

i

APPLYING FAHP TO IMPROVE THE

PERFORMANCE EVALUATION RELIABILITY AND

VALIDITY OF SOFTWARE DEFECT CLASSIFIERS

Hussam Ghunaim

Under the Supervision of Dr. Julius Dichter

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

October 2019

ii

APPLYING FAHP TO IMPROVE THE

PERFORMANCE EVALUATION RELIABILITY AND

VALIDITY OF SOFTWARE DEFECT CLASSIFIERS

© Copyright by Hussam Ghunaim 2019

iii

iv

APPLYING FAHP TO IMPROVE THE

PERFORMANCE EVALUATION RELIABILITY AND

VALIDITY OF SOFTWARE DEFECT CLASSIFIERS

ABSTRACT

Today’s Software complexity makes developing defect-free software almost

impossible. On an average, billions of dollars are lost every year because of software

defects in the United States alone, while the global loss is much higher. Consequently,

developing classifiers to classify software modules into defective and non-defective

before software releases, has attracted a great interest in academia and the software

industry alike. Although many classifiers have been proposed, none has been proven

superior to others. The major reason is that while a research shows that classifier-A is

better than classifier-B, we can find other research coming to a diametrically opposite

conclusion. These conflicts are usually triggered when researchers report results using

their preferred performance quality measures such as recall and precision. Although this

approach is valid, it does not examine all possible facets of classifiers’ performance

characteristics. Thus, performance evaluation might improve or deteriorate if researchers

choose other performance measures. As a result, software developers usually struggle to

select the most suitable classifier to use in their projects. The goal of this dissertation is

v

to apply the Fuzzy Analytical Hierarchy Process (FAHP) as a popular multi-criteria

decision-making technique to overcome these inconsistencies in research outcomes. This

evaluation framework incorporates a wider spectrum of performance measures to

evaluate classifiers’ performance, rather than relying on selected, preferred measures. The

results show that this approach will increase software developers’ confidence in research

outcomes, help them in avoiding false conclusions and indicate reasonable boundaries for

them. We utilized 22 popular performance measures and 11 software defect classifiers.

The analysis was carried out using KNIME data mining platform and 12 software defect

data sets provided by NASA Metrics Data Program (MDP) repository.

vi

ACKNOWLEDGEMENTS

I am extremely grateful to the Almighty Allah, who has helped me all the way to

complete this work successfully. I owe a deep debt of gratitude to my wife and four

children for their unstinted support, encouragement and patience.

I am honored that my work has been supervised by Dr. Dichter and Dr. Elleithy, who

took every occasion to provide their continuous support, comments and guidance for the

successful completion of this work.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: INTRODUCTION ... 11

1.1 The Research Problem ... 12

1.2 Scope, Definitions and Limitations .. 13

1.3 Dissertation Questions (Aims) ... 15

1.4 Contributions to knowledge .. 15

CHAPTER 2: RELATED WORK .. 16

CHAPTER 3: SOFTWARE DEFECT CLASSIFICATION .. 18

CHAPTER 4: EVALUATION OF CLASSIFIERS ... 21

CHAPTER 5: EVALUATION RELIABILITY AND VALIDITY.................................. 25

CHAPTER 6: FUZZY ANALYTICAL HIERARCHY PROCESS (FAHP) 30

CHAPTER 7: EXPERIMENTAL SETUP AND RESULTS ... 33

7.1 Data Sets .. 35

7.2 FAHP Application ... 37

7.3 Results .. 46

viii

7.4 Threats to validity .. 48

CHAPTER 8: CONCLUSIONS ... 50

APPENDIX A: E MATRICES ... 52

APPENDIX B: B MATRICES ... 65

APPENDIX C: 𝑺 MATRICES ... 66

REFERENCES ... 79

ix

LIST OF TABLES

Table (1.2.1) Examples of software metrics types. 14

Table (3.1) Software defect classifiers. 20

Table (4.1) Confusion Matrix. 21

Table (4.2) List of the 22 performance evaluation measures

utilized in the study.

23

Table (7.1.1) Data quality issues with NASA data sets. 36

Table (7.1.2) Changes made to NASA data sets after applying the

cleaning strategy.

37

Table (7.2.1) AHP and FAHP score interpretations. 39

Table (7.2.2) The relative fuzzy weights established for the

evaluation measures, 𝐴̃ matrix.

41

Table (7.2.3) Computing the criteria of fuzzy weights vector 𝒘̃. 43

Table (7.3.1) Classifiers ranks per every data set. 47

Table (7.3.2) Averaged Data Sets Ranks. 48

x

LIST OF FIGURES

Figure (3.1) The process of training and testing software defect

classifiers.

19

Figure (4.1) Depiction of confusion matrix variables. 22

Figure (6.1) Membership functions used in FAHP. 32

Figure (7.2.1) FAHP hierarchical structure. 38

11

CHAPTER 1: INTRODUCTION

Software defects are a serious threat to the success of the software development

industry [1]. On an average, billions of dollars are lost every year because of software

defects in the United States alone [2], while the global loss is much higher. Although

defects can be detected through various quality procedures, finding and fixing defects

consume a significant portion of the available resources [3]. Most software defects are

normally found within a relatively small number of modules [4] [5]. Therefore, developing

software defect classifiers has become a promising methodology to identify defective

modules before software release. The expected returns are significant in terms of reducing

the overall quality assurance activities’ time and costs [1] [6].

The major aim of software defect classifiers is to classify software modules into

defective (dM) and non-defective (ndM). This binary classification can be described as a

mapping function from a vector 𝒙 of 𝑀 features, where 𝒙𝑖 ∈ 𝑅𝑀, to one of the classification

classes 𝑦𝑖 ∈ {𝑑𝑀, 𝑛𝑑𝑀} [4].

𝑓(𝑥): 𝑅𝑀 ↦ {𝑑𝑀, 𝑛𝑑𝑀} (1.1)

12

This model can be trained by a training data set 𝑆 that has 𝑁 instances,

𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 . (1.2)

Numerous techniques have been proposed to develop classifiers, as for instance

regression and logistic regression, neural networks, decision trees, and many other

machine- learning algorithms [4] [7] with none of them being superior to the others [3] [8].

This is mainly caused by contradicting benchmarking studies. Various software

engineering research papers [1] [3] [9] [10] investigated and challenged the reliability of

software defect classifiers’ benchmarking studies. The common finding of these studies

was that while one-study showed classifier A as better than classifier B, other studies came

to the exactly opposite conclusion.

1.1 The Research Problem

Software practitioners face the problem of how they can reliably evaluate the

performance of defect classifiers, to select the best performing classifier out of several

others [11]. Although there are many performance evaluation measures, they usually

provide contradictory results. This contradiction is indeed expected, as each of these

measures was developed to capture a specific aspect of classifiers’ performance. For

example, recall, which is known as True Positive Rate (TPR), represents the proportion of

the actually defective modules that are classified defective. Similarly, precision, which is

known as Positive Predictive Value (PPV), represents the proportion of classified defective

modules that are actually defective [3] [12], and so forth. As a result, the performance

quality is highly dependent on the specific measure utilized.

13

This fact leads to the critical question; which performance evaluation measure(s)

should practitioners use? In other words, how can practitioners evaluate classifiers in such

a way as to always obtain reliable and valid results? This essential requirement is motivated

by two possible scenarios: mistakenly classifying defective modules as non-defective

raises the risk of software failure, while classifying non-defective modules as defective

increases software quality assurance activities’ time and costs.

1.2 Scope, Definitions and Limitations

We collect metrics relating to almost every single detail about software systems.

The collected metrics are analyzed to identify any anomalies or unacceptable patterns. In

general, software metrics are divided into two types: Product metrics and Process metrics

[13]. While product metrics are collected about the software artefact, process metrics are

collected about the development environment such as, development methodology, quality

assurance activities, etc.

Product metrics can be further divided into static and dynamic metrics. Static

metrics are collected about features of the software code, while dynamic metrics are

collected during the execution of the code. Table (1.2.1) [13] shows some examples of

metrics types. Our research is focused on analyzing static code metrics to predict software

defective modules.

This choice can be justified as follows. First, for many software projects, static code

can be found published on public repositories. This availably makes it possible for other

researchers to replicate and verify our work [14] [15]. Additionally, it is quite easy to share

14

data among researchers utilizing public platforms such as GitHup, GoogleCode, etc. The

second reason is, process and dynamic code metrics are highly dependent on the specific

software project or company that develops it. This usually makes it hard to find those

metrics in the public domain or even to get them from their respective sources.

Table (1.2.1) Examples of software metric types.

Process metrics Static metrics Dynamic metrics

Number of Revisions (NR)
Lines of Code

(LOC)

Cyclomatic

Complexity

Number of Distinct Committers (NDC) Branch_Count Function Point

Number of Modified Lines (NML) Condition_Count Halstead Complexity

Number of Defects in Previous Version

(NDPV)
Cyclomatic_Density Bug Counting

There is a great deal of disagreement on the exact definition of defects. Clark and

Zubrow [16] have defined software defects as “any flaw or imperfection in a software work

product or software process… A defect is frequently referred to as a fault or a bug”.

However, other researchers have provided different definitions for defects occurring at

different phases of the software production lifecycle [17], [18], [19]. Below are the most

commonly used definitions:

• Errors/faults/bugs are mistakes that occur during the design stage or written code

errors other than syntax errors

15

• Defects are errors occur at the production phase, before release of the software to

customers

• Failures are errors occurring on the customer’s side, causing operational problems

Although IEEE has published the Standard Glossary of Software Engineering

Terminology [20], an international consensus over theses definitions has not yet been

established [17], [21].

1.3 Dissertation Questions (Aims)

The dissertation question is: Is it possible to incorporate a wide spectrum of

performance evaluation measures into a comprehensive evaluation strategy, rather than

relying on one or two performance measures selected by a researcher or a practitioner?

The aim of this dissertation is to apply the Fuzzy Analytical Hierarchy Process

(FAHP) as a popular multi-criteria decision-making technique as the proposed

comprehensive evaluation strategy.

1.4 Contributions to knowledge

Our contribution is the development of a new evaluation strategy that we believe

will improve the reliability of the current implemented evaluation techniques.

16

CHAPTER 2: RELATED WORK

The reliability of software defect classifiers was scrutinized extensively in many

published works [8] [11] [22] [23] [24]. Nonetheless, it seems that there are many

opportunities for improvement. For example, performance quality measures such as

precision, accuracy, etc. can be improved by applying rigorous reliability and verification

techniques [8] [11]. Additionally, many of these measures have been borrowed from other

disciplines (e.g. Psychology and social sciences). In many cases when these measures are

used ‘as is’, they usually have different implications [12].

It has become a common practice for practitioners and researchers to select their

most-preferred statistics to support their point of view. This may lead to vague and

misleading conclusions. Forman et al. [25] concluded that comparing different research

studies has become complicated, and in many cases, the comparisons are not meaningful.

This dissertation emphasizes the fact that performance evaluation must be seen as

a comprehensive strategy, rather than relying on performance measure(s) selected based

on one’s preferences. Lanza, et. al stated, “A metric alone cannot help to answer all the

questions about a system and therefore metrics must be used in combination to provide

relevant information” [26].

17

Shepperd et al. [3] conducted an extensive study to find the reasons for variance in

classifiers’ performance. Their study included 600 experimental results published in many

reputed conferences and journals with low acceptance rates. Surprisingly, researcher bias

was among the major and wide-spread influential factors. They found that it is extremely

difficult to choose the best performing classification technique, because of this

phenomenon.

To solve the problem of researchers’ bias, Inse et al. [27] asserted that researchers

should improve their research outcomes reporting protocols. Kitchenham [28] also

suggested the need to enhance the communication and documentation protocols to include

sufficient explicit details about how exactly classifiers were used and evaluated in research.

Fenton [21] extensively discussed the concept of research reliability. In general, he

emphasized the empirical validity procedures, where researchers are required to validate

their findings by replications of experiments. Empirical validation studies have become an

essential part in software defect classification research, because usually we lack the

required theoretical validation. This fact has led us to our dissertation contribution, which

proposes a comprehensive evaluation scheme that will provide proven better evaluation

outcomes, compared to preferred selected performance measure(s).

18

CHAPTER 3: SOFTWARE DEFECT CLASSIFICATION

The practical purpose of implementing software defect classifiers is to identify the

defective modules in large software systems. Although many quality assurance techniques

are available and are generally effective in identifying those defects, the cost is prohibitive.

Weyuker et al. concluded in their study of large commercial software systems that only

20% of the system components can be effectively checked for defects [29]. This fact is

evident from today’s software industry. It is almost impossible to find a software that is

defect-free. As a result, implementing classifiers in software industry has become an active

research area.

To build a classifier, we need to create a data model that can associate a set of

independent variables to the dependent variable. In our case, the dependent variable is

simply a label to identify defective software modules from non-defective ones. The

independent variables are the software metrics designed to capture various features of

software systems.

Once we build a classifier, it is necessary to train it on a historical data set and then

test it to evaluate its performance. This can be achieved by comparing the classifier

predictions to the original dependent variable values in the testing data set. An error

function must be defined to measure the correctness of the classifier predictions. Figure (3.1)

19

shows the process of training and testing software defect classifiers. Chapters 4 and 5

describe classifiers’ evaluation in more detail.

Figure (3.1) The process of training and testing software defect classifiers [30].

Many classifiers exist today in practice. Generally, we can divide classifiers

into three major categories: statistical methods, machine learning, and neural networks.

20

Table (3.1) shows the 11 classifiers used in this research. These classifiers have been

chosen based on their popularity in software defect research [4] [31].

Table (3.1) Software defect classifiers.

1
Probabilistic Neural Network (PNN) based on

the Dynamic Decay Adjustment (DDA) [32]

2 (SOTA) clustering [33]

3 Fuzzy Rule (FR) [34]

4 Logistic Regression (LR) [35]

5 Naïve Bayes (NB) [36]

6 K Nearest Neighbor (KNN) [37]

7 Multi-Layer Perceptron (MLP-RProp) [38]

8 Support Vector Machine (SVM) [39] [40]

9 Decision Tree C4.5 (DT) [41] [42]

10 SimpleCart (CART) [43]

11 Random Forest (RF) [44]

21

CHAPTER 4: EVALUATION OF CLASSIFIERS

To evaluate the classifiers’ performance, we followed the common practice of using

a confusion matrix, table (4.1), where the first column shows the actual (real) positive AP

cases (defective modules) and the second column shows the actual (real) negative AN cases

(non-defective modules). Similarly, the first row shows the predicted positives (PP) and

the second row the predicted negatives (PN). The bottom right cell shows T, the total

number of cases. Figure (4.1) depicts the meanings of the confusion matrix variables.

While the optimum desired results would be 𝑓𝑝 = 𝑓𝑛 = 0, the actual performance of

classifiers is still far from achieving this goal. By utilizing these four variables, the

classifiers’ performance measures can be calculated.

Table (4.1) Confusion Matrix.

tp fp PP

fn tn PN

AP AN T

22

Figure (4.1) Depiction of confusion matrix variables.

Numerous performance measures have been proposed and utilized by researchers

and practitioners to evaluate classifiers’ performance. Table (4.2) shows the 22

performance measures utilized in our research [3] [45] [46] [47] [48], the selection of which

was based on their popularity in software defect classification research [3] [12]. Since

Cohen’s Kappa is the only measure that needs more clarifications on how to compute its

probabilities (i.e. Pr(𝑎) 𝑎𝑛𝑑 Pr (e)), we added those clarifications right after the table.

Classified

Classified negatives

23

Table (4.2) List of the 22 performance evaluation measures utilized in the study.

1 Recall = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛)

2 Precision = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝)

3 Inverse Recall = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑝)

4 Inverse Precision = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑛)

5 Area Under ROC Curve AUC = (Recall + Inverse Recall)/2

6 Accuracy ACC = (tp + tn)/(tp + fp + tn + fn)

7 F1-Score = 2𝑡𝑝/(2𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝)

8 Informedness = 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 – 1

9 Markedness = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 – 1

10
Matthews Correlation Coefficient

MCC
=

𝑡𝑝 × 𝑡𝑛 − 𝑓𝑝 × 𝑓𝑛

√(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)

11 G-Mean1 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

12 G-Mean2 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

13 Cohen's Kappa = (Pr (a) − Pr (e))/(1 − Pr (e))

14 False Discovery Rate (FDR) = 𝑓𝑝/(𝑓𝑝 + 𝑡𝑝)

15 False Omission Rate (FOR) = 𝑓𝑛/(𝑓𝑛 + 𝑡𝑛)

16 False Positive Rate (FPR) = 𝑓𝑝/(𝑓𝑝 + 𝑡𝑛)

17 False Negative Rate (FNR) = 𝑓𝑛/(𝑓𝑛 + 𝑡𝑝)

18 Predicted Positive Condition Rate = (𝑡𝑝 + 𝑓𝑝)/(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)

19 Positive Likelihood Ratio (LR+) = 𝑅𝑒𝑐𝑎𝑙𝑙/𝐹𝑃𝑅

20 Negative Likelihood Ratio (LR−) = 𝐹𝑁𝑅/(𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙)

21 Diagnostic Odds Ratio (DOR) = (𝐿𝑅+)/(𝐿𝑅−)

22 Prevalence = (𝑡𝑝 + 𝑓𝑛)/(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)

24

Cohen's kappa probabilities are calculated as follows:

Pr(𝑎): is the observed agreement probability among raters

Pr(𝑎) =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Pr(𝑒): is the agreement by chance probability among raters

Pr(𝑒) = 𝑅1(𝑃)𝑅2(𝑃) + 𝑅1(𝑁)𝑅2(𝑁)

Rater1 percentage of positive responses

𝑅1(𝑃) =
𝑡𝑝 + 𝑓𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Rater1 percentage of negative responses

𝑅1(𝑁) = 1 − 𝑅1(𝑃)

Rater2 percentage of positive responses

𝑅2(𝑃) =
𝑡𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Rater2 percentage of negative responses

𝑅2(𝑁) = 1 − 𝑅2(𝑃)

25

CHAPTER 5: EVALUATION RELIABILITY AND VALIDITY

Every aspect of our lives requires measurement, especially in engineering fields.

However, no measurement can be useful, unless it possesses a minimum of two

characteristics: reliability and validity. Reliability means the ability for a measurement to

produce consistent results when repeated in many trials. The more consistent the results

are, the more reliable the measurement is. On the other hand, a measurement is considered

to be valid if it measures what it is intended to measure [8].

Every measurement is affected by both random and non-random errors. Random

errors occur in every trial, causing a measurement to produce variant results. Non-random

errors occur systematically in every trial and cause the measurement results to cluster

around specific erroneous values. The extent to which we can control these two sources of

errors is variant and dependent on the specific application area. In software engineering, it

seems that we have less control over those errors, compared to other engineering areas.

This argument naturally leads us to the question, which measurement should we

choose to evaluate classifiers’ performance? Numerous publications proposed a vast

spectrum of measurements, proposed by people working in the software engineering field

having IT or business backgrounds. Consequently, these measurements seemed to be

26

relevant, as they reflected the viewpoint of their creators within their own specific contexts.

Nonetheless, many of these measurements have failed to take into its consideration the

rigorous requirements of the measurement theory, which is known as the Metrology.

Therefore, their reliability and validity are facing serious challenges. Evans [49] described

this paradox as “While software metrics has not yet achieved a degree of scientific maturity,

it is still a valid concept and much work has been undertaken in the field.”

This failure to fully comply with the measurement theory requirements has led to

many of these software quality measures being considered invalid. Abran discussed this

contradiction in detail in his book titled “Software metrics and software Metrology [50].”

He suggested a preliminary solution for this contradiction: “If software engineering is to

mature into a recognized engineering discipline, it needs to be supported by measures,

measurement methods and well tested descriptive and quantitative models [51].” Further,

Abran asserted that the only way to develop very well- matured measurement knowledge

in the discipline of software engineering is to explore, investigate, and apply Metrology

concepts and principles.

On the other hand, some software engineers argue that Metrology principles

should not be applied to the software engineering discipline, since software is not a

physical object [50] [51]. Consequently, they consider that the current software metrics

are acceptable, although they failed to comply completely with the Metrology

requirements.

27

In our opinion, this thinking has led to the phenomenal gap between research

outcomes and industry practitioners’ practices. Moreover, this gap has become very

obvious by recognizing the serious lack of validation of any proposed measurements that

usually lead to conflicting claims by academia and industry researchers [22]. Finally, since

software engineering carries the ‘engineering’ title, it necessarily implies its explicit

compliance with engineering practices and principles.

In recent years, many scholars have started to pay increasing attention to the

deficiencies in measurement reliability and validity in the software engineering field. For

example, Abran [51] proposed a framework for validating software measurements as a

potential solution to the current uncertainty. The framework contained three major

components:

• Validation of the design of a measurement method

• Validation of the application of a measurement method

• Validation of the use of measurement results in a predictive system

Moreover, he asserted that before any measurement is accepted as reliable and

valid, it should pass the requirements of this framework. Even though he referenced many

other authors’ works in this regard, he believed that none of the many proposed

verifications of validity is complete or covers the whole variety of measurement methods

used. Therefore, a practical and acceptable validation framework still does not exist!

28

Other authors have listed their own recipes for what a reliable and valid

measurement should look like [22] [21] [52] [53]. Below is a summary of the common

ingredients that must be clearly defined for any measurement system to be deemed reliable

and valid:

• What are the entities measured?

• What are the attributes of the entities we are interested in?

• What are the units applicable to each measured attribute?

• Which scale is the most appropriate for each measured attribute?

Missing any of these elements will result in awkward measurements system

outcomes that are difficult to analyze and comprehend. Likewise, other authors have

mentioned the importance of following the broader requirements of the measurement

theory (the Metrology) [52] [54] [55]. Below is a summary of the most notable questions

any measurement system must answer:

• How do we know if we have really measured an attribute?

• When an error margin is acceptable or not?

• Which statements about a measurement are meaningful?

• Which types of attributes can/cannot be measured?

• What kind of scales can these measurements use?

• How to define these scales?

29

As the result of this vast inconsistency in measurements, it has become a common

practice today among researchers in academia and the software development industry alike,

to choose personally preferred measures to use in their research. This phenomenon is

known as “researcher bias” [3].

30

CHAPTER 6: FUZZY ANALYTICAL HIERARCHY

PROCESS (FAHP)

To avoid the researchers’ bias when evaluating the performance of software defect

classifiers, this dissertation proposes the application of multi-criteria decision-making

(MCDM). MCDM is a set of very effective methodological tools for dealing with complex

problems in various domains such as, medicine, business, engineering, etc. Some example

tools are AHP, FAHP, TOPSIS, etc. [56] [57] [58].

The Analytical Hierarchy Process (AHP) technique has been implemented widely

in the multi-criteria decision-making (MCDM) field. The essence of this technique is based

on an expert judgement method to perform pair-wise comparisons between all

implemented criteria. However, AHP suffers from a crucial criticism: it is unable to deal

with the impression and subjectivity of the expert judgement when performing the pair-

wise comparisons method [59] [60] [61].

In recent years, Fuzzy AHP – or for short, FAHP – has gained noticeable

attention as a superior substitute to the AHP technique. The essence of the FAHP

method is based on the ability to capture the uncertainty when performing the expert

judgement method. Zadeh [62] introduced the fuzzy set theory to compromise the

human thought vagueness, which was oriented to the rationality of uncertainty due to

31

imprecision or vagueness, i.e., the consideration of the gradual membership of an

element to a particular set of elements [59].

Kabir and Peng [45] [63] applied AHP successfully in the field of classifiers’

performance evaluation. In this dissertation, the authors apply FAHP in evaluating binary

classifiers’ performance as a more robust multi-criteria procedure. To our knowledge, this

is the first such application.

In 1983, Laarhoven, et al. proposed the use of a triangular fuzzy membership

function as the best fit in performing expert judgement: Figure (6.1.a) [64]. Other functions

were proposed as well to fit various uses: Figure (6.1.b and 6.1.c). We chose to use the

triangular membership method for its suitability to the software defect classifier domain

equation (6.1). The reason for this choice is that we need to provide only two boundaries

to our judgement, the upper and lower boundaries, when comparing measures pair-wise.

Trapezoidal function, for example, provides two middle values in addition to the upper and

lower boundaries, which is not necessary in our research. Similar arguments are applicable

to other fuzzy membership functions that might require unnecessary complications. Thus,

for the sake of simplicity, we made this choice.

32

Figure (6.1) Membership functions used in FAHP.

𝜇(𝑥|𝑀̃) = {

0, 𝑥 < 𝑙,
(𝑥 − 𝑙)/(𝑚 − 𝑙), 𝑙 ≤ 𝑥 ≤ 𝑚,
(𝑢 − 𝑥)/(𝑢 − 𝑚), 𝑚 ≤ 𝑥 ≤ 𝑢,
0, 𝑥 > 𝑢.

 (6.1)

Throughout this dissertation, fuzzy quantities are differentiated by a tilde ‘ ̃’ above

symbols. A triangular fuzzy number TFN is denoted as (𝑙, 𝑚, 𝑢), where 𝑙 denotes the

smallest possible value, 𝑚 the most promising value, and 𝑢 the largest possible value that

describes a fuzzy event. Readers interested in a more detailed introduction to fuzzy

numbers and their algebraic operations are recommended to read Harding et al. [65].

33

CHAPTER 7: EXPERIMENTAL SETUP AND RESULTS

We utilized eleven software defect classifiers table (3.1), chosen based on their

popularity in software defect research [4] [31]. The experiments were carried out using

KNIME [66] [67], a popular data mining platform and twelve NASA software defect data

sets.

KNIME data mining platform was used to run the classifiers on all experimented

data sets. The corresponding confusion matrices were constructed and utilized to calculate

the classifiers’ performance measures, i.e., 𝐸[𝑐 × 𝑝] matrices, where c is the number of

classifiers and p is the number of performance measures. To validate the results, 10-fold

cross-validation technique was run on all experiments. Additionally, we normalized all

experimented data sets to avoid the dominance of some attributes with large values.

Imbalanced data sets can degrade classifiers’ performance and contribute to the

unreliability of results [14] [68]. It is quite common for software defect data sets to have

non-defective modules as the majority class, with the defective modules as the minority

class. Therefore, stratified sampling technique was used to avoid sampling bias. Stratified

functionality guaranteed that all created cross-validation folds had class distribution similar

to the original data sets distributions, i.e., the ratio of defective to non-defective modules.

34

For clarity, we start with presenting a summary of the FAHP steps implemented in

this study, followed by more detailed calculations in section 7.2 FAHP Application.

Note: Matrices are denoted by italicized capital letters, and vectors by bold face italicized

small letters.

𝐿𝑒𝑡,

𝑐 = 11, 𝑐 is number of classifiers,

𝑝 = 22, 𝑝 is number of performance measures,

𝑑 data set

𝐷 the set of 12 NASA data sets

1) Construct the fuzzy performance measures’ pair-wise comparisons 𝐴̃[𝑝 × 𝑝] matrix.

2) Compute the 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 fuzzy 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝒘̃ from 𝐴̃ 𝑚𝑎𝑡𝑟𝑖𝑥.

 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒅 ∈ 𝑫 𝒅𝒐

3) Compute the classifiers’ evaluation matrix 𝐸[𝑐 × 𝑝].

4) Compute the classifiers’ scores 𝑆[𝑐 × 𝑝] matrix.

a) Compute 𝑝 number of 𝐵(𝑗) matrices (classifiers’ pair-wise

comparisons) with respect to each criterion 𝑗 = 1 … 𝑝

b) From each 𝐵(𝑗), compute 𝒔(𝑗) score vectors

c) Construct the 𝑆[𝑐 × 𝑝] matrix by combining all 𝒔(𝑗) vectors, column

wise.

5) Compute the classifiers’ ranking 𝒗 = 𝑆 ∙ 𝒘, where 𝒗𝑖 of the vector 𝒗

represents the global score (i.e. rank) assigned by the FAHP to the

𝑖𝑡ℎ classifier.

6) Identify the highest performing classifier compared to the list of

experimented classifiers.

 𝒆𝒏𝒅 𝒇𝒐𝒓

35

7.1 Data Sets

As the requirement of research replication has become vital for many researchers,

we have decided to use the publicly available and widely used NASA software defect data

sets [15]. The reasons for this choice are to support the ability to reproduce and verify the

published results, and to ease data sharing among researchers [14].

However, NASA data sets suffered from many data quality problems. Shepperd et

al. [69] have analyzed in depth these problems that are summarized in table (7.1.1). For

clarity, we repeat here the common assumptions about software data sets structure. NASA

data sets are organized as matrices of rows and columns. Each row represents one software

module (i.e. case), and each column represents one feature (i.e. attribute).

Shepperd et al. [15] performed a comprehensive cleaning strategy to remove all

problematic cases and features, table (7.1.2). They published the cleaned-up data sets after

removing all cases and features that had one or more of the discussed data quality

problems. These data sets are available online at

“https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1”.

https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1

36

Table (7.1.1) Data quality issues with NASA data sets.

Data Quality

Problem
Meaning Consequences

Identical

values

Two or more features have the same values

for all cases. Similarly, two or more cases

have the same values for all features

including the prediction label.

Identical features

present no additional

information. Identical

cases confuse

learners.

Conflicting

values

This problem arises whenever there is a

violation of a relational integrity constraint.

For example, LOC_TOTAL cannot be less

than LOC_EXECUTABLE or

LOC_COMMENTS. Fan et al. [70] have

discussed integrity constraints in more detail.

Untrustworthy data

Implausible

values

The presence of negative or fractional values

does not make sense and is not acceptable.
Untrustworthy data

Case

inconsistency

Some cases have inconsistent predictions,

i.e., two identical cases each result in a

different prediction.

Untrustworthy data

Constant

values
Features with constant values

They do not present

any information.

Missing

values
Features with missing values Confuses the learner

37

Table (7.1.2) Changes made to NASA data sets after applying the cleaning strategy.

* df % is the percentage of defective modules.

NASA Data Sets
Original Data sets Cleaned-up Data sets

#Modules #Attributes df % * #Modules #Attributes df % *

CM1 505 41 9.50 327 38 12.84

JM1 10878 22 19.32 7782 22 21.49

KC1 2107 22 15.42 1183 22 26.54

KC3 458 41 9.39 194 22 18.56

MC1 9466 40 0.72 1988 22 2.31

MC2 161 41 32.30 125 22 35.20

MW1 403 41 7.69 253 22 10.67

PC1 1107 41 6.87 705 22 8.65

PC2 5589 41 0.41 745 22 2.15

PC3 1563 41 10.24 1077 22 12.44

PC4 1458 41 12.21 1287 22 13.75

PC5 17186 40 3.00 1711 22 27.53

7.2 FAHP Application

The following are the details of FAHP implementation steps [59] [45]:

Step 1:

Decompose the problem into three hierarchical levels, Figure (7.2.1).

Goal: evaluating the performance of software defect classifiers to select the best-

performing classifier

Criteria: twenty-two performance measures

Alternatives: eleven software defect classifiers

38

Figure (7.2.1) FAHP hierarchical structure.

39

Step 2:

Perform fuzzy pair-wise comparisons between all criteria elements using the

fundamental scale proposed by Saaty [58], table (7.2.1). At the end of this step, a criteria

fuzzy weights vector 𝒘̃ is computed. However, this scale is based on crisp evaluation

values. As discussed in Chapter 6, crisp evaluation usually leads to unreliable results, due

to the expert judgement uncertainty and vagueness. Thus, the scale must be modified to

meet FAHP requirements. That is, instead of evaluating the criteria using the crisp scale

values, we can use the Triangular Fuzzy Numbers (TFN) to compensate for human

uncertainty and increase the reliability of the evaluation. It is to be noted that for any fuzzy

number 𝑎̃, the reciprocal can be defined as

𝑎̃−1 = (𝑙, 𝑚, 𝑢)−1 = (
1

𝑢
,

1

𝑚
,

1

𝑙
) (7.2.1)

Table (7.2.1) AHP and FAHP score interpretations.

AHP Crisp

Scale

𝒂𝒋𝒌

FAHP TFN

(𝒍, 𝒎, 𝒖)

𝒂̃𝒋𝒌

Interpretation

j and 𝒌 denote criteria

9 9,9,9 j is extremely more important than k

7 6,7,8 j is strongly more important than k

5 4,5,6 j is more important than k

3 2,3,4 j is slightly more important than k

1 1,1,1 j and k are equally important

1/3 1/4,1/3,1/2 j is slightly less important than k

1/5 1/6,1/5,1/4 j is less important than k

1/7 1/8,1/7,1/6 j is strongly less important than k

1/9 1/9,1/9,1/9 j is extremely less important than k

40

Table (7.2.1) entries are only suggestive for translating the decision-maker

qualitative evaluations of the criteria into quantitative values. It is possible to use other

similar scales.

The authors use their extensive experience in the field of binary classifiers

evaluation measures to rank their relative importance, following Saaty’s fundamental scale

of weights. Additionally, the literature provides a large body of research to evaluate the

reliability and validity of each of these measures. For brevity, a representative sample is

cited in this dissertation [22] [48] [12]. Table (7.2.2) shows the relative fuzzy weights

established for these measures.

By assuming that we have 𝑝 performance evaluation measures (i.e. criteria), we can

construct the criteria pair-wise comparison matrix 𝐴̃ as follows:

𝐴̃[𝑝 × 𝑝] = [

𝑎̃11 ⋯ 𝑎̃1𝑘

⋮ ⋱ ⋮
𝑎̃𝑗1 ⋯ 𝑎̃𝑗𝑘

] (7.2.2)

where 𝑗 = 1 ⋯ 𝑝 & 𝑘 = 1 ⋯ 𝑝.

Every entry 𝑎̃𝑗𝑘 represents the importance of criterion 𝑗 relative to criterion 𝑘, where

𝑎̃𝑗𝑘 = (1,1,1) ∀ 𝑗 = 𝑘.

Once matrix 𝐴̃ is constructed, we can calculate the criteria fuzzy weights vector 𝒘̃

by applying the Geometric Mean method proposed by Buckley [71]. The method can be

applied in three steps:

41

T
a

b
le

 (
7

.2
.2

)
T

h
e

re
la

ti
ve

 f
u

zz
y

w
ei

g
h

ts
 e

st
a

b
li

sh
ed

 f
o

r
th

e
ev

a
lu

a
ti

o
n

 m
ea

su
re

s,
 𝐴

 m
a

tr
ix

.

42

Firstly, we calculate the fuzzy geometric mean value 𝑟̃𝑗 for each row 𝑗 in 𝐴̃𝑗

𝑟̃𝑗 = ((∏ 𝑙𝑘
𝑝
𝑘=1)

1
𝑝⁄

, (∏ 𝑚𝑘
𝑝
𝑘=1)

1
𝑝⁄

, (∏ 𝑢𝑘
𝑝
𝑘=1)

1
𝑝⁄

) (7.2.3)

Secondly, sum all fuzzy geometric mean values column wise and find their

reciprocal, (𝑟̃1 ⨁ 𝑟̃2 ⨁ ⋯ ⨁ 𝑟̃𝑗)
−1

. The multiplication and addition of two fuzzy numbers

operations are defined as,

𝑎̃1⨂𝑎̃2 = (𝑙1, 𝑚1, 𝑢1) ⊗ (𝑙2, 𝑚2, 𝑢2) = (𝑙1 × 𝑙2, 𝑚1 × 𝑚2, 𝑢1 × 𝑢2) (7.2.4)

𝑎̃1⨁𝑎̃2 = (𝑙1, 𝑚1, 𝑢1) ⨁ (𝑙2, 𝑚2, 𝑢2) = (𝑙1 + 𝑙2, 𝑚1 + 𝑚2, 𝑢1 + 𝑢2) (7.2.5)

Lastly, calculate the criteria fuzzy weights vector 𝒘̃,

𝒘̃𝑗 = 𝑟̃𝑗 ⨂ (𝑟̃1 ⨁ 𝑟̃2 ⨁ ⋯ ⨁ 𝑟̃𝑗)
−1

 (7.2.6)

To ease the comparisons of classifiers’ rankings, we can defuzzify 𝒘̃ using the

center of area COA concept [72],

𝒘𝑗 = (
𝑙,𝑚,𝑢

3
) , 𝑗 = 1 ⋯ 𝑝 (7.2.7)

At the end of this step, table (7.2.3) is computed.

Step 3:

Perform pair-wise comparisons between all classifiers with respect to every

criterion. At the end of this step, the classifiers scores matrix 𝑆 is constructed.

43

T
a

b
le

 (
7

.2
.3

)
C

o
m

p
u

ti
n

g
 t

h
e

cr
it

er
ia

 o
f

fu
zz

y
w

ei
g

h
ts

 v
ec

to
r

𝒘
.

44

[𝑐 × 𝑝] = [

𝑠11 ⋯ 𝑠1𝑗

⋮ ⋱ ⋮
𝑠𝑖1 ⋯ 𝑠𝑖𝑗

] (7.2.8)

where 𝑖 = 1 ⋯ 𝑐 & 𝑗 = 1 ⋯ 𝑝.

Every entry 𝑠𝑖𝑗 of matrix 𝑆 represents the score of the 𝑖𝑡ℎ classifier with respect to

the 𝑗𝑡ℎ criterion. To construct the matrix 𝑆, we have first to compute classifiers’ pair-wise

comparison 𝐵(𝑗) matrices with respect to every criterion 𝑗.

𝐵(𝑗)[𝑐 × 𝑐] = [
𝑏11 ⋯ 𝑏1ℎ

⋮ ⋱ ⋮
𝑏𝑖1 ⋯ 𝑏𝑖ℎ

] (7.2.9)

where 𝑖 = 1 ⋯ 𝑐 & ℎ = 1 ⋯ 𝑐.

Each entry 𝑏𝑖ℎ
(𝑗)

 of the matrix 𝐵(𝑗) represents the evaluation of the 𝑖𝑡ℎ classifier

compared to the ℎ𝑡ℎ classifier with respect to the 𝑗𝑡ℎ criterion. We can compute 𝑏𝑖ℎ
(𝑗)

 by

dividing the performance evaluation of classifier 𝑖 over the performance evaluation of

classifier ℎ with respect to the measure 𝑗. If 𝑏𝑖ℎ
(𝑗)

> 1, then the 𝑖𝑡ℎclassifier is better than

the ℎ𝑡ℎclassifier, and if 𝑏𝑖ℎ
(𝑗)

< 1, then the 𝑖𝑡ℎclassifier is worse than the ℎ𝑡ℎclassifier. When

two classifiers’ performances are equal, then 𝑏𝑖ℎ
(𝑗)

= 1. Matrix 𝐵 entries satisfy the

following properties:

𝑏𝑖ℎ
(𝑗)

∙ 𝑏ℎ𝑖
(𝑗)

= 1 and 𝑏𝑖ℎ
(𝑗)

= 1, ∀ 𝑖 = ℎ.

The matrix 𝐸[𝑐 × 𝑝] entries are utilized in computing 𝐵(𝑗) matrices. The matrix 𝐸

contains the performance evaluation of each classifier presented by the 22-performance

45

measures. In total, we have 12 𝐸 matrices for the 12 data sets experimented. The process

of computing 𝐸 matrices is as follows:

1) Start KNIME

 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒅 ∈ 𝑫 𝒅𝒐 ⊳ 𝐷 is the set of 12 NASA data sets and 𝑑 is a data set

2) Load data set 𝑑

3) Run every classifier to generate its confusion matrix

4) Use the generated confusion matrix to compute the 22-performance measures

5) Construct the corresponding 𝐸 matrix

 𝒆𝒏𝒅 𝒇𝒐𝒓

Once 𝐵(𝑗) matrices are computed, they need to be normalized column wise. That

is, divide each entry 𝑏𝑖ℎ in a particular column ℎ over the sum of all entries of this column,

equation (7.2.10). This operation is repeated for all columns in matrix 𝐵(𝑗).

𝑏𝑖ℎ =
𝑏𝑖ℎ

∑ 𝑏𝑖ℎ
𝑐
𝑖=1

 (7.2.10)

We use equation (7.2.11) to find the scores vector 𝒔(𝑗) that contains the classifiers’

pair-wise comparisons scores with respect to every criterion 𝑗. The c-dimension column

vector 𝒔(𝑗) is computed by taking the averages row-wise for every row 𝑖 in 𝐵(𝑗).

𝒔(𝑗) =
∑ 𝑏𝑖ℎ

𝑐
ℎ=1

𝑐
 (7.2.11)

46

Now, we can construct matrix 𝑆 by combining all computed 𝒔(𝑗) scores vectors,

𝑆 = [𝒔(1) ⋯ 𝒔(𝑗)] , where 𝑗 = 1 ⋯ 𝑝 (7.2.12)

Each column in the matrix 𝑆 corresponds to one of the 𝒔(𝑗) column vectors.

Step 4:

Calculate the vector 𝒗 of the classifiers’ priorities by multiplying the classifiers’

pair-wise comparison scores matrix 𝑆 by the defuzzified criteria weights vector 𝒘, equation

(7.2.13).

𝒗 = 𝑆 ∙ 𝒘 (7.2.13)

Each 𝒗𝑖 entry represents the score (i.e. rank) assigned by the FAHP process to the

𝑖𝑡ℎ classifier in comparison to all other (𝑐 − 1) classifiers.

7.3 Results

The experiments resulted in 12 𝐸 matrices, 12 𝑆 matrices, and 264 𝐵 matrices. For

brevity, we will report the summary of the results. The appendices A and C contain

matrices E and S respectively.

We can notice from table (7.3.1) that every data set reveals a unique order of the

experimented classifiers’ performance ranks. These results conform to much-published

research that every data set (i.e. software project) is a unique product and possesses unique

characteristics. Kastro et al. [73] concluded that it is almost impossible to have two

identical software products in terms of developing process, programming languages used,

47

programmers’ experience, algorithm complexity, or even the development methodology.

Myrtveit et al. [8] reported similar findings.

Table (7.3.1) Classifiers’ ranks per every data set.

 Data sets

Ranks CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

1 MLP RF RF CART RF MLP RF FR FR RF RF RF

2 CART FR SOTA DT FR NB FR RF DT FR FR FR

3 FR CART CART FR DT RF DT SOTA RF CART MLP DT

4 DT DT DT PNN KNN FR CART CART MLP DT CART CART

5 RF KNN FR MLP CART KNN MLP DT KNN SOTA KNN MLP

6 SOTA SOTA KNN RF SOTA CART LR KNN SOTA KNN PNN PNN

7 LR MLP PNN KNN MLP LR SOTA MLP CART MLP DT KNN

8 KNN LR MLP SOTA PNN PNN PNN PNN LR PNN SOTA SOTA

9 PNN PNN LR NB LR SOTA KNN LR PNN LR LR LR

10 NB NB NB LR NB DT NB NB NB NB NB NB

11 SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM

However, some interesting trends can be inferred. Random Forest RF has won the

first rank 7 times and the second rank once. Fuzzy Rule FR has won the first rank twice

and the second rank 6 times. This shows that these particular classifiers perform very well.

On the contrary, SVM has won the last rank (i.e. the 11th rank) 12 times, which implies that

this classifier consistently performs poorly in these experiments. Close to this performance

is NB that won the 10th rank 10 times, the 9th rank once and surprisingly won the 2nd rank

once too.

To make clear the final comparisons among all the competing classifiers, table

(7.3.2) shows the average rank for each classifier over all experimented data sets. The

procedure we follow is to count the number of times each classifier achieves a particular

48

rank, then multiply this number by the rank itself. The sum of these numbers is divided by

the total number of available ranks. Small average rank values indicate better performing

classifiers, in comparison to classifiers having larger averages. Table (7.3.2) confirms our

earlier observations in this section.

Table (7.3.2) Averaged Data Sets Ranks.

 Classifiers

Ranks RF FR CART DT MLP KNN SOTA PNN LR NB SVM

1 7 2 1 0 2 0 0 0 0 0 0

2 2 12 2 4 0 0 2 0 0 2 0

3 6 6 9 9 3 0 3 0 0 0 0

4 0 4 16 16 4 4 0 4 0 0 0

5 5 5 5 5 15 20 5 0 0 0 0

6 6 0 6 0 0 18 24 12 6 0 0

7 0 0 7 7 28 14 7 7 14 0 0

8 0 0 0 0 8 8 24 40 16 0 0

9 0 0 0 0 0 9 9 27 54 9 0

10 0 0 0 10 0 0 0 0 10 100 0

11 0 0 0 0 0 0 0 0 0 0 132

Sum 26 29 46 51 60 73 74 90 100 111 132

Average 2.4 2.6 4.2 4.6 5.5 6.6 6.7 8.2 9.1 10.1 12.0

On the other hand, we averaged the matrix 𝐸 for the 12 data sets and applied FAHP

to this one averaged matrix. As expected, the final rankings perfectly match the previous

ones.

7.4 Threats to validity

The first threat to validity comes from the fact that this dissertation results and

conclusions are biased in favor of the data sets and classifiers we used [74]. However, we

49

believe that by choosing the publicly available NASA data sets, replication should be

possible and would be encouraged by other researchers. The same argument applies for

choosing the most common classifiers in the field of software defect prediction [4] [31]

[73]. Moreover, NASA data sets meet all the requirements that would increase the external

validity of our research, as stated by Khoshgoftaar et al. [75], that is, increasing the

generalization of the results outside our experimental settings:

• Be large enough to be comparable to real industry projects

• Developed in an industrial environment, rather than an artificial setting

• Developed by a group of developers rather than an individual

• Developed by professionals, rather than students

On the other hand, and in order to decrease the presence of internal validity threats,

we decided to use the cleaned-up NASA data sets instead of the original ones, as discussed

earlier in section (7.1). This allows us to avoid the noise sources existing in the original

NASA data sets.

Moreover, some data sets contain a relatively small number of modules, such as,

MC2 and KC3, especially when the 10-fold cross-validation technique is employed. Some

classifiers that are sensitive to the size of data sets might lose some of their performance

quality [76]. This effect might be increased after performing the cleaning procedures on

NASA data sets. As table (7.1.2) shows, this resulted in a smaller number of observations

for each experimented data set.

50

CHAPTER 8: CONCLUSIONS

There is a substantial need to design and develop reliable software defect classifiers

that classify software components into defective and non-defective. The benefit of

achieving this objective is the ability to focus software defect- detection efforts and project

resources on part of a system, rather than testing the whole system.

However, the major problem that software practitioners face is how to reliably

evaluate classifiers and how to select the best fit for their software development projects.

Since the evaluation of software defect classifiers’ performance is highly dependent on the

specific measures employed, the performance evaluation might improve or deteriorate, if

practitioners choose different performance measures.

As we believe that performance evaluation must be seen as a comprehensive

strategy rather than relying on preferred selection of performance measures, Fuzzy

Analytical Hierarchy Process FAHP is used in this research to satisfy this requirement.

FAHP allowed us to combine a wider spectrum of evaluation measures, in contrast to

relying on preferred selection of one or two evaluation measures. Another strength comes

from the fact that FAHP employs fuzzy membership function to account for human nature

of uncertainty and vagueness when evaluating and comparing performance measures with

one another. The results show that this approach will increase software developers’

51

confidence in research outcomes, help them in avoiding false conclusions and providing

them with reasonable boundaries.

52

APPENDIX A: 𝑬 MATRICES

𝐸[𝑐 × 𝑝] is the classifiers’ performance evaluation matrix computed for 12 NASA

software defect data sets.

53

Data Set: CM1

54

Data Set: JM1

55

Data Set: KC1

56

Data Set: KC3

57

Data Set: MC1

58

Data Set: MC2

59

Data Set: MW1

60

Data Set: PC1

61

Data Set: PC2

62

Data Set: PC3

63

Data Set: PC4

64

Data Set: PC5

65

APPENDIX B: 𝑩 MATRICES

Since B matrices must be computed for each of the 22 evaluation measures and repeated

for each of the 12 experimented data sets, our research resulted in computing 264 B

matrices. For obvious reasons, we cannot provide all of them in this dissertation. However,

in future, we will provide a permeant cloud-based repository location, where interested

researchers can access our work for further scrutiny and replication.

66

APPENDIX C: 𝑺 MATRICES

𝑆[𝑐 × 𝑝] score matrix represents the classifiers’ pair-wise comparisons with respect to

every evaluation measure j for the 12 NASA software defect data sets. The measures are

numbered from 1 ... 22 to manage the limited space in the tables. Every column in matrix

S is a 𝒔(𝑗) vector that represents the classifiers’ pair-wise comparisons with respect to a

specific evaluation measure (j).

67

Data Set: CM1

68

Data Set: JM1

69

Data Set: KC1

70

Data Set: KC3

71

Data Set: MC1

72

Data Set: MC2

73

Data Set: MW1

74

Data Set: PC1

75

Data Set: PC2

76

Data Set: PC3

77

Data Set: PC4

78

Data Set: PC5

79

REFERENCES

[1] B. Turhan, A. Tosun, and A. Bener, “Empirical evaluation of mixed-project defect

prediction models,” in 37th EUROMICRO Conference on Software Engineering

and Advanced Application, Oulu, Finland, 2011, pp. 396-403.

[2] D. Lo, SC. Khoo, J. Han, and C. Liu, Mining Software specifications:

methodologies and applications, Boca Raton, FL, USA: Chapman and Hall/CRC

Press, 2011, pp 1-15.

[3] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of machine

learning in Software defect prediction,” IEEE Transactions on Software

Engineering, vol. 40, no. 6, pp. 603-616, 2014.

[4] S. Lessmann, S. Member, B. Baesens, C. Mues, S. Pietsch, “Benchmarking

classification models for Software defect prediction: A proposed framework and

novel findings,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp.

485-496, 2008.

[5] L. Madeyski, and M. Jureczko, “Which process metrics can significantly improve

defect prediction models? An empirical study,” Software Quality Journal, vol. 23,

no. 3, pp. 393-422, 2014.

80

[6] M. D’Ambros, M. Lanza, and R. Robbes, "Evaluating defect prediction

approaches: a benchmark and an extensive comparison," Empirical Software

Engineering, vol. 17, no. 4-5, pp. 531-577, 2011.

[7] R. S. Wahono, N. S. Herman, and S. Ahmad, "A comparison framework of

classification models for software defect prediction," Advanced Scientific

Letters, vol. 20, no. 10-11, pp. 1945-1950, 2014.

[8] I. Myrtveit, E. Stensrud, and M. Shepperd, "Reliability and validity in comparative

studies of software prediction models," IEEE Transactions on Software

Engineering, vol. 31, no. 5, pp. 380-391, 2005.

[9] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A systematic literature

review on fault prediction performance in software engineering," IEEE

Transactions on Software Engineering, vol. 38, no. 6, pp. 1276-1304, 2012.

[10] H. Wang, T. M. Khoshgoftaar, and Q. Liang, "A study of software metric selection

techniques: stability analysis and defect prediction model

performance," International Journal on Artificial Intelligence Tools, vol. 22, no.

05, pp. 1360010, 2013.

[11] I. Myrtveit and E. Stensrud, "Validity and reliability of evaluation procedures in

comparative studies of effort prediction models," Empirical Software

Engineering, vol. 17, no. 1-2, pp. 23-33, 2012.

[12] D. M. Powers, "Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation," Journal of Machine Learning

Technologies, vol. 2, no. 1, pp. 37-63, 2011.

81

[13] A. Vesra, " A study of various static and dynamic metrics for open source software,"

International Journal of Computer Applications, vol. 122, no. 10, 2015.

[14] S. Wang and X. Yao, "Using class imbalance learning for software defect

prediction," IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434-443, 2013.

[15] M. Shepperd, Q. Song, Z. Sun, and C. Mair. NASA MDP Software Defects Data

Sets. [Online]. Available: figshare.com.

[16] B. Clark, and D. Zubrow, "How good is the software: a review of defect

prediction techniques," Sponsored by the US department of Defense, Carnegie

Mellon University, 2001.

[17] N. Fenton, and M. Neil, "A critique of software defect prediction models," IEEE

Transactions on Software Engineering, vol. 25, no. 5, pp. 675-689, 1999.

[18] N. Fenton and N. Ohlsson, "Quantitative analysis of faults and failures in a

complex software system," IEEE Transactions on Software Engineering, vol. 26,

no. 8, pp. 797-814, 2000.

[19] C. R. Pandian, Software metrics: A guide to planning, analysis, and application.

2003, Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2003.

[20] J. Radatz, A. Geraci, and F. Katki, IEEE standard glossary of software

engineering terminology, IEEE Std, 1990, 610.12-1990.

[21] N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach, 3rd

ed., Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2014.

[22] N. Fenton and B. Kitchenham, "Validating software measures," Software Testing,

Verification and Reliability, vol. 1, no. 2, pp. 27-42, 1991.

82

[23] C. Andersson, "A replicated empirical study of a selection method for software

reliability growth models," Empirical Software Engineering, vol. 12, no. 2, pp.

161, 2007.

[24] L. J. White, "The importance of empirical work for software engineering

papers," Software Testing, Verification and Reliability, vol. 12, no. 4, pp. 195-196,

2002.

[25] G. Forman and M. Scholz, "Apples-to-apples in cross-validation studies: pitfalls in

classifier performance measurement," ACM SIGKDD Explorations

Newsletter, vol. 12, no. 1, pp. 49-57, 2010.

[26] M. Lanza, and R. Marinescu, Object-oriented metrics in practice: using software

metrics to characterize, evaluate, and improve the design of object-oriented

systems, 2007: Springer Science & Business Media.

[27] D. C. Ince, L. Hatton, and J. Graham-Cumming, "The case for open computer

programs," Nature, vol. 482, no. 7386, pp. 485, 2012.

[28] B. Kitchenham, "What’s up with software metrics?–A preliminary mapping

study," Journal of systems and software, vol. 83, no. 1, pp. 37-51, 2010.

[29] A. Oram, and G. Wilson, Making software: What really works, and why we

believe it, Sebastopol, CA: O'Reilly Media, Inc., 2010.

[30] D. H. Bowes, "Factors Affecting the Performance of Trainable Models for

Software Defect Prediction", in School of Computer Sciences, University of

Hertfordshire, 2013.

83

[31] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, "A comparative study

of iterative and non-iterative feature selection techniques for software defect

prediction," Information Systems Frontiers, vol. 16, no. 5, pp. 801-822, 2014.

[32] M. R. Berthold, "A probabilistic extension for the DDA algorithm," in IEEE

International Conference on Neural Networks, Washington, DC, USA, 1996, vol.

1, pp. 341-346.

[33] J. Herrero, A. Valencia, and J. Dopazo, "A hierarchical unsupervised growing

neural network for clustering gene expression patterns," Bioinformatics, vol. 17,

no. 2, pp. 126-136, 2001.

[34] H. Enderton and H. B. Enderton, A mathematical introduction to logic, San Diego,

CA : Academic Press, 2001.

[35] D. R. Cox, "The regression analysis of binary sequences," Journal of the Royal

Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 215-232, 1958.

[36] R. Stuart and N. Peter, "Artificial intelligence: a modern approach," Upper Saddle

River, NJ, USA: Prentice Hall, 2003.

[37] B. V. Dasarathy, "Nearest neighbor ({NN}) norms:{NN} pattern classification

techniques," IEEE computer society press, 1991.

[38] M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation

learning: The RPROP algorithm," in IEEE International Conference on Neural

Networks, San Francisco, CA, USA, 1993, pp. 586-591.

[39] J. C. Platt, "12 fast training of support vector machines using sequential minimal

optimization," Advances in kernel methods, pp. 185-208, 1999.

84

[40] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,

"Improvements to Platt's SMO algorithm for SVM classifier design," Neural

computation, vol. 13, no. 3, pp. 637-649, 2001.

[41] J. R. Quinlan, C4.5: programs for machine learning, San Mateo, CA: Morgan

Kaufmann Publishers, 2014.

[42] J. Shafer, R. Agrawal, and M. Mehta, "SPRINT: A scalable parallel classifer for

data mining," in Proceedings International Conference of Very Large Data Bases,

Bombay, India, 1996, pp. 544-555.

[43] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, "Classification and

Regression Trees," The Wadsworth Statistics and Probability Series, Belmont,

CA: Wadsworth, pp. 356, 1984.

[44] W. Y. Loh, "Classification and regression trees," Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011.

[45] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, "Ensemble of software defect

predictors: an AHP-based evaluation method," International Journal of

Information Technology & Decision Making, vol. 10, no. 01, pp. 187-206, 2011.

[46] Y. Jiang, B. Cukic, and Y. Ma, "Techniques for evaluating fault prediction

models," Empirical Software Engineering, vol. 13, no. 5, pp. 561-595, 2008.

[47] M. Vihinen, "How to evaluate performance of prediction methods? Measures and

their interpretation in variation effect analysis," BMC genomics, vol. 13, no. 4, pp.

S2, 2012. DOI. 10.1186/1471-2164-13-S4-S2.

85

[48] C. Ferri, J. Hernández-Orallo, and R. Modroiu, "An experimental comparison of

performance measures for classification," Pattern Recognition Letters, vol. 30, no.

1, pp. 27-38, 2009.

[49] M. W. Evans and J. J. Marciniak, Software quality assurance and management,

New York, NY: Wiley, 1987.

[50] A. Abran, Software metrics and software metrology, John Wiley & Sons, 2010.

[51] A. Abran, Software metrics need to mature into software metrology

(recommendations) in NIST Workshop on Advancing Measurements and Testing

for Information Technology (IT), Maryland, USA, Oct 26-27, 1998.

[52] N. Fenton, "Software measurement: A necessary scientific basis," IEEE

Transactions on software engineering, vol. 20, no. 3, pp. 199-206, 1994.

[53] H. Zuse, Software complexity. NY, USA: Walter de Cruyter, 1991.

[54] F. S. Roberts, Measurement theory. Cambridge University Press, 1985.

[55] L. Finkelstein, and M. Leaning, "A review of the fundamental concepts of

measurement," Measurement, vol. 2, no. 1, pp. 25-34, 1984.

[56] B. Daneshvar Rouyendegh, "The DEA and intuitionistic fuzzy TOPSIS approach

to departments' performances: a pilot study," Journal of Applied Mathematics, vol.

2011, 2011. DOI:10.1155/2011/712194.

[57] T. L. Saaty, "Decision making with the analytic hierarchy process," International

journal of services sciences, vol. 1, no. 1, pp. 83-98, 2008.

[58] T. L. Saaty, The analytical hierarchy process. New York, USA: McGraw-Hill,

1980.

86

[59] S. Kubler, J. Robert, W. Derigent, A. Voisin, and Y. Le Traon, "A state-of the-art

survey & testbed of fuzzy AHP (FAHP) applications," Expert Systems with

Applications, vol. 65, pp. 398-422, 2016.

[60] B. D. Rouyendegh and T. Erkart, "Selection Of Academic Staff Using The Fuzzy

Analytic Hierarchy Process(FAHP): A Pilot Study," Tehnicki vjesnik, vol. 19, no.

4, pp. 923-929, 2012.

[61] M. Z. Naghadehi, R. Mikaeil, and M. Ataei, "The application of fuzzy analytic

hierarchy process (FAHP) approach to selection of optimum underground mining

method for Jajarm Bauxite Mine, Iran," Expert Systems with Applications, vol. 36,

no. 4, pp. 8218-8226, 2009.

[62] L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, no. 3, pp. 338-353,

1965.

[63] G. Kabir and M. A. A. Hasin, "Comparative analysis of AHP and fuzzy AHP

models for multicriteria inventory classification," International Journal of Fuzzy

Logic Systems, vol. 1, no. 1, pp. 1-16, 2011.

[64] P. J. Van Laarhoven and W. Pedrycz, "A fuzzy extension of Saaty's priority

theory," Fuzzy sets and Systems, vol. 11, no. 1-3, pp. 229-241, 1983.

[65] J. Harding, E. A. Walker, and C. L. Walker, The Truth Value Algebra of Type-2

Fuzzy Sets: Order Convolutions of Functions on the Unit Interval. Boca Raton, FL,

USA: Chapman and Hall/CRC Press, 2016.

[66] N. Nenkov and I. Ibryam, "A survey of the open source platforms Rapidminer and

Konstanz Information Miner (KNIME) for data processing, analysis and

87

mining," Proceedings of Pedagogical College, Dobrich, Bulgaria, 2013, pp. 124-

129.

[67] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K.

Thiel, B. Wiswedel, "KNIME-the Konstanz information miner: version 2.0 and

beyond," ACM SIGKDD explorations Newsletter, vol. 11, no. 1, pp. 26-31, 2009.

[68] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme, "Preliminary

comparison of techniques for dealing with imbalance in software defect prediction,"

in Proceedings of the 18th International Conference on Evaluation and Assessment

in Software Engineering, London, United Kingdom, 2014, pp. 43.

[69] M. Shepperd, C. Qinbao Song, C. Zhongbin Sun, and C. Mair, "Data Quality: Some

Comments on the NASA Software Defect Datasets," IEEE Transactions on

Software Engineering, vol. 39, no. 9, pp. 1208-1215, 2013. DOI:

10.1109/TSE.2013.11.

[70] W. Fan, F. Geerts, X. Jia, "A Revival of Integrity Constraints for Data

Cleaning", Proceedings VLDB Endowment, Auckland, New Zealand, 2008, vol. 1,

no. 2, pp. 1522-1523.

[71] J. J. Buckley, "Fuzzy hierarchical analysis," Fuzzy sets and systems, vol. 17, no. 3,

pp. 233-247, 1985.

[72] B. Schott and T. Whalen, "Nonmonotonicity and discretization error in fuzzy rule-

based control using COA and MOM defuzzification," in Proceedings of IEEE 5th

International Fuzzy Systems, New Orleans, LA, USA, 1996, vol. 1, pp. 450-456.

[73] Y. Kastro and A. B. Bener, "A defect prediction method for software

versioning," Software Quality Journal, vol. 16, no. 4, pp. 543-562, 2008.

88

[74] T. Menzies, J. Greenwald, and A. Frank, "Data mining static code attributes to learn

defect predictors," IEEE Transactions on Software Engineering, no. 1, pp. 2-13,

2007.

[75] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, "An empirical study of predicting

software faults with case-based reasoning," Software Quality Journal, vol. 14, no.

2, pp. 85-111, 2006.

[76] C. Catal and B. Diri, "Investigating the effect of dataset size, metrics sets, and

feature selection techniques on software fault prediction problem," Information

Sciences, vol. 179, no. 8, pp. 1040-1058, 2009.

