Then, the creation of each scenario is up to the hypervisor
and the real hardware of the machine, which will be responsible for dealing with
instruction coming from the VM [AH10].

2.1.2 Embedded Hypervisors

Within the scope of this thesis, it is vital to understand which are the funda-
mental approaches applied to embedded devices’ dedicated hypervisors, so that
the lLTZVisor hypervisor is able to follow certain design characteristics that were
already studied and discussed.

This variation on the paradigm (of hypervisors), caused by the ubiquity of embed-
ded devices and their recent demands [Hei08], brought a change in direction, that
focus more on real-time capabilities, Worst-Case Execution Time (WCET) scenar-
ios and OS heterogeneity [AH10]. Unlike former solutions as seen on enterprise
servers or general-purpose computing.
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After a broad research on the main solutions developed throughout the years, the
following sections will contain some hypervisors that in a certain way or another,
helped on the development of the lLTZVisor hypervisor. Either by containing
similar principles, comparable target architectures and for the most part, by the
main goals.

2.1.2.1 SPUMONE

The Software Processing Unit, Multiplexing ONE into two (SPUMONE) [KYK+08]
is by nomenclature a "Lightweight CPU Virtualization Layer for Embedded Sys-
tems". Its approach is to build an hybrid OS by using existing virtualization
techniques, intending to run a RTOS and a GPOS on a hardware virtualization
layer, with the goal of providing a system capable of using both real-time sub-
systems and multimedia subsystems. Essentially, it was developed assuming that
an hybrid OS environment (an approach that tries to take advantage of the com-
bination of two OSes with different characteristics) is a solution to the increased
growth of engineering cost of ESs’ software associated to recent demands of ser-
vices added to embedded devices, by providing an infrastructure that enables the
re-usability of different OSes’ software resources [KYK+08].

SPUMONE strictly follows guidelines that meet the necessary requirements for an
hybrid OS platform [KYK+08]:

1. Minimal guest OS code modification - This requirement follows the idea
that as few code modifications to guest OSes are made, the most easily will
be to go along with up-to-date kernel versions, hence reducing engineering
costs.

2. Lightweight virtualization layer - The virtualization layer must be kept
lightweight, in order to minimize the performance degradation and prevent
the increase of the worst case response time of the guest OSes. Additionally,
software is prone to bugs as it grows large, and by keeping the virtualization
layer lightweight, reliability increases.

3. Independently reboot OSes - This concerns system availability. By iso-
lating each guest OS independently, one would be able to provide service
continuously even if the other one encountered a fatal error, which would
result on its reboot but without jeopardizing the other guest OSes. In that
case, the OS that encountered a fatal error should be able to reboot indepen-
dently and the availability of the whole system would not be compromised.
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Figure 1. The overview of SPUMONE

OS independently, other OSes can provide service continu-
ously and the availability of the whole system is not com-
promised.

Majority of the existing hybrid operating system envi-
ronments for embedded system runs general purpose OS as
a task in the RTOS. This requires quite a lot of code mod-
ifications to the general purpose OS. This complicates re-
placing the guest OS. There are also lots of dependencies
between the RTOS and the general purpose OS. This makes
it difficult to reboot guest OS independently.

4 Our approach

We have built a hybrid operating system environment
using existing virtualization techniques. We consider that
hybrid operating system environment is available solution
to the engineering cost problem since it makes it possible
to reuse software resources of multiple OSes. By running
a RTOS and a general purpose OS on a hardware virtual-
ization layer, the system will be able to use with real-time
subsystems and multimedia subsystems.

However, existing virtual machine monitors(VMM) like
Xen[1] are designed for use in the server and the desktop
environments. Since these VMMs are not designed to run a
RTOS as a guest OS, it is difficult to guarantee a fixed worst
case execution time for the guest RTOS. We therefore pro-
pose a light weight CPU virtualization layer, SPUMONE.

SPUMONE(Software Processing Unit, Multiplexing
ONE into two) virtualizes a single real CPU and provides
multiple VCPU to its guest OS. It is possible to run differ-
ent guest OS on each VCPU provided by SPUMONE. An
overview of SPUMONE is shown in Figure 1.

To satisfy the second requirement mentioned in Section
3, SPUMONE virtualizes only the CPU. This is to make
the hardware virtualization layer as light weight as possible.
It does not share or virtualize any other hardware devices
than the CPU. SPUMONE assigns them to one of the guest
OSes. This minimizes the virtualization layer and prevents
degradation of the worst case response time of the guest
RTOS. This also helps to guarantee a worst case execution

time for the guest RTOS.
SPUMONE runs all of the guest OS in privileged mode

and allows the guest OSes to execute most privileged in-
structions. This minimizes the engineering cost to modify-
ing from the source code of the guest OSes. By minimizing
the emulation overhead for privileged instructions, perfor-
mance of the guest OS will decrease only minimally[7]. In
addition, there is no need to replace almost of the privileged
instructions in the guest OS by the APIs provided by the
virtualization layer.

Moreover, SPUMONE provides a function to reboot the
guest OSes independently from other parts of the system.
The existing hybrid operating systems like RTLinux and
Wombat have lot of dependencies between the RTOS and
the general purpose OS. Therefor it is impossible to reboot
one of the OSes independently from other OSes.

5 Implementation

We implemented SPUMONE on the SH-4A CPU[9].
The system was constructed with µ ITRON[8] as the guest
RTOS and Linux as the guest general purpose OS. The prin-
cipal functions of SPUMONE are booting and rebooting of
the guest OSes, scheduling the guest OSes and handling of
hardware interrupts. In this section, we explain the imple-
mentation of each function and the required modifications
needed to the guest OSes for them to be able to run on
SPUMONE.

5.1 Boot sequence of the Guest OSes

In the boot sequence of SPUMONE, the images of each
guest OS are relocated to an appropriate memory region.
SPUMONE also sets the execution start point of the VCPU
to the entry point of the guest OS. After relocation of all
of the guest OSes and initialization of all of the VCPUs,
SPUMONE starts execution of the guest OS with the high-
est priority. Reboot of a guest OS is achieved by reinitializ-
ing the VCPU that is running.

5.2 Guest OS scheduling

SPUMONE uses fixed-priority scheduling to execute the
guest OSes. To make the worst execution time of the RTOS
predictable , the RTOS is run on high priority where as the
general purpose OS is run on low priority. The low prior-
ity general purpose OS is modified not to preempt the ex-
ecution of the high priority RTOS. Details of the required
modifications are described in 5.5.

When the higher priority guest OS executes a virtual-
ized SLEEP instruction and transfers into the idle state,
SPUMONE switches the execution from the guest OS to
the lower priority guest OS. This context switch is achieved

146146146

Figure 2.3: The overview of SPUMONE. Reproduced from [KYK+08].

SPUMONE design approach is to virtualize a single real CPU so it provides multi-
ple Virtual Central Processing Unit (vCPU) to its guests, as shown in Figure 2.3.
Moreover, SPUMONE assigns every hardware device (except the CPU) to each of
the guest OSes instead of sharing or virtualizing them, in order to comply with
the guidelines presented earlier. This is done in order to minimize the virtualiza-
tion layer and to prevent the degradation of the worst case response time of the
guest RTOS. To minimize the engineering cost due to modifications of the source
code of guest OSes, SPUMONE minimizes the emulation overhead for privileged
instructions by letting the guest OSes run in privilege mode and execute most
privileged instructions. This decreases performance degradation minimally, and
eliminates the need to replace almost all of the privileged instructions in the guest
OS by the virtualization layer APIs. Lastly, SPUMONE supports a feature to
reboot guest OSes independently from other parts of the system, respecting in full
the requirement 3 [KYK+08].

2.1.2.2 Xen on ARM

Xen on ARM [Xen18] was born after the proposal to design a system virtualization
layer for the ARM CPU architecture. It was implemented by porting one of the
most popular open source solutions, the Xen Hypervisor [BDF+03], which initially
only supported x86 architecture.

As efficiency is considered a major concern in embedded virtualization, para-
virtualization was the chosen approach by the team behind Xen on ARM [Xen18].
This means that Binary translation, which is generally used in full virtualiza-
tion approaches, is consequently excluded from the design because of its inherent
resource expensivenesses that a restricted device cannot afford to have. Xen Hy-
pervisor [BDF+03], a publicly available para-virtualization solution, was chosen
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for this port because of its rather simple interface and, mostly, due to its architec-
ture independent common components of VMM such as hypercall interface, VM
scheduling, VM controls, and memory management [HSH+08].

Since initially the Xen Hypervisor [BDF+03] was developed for a x86 CPU archi-
tecture, ARM CPUs are not able to get a direct port because architectures like
x86 feature rich functions designed for desktops and servers, while in comparison,
ARM’s architecture lacks functionality, mostly regarding virtualization capabili-
ties. Nonetheless, the Xen on ARM team was still able to circumvent these issues
and finish the port to ARM architecture. On recent architectures, ARM improved
the virtualization capabilities of its CPUs, which enabled a newer architecture for
Xen on ARM [Xen18]. This virtualization solution became much cleaner, simpler
and fitted the hardware better, unlike initial designs where some additional logic
was required [Xen18].

Fundamentally, Xen on ARM [Xen18] is a lightweight, high-performance and type-
1 open-source hypervisor for ARM processors with the ARMv7-A architecture. It
virtualizes CPU, memory, interrupts and timers, providing each VM with one or
more vCPUs, a fraction of the memory of the system, a virtual interrupt con-
troller and a virtual timer. This hypervisor allows users to adjust and create
several different configurations on the system by privileging certain VMs and as-
sign device’s accesses. For example, it allows users to run a RTOS alongside the
main OS to drive a device that has real-time constraints or even allow to separate
and isolate critical functionalities from less critical ones. Also, although it uses
a para-virtualization approach, no changes are required to the OS kernel of the
VMs, but only a few new drivers are needed to get the paravirtualized frontends
running and to obtain access to devices [HSH+08, Xen18].

2.1.2.3 OKL4 Microvisor

One example of a microkernel-based embedded hypervisor (called microvisor) so-
lution is the OKL4 Microvisor [HL10], an open-source system software platform
developed by the Open Kernel Labs company [Gen]. This hypervisor is of Type-
1 and runs on single- and multi-core platforms based on ARM, x86 and MIPS
processors. The idea behind combining microkernels and hypervisors, which are
both designed at low-level foundations for larger systems and present different
objectives, is to enable building a type of kernel that satisfies both technology’s
objectives. Hence a kernel such as OKL4 is defined as a microvisor [HL10].
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The microvisor model goes along with the goal of supporting virtualization with
the lowest possible overhead, so, its abstractions are designed to model hardware
as closely as possible, for example [HL10]:

• vCPU - The microvisor’s execution abstraction is similar to a VM with one
or more vCPUs, on which the guest OS can schedule activities;

• Memory Management Unit (MMU) - The memory abstraction consists
of a virtual MMU, which the guest OS uses to map virtual to (guest) physical
memory;

• I/O - The I/O abstraction consists of memory-mapped virtual device regis-
ters and virtual interrupts, and;

• Communication - Virtual interrupts (for synchronization) and channels,
functioning as bi-directional FIFOs buffers allocated in user space which are
used to abstract the interaction between guests.

The OKL4 Microvisor [HL10] is designed to support a mixture of real-time and
non-real-time software running on top. It is also designed to support para-virtuali-
zation, since most cores for embedded use do not support full virtualization. Latest
trends suggest that hypervisors are becoming more microkernel-like. The tendency
to move drivers into user-space, as a way to reuse legacy drivers, is one indication.
This is one of the reasons why the team behind OKL4 believes in the combination
of microkernels and hypervisors, because both have concepts that share growing
similarities. OKL4 Microvisor is therefore the convergence point between those two
models that meets the goals of minimal overhead for virtualization (hypervisor)
and minimal size (microkernel) [HL10].

2.1.2.4 TrustZone-assisted Hypervisors

The idea of using TrustZone technology to implement hardware-assisted virtual-
ization solutions for (real-time) embedded systems applications is not new. Frenzel
et al. [FLWH10] pioneered research in this domain by proposing the use of Trust-
Zone for implementing the Nizza secure architecture [HHF+05]. SafeG [SHT10],
SASP [KLJ+13], and LTZVisor [PPG+17c] (detailedly presented on Section 2.2)
are dual-OS solutions which take advantage of TrustZone extensions for virtual-
ization.

SafeG [SHT10] is an open-source solution which allows the consolidation of two
different execution environments: an RTOS such as TOPPERS ASP kernel, and
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a GPOS such as Linux or Android. SASP [KLJ+13] implements a lightweight
virtualization approach which explores TrustZone technology to provide isolation
between a control system and an In-Vehicle Infotainment (IVI) system. LTZVi-
sor [PPG+17c] is an open-source lightweight TrustZone-assisted hypervisor mainly
targeting the consolidation of mixed-criticality systems. While the lack of scala-
bility was the main reason that led several researchers to perceive TrustZone as
an ill-guided virtualization technique for many years, RTZVisor [PPG+17b] and
µRTZVisor [MAC+17] have recently demonstrated how multiple OS instances are
able to coexist, completely isolated from each other, on TrustZone-enabled plat-
forms. All aforementioned works are implemented in Cortex-A processors and
targeting mid- to high-end applications.

2.2 LTZVisor Overview

In the present section, the hypervisor which serves as the basis for this thesis to
rely on is presented, be it regarding its design ideas, principles and architectural
structure, or mainly by the fact of standing out as an hypervisor solution assisted
by the ARM TrustZone technology, just as what this thesis strives for. The LTZVi-
sor [PPG+17c] is the hypervisor at stake, thus, the following sections will contain
information regarding this hypervisor’s ideas and principles, completed by a final
summary to highlight the major key points that will be borrowed to develop the
aimed TrustZone-enabled lightweight hypervisor.

The LTZVisor is an hypervisor solution that carries an overall goal of studying,
evaluating and understanding the usefulness of the exploitation of the ARM Trust-
Zone technology to assist the development of a virtualization layer, pointing out
both the benefits and limitations imposed by the technology used on this con-
text. Despite the idea not being completely new, this solution still bets on leaving
a legacy behind in order to influence future hypervisor solutions that the ARM
TrustZone technology is appropriate to assist implementations of virtualization
layers on embedded devices.

Due to the physical core virtualization into two virtual cores, proportioned by the
TrustZone technology, two separate execution domains can be achieved. These
domains, namely secure and non-secure world, can translate into acting as VMs
running above the underlying virtualization layer. This technology allows the ex-
ecution to switch between worlds during run-time, and every time they occur, the
processor jumps to monitor mode, an extra processor mode added by TrustZone,
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that will serve as a bridge between the VMs. During this mode, the processor
state is always considered secure, thus ideal to preserve the processor state during
a world switch. In order to enter monitor mode, either the instruction Secure
Monitor Call (SMC) must be executed or an exception of the secure world is
configured to be handled on monitor mode.

Additionally, on TrustZone supported processors, some special registers are banked
between the two security processor states, ensuring a strong isolation between
them. Also, other critical processor registers are only visible to the secure world,
while others require access permissions under control of the secure world. Re-
garding security on the memory infrastructure, TrustZone is able to extend it
there by introducing TrustZone Address Space Controller (TZASC) and Trust-
Zone Memory Adapter (TZMA). They respectively enable Dynamic Random Ac-
cess Memory (DRAM) partitioning into different specific memory regions as secure
or non-secure, and similar functionality for off-chip memory devices such as Read
Only Memory (ROM) or Static Random Access Memory (SRAM). Furthermore,
each world is provided with a distinct MMU interface, which will enable each VM
to possess a particular set of virtual memory addresses that translate to physical
addresses. Interrupts may be configured to redirect to a certain world, using the
Generic Interrupt Controller (GIC). By using the TrustZone Protection Controller
(TZPC), system-level devices are able to be dynamically configured as one of the
security states. Finally, at cache-level TrustZone adds an additional tag which
represents the state in which memory was accessed.

2.2.1 Design

The LTZVisor hypervisor [PPG+17c] was designed with three fundamental prin-
ciples in mind. These principles were shaped by its main design idea, which is
the use of the TrustZone technology to assist the development of a virtualization
layer. By exploiting this technology, this hypervisor is able to rely on hardware
support to the max and at the same time mix it with a software part, as well as
privileging the secure execution processor state. The principles are the following:

1. Minimal Implementation - By having TrustZone technology providing
hardware support for virtualization, the code can be minimized, thus reduc-
ing a main cause of attacks exploited by hackers, spaghetti code. Reduction
of the Trusted Computing Base (TCB) is equally procured to hold back
those attacks, by statically configuring each hypervisor component;
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2. Least Privilege - TrustZone technology provides features which enable
de-prioritization of the non-secure CPU execution state, and introduces a
new processor mode which brings a new level of privilege. By exploring
these features, a virtualization layer that guarantees hardware isolation and
different levels of priority between the two environments running on top can
be implemented.

3. Asymmetric Scheduling - Embedded environments do not form an ideal
scenario for virtualization, due to its inherent constraints on resources and
timing for example. So, a different policy must be adopted in order to assure
its requirements are not compromised. By privileging the execution of the
secure environment above the non-secure one, an asymmetric scheduling
policy, real-time characteristics of an RTOS running on the secure VM would
be met.

2.2.1.1 Architecture

LTZVisor [PPG+17c] simply relies on the two security state environments provided
by TrustZone technology in order to implement a virtualization solution. Figure
2.4 illustrates the proposed architecture, in which each VM is directed to one of
the processor states, secure and non-secure. The secure world contains software
with higher priority tasks, typically an RTOS, while the non-secure world contains
software without such requirements, leaning to the GPOS side.

Figure 2.4: LTZVisor general architecture. Reproduced from
[PPG+17c].

The monitor mode, whom provides the highest privileged processor mode, is used
to accommodate LTZVisor. By having the hypervisor to run on this level, control
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of the full platform is received, hardware and software wise. This way the hyper-
visor is able to adequately configure memory, interrupts and devices entrusted to
each VM. In addition, it performs the Virtual Machine Control Block (VMCB)
switches every time during a VM switching operation. During run-time, this
monitor mode is called and the hypervisor transfers the active VM’s state to the
respective VMCB, succeeding a load of the state of the VM about to be executed
to the physical CPU context.

On the secure world side is where the secure VM resides. Since this guest runs on
the secure state of the processor, accesses and modifications to its state itself and
its resources might compromise the hypervisor. Thus, the OSes running on top of
the secure VM must be aware of the underlying virtualization layer. For this case,
an RTOS running on this VM is the ideal scenario, where criticality and timing
requirements are met because of the high privilege of execution provided to the
VM.

On the other hand, the non-secure VM resides on the non-secure world side. In
comparison to the secure VM, this one has the advantage of being completely
isolated from the other software running on the secure world side, hence is able to
be unaware of the underlying hypervisor. Additionally, any attempt to access and
modify state information and resources from the secure world will fail and trigger
an exception fault directed to the hypervisor. Forming the ideal case scenario for
a GPOS to be part of the non-secure VM, running functionalities not so much
time constrained, such as Human-Machine Interfaces (HMIs) and network based
applications.

2.2.2 Implementation Analysis

The following sections will focus on the implementation aspects of the LTZVisor
[PPG+17c]. All the details about the exploitation of the TrustZone technology
are exposed, demonstrating the process behind virtualization of the CPU, how
memory and devices are managed and isolated, how MMU and caches are handled
and showing the procedure behind interrupt management, time isolation and inter-
VM communication.
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2.2.2.1 Virtual CPU

From the LTZVisor’s [PPG+17c] point of view, TrustZone security extension ex-
pands a physical CPU into two virtual ones. Each of them is represented by a
different security state of the processor execution, secure and non-secure. Both of
the states have individual copies of some of the CPU’s registers, which facilitates
a virtualization scenario since part of the support is provided by the TrustZone
hardware itself. Thus, the respective VMCBs of the states do not require saving
and loading every processor’s registers at the occurrence of any partition switching
operation. The non-secure VM is formed by the subsequent registers: 13 General
Purpose Registers (R0-R12), the Stack Pointer (SP), the Link Register (LR) and
the Saved Program Status Register (SPSR) for each of the following modes: Su-
pervisor, System, Abort and Undef. Similarly, secure VM’s VMCB is formed by
the same group of registers, except the SPSR stored is only for System mode. The
remaining registers are not included because they either exclusively belong to one
of the worlds or are already banked between them.

Furthermore, TrustZone states that some system-level registers are able to be
modifiable only from the secure state of processor execution. From the non-secure
state’s side, those registers may be accessed but any attempt to modify them will
be neglected. Registers as the System Control Register (SCTLR) and Auxiliary
Control Register (ACTLR) serve as an example for this situation, they are used
to configure memory, cache, MMU, AXI accesses, and so on. This specification
provides a kind of isolation and security on the system, which benefits the hy-
pervisor because it is the module that is able to initially configure the non-secure
VMCB before booting it. However it sacrifices the possibility of the non-secure
VM to configure those peripherals by itself, otherwise the VM would end in a
stuck position, since it is not able to perform modifications on those registers.

2.2.2.2 Scheduler

In order to overcome scheduling issues present whenever a real-time environment
is virtualized and to still guarantee its characteristics are not compromised, the
LTZVisor [PPG+17c] bets on implementing an asymmetric scheduler approach,
based on a idle scheduling. This policy acts in a way that assures the execution
of the non-secure VM only during the idle periods of the secure VM’s guest OS.
But at the same time, permits the secure VM to preempt execution over the non-
secure one. This is because the hypervisor prioritizes the execution of the secure
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VM, which is intended to host an RTOS that will carry higher scheduling priority
tasks than the non-secure VM’s guest OS. Basically it means that LTZVisor is
not the actual component responsible for triggering the VM scheduler, but the
secure VM’s guest OS itself. Despite this intentional inactivity, it is still the
actual hypervisor running on the highest privilege processor mode that manages
the VMCB switches, assuring at the same time that no kind of violations are
performed.

2.2.2.3 Memory Partition

It is crucial that on a virtualized environment, memory gets adequately config-
ured and segmented to belong to a certain VM. TrustZone-enabled platforms sup-
port the existence of the TZASC, which allows memory partitioning into several
segments and assigning the respective security state to that portion of memory.
Therefore, the LTZVisor [PPG+17c] sees this memory segmentation feature as an
exploitable tool to provide spatial isolation between both VMs. By addressing each
VM to its specific memory segments, configured as either secure or non-secure, the
non-secure VM’s guest OS will at any attempt of accessing a secure memory region
fail and trigger a respective exception fault, which gets immediately handled by
the hypervisor.

Figure 2.5: LTZVisor memory architecture. Reproduced from
[PPG+17c].

Figure 2.5 illustrates the memory setup performed on the Xilinx ZC702 platform
running the hypervisor. Each memory segment contains a particular bit that
identifies whether this memory region is secure or non-secure. The hypervisor
consists of two major memory segments, with the non-secure and secure VMs
represented respectively by (A) and (B). The remaining memory represented by
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(C) is not accessible. The choice of leaving the smallest chunk of memory (ranging
from 0x3C000000 to 0x3FFFFFFF) to the secure VM is endorsed by the fact that
RTOSes, which are the target guests for the secure VM, contain a very small
memory footprint.

2.2.2.4 MMU and Cache Management

Devices which support the TrustZone security extension contain two specific MMUs
for each worlds. With this, any VM can have its unique MMU configuration. As
this resource is banked between the security states of the processor, performing
a VM switch operation is thus facilitated since the TrustZone hardware already
supports copies of the MMU’s registers to represent each of the Page Table Entries
(PTEs) specific to each guest OS running above the hypervisor.

Similarly, at cache level, TrustZone extends them with an additional tag, which
is basically a bit that marks memory accesses whom were made from either the
secure or non-secure processor state of execution. It is the hardware itself that
is responsible on classifying those memory accesses present on the cache tables,
relegating the software application interference regarding this, which is not able to
do so. Thus, with this isolation provided by the TrustZone, cache accesses stay co-
herent between all the VM switches and no additional work needs to be performed
by the LTZVisor, which in turn translates into slight performance advantages of
the hypervisor.

2.2.2.5 Device Partition

In a related way to how TrustZone security extension allows memory partitioning,
devices are able to be configured as either secure or non-secure. This actually
brings the advantage of extending TrustZone security to the devices level, accom-
plishing isolation between the security states of the processor even to this level.

The approach adopted by the LTZVisor hypervisor [PPG+17c] is to explore this
ability to classify devices in order to entrust them directly to the VMs. Along
these lines, by not sharing devices between VMs, a strong isolation can thus be
ensured posteriorly to a configuration of the devices performed during the boot
phase of the hypervisor. The hypervisor assigns the devices to the secure and
non-secure VMs by respectively configuring the devices as secure and non-secure.
This way, it is ensured that accesses to secure devices from the non-secure VM fail
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and will automatically trigger an exception that is immediately handled by the
hypervisor, protecting the state of any device belonging to the secure VM.

2.2.2.6 Interrupt Management

The GIC is a component on ARM processors that support and manage the in-
terrupts of the system. On those devices which include the TrustZone security
extension, the GIC provides additional support for managing both the secure and
non-secure interrupt sources, and at the same time enabling prioritization of se-
cure interrupts above the others. The concept of Fast Interrupt Request (FIQ)
and Interrupt Request (IRQ) is also given support by allowing to redirect them
to one of the different interrupt sources.

The LTZVisor benefits of this configuration for selecting secure sourced interrupts
to the FIQ group, and the remaining non-secure interrupts to the IRQ group.
Initially, the hypervisor uses the GIC to define interrupts as belonging to the secure
and non-secure states through the Interrupt Security Registers set (ICDISRn),
and posteriorly enables the FIQ mechanism of the processor. This assures that
interrupts reserved to the secure VM can be attended without added overhead,
since it is the secure VM’s guest OS responsibility to directly handle the interrupt.
Additionally, secure interrupts are configured as the highest regarding priority of
execution, thus, if an interrupt from the non-secure VM is triggered while the
secure VM’s guest OS executes, its execution flow is not affected, leaving the non-
secure interrupt unattended until the moment the non-secure VM becomes active.
The indicated prioritization is used to prevent DoS attacks that try to affect secure
VM’s behavior, coming from the non-secure VM. The other way around, when a
secure interrupt is triggered while the non-secure VM is active, contrasts with
the aforementioned situation because in this case the execution flow will directly
switch to the hypervisor. At that instant, the hypervisor handles the interrupt
and performs the VM switching process. Fundamentally, from the secure VM’s
perspective, interrupt latency is kept as minimal as possible by minimizing or
removing the hypervisor’s interaction. From the non-secure VM’s perspective,
interrupts are handled as long as its guest OS stays active.

2.2.2.7 Time Management

Typically virtualized systems provide timing services, enabling the guest OSes to
be aware of the passage of time, independently. Such examples of implementing
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temporal isolation include halting the time of a given partition during inactive
times, or using the hypervisor to keep track of time change and updating it once
the partition gets back on track.

In the interest of providing a separate time management for the VMs running
above the hypervisor, the LTZVisor [PPG+17c] reserves one particular timer pe-
ripheral for each of the guest OSes. Since its configuration targets the coexistence
of two OSes and the aforementioned asymmetric scheduling policy, it is crucial
to not only reserve a timer for a VM, but to also configure it as a secure or non-
secure device so a minimum of spatial and time isolation is guaranteed. The Triple
Timer Counters (TTCs) 0 and 1 were chosen to manage the timing structures of
the secure and non-secure VMs, respectively. In the context where an RTOS is
hosted by the secure VM, no ticks would be missed, while at the non-secure VM
hosting a GPOS in a tickless mode, passage of time would still be acquainted, as
noted in the example configuration of this hypervisor.

2.2.2.8 Inter-VM Communication

An important functionality on a virtualized environment is the ability to perform
communication between the VMs. The LTZVisor hypervisor [PPG+17c] opted
to use a standardized approach called VirtIO [Rus08] as a transport abstraction
layer.

Figure 2.6: LTZVisor Inter-VM communication. Reproduced from
[PPG+17c].

LTZVisor takes on the RPMsg API, which stands as a solid groundwork for com-
munication on top of GPOSes and bare-metal approaches, and implements an
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adapted version to mix both of its fundamental characteristics. Figure 2.6 de-
picts the communication architecture. Asynchronous communication is promoted
to deal with the fact that timing requirements of the secure VM must suffer the
least interference, thus, the event and data paths are separated. Technically, event
paths are based on Software Generated Interrupts (SGIs), transmitted by the hy-
pervisor running on monitor mode, similarly to how VM switching processes are
performed, via an SMC instruction. A circular buffer within the shared memory
block, marked on the figure, is used to store the messages in a First-In First-Out
(FIFO) scheme. Then, simply put, when a VM gets back on track and has a
message awaiting, the hypervisor generates a SGI to warn the respective hosted
OS about the arrival of a message, whom will then proceed to access the FIFO
and retrieve the message. This may cause an added overhead during a VM switch-
ing process, but compensates on guaranteeing a low-latency and reliable way to
perform transaction between VMs.

2.2.3 Summary

Having done a top-down inspection of the LTZVisor TrustZone-assisted Hypervi-
sor [PPG+17c] implementation, it is safe to say that ARM’s security extensions
provide an exploitable way to reliably assist on the development of virtualization
techniques. This case features a minimal approach that is based on using the least
amount of software as feasible, while relying on as much hardware as possible, in
order to adequately satisfy typical embedded OSes’ requirements and to induce
the slightest overhead.

Fundamentally, this hypervisor demonstrates that the co-existence between two
differently classified OSes running side by side on embedded real-time platforms is
thus possible. For making the most out of the LTZVisor hypervisor, featuring an
RTOS alongside a GPOS does not only prove nowadays as beneficial for combining
different real-time characteristics on the same hardware platform whilst improving
its wide spectrum of functionalities, but also the best way in which TrustZone’s
features can be embraced to collaborate on the virtualization layer.

In order to create a virtualized environment, two typical characteristics as spatial
and time isolation are demanded. As seen on the previous sections regarding this
hypervisor’s implementation, these characteristics are fulfilled mainly by the use
of TrustZone facilities to partition memory and devices. Additionally, its interrupt
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management support can be perfectly oriented to satisfy the asymmetric schedul-
ing policy. Overall, LTZVisor establishes as a reliable groundwork for a minimal
virtualization layer that maintains real-time characteristics of the system, while
at the same time keeping an acceptable performance for devices whom support
TrustZone security extension.

2.3 ARM Architecture Overview

ARM is a Reduced Instruction Set Computer (RISC) architecture. The most
widely used and popular CPUs in the market now use either the ARMv7 or ARMv8
architectures, two of the latest defined, that are able to satisfy a huge range
of applications. Key benefits of the ARM architecture are implementation size,
security, performance, and lower power consumption [NMB+16, ARM18a].

There are three slightly different profiles for each ARM architecture version [ARM18a,
NMB+16]:

• A-Profile - Used in complex compute application areas, such as servers,
mobile phones and automotive head units;

• R-Profile - Used where real-time response is required. For example, safety
critical applications or those needing a deterministic response, such as med-
ical equipment or vehicle steering, braking and signaling.

• M-Profile - Used for deeply-embedded chips. It is a profile that focus on key
points such as energy efficiency, power consumption and size. For example,
in small sensors, communication modules and smart home products.

The M-profiled ARM architecture represents huge success in the electronics indus-
try, for being used in all ARM Cortex-M processors, the most popular processor
series in this industry. These processors are available in over 3500 microcontrollers
parts from most of the microcontroller vendors [Yiu15].

Over the decades, the ARM architecture has introduced new features to meet the
growing demand for new functionality, better security, higher performance, and the
needs of new and emerging markets [ARM18a]. Following in the next section, the
focused topic will be to detail in-depth the latest M-profiled architecture version,
ARMv8-M, which is the only one offering support of ARM TrustZone security
extensions to microcontrollers.
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Figure 2.7: Separation of sub-profiles in ARMv8-M architecture.
Adapted from [Yiu16].

2.3.1 ARMv8-M Architecture

The ARMv8-M architecture stands as a next-generation architecture for the ARM-
v8-M processor family of real-time deterministic embedded processors. It was built
based on the success of the existing ARMv6-M and ARMv7-M architectures. This
architecture remains as a 32-bit architecture and is highly compatible with the
previous existing solutions, in order to enable easy migration of software within
Cortex-M processor family. Security and productivity are the newest principles
for every embedded solution using ARMv8-M architecture [ARM16b, Yiu15].

This architecture is divided into two sub-profiles: ARMv8-M Baseline, and; ARM-
v8-M Mainline (or "with Main Extension"). They respectively correspond with
multiple similarities to the ARMv6-M and ARMv7-M architectures (see Figure
2.7), containing some significant enhancements at the instruction set and system
features level. The Mainline version provides full features of the ARMv8-M ar-
chitecture so it is ideally used for mainstream microcontroller products and high
performance ESs, due to its richer instruction set to address the demands in com-
plex data processing systems. While the Baseline version is more constrained than
the other, it still is an adequate solution for the majority of embedded applications
where security and low power consumption are key requirements. Application code
can be easily migrated between these sub-profiles, because the ARMv8-M Baseline
architecture is a subset of the ARMv8-M Mainline architecture [ARM16b, Yiu16].

Enhancements to enable better software design are included in this new ARM
processor architecture, where the inclusion of the optional ARM TrustZone secu-
rity extensions is the most significant one. This extension can also be referred
to as ARM TrustZone technology for the ARMv8-M architecture, or simply for
microcontrollers [ARM16b].
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2.3.2 TrustZone: ARM Security Extensions

ARM TrustZone technology was created to enable a level of system-wide secu-
rity by integrating protective measures into the ARM processors, bus fabrics and
system peripheral Intellectual Properties (IPs). It allows a diverse range of se-
cure system architectures to be implemented with minimal impact on the cost of
the devices, by providing a framework that combines both integrated hardware
and software components of the security extension [ARM09]. In other words,
TrustZone technology is a tool that permits the addition of another dimension of
security control, called secure world, allowing multiple security domains within a
single processor system [ARM16b].

Focus on the establishment of a strong foundation for attaching security solutions
to a platform is what TrustZone is all about. It was developed fundamentally
to enable the construction of a programmable environment that allows the confi-
dentiality and integrity of almost any asset to be protected from specific attacks
[ARM16b].

Technically, the security of TrustZone is based on the idea of partitioning all of
the platform’s hardware and software into two worlds: secure world and non-
secure/normal world. A barrier is established in order to prevent normal world’s
components from interfering with secure world’s resources. Although, the inverse
is not restricted. When running, the processor can either enter on one of those
two worlds, and thus, may or may not access to certain resources. This gives
both worlds the illusion that they own the processor [NMB+16]. Concretely, the
idea behind the separation of the CPU between these two worlds is to be hard-
ware enforced and to grant them uneven privileges, preventing non-secure software
from interfering with secure world’s resources. With this, a new level for offering
protection to critical applications gets unlocked, since this technology opens op-
portunities to be able to secure applications and its data by constraining other
(vulnerable) applications to the non-secure world’s boundaries [PS18].

On ARM processors with A-profile architecture, TrustZone behaves in a way that
what determines the world in which the current state of the processor execution
lies on is a value of a new 33rd processor bit, or simply the non-secure bit. Addi-
tionally, an extra privileged mode is added to the architecture, the monitor mode.
And, in order to enter this mode, a new privileged instruction - SMC - must be
explicitly called. Hardware isolation is successfully accomplished by maintaining
copies of some special registers banked between the two worlds. As for extending



30 Chapter 2. State of the Art

Secure 
OS

Secure 
Application

Non-Secure 
OS

Non-Secure
Application

Normal World Secure World

Secure Monitor

SM
C

 

Figure 2.8: TrustZone on ARM Cortex-A. Adapted from [NMB+16].

this isolation to the memory infrastructure and peripherals, TrustZone adds the
TZASC and the TZPC, whom allow memory segments and devices to be config-
ured as either secure or non-secure. Moreover, the GIC is extended to support
interrupts with different source types, enabling to redirect them to the secure
and non-secure worlds. Figure 2.8 depicts the general architecture of a standard
scenario on a TrustZone-enabled Cortex-A processor, demonstrating the organiza-
tion of both worlds and how they are bridged using the secure monitor’s software
[PS18].

The introduction of this technology was well accepted by the developer commu-
nity, and what started as a security extension only for the high and mid-end
ARM processors ended up being adapted to cover the new generation of ARM
microcontrollers (Cortex-M), with slight differences [PS18].

2.3.2.1 TrustZone for Microcontrollers

The design of TrustZone for ARMv8-M architecture is optimized for microcon-
trollers and low-power SoC applications. As already stated, these kind of applica-
tions require important factors such as low power, low memory and low latency.
Which is why this technology is optimized to meet these requirements and has
been designed from scratch instead of reusing the existing TrustZone technology
for ARM Cortex-A processors [Yiu16].

Unlike TrustZone for application processors, this version of the security extension
does not provide a "monitor mode". A design choice made to improve interrupt
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latency, giving no need for the processor to go through an additional transition
mode. Other noticeable difference relates to how the security state is determined.
While on application processors this state is determined by a bit on a register
(Secure Configuration Register), on ARMv8-M the process security state is de-
termined by whether the code being executed resides in an attributed secure or
non-secure memory region. Meaning that non-secure applications can directly call
secure applications (running in thread or handler mode), and vice-versa [NMB+16].

Similarly to the Cortex-A TrustZone, additional security states are provided to
this version: (i) secure world, and; (ii) normal world. TrustZone for Cortex-M
processors follows also the principles that secure world may access all the resources,
while normal world can only interact with those of which have been allocated
to. As ARM Cortex-M architectures have two different processor modes, this
TrustZone extension inserts security states for each. These states are orthogonal
to Thread and Handler modes [NMB+16], as exemplified on Figure 2.9.
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Figure 2.9: TrustZone on ARM Cortex-M. Adapted from [NMB+16].

Figure 2.9 demonstrates that secure and non-secure (normal) software can directly
interact with each other either by function calls or exception handling. Functions
residing in secure memory can be called from the non-secure processor state of
execution, provided that the entry point for this function resides in Non-Secure
Callable (NSC) memory and its first instruction is a Secure Gateway (SG) instruc-
tion. The other way around, when the processor running code on secure state
intends to call a function residing on non-secure memory, is possible by using the
dedicated branch instructions BXNS and BLXNS that will cause a transition from
the secure to the non-secure state. As exceptions can be specified as either secure
or non-secure, the security state is also prone to switch at any moment whenever
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an exception is handled. If an exception or interrupt of a different state than the
one that the processor is running occurs, then the processor would switch states
to execute the interrupt handler before returning back to the initial state. Since
register banks are shared between the two worlds, the hardware is prepared to save
all registers and clear them before transition states, avoiding secure information
leakage [NMB+16].

Non-secure exceptions can be de-prioritized during the configuration of the system,
using the register committed to control interrupts. It is a simple feature that allows
for the Secure software to take priority over the system, splitting both worlds’
priorities [ARM17]. Furthermore, each general interrupt is able to be configured
to redirect a particular world, the outcome of the TrustZone extensions to the
Nested Vectored Interrupt Controller (NVIC). As this architecture is prepared to
handle interrupts immediately, by default, no distinction is made whether it is
non-secure or secure sourced. By this means, when a non-secure exception takes
place during processor execution of the secure world, the information from the
registers is pushed onto the stack and posteriorly erased automatically, in order
to prevent information leakage [PS18].

Memory Partitioning
One of the biggest features present in this security extension is memory parti-
tioning. In this ARMv8-M architecture, memory space is divided into Secure and
Non-Secure sections, where the barrier of memory and peripheral access is built,
and software code’s security type is defined. For this, ARM introduced two similar
mechanisms [NMB+16]:

• Implementation Defined Attribution Unit (IDAU) - An hardware
unit closely coupled to the processor designed by the platform’s develop-
ers. It is the primary unit responsible for memory partitioning. Useful for
defining a fixed memory map [ARM16c];

• Secure Attribution Unit (SAU) - A programmable unit inside the pro-
cessor. With accessibility only in Secure state, it can be used to override the
settings of memory areas defined by the IDAU.

Depicted on Figure 2.10 are both of the memory attribution units. By default,
ARMv8-M processors support SAU, but the same cannot be said for the IDAU,
which is optional. But, whenever they are both present on the same chip, the
processor follows a similar work-flow as the one present on Figure 2.10. If a certain
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Figure 2.10: TrustZone SAU and IDAU’s work-flow. Adapted from
[ARM16c].

memory address that the processor tries to access belongs to a region defined with
a particular attribution unit, then the respective unit checks whether or not that
address belongs to a secure or non-secure memory region. If the address belongs
to none of the regions defined by the attribution units, by default its considered
as secure [ARM16c].

Banked Resources
TrustZone extends the internal resources across the secure and non-secure states.
Inside the processor core, the banked registers are the following [ARM16c]:

• Stack Pointers - Separate SPs are dedicated for each secure state of the
processor;

• Interrupt Mask Registers - PRIMASK, FAULTMASK and BASEPRI
(the last one only for ARMv8-M Mainline Extension Architecture) are avail-
able for each state to perform masking of interrupts or disabling and enabling
an interrupt group of a specific priority level;

• CONTROL Register - First two bits of this register are banked to specify
each state’s active SP and the current privilege level;

Beyond that, some of the internal peripherals such as the Memory Protection Unit
(MPU) and the SysTick timer are also banked. They can work independently, as
if they are duplicated. Additionally, a few of the System Control Block (SCB) reg-
isters are exclusive to each states, as the Vector Table Offset Register (VTOR) for
example. This grants that both applications running on different security states
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may have separate vector tables. Regarding accesses to the overall banked regis-
ters, the processor automatically manages to access them based on the ongoing
security state. However, software running on the secure state of the processor
may access the non-secure versions of the aforementioned resources using alias
addresses [ARM16c].

Exception Return Mechanism
On ARMv8-M architectures which include the TrustZone security extensions, its
exception return mechanism gets an added functionality. As explained previously
on Section 2.3.2.1, security state of the processor might change at the occurrence of
an exception originated from the opposing security state. Whenever an exception
handler is entered, the processor automatically sets a special value on the LR. This
value is known as EXC_RETURN and contains the information about which state
to return and which registers need to be unstacked after handling the exception
[ARM16a].

ES-SPSelModeFtypeDCRSS0xFF -

012345631-24 23-7

Figure 2.11: EXC_RETURN bit assignments. Adapted from
[ARM16a].

Figure 2.11 depicts the EXC_RETURN register at bit-level. The most significant
byte is part of a prefix, which necessarily always contains the value 0xFF. Grey-
ed out bits are reserved, and the rest of the bits contain the crucial info for the
moment when the exception is handled. Detailedly, they are: (i) Bit 6 (S) whom
indicates which of the stacks (secure or non-secure) contain the stack frame to
restore; (ii) Bit 5 (DCRS) that specifies the stacking rules; (iii) Bit 4 (Ftype) that
selects if the stack frame contains floating-point registers; (iv) Bit 3 (Mode) which
selects the processor mode to return to; (v) Bit 2 (SPsel) that indicates the active
stack pointer type, and; (vi) Bit 0 (ES) that tells whether the exception is part of
the secure or non-secure world.

2.3.2.2 TrustZone-assisted Virtualization

Despite the fact that TrustZone was introduced to aid developers on security
purposes, it was discovered that this technology is able to provide an hardware-
based form of virtualization, a domain that was first researched by Frenzel et al.
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[FLWH10]. These hardware extensions, which support a dual world execution and
features such as memory and device partitioning, facilitate to contain the same
number of VMs as the number of the states supported by the processor, while at
the same time guaranteeing time and spatial isolation between the environments
[POP+14].

With this, a scheme whereas the non-secure software runs in a bounded location
like a VM that is completely managed and controlled by an hypervisor within
the secure world range, is conceivable. Some TrustZone-assisted virtualization so-
lutions of ARM’s applicational processors for dual-guest [PPG+17c, SHT10] and
multi-guest [PPG+17a] environments follow the particular configuration where the
hypervisor is placed running on the added monitor mode, while the secure and
non-secure VM’s guest OSes run in supervisor mode of their states respectively.
This is justified by the fact that monitor mode provides a full view of the pro-
cessor, thus, by establishing the VMM there, the non-secure VM’s guest OS will
not require any modification. The non-secure VM will run less privileged than the
hypervisor, therefore it stays completely unaware of the TrustZone extensions and
what happens on the secure side. Moreover, TrustZone allows the VM switching
process to be sped up, due to the overall number of the processor’s banked registers
among the two security states [POP+14]. Typically, a TrustZone-assisted hyper-
visor will follow a dual-OS approach since the number of VMs perfectly match the
number of security states supported by the CPU.

TrustZone-M-assisted Virtualization Challenges
Given the previsouly detailed differences between TrustZone on Cortex-A and
Cortex-M platforms, the existing TrustZone-assisted hypervisors are not directly
amenable to modern Cortex-M processors. To make TrustZone-M-assisted virtu-
alization a reality, several key challenges need to be addressed:

• TrustZone technology for ARMv8-M excludes the non-secure bit. On ARM
processors with ARMv7/8-A architectures the non-secure bit is used to de-
termine in each world the processor is executing;

• TrustZone-M excludes also the monitor mode. The monitor mode is the
CPU mode used to run the hypervisor component of the existing TrustZone-
assisted virtualization infrastructures.

• The Instruction Set Architecture (ISA) of TrustZone-M enabled MCUs ex-
cludes the SMC instruction. The SMC instruction is widely used in existing
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TrustZone-assisted hypervisors to explicitly transition between VMs;

• The TrustZone-M specification does not include a TZASC neither a TZPC.
Instead, SAU and IDAU units exist to replace them. The TZASC and TZPC
are fundamental security controllers useful for memory and device partition
in existing TrustZone-assisted hypervisors, and;

• The TrustZone-enabled GIC enables a clear separation and segregation of
IRQs and FIQs as non-secure and secure interrupt sources, respectively. The
TrustZone-enabled NVIC does not provide FIQ interrupts.

2.4 Discussion

In essence, this chapter agglomerates all the crucial elements necessary to decipher
any doubt about whether or not virtualization can be used in ESs, and most
importantly, in the range of devices with the lowest power and cost, the target
type of processors for this thesis.

This thesis considers that recent ESs are capable of supporting multi-processed
environments and at the same time providing security improvements. As virtu-
alization had lately become a common solution in the embedded world, mainly
on the implementation of hypervisors, several design forms were studied to signif-
icantly improve its use for the (restricted) embedded devices’ own end, and also
to reduce as many drawbacks as possible. Security improvements are the conse-
quence of the use of virtualization, due to the isolation between VMMs it should
provide.

Some example virtualization solutions were presented on section 2.1.2, those of
which share similar key points and design objectives with the lLTZVisor hyper-
visor. Some interesting resemblances with lLTZVisor are found on SPUMONE
[KYK+08] regarding its guidelines of minimal guest OS code modification, a
lightweight virtualization layer and the goal to run a RTOS and a GPOS on
the same platform, which motivated exploration interest. Besides, Xen on ARM
[Xen18] also sparked attention since it is a solution that focuses on porting an ex-
istent hypervisor to a CPU architecture that was not yet supported, similarly to
the relation between lLTZVisor and LTZVisor [PPG+17c] hypervisors. The same
can be mentioned of OKL4 Microvisor [HL10], which shares design similarities to
support mixture of real-time and non-real-time software on the same device, with
goals of inducing minimal overhead and code size. Finally, the concept of taking
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advantage of TrustZone technology for virtualization is introduced with a brief
summary of some available solutions.

Furthermore, this chapter contains a section dedicated entirely to describe the
LTZVisor [PPG+17c] hypervisor, by means to accurately represent its behavior
and to show how similar principles can be effectively applied onto the development
of the lLTZVisor hypervisor.

Newer ARM architectures for microcontrollers, as ARMv8-M, were launched and
attached to it there was this new version of the TrustZone technology, whom be-
forehand was only present in ARM application processors. This generated interest
due to the possibility of replicating the exploitation of this technology to imple-
ment an hypervisor, as done in LTZVisor [PPG+17c], but for the lower-end ARM
devices. The two TrustZone versions were studied and analyzed in this chapter so
the differences are enlightened for the understanding and adaptation of LTZVisor’s
methods.





3. Research Platform and Tools

This chapter presents the chosen platform and the tools that played a central role
on the development of the lLTZVisor hypervisor. Typically there is a vast field
of choice that needs to undergo a process of selection, but in this case, such a
recent topic with several requirements and restrictions, demanded initially the use
of simulation platforms and just later the physical development boards started to
be released and become an option. As for the rest of tools, their choice fell to
standardizations and suitability.

The organization of this chapter follows the indicated structure: Section 3.1 dis-
plays the platforms used to deploy and test the lLTZVisor, those of which belong
to the TrustZone-enabled microcontrollers family. Then, Section 3.2 will provide
information about the chosen OSes that were offered support to the lLTZVisor
hypervisor. It closes with Section 3.3, along a description of the benchmark suite
to test the OS’s performance when running on the hypervisor.

3.1 TrustZone-enabled Microcontrollers

The Cortex-M23 and Cortex-M33 processors are the newest addition to the ARM
product family of processors designed for microcontroller use. Characteristics
such as real-time deterministic interrupt response, low-power, low area, ease of
development and 32-bit performance are kept, specific of processors belonging to
the ARM’s M-profile architecture. The inclusion of the TrustZone technology to
these processors was seen as an action by ARM to address new requirements,
given the rising demand for IoT. These new generation Cortex-M processors were
designed to fill the market need for smart and connected devices and to become
the security foundation for all ESs [MSY16].
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The actual microcontrollers that include this next generation of the ARM Cortex-
M processors are the target for the lLTZVisor hypervisor. They are described on
the following sections.

3.1.1 ARM MPS2

The ARM Microcontroller Prototyping System 2 (MPS2+) Platform is a Field-
Programmable Gate Array (FPGA) development board specially designed to offer
support to prototype Cortex-M-based designs. It provides an excellent environ-
ment for prototyping next generation designs, offering useful peripherals such as:
PSRAM, Ethernet, touch screen, Audio, VGA, SPI and GPIO. Fundamentally,
hardware and software applications for Cortex-M devices can be developed and
debugged using the MPS2+ platform’s solid support [ARMa].

Figure 3.1: ARM V2M-MPS2 platform. Reproduced from [ARMa].

Either way, ARM offers the possibility to virtually develop on this MPS2+ plat-
form with the introduction of Fixed Virtual Platforms (FVPs). This gives to
developers the possibility to start software development without requiring a real
hardware target. The simulations completely represent the ARM system model by
creating a processor, memory and other peripherals within the FVP, enabling the
developer to capture reliable feedback for how software will execute on a physical
device [ARMc]. The ARM MPS2+ FVP was chosen to develop the lLTZVisor
hypervisor ahead of hardware availability.

3.1.1.1 Fixed Virtual Platform

The Fixed Virtual Platform model implements a subset of the functionality of
the MPS2+ motherboard hardware, which are enough for testing purposes. The
platform can be configured as one of three different types [ARM15]:
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• V2M-MPS2 System - The default configuration of the FVP. Has the
additions of the ARMv8-M architecture and follows the ARM MPS2+ spec-
ifications. Can either use a Cortex-M23 or a Cortex-M33 processor;

• IoT Kit - It is similar as the previous configuration, but contains an ad-
ditional IoT dedicated subsystem. Can also use either a Cortex-M23 or a
Cortex-M33 processor, and;

• CoreLink SSE-200 - Acts as an ARM CoreLink SSE-200 subsystem. It is
suitable for IoT applications and contains two Cortex-M33 processors.

Essentially, all the configurations above allow achievable objectives to develop the
lLTZVisor hypervisor since all provide the core of the Cortex-M23 and Cortex-
M33 processors, which is what the lLTZVisor aims to develop on for providing
availability to every platform that will eventually include one of these processors.

3.1.2 ARM Musca-A

The ARM Musca-A is the most recent addition to the ARM’s IoT test chips and
boards. It is now considered the development platform of choice for secure IoT
devices [ARMb]. Figure 3.2 depicts the physical board in question.

Figure 3.2: ARM Musca-A platform. Reproduced from [ARMb].

This platform was created to provide a strong foundation for developers who
require security in IoT devices. It is the groundwork that will aid on designing
security into products much easier, since picturing it from scratch would be time
consuming and increasingly more complex [ARMb]. Fundamentally, this platform
targets secure IoT designs and intends to be used as a reference implementation
for other System-on-Chips (SoCs) using the same core IP.
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The Musca-A test chip implements the ARM CoreLink SSE-200 subsystem, which
distinctively enables design and development of a low-power and secure IoT end-
point, discussed further on Section 3.1.2.1. Sensors such as Analog-Digital Con-
verter (ADC), Digital-Analog Converter (DAC), temperature and gyroscope are
included on the board. Also, as the board interface supports Arduino’s shield in-
terface, peripherals such as GPIO, UART, SPI, I2C, I2S and PWM are provided
[ARM18b].

3.1.2.1 Memory Subsystem

According to its block diagram (Figure 3.3), the Musca-A [ARM18b] encompasses
the CoreLink SSE-200 subsystem featuring an asymmetric dual-core Cortex-M33,
each with a private 2KB instruction cache and no data caches. The cores are
connected to the main bus matrix, a multi-layer AHB5 interconnect, that enables
parallel access paths between multiple masters and slaves in the system. A set
of four 32KB internal SRAM (iSRAM) elements is also accessible via this main
bus. Each of them features a dedicated controller and are therefore considered
separate slaves on the bus. Consequently, when each of these memory elements
is assigned exclusively to each CPU, it results in no contention. Although both
cores can access any of these memory elements, Musca’s documentation details
that SRAM element 3 is a Tightly-Coupled Memory (TCM) to CPU1’s data port.
In contact with Arm support, it was unveiled that the remaining SRAM elements
are also TCMs coupled to CPU0. This uneven coupling further increases the
asymmetry of the design. Still, as part of the SSE-200, the main bus connects two
slave AHB2APB bus bridges which allow access to system control registers and
peripherals.

Finally, in Musca-A, two expansion ports extend the SSE-200 AHB bus matrix:
one connecting a set of APB slaves encompassing I/O functionality while the other
connects two memory elements targeted only to code storage and execution. The
first is a 2MB code external SRAM (eSRAM) clocked at the same frequency as
CPU0. Using this code SRAM for storing data is possible but impractical, as it
does not support unaligned accesses. The second is a Quad Serial Peripheral In-
terface (QSPI) controller connected to an external QSPI 8MB boot flash memory,
clocked at a much lower frequency than both CPUs. The instruction caches only
cache addresses where these two memories are mapped. Although each element is
accessed through distinct controllers, as explained before, they are connected to
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Figure 3.3: Musca-A chip memory and interconnect block diagram.
Adapted from [ARM18b]

the main bus through a single expansion port for the code memory region, which
prevents full concurrency when each of them is assigned to a different CPU.

3.2 Operating Systems

The majority of embedded applications nowadays use OSes, typically RTOSes.
They provide a handful of mechanisms such as intertask communication, thread
synchronization and deadline determinism, which facilitates the developing process
of such applications. It is by this nature that the lLTZVisor hypervisor intents
to support two concurrently OSes executing on the same platform, so developers
can easily migrate and keep developing their applications, using a specific OS, to
the newest platforms using the latest processors that benefit of the ARMv8-M
architecture. Moreover, the hypervisor will provide a secure virtualization layer
for the OS to run on top.
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The following subsections provide a general overview about the OSes ported to the
platforms previously pointed out, so that they can be used during the development
of the lLTZVisor hypervisor.

3.2.1 Real-Time Operating Systems

Real-Time Operating Systems (RTOSs), as opposed to General Purpose Operat-
ing Systems (GPOSs), emphasize specially on predictability, efficiency and include
features to support timing constraints. Basic scheduling support, resource man-
agement, synchronization, communication, precise timing and I/O are part of what
makes an RTOS specialized to be used on highly constrained embedded devices
[SR04].

Nowadays there are several RTOS options on the market, each of them with
slightly different design goals, amidst certain middleware extensions and particular
catalogs of platforms supported.

3.2.1.1 FreeRTOS

FreeRTOS [Fre] is a scalable real-time kernel designed specifically for small or
restricted embedded devices. It was created to stand out as a simple and easy-to-
use RTOS. Its source code is available publicly, provided under the MIT license.
The majority of the code is written in C language. The rest is the architecturally-
specific code, which is composed by a mixture of C and a few of assembly functions.
This way, readability and maintainability of the code may improve, along with
the propensity to port FreeRTOS to different architectures since the architecture-
specific and kernel independent code belong to two different layers of the software
[DGM09, Fre].

With the help of a large community behind, FreeRTOS grew into what is now
today the de facto standard RTOS solution for microcontrollers. Nowadays FreeR-
TOS offers support to more than 35 architectures and is able to be embed in com-
mercial products without requirements to expose proprietary source code [Fre].
Its documentation regarding API reference, combined with all the points above
prove FreeRTOS as an interest case study.

FreeRTOS provides services such as: Task management, inter-task communica-
tion and synchronization, memory management, real-time events and control of
input and output devices. These services are provided as a library of types and
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functions within the FreeRTOS kernel’s source files [DGM09]. Thus, in order to
include the FreeRTOS kernel in a project, the source code has to be added do the
build. Essentially, just three of the source files are needed to provide the basic
functionality. The rest of the source files insert extra functionalities which are not
needed for the kernel to execute, like software timers, event groups and others not
mentioned on the beginning of this paragraph.

3.2.2 IoT Operating Systems

Lately, RTOSes have seen an evolution which caused them to shift the focus from
just supporting safety-critical applications to those which support soft real-time
applications, due to the recent technological advance of embedded devices. Such
support refers to the inclusion of high-level concepts for real-time ESs, often ap-
plied to multimedia and network applications. Therefore, new ideas and paradigms
started to take place in order to adapt those traditional concepts and methods to
fit them into the RTOS market of today [SR04].

IoT OSes for ESs are one example of this situation. These kind of OSes aim to build
network communication stacks and add some middleware support for small and
restricted embedded devices, while still maintaining a slightly low-timed response
to external events. Similarly to a GPOS, an IoT OS features more functionality
for developers, and intends to provide a far better user experience.

3.2.2.1 Contiki

Contiki [DGV04] is an open-source IoT dedicated OS. It is designed to get the
most of memory constrained systems, which are typically used in Wireless Sensor
Networks (WSNs). These networks are composed by large numbers of tiny sensor
devices with network capabilities that autonomously transport sensor data. On
overall, devices like this are severely resource constrained because they are required
to be as small as possible and cost the least reasonably amount. As Contiki intents
to provide a rich enough execution environment for these devices, its mechanisms
abstractions are kept lightweight in order to fit such constrained environments
[DGV04].

This OS was implemented using C language and offers support to various mi-
crocontroller architectures such as Texas Instruments MSP430 and CC2538, both
low-power and wireless focused solutions. As the developers of Contiki desire that
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their OS reaches as many sensor device platforms as possible, since nowadays the
number of these devices keep increasing, they opted to design it by abstracting
the CPU from the kernel code. This code only provides basic CPU multiplexing
and event handling features. Other extras of the OS are implemented as system
libraries that are optionally linked with programs [DGV04].

Contiki is built around an event-driven kernel. It consists of a lightweight event
scheduler that dispatches events to running processes and periodically calls pro-
cesses’ polling handlers. This approach is justified by the fact that using a multi-
threaded model instead on such constrained environments would be pretty resource
consuming. Besides, event-driven systems have been found to work well on many
sensor network applications. Optionally, Contiki can combine the benefits of both
event-driven systems and preemptive multi-threading, by linking the preemption
system library to the application [DGV04].

3.3 Benchmarks

Benchmarks play a huge role on every project that requires some kind of perfor-
mance evaluation. Via running a number of standard tests, the relative perfor-
mance of a subsystem can be obtained and bring together important data that
may serve as reference to measure and make trade-off decisions.

When dealing with the choice of RTOSes for an embedded application, real-time
performance is generally agreed to be the most important criteria. Obviously
due to key aspects on ESs such as determinism, low-latency response to external
input and time critical functions. Thus, benchmark tools for RTOSes will focus
on obtaining the most significant elements of performance, measuring real-time
performance and comparing each RTOS to how well they perform specific critical
functions. This allows the developer to quantify real-time performance and make
the decision he thinks suits an application the most [Log]. The following section
presents a general overview of the used benchmark suites during the development
and testing stages of the lLTZVisor hypervisor.

3.3.1 Thread-Metric Benchmark Suite

The Thread-Metric Benchmark Suite [Log] is an open-source benchmark suite for
measuring RTOS performance, available freely from Express Logic. As a reference,
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it only provides the means to evaluate the performance of Express Logic’s ThreadX
RTOS [Exp]. Despite this, this benchmark tool can be easily adapted to other
RTOSes by correctly mapping the new RTOS’ APIs in the suite’s porting layer
[Log].

What this benchmark "tool" aims to assess is how fast the RTOS performs its
specific functions such as: context switching, interrupt handling, communication,
synchronization and memory allocation. In order for the Thread-Metric to evalu-
ate these previous functions on multiple RTOSes for comparison, a set of common
tests was conceived. These tests are coded in "vanilla" C and are based on run-
ning lots of iterations within a certain time-span. When the time-span finishes, the
test restarts after the results are displayed to the developer. The selected tests
focus on the following common RTOS’ services: cooperative context switching,
preemptive context switching, interrupt processing with and without preemption,
message passing, semaphore processing and memory allocation and deallocation
[Log].

3.4 Discussion

This chapter intends to gather the essential information in order to justify the
choices of hardware and software resources used in the development of the lLTZVi-
sor hypervisor, while at the same time briefly describing them.

Regarding (virtual) hardware platforms, their choice related directly to market
availability. Since the technology they carry, ARM’s newest Cortex-M architec-
tures, was relatively new at the time of writing of this thesis, the lack of physical
options were a constraint since all silicon vendors decided to launch their products
later than the start of this thesis development. Nonetheless, the chosen platforms
are still optimal choices and provide the essential to start the development of a
TrustZone-assisted hypervisor. While the FVP MPS2+ virtual platform offered
a way to initially test the newest Cortex-M processors and develop on them, the
Musca-A test chip after being released provided a way to physically test and ana-
lyze the lLTZVisor hypervisor, an analysis that will be valid and span across many
other platforms.

From an academic point of view and standardization of use, FreeRTOS came in
handy to be adopted as the RTOS to run on the lLTZVisor hypervisor. The
fact that it is provided freely with an open-source license and that is available on
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similar architectures, boosted even more its choice. On the other side, Contiki fits
like a glove to the type of OS that lLTZVisor intents to support, for the added soft
real-time touch. The fact that Contiki provides a wireless communication stack,
it is very lightweight and offers various libraries support make it an optimal choice
for an OS that can run on constrained environments but at the same time have a
little touch of a GPOS.

As for benchmarking the OSes running on the lLTZVisor, Thread-Metric Bench-
mark Suite proved as a complete tool for the job, not just by offering to be easily
applicable to multiple RTOSes, but by evaluating every standard functionality
part of a RTOS.



4. lLTZVisor: Hypervisor for low-
end ARM Devices

This chapter describes the development of the hypervisor for low-end ARM devices
along with every design solution chosen to overcome the challenges given by the
targeted constrained environments. Section 4.1 presents the initial description
of lLTZVisor, explaining in-depth what this hypervisor aims to offer. Moving
forward, Section 4.2 lays out the design choices and followed principles, majorly
about the TrustZone use. All implementation details for each of the hypervisor’s
aspects can be found on Section 4.3.

4.1 General Overview

lLTZVisor is a re-factored version of the LTZVisor [PPG+17c] targeting the re-
cently added low-end ARM processors family (Cortex-M). It is mainly designed
to achieve coexistence between two OSes on the same hardware platform, while at
the same time maintaining integrity of system’s security, which can easily be an at-
tack venue due to the favorable conditions this hypervisor provides for expanding
functionalities across a single platform.

The main ambition for this hypervisor is to fulfill the case scenario where two
different type-oriented OSes are launched on a specific board. A typical case
would be the conjunction of a Real-Time Operating System (RTOS) with an
IoT Operating System (OS). lLTZVisor brings the advantage of being able to
mix both of these OSes in such a way that the design principles are followed,
which will be posteriorly explained in-depth on Section 4.2. Since majority of the
developed real-time applications for constrained embedded devices typically have
frequent idle times [PPG+17c], the IoT OS, considering it carries soft real-time
requirements, will thus have a space in between those idle times from the RTOS
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to be in control of the execution flow. This is exactly what lLTZVisor explores
in order to provide an OS heterogeneity on a single hardware platform, to such a
degree where this combination of characteristics becomes a greater alternative to
reduce engineering cost and development time.

4.2 Design

The lLTZVisor’s main design principle is to make use of the ARM’s TrustZone
security extensions to aid on the development of an hardware-assisted hypervi-
sor targeting the newest lower-end ARM CPUs. As observed on Section 2.2,
TrustZone-assisted virtualization on the LTZVisor [PPG+17c] was possible, and
most importantly reliable.

Furthermore, this hypervisor borrows some principles of existing TrustZone-assisted
solutions such as the classical dual-OS approach, which relies on the TrustZone
exploitation. The borrowed LTZVisor’s principles are summarized in the following
topics: [PPG+17c]:

• Lightweight Implementation - With the support of TrustZone technol-
ogy, relegating some functions to hardware is possible, thus causing enhance-
ments to the overall system’s performance and reductions of the hypervisor’s
footprint. At the same time, the number of vulnerabilities decreases since
the TCB gets smaller, reducing the chance of turning code into spaghetti
code, one way that hackers exploit to try and break into systems;

• Least Privilege - lLTZVisor must privilege one of the OSes (the one with
hard-real-time constraints) above the other, thus respecting its fundamental
requirements. A target application for this hypervisor is the combination
between an OS with real-time characteristics and another without. By con-
figuring the system so that the real-time OS may access system’s resources
with a higher privilege than the other, or even disabling or limiting certain
accesses to the non-real time OS, possibilities for this OS to compromise or
affect the other’s execution flow would decrease;

• Asymmetric Scheduling Policy - A different scheduling policy must be
adopted in order to counteract timing and resource difficulties imposed by
the use of virtualization on ESs. An asymmetric scheduling policy where an
RTOS gets an emphasized privilege of execution above a non-real time OS fits
perfectly the scenario, since the RTOS would keep its timing characteristics
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and the other would remain unaffected by the de-prioritization, as hard real
time capabilities are not its focus. This scheduling policy is borrowed from
both SafeG [SHT10] and LTZVisor [PPG+17c].

TrustZone-based Virtualization

The TrustZone security extensions are exploited by the lLTZVisor hypervisor in
such a way that both of the security states of the processor are considered two
virtual environments (a secure and a non-secure VM). Respectively, they will host
the privileged and non-privileged OSes.

ARM TrustZone-enabled Cortex-M CPU
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Figure 4.1: lLTZVisor general architecture.

Figure 4.1 illustrates the fundamental subsystems part of the proposed virtualiza-
tion scenario. lLTZVisor shares the handler mode of the processor with the secure
VM, both running on the secure world. Within this mode, the hypervisor may
have full control and access of every system’s resources. It is the highest priv-
ileged mode of the target processor’s architecture, and thus, enables lLTZVisor
to proceed with the necessary memory and devices’ configuration, interrupt setup
and the initial arrangement of the VMs. The nonexistence of a third privileged
mode in this new variant of TrustZone (e.g., monitor mode) lead the decision to
co-allocate the hypervisor with the secure VM. Although the option to de-privilege
the secure VM could have been made by adopting a para-virtualization approach
similar to the one proposed by R. Pan et al. [PPRP18], this decision was followed
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simply based on the fact that on Cortex-A processors the secure supervisor mode
has basically the same privileges as the monitor mode.

The secure VM, despite sharing the same privileged mode as the hypervisor itself,
must be aware of the virtualized environment. This means that access to system’s
resources is available. For this reason, privileged code belonging to the secure
VM, which also runs on the secure handler mode of the processor, must not in
any way interfere with the other VM or modify lLTZVisor’s configurations. This
is a design decision made with perfect awareness, because it favors real-time and
deterministic execution in favor of isolation. As represented on the Figure 4.1, the
ideal hosted OS for this context is an RTOS, whose real-time requirements can be
met due to the higher privileged execution given to the secure VM.

On the other side, the non-secure VM runs on the other isolated side of the
processor, the non-secure world. On this processor state the hosted OS is not
able to access the TrustZone’s configuration registers, so no modifications to the
overall system functionality is possible to be performed from the non-secure VM.
Additionally, any attempt to access resources dedicated to the secure VM, will au-
tomatically trigger an exception that redirects execution to the hypervisor. Fun-
damentally, the hosted non-secure VM’s OS runs as it would on a equivalent ARM
processor without security extensions. This forms a scenario where an OS without
real-time requirements could fit perfectly and provide relatively high-level func-
tionalities in comparison to the secure VM’s guest, like an IoT OS as represented
on Figure 4.1 for example.

4.3 Implementation

lLTZVisor pursues a similar approach as the LTZVisor hypervisor [PPG+17c], in
which the exploitation of the ARM TrustZone technology to implement a minimal
virtualization layer is fulcral. Contemplating the main goal of this thesis, that
is creating such hypervisor on relatively even more constrained environments, it
can be assured that the implementation will have its challenges, as for instance
guaranteeing that real-time characteristics of the secure VM are not put at stake.

In the following sections all the technical details about lLTZVisor’s implementation
are provided, kicking off on how the CPU is virtualized across the two worlds, and
how these worlds are scheduled. Then, it is explained how memory and device
partitioning is done, since their roles are quite relevant to the space isolation aspect
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of the hypervisor. As for the time isolation aspect and how interrupts and time
are managed, explanation is also present. The Chapter ends with the exposure
of the multi-core AMP variation of the lLTZVisor, detailing the implementation
modifications to enable the hypervisor to leverage from multi-core environments.

4.3.1 Virtual CPU

At the hand of TrustZone security extensions, some of the CPU’s registers are
banked between worlds. From the lLTZVisor perspective, this feature can be seen
as a great way to help on diminishing the overhead associated with hypothetically
having to manually save and restore all the general-purpose and special registers at
every execution swap of the VMs. Figure 4.2 depicts the banked and non-banked
registers of the ARMv8-M architecture.
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Figure 4.2: ARMv8-M secure and non-secure registers. Reproduced
from [ARM16b].

As illustrated previously, all general-purpose registers, which range from R0 to
R12, along with some of the special-purpose ones, are not banked between the
two worlds. They are the following: Link Register (R14); Program Counter (R15),
and; Application, Interrupt and Execution Program Status Registers (respectively
APSR, IPSR and EPSR). Considering that these registers are not offered support
by the TrustZone technology’s hardware, as opposed to the Stack Pointer (R13),
PRIMASK, CONTROL, FAULTMASK and BASEPRI registers which are granted
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with an individual copy on each of the worlds, the VMCB will have to contain all
the un-banked registers.

VMCBs are managed at every world switch, and it is the sole responsibility of
the hypervisor to sanitize any sensitive information held in these registers. That
being said, a parcel of the isolation is at least covered by the TrustZone hardware
itself, providing copies of some important registers within the two execution states.
However, based on the understanding of the Cortex-M architecture, there are still
possible optimizations to the VMCBs in order to reduce the amount of registers
manually saved and restored.

Upon the occurrence of an exception, ARM processors with the ARMv8-M archi-
tecture follow the standard exception stack frame model defined by the Procedure
Call Standard for the ARM Architecture (AAPCS), which is depicted on Figure
4.3a. By adopting the use of exceptions to support world transitions, the majority
of non-banked core registers are automatically (un)stacked by the hardware itself,
which significantly reduces the world switch overhead.
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Figure 4.3: Stack frames comparison.

Following this scheme, the only registers that will require a place on the VMCB
(depicted on Figure 4.3b) are the general-purpose registers ranging from R4 to R11
inclusive and Link Register (R14) as well (explained in the following subsection),
whom will be saved and restored manually using the same stack used by the
processor to produce the exception frame ("Original SP" depicted on Figure 4.3a).
Consequently, since the stacks are not shared between worlds and given their
important role of storing the respective VMCB of each world, additional memory
reservation will not be required, which is great for constrained environments where
memory is not abundant. This design choice tries to squeeze out the most of the
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ARMv8-M architecture, by relying as much as possible on the hardware in order
to keep lLTZVisor as most lightweight as possible, starting with a reduced VMCB.

4.3.2 Scheduler

The scheduling policy strictly follows the LTZVisor hypervisor [PPG+17c] and
SafeG’s [SHT10] strategy. This policy prioritizes the secure VM’s execution above
the non-secure’s one, an asymmetric scheduling policy or simply idle scheduling.
Right off the bat, this strategy overcomes the threat of not jeopardizing the real-
time requirements strictly mandatory by the RTOS on the secure world. After all,
this policy means that the non-secure VM is only scheduled during idle periods of
the secure VM. Moreover, when the non-secure VM is executing, the secure VM
can at any moment preempt and take control of the execution. These transitions
will occur by means of a triggered exception, the RTOS’ tick or some other external
interrupt.

The TrustZone technology provides a system level register named Application In-
terrupt and Reset Control Register (AIRCR), which contains a bit field that allows
de-prioritization of non-secure configurable exceptions to enable secure exceptions
to take priority (AIRCR.PRIS), exactly what lLTZVisor aims for. This configu-
ration is performed during the system’s boot to ensure that non-secure exceptions
are de-prioritized. A transition from the secure VM to the non-secure VM is han-
dled by the hypervisor when the secure VM’s guest OS reaches an idle state, and
thus, issues a Supervisor Call (SVC). However, this call must not be mistaken by
a regular OS operation, since both the lLTZVisor and the secure VM share the
SVC handler. Therefore, any SVC results in a trap to the hypervisor, which will
have to differentiate ordinary OS operations from calls to trigger VM transitions.

Algorithm 1 Schedule non-secure VM.
switch secure vector table;
save secure vm’s registers;
load non-secure vm’s registers;
enable non-secure exceptions;

The Algorithm 1 is part of the SVC exception handler, thus, has privileged access
and can be explicitly called by the following instruction: svc 0xff. Its purpose is
to swap VM execution to the non-secure world. It starts by switching the secure
world’s vector table to a customized one belonging to lLTZVisor, which assures
that every secure exception (excluding Reset and Fault Handlers) is redirected
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to an exception handler containing Algorithm 2, responsible for scheduling the
secure VM. After this, the secure VMCB is stored and the non-secure VMCB is
loaded. The Link Register (R14) is also part of these VMCB operations, since it is
the register that makes redirecting the execution to the non-secure world possible,
rather than returning to the secure world whom made the SVC. Before exiting the
exception handler and (re-)starting the non-secure VM’s execution, its exceptions
are enabled since they get disabled whenever the non-secure world is not active to
prevent non-secure exceptions to preempt regular execution of the secure VM.

Algorithm 2 Schedule secure VM.
disable secure interrupts;
disable non-secure interrupts;
switch back secure vector table to origins;
save non-secure vm’s registers;
load secure vm’s registers;
get current active interrupt number;
jump to active interrupt handler;

Similarly to the Algorithm 1, the Algorithm 2 is contained within an exception
handler with privileged access. But instead, this routine is used to schedule back
to the secure VM and is multiplexed by all secure exception handlers comprised
on the switched secure vector table during Algorithm 1. The routine 2 starts
by immediately disabling secure and non-secure interrupts to prevent exception
tail-chaining. Then, replacement of the secure world’s vector table back to its
original place occurs. Posteriorly, after VMCB switch is made, the exception that
preempted the non-secure VM to schedule the secure VM must be handled. The
exception handler’s address is fetched from the vector table and then executed by
performing a jump to the respective address. This achieves the VM switch process
and the secure VM gets back on trail.

4.3.3 Memory and Device Partition

When dealing with ARMv8-Mmicrocontrollers that feature the TrustZone security
extension, it is established that each memory address will have a security state as-
signed. What defines this are two units that are part of the microcontroller, which
are the Secure Attribution Unit (SAU) and the Implementation Defined Attribu-
tion Unit (IDAU). As the name of this last unit mentions, it is implementation
defined, which then cannot be as useful as the SAU in terms of reconfigurability
during run-time of the processor. So, what was designed for configuring memory
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address spaces and peripherals as secure, non-secure and non-secure callable, can
at the same time be adopted to delineate both the memory regions and peripherals
of each VM.

From the point of view of the lLTZVisor hypervisor, the SAU is seen as a tool
seclude memory, guaranteeing spatial isolation between the two VMs executing on
opposing security states of the processor. Ignoring the non-secure callable regions
that the SAU can configure as, if the platform’s memory gets partitioned in two,
with one of them being secure and the other as non-secure, the two VMs should
have by then its space for execution reserved. Although assuring that the non-
secure VM cannot interfere with the secure’s VM resources, the same can not
be said the other way around. Only accesses from the non-secure to the secure
world automatically trigger exception faults, meaning that the secure VM must
be aware of the presence of another VM on the platform in order to avoid possible
interferences.

The same principle regarding memory can also be applied to devices as well, since
they are memory mapped. Isolation at the device level is what lLTZVisor strives
for. In order to keep the virtualization layer as simple and minimal as possible,
SAU hands out a perfect way to assign a particular set of devices to the non-secure
VM and another to the secure VM. This unleashes the burden of the hypervisor to
carry out the device partitioning itself, relying instead on the SAU unit to do that
process. Accesses from non-secure to secure world’s devices will automatically
cause an exception and hand over the execution to the lLTZVisor fault handler.
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Devices A
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0x00220000

0x10200000
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Figure 4.4: lLTZVisor memory and device configuration on Musca-A
board.
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During boot-time, the hypervisor configures the memory regions for the VMs and
assigns their respective devices. An example configuration would be as depicted
on Figure 4.4. That illustrates the memory layout configuration of the lLTZVisor
hypervisor on the ARM Musca-A platform. The major three depicted components
are Flash, Random Access Memory (RAM) and Devices. The first two were sliced
into three parts, while the last one only into two, representatively by A, B and C.
They respectively correspond to segments reserved for the non-secure VM, secure
VM and lLTZVisor itself.

4.3.4 Exception Management

As already mentioned, the ARMv8-M TrustZone extension lacks the additional
monitor mode present on the ARM’s A-profiled architecture version. On sec-
tion 4.3.2 a workaround is demonstrated, which is basically benefiting from the
automatic processor state switches caused by exceptions, with the assistance of
technically using the SVC instruction to simulate a type of hypervisor call that
triggers a VM switch. Therefore, this section gives a more insightful view regard-
ing how lLTZVisor manages the exceptions and how it structures the underlying
base that allows all the VM execution swaps.

Features of the ARMv8-M TrustZone technology include banking of some internal
resources, like for example the VTOR, that allows the existence of two vector
tables, one for each processor state. Thus, each of the VMs running above the
lLTZVisor can have their own independent exception handling. With the added
value that the Interrupt Service Routines (ISRs) can be configured individually
as either secure or non-secure through the NVIC_ITNSn array of registers, this
means that a set of exception handlers can be specifically targeted to one of the
processor states, or in other words, to one of the VMs.

In order for the lLTZVisor to manage the VM execution swaps by means of excep-
tion handling and depending on each VM to be scheduled, two exception vector
tables for the secure world had to be created. ARMv8-M architecture permits this
approach, since the VTOR can be updated on-the-fly.

Figure 4.5 depicts the two vector tables associated with the lLTZVisor’s VM
switching management. Within these tables, there are three colored blocks which
determine different things as followed:
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Figure 4.5: lLTZVisor vector tables.

• Light Grey or (A) - Such blocks represent exception handlers located on
the hypervisor’s memory segment, by other words, are part of the lLTZVi-
sor’s source code;

• Dark Grey or (B) - Such blocks represent that the exception handlers
associated with them are handled by the secure VM directly, and;

• Red - Such blocks represent the exceptions that when triggered, will gener-
ate a VM switching process from the non-secure to secure processor state.

Specifically, the "Active Secure Vector Table" on Figure 4.5a is somehow a copy of
the secure VM’s, but contains a different handler for the Supervisor Call (SVC),
which is handled by the hypervisor instead of the secure VM. This option was made
to deliberately fake a monitor call, which ARMv8-M does not support, whenever
the instruction svc 0xff was explictly triggered by the secure VM. In case the
value used is different than 0xff, this handler calls the secure VM’s SVC handler.
This handler managed by the hypervisor is responsible to call the function that
will start the VM switching process to non-secure state. Algorithm 3 states the
process described previously.

Back to the scheduling process, it was said in section 4.3.2 that whenever a VM
execution swap occurred, the hypervisor would also swap the secure vector tables.
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Algorithm 3 lLTZVisor’s SVC Handler.
if Main Stack Pointer used by caller then
get Main Stack Pointer’s address;

else
get Process Stack Pointer’s address;

end if
locate stacked PC value on exception frame;
get the SVC instruction’s opcode;
extract immediate value;
if immediate value is not equal to 0xFF then
get secure VM’s SVC Handler address;
jump to the secure VM’s SVC Handler;

else
jump to function for scheduling to non-secure VM

end if

The moment the non-secure VM starts executing is when the "Passive Secure
Vector Table" (see Figure 4.5b) takes the lead. Its exception handlers of the ISRs
and system handlers (SysTick and PendSV) were modified so they redirect to
the routine present on the lLTZVisor which schedules the execution back to the
secure VM. The remaining fault handlers simply redirect to the lLTZVisor’s fault
handlers and halt execution.

Although this management was needed from the secure world point of view to
perfectly perform the VM switches, the non-secure world is completely unrelated
and unaware of this vector table transitions, due primarily to the strong isolation
and the banked vector table resources offered by TrustZone technology.

Moreover, the control lLTZVisor’s strives to achieve is that the secure VM or RTOS
partition gets the highest priority possible and is able to preempt the non-secure
VM at the occurrence of any event redirected to itself. And, as said on section
4.3.2, TrustZone permits this by de-prioritizing the non-secure world’s exceptions.
Which again is also perfect considering that no additional code or modifications
have to be made, with TrustZone providing an environment where secure world’s
exceptions will always upstage non-secure one’s.

To sum everything up, Figure 4.6 depicts how interrupts are managed and how the
particular processor states and modes transit from the perspective of each guest
OS. As illustrated, no non-secure exception can preempt the RTOS execution,
but only the explicit svc 0xff instruction can, which will trigger the fake monitor
mode already explained. Besides non-secure VM’s exceptions being configured to
have lower priority relatively to the secure VM and are disabled while the secure
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VM is running. Any attempt from the non-secure VM to change any secure
NVIC register will have no effect, and any attempt from the non-secure VM to
redirect an exception source to a secure exception handler will be trapped to the
hypervisor. This arrangement avoids possible DoS attacks coming from the IoT
OS. Likewise, whenever a secure exception happens during non-secure processor
state, the execution flow is promptly redirected to the RTOS, after the lLTZVisor
deals with the VM switch process. After that, the IoT OS can only return to
execute where it stopped succeeding another SVC call to switch VMs.
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Figure 4.6: lLTZVisor exception managament timeline.

4.3.5 Time Management

On ARMv8-M processors with TrustZone security extensions the system timer
(SysTick) is banked between secure and non-secure states, which enables each VM
to manage its independent system timer. This 24-bit timer is usually integrated
within the core of the ARM Cortex-M processors, and is for the most part used
by OSes to facilitate porting from another platforms, not requiring the OSes to
adapt for supporting another specific timer peripheral on a certain platform.
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With the assistance of the TrustZone security extension, lLTZVisor can follow
the policy of asymmetric scheduling, without added intellectual property. An
heterogeneous OS configuration is the ideal scenario for this hypervisor, where the
respective VMs can take advantage of a distinctive time management approach
provided by the two independent system timers. Since the secure VM running on
lLTZVisor does not miss a single system tick interrupt, an RTOS can fit perfectly
without having the risk of compromising its real-time characteristics. However,
the non-secure VM has its exceptions disabled when not executing, thus causing
ticks to be missed, so the recommended choice in this case should fall on a tickless
OS, in the way that it could still execute consistently despite losing flow of the
time.

4.3.6 AMP Variation
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Figure 4.7: lLTZVisor AMP architecture.

lLTZVisor also offers support to dual-core processor platforms, where it imple-
ments the dual-OS configuration in an Asymmetric Multiprocessing (AMP) en-
vironment. This scheme places the VMs running concurrently on each of CPU’s
cores. The secure VM is assigned to the primary core (CPU0), while the non-
secure VM is assigned to the secondary core (CPU1), as depicted in Figure 4.7.
The hypervisor is split into two parts, one for each CPU. Both are used to per-
form the boot-up initializations and require no runtime roles, on contrary to the
single-core approach, which needs to perform VM switching operations. This is
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due to the fact that there is a one-to-one mapping between the number of guests
and the number of cores.

This approach does not contain any major difference relatively to the single-core
version referred on the previous sections, except a slight change on the exception
management, specifically regarding the two secure vector tables swapping, which
will be explained next.

4.3.6.1 Exception Management

Hitherto it was described lLTZVisor as using two secure vector tables, one of which
called "Active Secure Vector Table" and another called "Passive Secure Vector
Table". They would switch and control the secure state’s exception handling at
turns, synchronized to the occurrence of every VM swap process, in order to allow
redirecting some exception handlers to portions of code that triggered a VM switch
and changed the processor state. However, an AMP environment will not require
such management considering that no VM switches will be performed within the
same CPU core. What this approach does instead is dedicate only one secure
vector table to each of the cores.

lLTZVisor contains a vector table dedicated for the CPU1. This table takes control
of all the fault and system handlers of the secure state. The reset handler along
with the SVC handler are used respectively to perform the initial setup of the
processor with the hypervisor’s configurations and to promptly jump the execution
state to non-secure so the non-secure VM starts executing.

Algorithm 4 CPU1 start non-secure VM.
get non-secure main stack pointer;
pop LR from the non-secure main stack pointer;
exit handler;

After CPU1 wakes up and executes the respective reset handler, it traps the
execution by using the SVC instruction. This triggers its correspondent exception
handler, composed by Algorithm 4, that is used to switch the CPU1 to the non-
secure state. At the point when the SVC handler executes, the non-secure world’s
Main Stack Pointer (MSP) is already correctly set, and contains a "fake" exception
frame that redirects execution to the beginning of the non-secure VM’s code.
Besides this exception frame, EXC_RETURN, the value that indicates which
processor state to jump after leaving the handler, is contained in the non-secure
MSP. It is for this particular reason that on Algorithm 4 the non-secure MSP is
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used to retrieve the EXC_RETURN value, which posteriorly is copied to the LR
register. To kick-off the non-secure VM’s execution, the LR register is copied to
the Program Counter (PC) register, knowing that on ARM Cortex-M processors
exceptions are exited by copying the EXC_RETURN value to the PC register.

4.4 Single-Core Execution Flow

The processor always starts on secure state. The lLTZVisor takes control instantly
and performs initializations of the C runtime environment and the exception vector
table. After that, the SAU unit is used to assign memory regions and peripheral
segments as either secure or non-secure. IRQs are routed to either one of the
worlds using the NVIC_ITNSn group of registers. And finally, system control
level registers are configured for prioritizing secure world’s interrupts above the
non-secure’s (using the AIRCR register on the SCB peripheral).

Algorithm 5 Fake the non-secure world’s exception stack frame.
get ns world msp top;
load initial exc_return value to register;
load lltzvisor fault handler address to register;
load ns vm’s reset handler address to register;
load initial xpsr value to register;
push the previous registers to ns msp stack;
set new ns msp stack top;

After the previous explained initial setup, the VMs will be prepared for execution.
Since the VM swaps will be performed by exception handling, the non-secure VM
will need an existent exception stack frame on its stack. So, lLTZVisor performs
an artificial stacking of the registers with the values necessary to simulate an
exception return to the beginning of the non-secure VM’s code, as presented on
Algorithm 5. The code begins by fetching the non-secure vector table’s address
in order to obtain the MSP top and reset handler addresses. Initial values for
the EXC_RETURN and xPSR register are prepared for respectively performing
the jump to non-secure state and resetting processor flags to an initial state. A
fault handler address is also loaded, to complete the exception stack frame. These
values are then pushed onto the non-secure MSP stack and form a fake exception
frame to switch processor execution to the non-secure state on the beginning of
the non-secure VM’s code after the first request to swap VMs. The secure VM
preparation is unrelated to the previous process, since the only thing the lLTZVisor
needs to obtain is its reset handler address to trigger its execution.
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On the next phase, lLTZVisor boots and hands out the execution to the secure
VM. Once the RTOS running on the secure VM reaches an idle state, the svc 0xff
instruction is issued and enforces the execution of an exception handler that will
start the VM transition process, described on Algorithms 1 and 3. Before exiting
the exception and handing out the execution to the non-secure VM, the vector
tables are switched, secure state VMCB is stored and non-secure VMCB is loaded
and non-secure exceptions are activated.
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Load VMs

Start S
ecure VM

Secure VM

Execute Guest OS

svc 0xff

Secure Exception Triggered

Non-Secure VM

Execute Guest OS

Figure 4.8: lLTZVisor Single-Core execution flow state diagram.

The moment the non-secure VM is active, its execution pursues the same path as if
it would by running directly above an ARM Cortex-M processor without security
extension implemented and remains completely unaware about the existence of
an underlying hypervisor. The only difference is that this VM’s execution stalls
whenever a secure exception is triggered, because of the lLTZVisor’s prioritization
of the secure VM above the non-secure VM. Assuming the occurrence of a secure
exception on this situation, the processor jumps to the secure state and executes
the respective exception handler of the "Passive Secure Vector Table" (see Figure
4.5b) trapped at the level of lLTZVisor. If the exception raised in this case is of
fault type, then the system execution is halted by the lLTZVisor fault handler.
If otherwise, and the exceptions correspond either to an IRQ or of a system type
exception, then the procedure to schedule back to the secure VM is executed
as described on Algorithm 2. Essentially, the "Active Secure Vector Table" gets
back in control, non-secure exceptions are disabled, VMCB switches occur and
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most importantly, the real active exception is called and thus, the control of the
processor execution is immediately handed out to the secure VM.

Freshly after the VM switch process back to the secure world, the OS inside the
secure VM will resume execution as it was intended to in first place, until the
idle state is reached once again, repeating the VM switching process indefinitely.
Summed up, Figure 4.8 represents the overall execution flow of the lLTZVisor
described earlier.

4.5 AMP Execution Flow

The AMP approach of the lLTZVisor, contrasting to the single-core approach,
presents changes on the exception management behind the VM switching pro-
cesses, as referred on section 4.3.6. Those changes are mainly caused due to the
intended scenario of the AMP lLTZVisor, which is to assign each of the VMs
to one of the cores. This means that VM switching processes are abolished and
replaced with an initial scenario configuration for CPU1 by exception handling.

Similarly to the single-core approach, initializations of the run-time environment,
setup of vector table, delineation of the memory regions, assignment of interrupts
to each of the VMs and configuration of system level registers are made for both
cores. With the exception that CPU1 initialization does not tamper with run-
time environment and vector table points. Respectively because the environment
is common to both cores thus should not be re-configured and because the vector
table will be configured by CPU0 before waking up CPU1 for the initial boot-up
configuration.

Algorithm 6 Wake-up CPU1.
set cpu1 vector table;
kick-off cpu1 execution;

The key difference contained on this AMP approach is then the addition of a
wake-up call to the secondary core (CPU1) which is initially de-activated, before
the primary core (CPU0) starts the secure VM execution (see Algorithm 6). It
is important that a vector table is set for CPU1, because it is there where the
address of the code to be executed from boot is defined, on the reset handler. By
assigning CPU1 a vector table before initiating its execution, the hypervisor is
able to redirect the reset handler to the Algorithm 7, which performs the initial
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configurations and executes an SVC call, which also has its handler redirected to
Algorithm 4 that performs the jump to the non-secure world.

Algorithm 7 CPU1 reset handler.
outline memory regions;
redirect interrupts to each processor state;
de-prioritize non-secure exceptions;
get non-secure msp;
perform fake exception stack framing on non-secure msp;
execute svc instruction;

At this point, both cores are executing simultaneously. CPU0 gets full control of
the secure VM, but on contrary to the single-core approach, no SVC instruction
will trigger a VM switching process. During this time, CPU1 performs the initial
configurations as stated on Algorithm 7, which are exactly the same as the ones
done on CPU0. The last three statements of the Algorithm 7 are responsible for
the processor jump to the non-secure state, done in order to kick-off non-secure
VM’s execution. The performed non-secure MSP fake stack is simply done by
reducing the top of the stack value by the number of an exception frame size, and
then, the SVC handler is called so the jump to the non-secure state is accomplished
after Algorithm 4 is carried out. The whole process is summarized on Figure 4.9.
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Figure 4.9: lLTZVisor AMP execution flow state diagram.
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4.6 Predictable Shared Resources Management

Embedded virtualization has several proven benefits but still faces serious chal-
lenges, specially when real-time is a concern. On one hand, it already provides
a reasonably high degree of time and space encapsulation and isolation of VMs
by time-multiplexing resources such as the CPU, partitioning memory and as-
signing or emulating devices. On the other hand, partitioning and multiplexing of
micro-architectural shared system resources were, until recently, neglected by most
hypervisors. This led to contention and lack of truly temporal isolation, hurting
determinism by increasing jitter [MBBP18, THAC18]. Also, this can be explored
by a malicious VM to implement DoS attacks by increasing their consumption of
a shared resource. Moreover, it allows for the existence of timing side-channels
compromising data confidentiality, which might be exploited to access private or
sensitive data of either a VM or the hypervisor [GYCH18, THAC18]. Although
AMP hypervisors with VMs pinned to dedicated cores already remove part of this
contention when compared to single-core or SMP implementations, system-wide
resources such as Last-Level Cachess (LLCs), memory controllers and intercon-
nects still remain shared and subject to contention. This is further aggravated
as mechanisms such as cache replacement, cache coherency, hardware prefetch-
ing or memory controller scheduling focus mainly on performance and bandwidth
maximization.

Many approaches, like cache coloring [KR17, XTP+17], memory bandwidth reser-
vations [CBS+17], or both [MBBP18] have already been applied to mitigate these
issues with promising results. However, these techniques depend on the existence
of memory virtualization infrastructure or performance monitoring features which
are not available on MCUs. On the positive side, many of these contention points,
such as data caches or Translation Lookaside Buffers (TLBs), are seldom, if ever,
featured in low-end platforms, and the absence of memory translation mechanisms
or deep cache hierarchies further reduces the sources of indeterminism. From an-
other perspective, and as detailed in [BTG+18], commercial MPSoCs exhibit a
high degree of heterogeneity regarding their memory subsystem which is com-
prised of a rich set of different types of memory (e.g. DRAM, SRAM, QSPI
Flash, etc.), each accessed through different bus paths and memory controllers,
providing varying degrees of latency and bandwidth guarantees. Although this
study focused on a high-end Cortex-A platform, this heterogeneity is also true
and even more pronounced in modern MCU-based platforms.
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Taking these ideas and insights in mind, it is conceivable that it is possible to
achieve a high degree of determinism on MCU AMP virtualization, through an
informed and thoughtful layout of VM memory. This is accomplished by dis-
tributing data and code segments from different VM through different memory
elements, each with dedicated controllers accessed via bus paths which enable
fully concurrent accesses or assigned in such a way that minimizes contention.

4.6.1 Contention-Aware Memory Layout

The Musca-A chip’s memory subsystem and interconnect analysis (see Section
3.1.2.1), supported by a set of empirical observations (see Section 5.6) allows to
come up with a memory layout, which is intended to minimize contention of shared
resources. Targeting the AMP configuration (Section 4.3.6) and prioritizing the
secure VM (RTOS) running on CPU0, the process starts with an idealistic layout
scenario and gets iteratively rearranged until all VMs’ memory is allocated.

For very low memory footprint systems, all code and data for both VMs would
completely fit in iSRAM, resulting in no contention. In this case, iSRAM0 is as-
signed to secure VM and iSRAM3 to non-secure VM, given their tightly coupled
nature, and distributing the remaining SRAM elements according to each VM
memory needs, maintaining the invariant that each one is exclusively assigned to
a single VM. As a FreeRTOS image compiled with only a small toy application
amounts to about 25KB, this would only be feasible when only minimal func-
tionality was included in each VM. In a more realistic setting, there is the need
to offload code segments to the external memories. If possible, one of the VMs
full images is maintained in the iSRAM and the other’s code is migrated to the
eSRAM. If not, both migrate. At first sight, assigning one of the VMs to QSPI
flash would minimize contention as there would be no sharing of a controller.
However, sharing eSRAM results in better performance and less contention, given
that QSPI is clocked at a much lower frequency. Observations have shown that
when a core is accessing this memory, on a concurrent request, the latter will be
stalled for a longer period until the former is served, as the bus expansion port
is also shared. The eSRAM’s 2MB are believed to suffice for hosting both VMs’
code. If not, the non-secure VM shall be placed, or even partially the secure
VM, in QSPI. This results in the worst scenario regarding both performance and
contention. Note that the impact of moving both code segments to the external
memories, despite sharing the same bus expansion master port or the same con-
troller, will not greatly increase contention when good code locality is present, as
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instruction caches are assumed to will always be enabled in both cores. This is not
guaranteed, however, since a compromised OS running on non-secure VM (CPU1)
could disable caches and increase contention on the bus expansion connected to
the code memories. Although in the Musca-A platform, the non-secure software
cannot access the cache control register, this continues to be true, as it can execute
in such a way that continuously thrashes cache lines.



5. Evaluation and Results

The evaluation was conducted on an ARMMusca-A Test Chip Board running both
cores at 50 MHz. More details regarding the hardware platform are described in
Section 3.1.2. The hypervisor was configured to run two FreeRTOS (version 9.0.0)
[Fre] instances as secure and non-secure VMs. In all experiments, with exception
to the ones presented in Section 5.6, the lLTZVisor hypervisor is evaluated for a
single-core and an AMP configuration. This means that five different test case
scenarios were set as listed: (i) native FreeRTOS; FreeRTOS as (ii) secure VM OS
instance and (iii) non-secure VM OS instance in a single-core configuration, and;
FreeRTOS as (iv) secure VM OS instance and (v) non-secure VM OS instance
in an AMP configuration. Moreover, the memory map was allocated so that the
code of both VMs are loaded into the external SRAM (eSRAM) and the respective
data into different internal SRAMs (iSRAMs). GNU ARM Embedded Toolchain
(version 7-2017-q4-major) was used to compile all instances listed before as well
as lLTZVisor. The -O2 optimization flag was included for all cases (except in
Sections 5.1 and 5.6 where -O0 was also used).

5.1 Memory Footprint

On the first part of the experiments, the focus was on memory footprint. To
assess the hypervisor’s size, the size tool of the GNU ARM Embedded Toolchain
was used. Results were collected for different levels of compilation optimizations
(-O0 and -O2), as well as for different lLTZVisor’s configurations (single-core and
AMP).

Table 5.1 shows the size of the hypervisor for each of the system’s configurations.
As it can be seen in both configurations, the hypervisor presents a reduced size
in the order of a magnitude of a few kB. Comparing the single-core to the AMP
approach, the latter presents a smaller size. Such difference occurs because of
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Table 5.1: lLTZVisor memory footprint (bytes)

Hypervisor Configuration Memory Footprint (bytes)
.text .data .bss Total

Single-core (-O0) 2994 136 0 3130
Single-core (-O2) 2630 136 0 2766
AMP (-O0) 2427 128 32 2587
AMP (-O2) 2189 128 32 2349

the AMP approach introducing a slave layer which eliminates code for handling
VM switches, resulting in an overall TCB reduction. A particular note goes for
compilation optimizations. In fact, they do not sort a huge effect, since a large
amount of lLTZVisor’s code is written in assembly.

5.2 Microbenchmarks

This section focus on the evaluation of the micro-operations part of the VM switch-
ing process performed by the lLTZVisor hypervisor. In order to collect the clock
cycles that each operation takes, the Cortex-M SysTick timer, configured to run
with the same clock speed as the CPU, was used to measure the difference between
its timer’s value before and after each micro-operation. As this difference directly
corresponds to the amount of clock cycles the operation underwent, both the cycles
and timing results can be gathered and used to classify the micro-operations.

In-depth, the operations behind the VM switching process are:

• SVC handling - This operation is the first triggered by the idle task of the
secure VM’s guest OS. It is used to start the VM switching process;

• Vector Table Switch - This operation is part of both world switch major
operations. It is performed to efficiently swap the secure world’s vector
tables explained on the mechanism described on Section 4.3.4;

• S VM Context Store - The operation that stores the secure VM’s context;

• NS VM Context Load - The operation that loads the non-secure VM’s
context;

• NS VM Context Store - The operation that stores the non-secure VM’s
context;

• S VM Context Load - The operation that loads the secure VM’s context;
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• Fetch S VM Handler - This operation is performed to obtain the respec-
tive handler of the secure VM’s interrupt that triggered the switch process
to the secure VM, prior to calling it;

• Scheduler - The process after restoration of the secure VM. It starts by the
verification of real-time tasks to run and posteriorly triggers a VM switch
process.

Table 5.2: Hypervisor performance statistics

World Switch Operation Performance Time
x̄ @50MHz

(1) SVC handling 23 460ns
Switch to NS VM (2) Vector Table Switch 10 200ns

(3) S VM Context Store 28 560ns
(4) NS VM Context Load 64 1280ns
(5) Vector Table Switch 14 280ns

Switch to S VM (6) NS VM Context Store 74 1480ns
(7) S VM Context Load 29 580ns
(8) Fetch S VM Handler 329 6580ns

Scheduler (9) Asymmetric Policy 40 800ns
Total 611 12220ns

The results can be consulted on Table 5.2, revealing that a complete VM switching
process takes around 12.22 microseconds, assuming the RTOS is always idle in
this context. Every result obtained was deterministic and presented no deviation.
The reason behind this is that the portion of code responsible to handle this
process (monitor) is promoted to execute on a TCM bank, which provides the
CPU low-latency memory accesses without the use of caches that could bring
unpredictability.

5.3 Performance

In this section, the focus is on performance of the VM’s guest OSes. To assess
the performance overhead introduced by the lLTZVisor, five different test case
scenarios were ran using the Thread-Metric Benchmark Suite [Log] described on
Section 3.3.1. For each benchmark, the score represents the impact on the guest
RTOS of the running VM, where higher scores correspond to a smaller impact.
All seven benchmarks were ran into the five different test case scenarios laid out
at the beginning of this Chapter. When running the benchmark in one VM, the
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opposing VM has no active task (i.e. the workload is null) but the SysTick is kept
active. This means any side-effect resulting from partial or total starvation is not
taken into consideration in this experiments; starvation is evaluated in Section
5.5). For the first part of the experiments, the SysTick of all VM OS instances
was configured with a period of 1ms.
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Figure 5.1: Performance for Thread-Metric benchmarks.

Figure 5.1 presents the achieved results, where each bar corresponds to the average
relative performance of 10000 collected samples (each sample takes 30 seconds).
The values on top of the bars correspond to the average absolute performance. As
it can be seen, for the single-core configuration, the secure VM has no performance
penalty (asymmetric design principle), while the non-secure VM presents, on av-
erage, a performance degradation of about 0.6%. This performance degradation
is the result of the periodic preemption imposed by the secure VM. Compar-
ing achieved results with related work for Cortex-A processors (e.g., LTZVisor
[PPG+17c]), it is clear the performance overhead decrease (from 2% on LTZVisor
to 0.6% on this solution) due to the hardware optimizations of ARM microcon-
trollers’ TrustZone architecture for faster transitioning. Finally, regarding the
AMP configuration, there are two notes worth mentioning. First, the AMP se-
cure VM, although running without any hypervisor interference, presents a small
performance degradation when compared to native execution, and which varies
across the different benchmarks. This degradation is related to contention on
shared resources, which will be discussed into detail in Section 5.6. Second, the
AMP non-secure VM performance is significantly reduced. This is not related to
the virtualization overhead, but mainly due to the execution of the non-secure
VM on the secondary core (CPU1) which is inherently slower when running at
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the base frequency. A comparison between a native execution of FreeRTOS on
CPU0 and CPU1 demonstrated a decrease of performance on the same order of
magnitude.
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Figure 5.2: Relative performance with different tick rates.

In the second part of the experiments, the focus is on evaluating the dependency
between the SysTick rate of one VM and the performance overhead of the oppos-
ing VM. The previous experiments were repeated, but instead for three different
SysTick rates ranging from 1ms to 100µs. Each point corresponds to the geo-
metric mean of measured results for the seven benchmarks, encompassing a total
of 70000 samples per point. From Figure 5.2 it can be concluded that (i) in the
single-core configuration the performance of the non-secure VM decreases as the
SysTick rate of the secure VM increases while (ii) in the AMP configuration the
performance of each VM slightly decreases as the SysTick rate of the other VM in-
creases. Although this phenomenon is not noticeable in Figure 5.2, a performance
degradation of about 0.15% was observed. Further analysis must be carried out
to fully justify that the decrease of performance is not directly related to SysTick
itself, but it is instead, a consequence of concurrency while stressing buses when
the FreeRTOS goes through the scheduler. The scheduler needs to go through sev-
eral critical internal data structures (e.g., task and synchronization control blocks)
while following different execution paths (e.g., affecting code locality).

5.4 Interrupt Latency

Interrupt latency, which can be defined as the time from the moment an interrupt
is triggered until the moment its handler starts to execute, is a critical metric for
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Figure 5.3: Interrupt latency.

real-time systems. To assess the interrupt latency, a dedicated timer was setup to
trigger an interrupt every 10 ms, while guaranteeing this is enough time for the
interrupt to be serviced and resume previous execution. As the timer is configured
in decrementing, auto-reload fashion, latency is obtained directly by reading the
counter register at the beginning of the interrupt handler. Latency for the five
different test case scenarios was measured. For the single-core configuration, the
best and the worst case scenarios were taken into consideration, i.e. when an
interrupt is directly handled by the VM, as well as when it is mediated by the
lLTZVisor. For example, for the secure VM, measurements were made for the
interrupt latency when an interrupt is triggered while the secure VM is running,
as well as while the non-secure VM is running (i.e., a world switch needs to be
performed). All measurements were repeated 10000 times. Figure 5.3 shows the
assessed results, which expresses the best- and the Worst-Case Execution Time
(WCET). From the collected data, it is clear the additional overhead introduced
in a single-core configuration. This is naturally understandable as both VMs
necessarily need to share the same CPU, which requires an additional world switch.
Notwithstanding, while for the secure VM the WCET has a deterministic upper
bound, for non-secure VM this is not necessarily true. The lemniscate symbol on
top of the bar means that the non-securre VM interrupt latency, on the WCET,
has no specific upper bound, due to the possible starvation imposed by the secure
VM (see Section 5.6). Notwithstanding, this limitation was naturally taken into
consideration, which is why this architecture envisions the use of a soft real-time
or IoT-enabled OS as a non-secure VM. Regarding the test cases for the AMP
configuration, each VM handles directly its own interrupts without any hypervisor
interference. However, there are two facts that still deserve an explanation: (i)
first, the additional jitter on both cases is mainly explained by concurrency on
memory and buses, and; (ii) second, the increased value for the AMP non-secure
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VM is related to the fact the VM is executed on the CPU1, a phenomenon already
observed in the previous section.

5.5 Starvation

The asymmetric design principal (single-core configuration), borrowed from SafeG
[SHT10] and LTZVisor [PPG+17c], ensures the secure VM has a greater scheduling
priority than the non-secure VM. While this ensures the timing requirements of
the (secure) real-time environment remains nearly intact, it also gives rise to two
issues: isolation and starvation. In this subsection the focus is on observing and
evaluating starvation. Experiments presented in Section 5.3 were repeated, but
using different workloads. A real-time task to the FreeRTOS instance running as
secure VM was added as a way of emulating different workloads on the secure
VM. Four different workloads were emulated with utilizations of 0, 25, 50 and
75%. FreeRTOS running as secure VM has the SysTick configured to trigger
every millisecond. This means the real-time task will be consuming the CPU for
0, 250, 500 and 750 microseconds, respectively. Each point corresponds to the
geometric mean of measured results for the seven benchmarks, encompassing a
total of 70000 samples per point.
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Figure 5.4: Relative performance with different workloads.

From Figure 5.4 it is conclusive that in the single-core configuration, the perfor-
mance of the non-secure VM decreases linearly as the workload increases. This
can lead, in the worst case, to a complete starvation of the non-secure VM, in case
the secure VM never releases the CPU. For the AMP configuration, although not
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noticeable on the graph, there is a slight performance decrease which is related to
contention (see Section 5.6)

5.6 Contention

Finally, in the last part of these experiments, the focus is on evaluating contention.
Obviously, the focus was solely on the AMP configuration and consequently on ob-
serving how the secure VM timing predictability may be hampered by non-secure
VM execution. To evaluate such interference four different test case scenarios were
set:

1. Pessimist Memory Layout (P) - where the system designer has no con-
cerns regarding the memory map, and the code of both VMs runs from the
QSPI, while the data is placed into a single iSRAM bank;

2. Common Memory Layout (C) - where the system is configured to stress
concurrency, by running code related to the secure VM and non-secure VM
from the eSRAM and QSPI, respectively, and data from different iSRAMs;

3. Realistic Memory Layout (R) - which was the memory layout used in
all aforementioned experiments (both VMs are loaded into the eSRAM and
respective data into different iSRAMs), and finally;

4. Ideal Memory Layout (I) - where code and data of the secure VM are
small enough to fit within a single tightly coupled iSRAM, and the code and
data of the non-secure VM are placed on a eSRAM and a tightly coupled
iSRAM, respectively.

In all test cases scenarios, the lLTZVisor runs from the same memory as the secure
VM. Moreover, on CPU1 (which is running the non-secure VM) the instruction
cache is disabled as a way to maximize contention.

Figure 5.5 presents achieved results. Each bar corresponds to the best and WCET,
i.e. when the CPU1 (non-secure VM) is enabled and disabled. A number of 10000
samples were collected per test per bar. From Figure 5.5 it is conclusive that for
the pessimistic and common memory layout there is significant interference from
the non-secure VM onto the secure VM. The non-secure VM is able to add a
considerable interference, which results in a lack of determinism and timing pre-
dictability. In contrast, when the memory layout is distributed according to the
guidelines proposed in Section 4.6.1, the secure VM suffers none or really small
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Figure 5.5: Contention.

interference (ideal and realistic, respectively) from the non-secure VM. Addition-
ally, it is seen that the higher are the compilation optimizations, the smaller the
contention gets. This is related to the reduction in the number of memory access
instructions. Finally, it is worth mentioning that the experiments related to the
interrupt latency for the four test case scenarios were repeated and it was observed
that the interrupt latency follows a similar pattern of the measured performance.
For example, for an ideal memory layout, the jitter on the secure VM interrupt
latency is also non-existent.





6. Conclusion

Although low-end and low-cost embedded devices sill present a limited amount
of virtualization solutions to this date, it is seen that virtualization techniques
have been a game-changer to mid- and high-end embedded applications, address-
ing multiple situations where different levels of criticality are required and where
the dramatical increase of engineering costs due to growing functionalities of ESs
are a concern. Several alternatives have been studied to create an environment
where multiple environments can be combined into the same platform, from which
virtualization technology stands out as the de-facto solution, while benefiting from
characteristics such as reliability, safety and security.

Given the high demand of the embedded enterprise world to introduce virtualiza-
tion to their products, processor manufacturers were forced to start developing
hardware virtualization support in order to reduce costs. TrustZone technology,
despite not being virtualization-oriented, has been seen as a way to guarantee a
strong isolation and consolidation to mixed-criticality systems, as seen on LTZVi-
sor. This technology stands out due to its wide presence in a great part of pro-
cessors used in the embedded market, that is dominated by ARM-based CPUs.
Following this, ARM’s low-end range of processors received recently their respec-
tive security extensions, the TrustZone for microcontrollers, which sparked early
on a particular interest in exploiting its capabilities to create a refactored ver-
sion of LTZVisor targeting microcontrollers, an approach that up until now is not
available on MCUs.

In this thesis lLTZVisor was presented as a viable lightweight virtualization in-
frastructure for low-end and low-cost systems. The TrustZone technology for
microcontrollers was shown how it can be effectively exploited to provide isolation
on mixed-criticality systems, which are expected to be deployed on billions of to-
morrow’s ARM microcontrollers. Furthermore, multi-core technology is addressed
by the lLTZVisor in an AMP configuration, demonstrating advantages in terms of
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computing power and schemes to minimize contention and improve predictability
for modern MCU-based platforms.

The implemented hypervisor was evaluated on a reference low-end ARMmulti-core
platform, and assessed results demonstrate reduced memory footprint, determin-
istic and low timing results of the operations behind the VM transitioning process,
and little to no performance penalty introduced on the VMs running on top of the
lLTZVisor hypervisor. Also, interrupt latencies on the WCET scenario demon-
strated a slight introduced overhead due to the share of CPU for the single-core
approach and concurrency on memory and buses for the AMP approach. The
impact caused by raising the workload of the VMs in the single-core approach was
shown to lead in the worst case to a complete starvation of the non-secure VM,
and a slight performance decrease for both VMs related to contention in the AMP
approach. To conclude, four different test scenarios were set in order to purpose-
fully demonstrate the interference that each memory layout scheme causes on the
results of determinism and timing predictability of the lLTZVisor AMP.

6.1 Future Work

Regardless of the developed hypervisor providing the fundamentals for future re-
search on the topic of TrustZone-assisted virtualization for low-end devices, it is
believed that there are still improvements left to be made on lLTZVisor. Apart
from adding an Inter-VM communication mechanism to the lLTZVisor hypervisor,
future work will mainly focus on scalability and power consumption improvements.

Firstly, an alternative of single-core multi-guest support is envisioned to be imple-
mented, and then, focus would be on exploring a hybrid solution between Trust-
Zone and para-virtualization to address scalability in terms of multi-guest and
multi-core. Such envisioned architecture would target a complete isolation be-
tween the hypervisor and the VMs, relegating the VMs to the non-secure world
and then preserve them in the secure world’s memory address space when not
running. Consequently, this expects to solve the lack of isolation existing be-
tween the hypervisor and the secure VM, while at the same time shrinking the
TCB of the system size of the hypervisor. Despite this, on a multi-core config-
uration this would not necessarily translate into addressing scalability in terms
of number of guests, whereas only a great collaboration between TrustZone and
para-virtualization could bring a real scalability.
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Finally, since energy is a key metric for constrained low-end devices, i.e. IoT
sensor nodes, an in-depth evaluation of power consumption must be done, onto
posteriorly exploring synergy between performance levels and energy efficiency.
Where additionally, in such study, the pros and cons would be compared to other
hardware-based approaches: MPU-based solutions and hardware virtualization
support available on modern ARMv8-R processors.
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