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APPLYING FAHP TO IMPROVE THE 

PERFORMANCE EVALUATION RELIABILITY AND 

VALIDITY OF SOFTWARE DEFECT CLASSIFIERS 

ABSTRACT 

Today’s Software complexity makes developing defect-free software almost 

impossible. On an average, billions of dollars are lost every year because of software 

defects in the United States alone, while the global loss is much higher. Consequently, 

developing classifiers to classify software modules into defective and non-defective 

before software releases, has attracted a great interest in academia and the software 

industry alike. Although many classifiers have been proposed, none has been proven 

superior to others. The major reason is that while a research shows that classifier-A is 

better than classifier-B, we can find other research coming to a diametrically opposite 

conclusion. These conflicts are usually triggered when researchers report results using 

their preferred performance quality measures such as recall and precision. Although this 

approach is valid, it does not examine all possible facets of classifiers’ performance 

characteristics. Thus, performance evaluation might improve or deteriorate if researchers 

choose other performance measures. As a result, software developers usually struggle to 

select the most suitable classifier to use in their projects. The goal of this dissertation is 
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to apply the Fuzzy Analytical Hierarchy Process (FAHP) as a popular multi-criteria 

decision-making technique to overcome these inconsistencies in research outcomes. This 

evaluation framework incorporates a wider spectrum of performance measures to 

evaluate classifiers’ performance, rather than relying on selected, preferred measures. The 

results show that this approach will increase software developers’ confidence in research 

outcomes, help them in avoiding false conclusions and indicate reasonable boundaries for 

them. We utilized 22 popular performance measures and 11 software defect classifiers. 

The analysis was carried out using KNIME data mining platform and 12 software defect 

data sets provided by NASA Metrics Data Program (MDP) repository. 
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CHAPTER 1: INTRODUCTION 

Software defects are a serious threat to the success of the software development 

industry [1]. On an average, billions of dollars are lost every year because of software 

defects in the United States alone [2], while the global loss is much higher. Although 

defects can be detected through various quality procedures, finding and fixing defects 

consume a significant portion of the available resources [3]. Most software defects are 

normally found within a relatively small number of modules [4] [5]. Therefore, developing 

software defect classifiers has become a promising methodology to identify defective 

modules before software release. The expected returns are significant in terms of reducing 

the overall quality assurance activities’ time and costs [1] [6]. 

The major aim of software defect classifiers is to classify software modules into 

defective (dM) and non-defective (ndM). This binary classification can be described as a 

mapping function from a vector 𝒙 of 𝑀 features, where 𝒙𝑖 ∈ 𝑅𝑀, to one of the classification 

classes 𝑦𝑖 ∈ {𝑑𝑀,  𝑛𝑑𝑀} [4]. 

𝑓(𝑥): 𝑅𝑀 ↦ {𝑑𝑀,  𝑛𝑑𝑀}              (1.1) 
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This model can be trained by a training data set 𝑆 that has 𝑁 instances, 

𝑆 = {(𝑥𝑖,  𝑦𝑖)}𝑖=1
𝑁 .              (1.2) 

Numerous techniques have been proposed to develop classifiers, as for instance 

regression and logistic regression, neural networks, decision trees, and many other 

machine- learning algorithms [4] [7] with none of them being superior to the others [3] [8]. 

This is mainly caused by contradicting benchmarking studies. Various software 

engineering research papers [1] [3] [9] [10] investigated and challenged the reliability of 

software defect classifiers’ benchmarking studies. The common finding of these studies 

was that while one-study showed classifier A as better than classifier B, other studies came 

to the exactly opposite conclusion. 

1.1 The Research Problem 

Software practitioners face the problem of how they can reliably evaluate the 

performance of defect classifiers, to select the best performing classifier out of several 

others [11]. Although there are many performance evaluation measures, they usually 

provide contradictory results. This contradiction is indeed expected, as each of these 

measures was developed to capture a specific aspect of classifiers’ performance. For 

example, recall, which is known as True Positive Rate (TPR), represents the proportion of 

the actually defective modules that are classified defective. Similarly, precision, which is 

known as Positive Predictive Value (PPV), represents the proportion of classified defective 

modules that are actually defective [3] [12], and so forth. As a result, the performance 

quality is highly dependent on the specific measure utilized. 



 

 
 

13 

This fact leads to the critical question; which performance evaluation measure(s) 

should practitioners use? In other words, how can practitioners evaluate classifiers in such 

a way as to always obtain reliable and valid results? This essential requirement is motivated 

by two possible scenarios: mistakenly classifying defective modules as non-defective 

raises the risk of software failure, while classifying non-defective modules as defective 

increases software quality assurance activities’ time and costs. 

1.2 Scope, Definitions and Limitations 

We collect metrics relating to almost every single detail about software systems. 

The collected metrics are analyzed to identify any anomalies or unacceptable patterns. In 

general, software metrics are divided into two types: Product metrics and Process metrics 

[13]. While product metrics are collected about the software artefact, process metrics are 

collected about the development environment such as, development methodology, quality 

assurance activities, etc.  

Product metrics can be further divided into static and dynamic metrics. Static 

metrics are collected about features of the software code, while dynamic metrics are 

collected during the execution of the code. Table (1.2.1) [13] shows some examples of 

metrics types. Our research is focused on analyzing static code metrics to predict software 

defective modules. 

This choice can be justified as follows. First, for many software projects, static code 

can be found published on public repositories. This availably makes it possible for other 

researchers to replicate and verify our work [14] [15]. Additionally, it is quite easy to share 
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data among researchers utilizing public platforms such as GitHup, GoogleCode, etc. The 

second reason is, process and dynamic code metrics are highly dependent on the specific 

software project or company that develops it. This usually makes it hard to find those 

metrics in the public domain or even to get them from their respective sources. 

Table (1.2.1) Examples of software metric types. 

Process metrics Static metrics Dynamic metrics 

Number of Revisions (NR) 
Lines of Code 

(LOC) 

Cyclomatic 

Complexity 

Number of Distinct Committers (NDC) Branch_Count Function Point 

Number of Modified Lines (NML) Condition_Count Halstead Complexity 

Number of Defects in Previous Version 

(NDPV) 
Cyclomatic_Density Bug Counting 

 

 

There is a great deal of disagreement on the exact definition of defects. Clark and 

Zubrow [16] have defined software defects as “any flaw or imperfection in a software work 

product or software process… A defect is frequently referred to as a fault or a bug”. 

However, other researchers have provided different definitions for defects occurring at 

different phases of the software production lifecycle [17], [18], [19]. Below are the most 

commonly used definitions: 

• Errors/faults/bugs are mistakes that occur during the design stage or written code 

errors other than syntax errors 
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• Defects are errors occur at the production phase, before release of the software to 

customers 

• Failures are errors occurring on the customer’s side, causing operational problems 

Although IEEE has published the Standard Glossary of Software Engineering 

Terminology [20], an international consensus over theses definitions has not yet been 

established [17], [21]. 

 

1.3 Dissertation Questions (Aims) 

The dissertation question is: Is it possible to incorporate a wide spectrum of 

performance evaluation measures into a comprehensive evaluation strategy, rather than 

relying on one or two performance measures selected by a researcher or a practitioner?  

The aim of this dissertation is to apply the Fuzzy Analytical Hierarchy Process 

(FAHP) as a popular multi-criteria decision-making technique as the proposed 

comprehensive evaluation strategy. 

 

1.4 Contributions to knowledge 

Our contribution is the development of a new evaluation strategy that we believe 

will improve the reliability of the current implemented evaluation techniques. 
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CHAPTER 2: RELATED WORK 

The reliability of software defect classifiers was scrutinized extensively in many 

published works [8] [11] [22] [23] [24]. Nonetheless, it seems that there are many 

opportunities for improvement. For example, performance quality measures such as 

precision, accuracy, etc. can be improved by applying rigorous reliability and verification 

techniques [8] [11]. Additionally, many of these measures have been borrowed from other 

disciplines (e.g. Psychology and social sciences). In many cases when these measures are 

used ‘as is’, they usually have different implications [12]. 

It has become a common practice for practitioners and researchers to select their 

most-preferred statistics to support their point of view. This may lead to vague and 

misleading conclusions. Forman et al. [25] concluded that comparing different research 

studies has become complicated, and in many cases, the comparisons are not meaningful. 

This dissertation emphasizes the fact that performance evaluation must be seen as 

a comprehensive strategy, rather than relying on performance measure(s) selected based 

on one’s preferences. Lanza, et. al stated, “A metric alone cannot help to answer all the 

questions about a system and therefore metrics must be used in combination to provide 

relevant information” [26]. 
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Shepperd et al. [3] conducted an extensive study to find the reasons for variance in 

classifiers’ performance. Their study included 600 experimental results published in many 

reputed conferences and journals with low acceptance rates. Surprisingly, researcher bias 

was among the major and wide-spread influential factors. They found that it is extremely 

difficult to choose the best performing classification technique, because of this 

phenomenon. 

To solve the problem of researchers’ bias, Inse et al. [27] asserted that researchers 

should improve their research outcomes reporting protocols. Kitchenham [28] also 

suggested the need to enhance the communication and documentation protocols to include 

sufficient explicit details about how exactly classifiers were used and evaluated in research. 

Fenton [21] extensively discussed the concept of research reliability. In general, he 

emphasized the empirical validity procedures, where researchers are required to validate 

their findings by replications of experiments. Empirical validation studies have become an 

essential part in software defect classification research, because usually we lack the 

required theoretical validation. This fact has led us to our dissertation contribution, which  

proposes a comprehensive evaluation scheme that will provide proven better evaluation 

outcomes, compared to preferred selected performance measure(s). 
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CHAPTER 3: SOFTWARE DEFECT CLASSIFICATION 

The practical purpose of implementing software defect classifiers is to identify the 

defective modules in large software systems. Although many quality assurance techniques 

are available and are generally effective in identifying those defects, the cost is prohibitive. 

Weyuker et al. concluded in their study of large commercial software systems that only 

20% of the system components can be effectively checked for defects [29]. This fact is 

evident from today’s software industry. It is almost impossible to find a software that is 

defect-free. As a result, implementing classifiers in software industry has become an active 

research area. 

To build a classifier, we need to create a data model that can associate a set of 

independent variables to the dependent variable. In our case, the dependent variable is 

simply a label to identify defective software modules from non-defective ones. The 

independent variables are the software metrics designed to capture various features of 

software systems. 

Once we build a classifier, it is necessary to train it on a historical data set and then 

test it to evaluate its performance. This can be achieved by comparing the classifier 

predictions to the original dependent variable values in the testing data set. An error 

function must be defined to measure the correctness of the classifier predictions. Figure (3.1) 
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shows the process of training and testing software defect classifiers. Chapters 4 and 5 

describe classifiers’ evaluation in more detail.  

 

 

 

 

 

 

 

 

 

 

 

Figure (3.1) The process of training and testing software defect classifiers [30]. 

 

Many classifiers exist today in practice. Generally, we can divide classifiers 

into three major categories: statistical methods, machine learning, and neural networks. 
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Table (3.1) shows the 11 classifiers used in this research. These classifiers have been 

chosen based on their popularity in software defect research [4] [31].  

 

Table (3.1) Software defect classifiers. 

 

1 
Probabilistic Neural Network (PNN) based on 

the Dynamic Decay Adjustment (DDA) [32] 

2 (SOTA) clustering [33] 

3 Fuzzy Rule (FR) [34] 

4 Logistic Regression (LR) [35] 

5 Naïve Bayes (NB) [36] 

6 K Nearest Neighbor (KNN) [37] 

7 Multi-Layer Perceptron (MLP-RProp) [38] 

8 Support Vector Machine (SVM) [39] [40] 

9 Decision Tree C4.5 (DT) [41] [42] 

10 SimpleCart (CART) [43] 

11 Random Forest (RF) [44] 
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CHAPTER 4: EVALUATION OF CLASSIFIERS 

To evaluate the classifiers’ performance, we followed the common practice of using 

a confusion matrix, table (4.1), where the first column shows the actual (real) positive AP 

cases (defective modules) and the second column shows the actual (real) negative AN cases 

(non-defective modules). Similarly, the first row shows the predicted positives (PP) and 

the second row the predicted negatives (PN). The bottom right cell shows T, the total 

number of cases. Figure (4.1) depicts the meanings of the confusion matrix variables. 

While the optimum desired results would be 𝑓𝑝 =  𝑓𝑛 =  0, the actual performance of 

classifiers is still far from achieving this goal. By utilizing these four variables, the 

classifiers’ performance measures can be calculated. 

 

Table (4.1) Confusion Matrix. 

 

tp fp PP 

fn tn PN 

AP AN T 
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Figure (4.1) Depiction of confusion matrix variables. 

 

 

 

Numerous performance measures have been proposed and utilized by researchers 

and practitioners to evaluate classifiers’ performance. Table (4.2) shows the 22 

performance measures utilized in our research [3] [45] [46] [47] [48], the selection of which 

was based on their popularity in software defect classification research [3] [12]. Since 

Cohen’s Kappa is the only measure that needs more clarifications on how to compute its 

probabilities (i.e. Pr(𝑎) 𝑎𝑛𝑑 Pr (e)), we added those clarifications right after the table. 

 

 

 

 

 

 

 

Classified 

Classified negatives 



 

 
 

23 

Table (4.2) List of the 22 performance evaluation measures utilized in the study. 

1 Recall = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) 

2 Precision = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝) 

3 Inverse Recall = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑝) 

4 Inverse Precision = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑛) 

5 Area Under ROC Curve AUC = (Recall + Inverse Recall)/2 

6 Accuracy ACC = (tp + tn)/(tp + fp + tn + fn) 

7 F1-Score = 2𝑡𝑝/(2𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝) 

8 Informedness =  𝑅𝑒𝑐𝑎𝑙𝑙 +  𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 –  1 

9 Markedness =  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 –  1 

10 
Matthews Correlation Coefficient 

MCC 
=

𝑡𝑝 × 𝑡𝑛 − 𝑓𝑝 × 𝑓𝑛

√(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)
 

11 G-Mean1 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

12 G-Mean2 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

13 Cohen's Kappa = (Pr (a) − Pr (e))/(1 − Pr (e) ) 

14 False Discovery Rate (FDR) = 𝑓𝑝/(𝑓𝑝 + 𝑡𝑝) 

15 False Omission Rate (FOR) = 𝑓𝑛/(𝑓𝑛 + 𝑡𝑛) 

16 False Positive Rate (FPR) = 𝑓𝑝/(𝑓𝑝 + 𝑡𝑛) 

17 False Negative Rate (FNR) = 𝑓𝑛/(𝑓𝑛 + 𝑡𝑝) 

18 Predicted Positive Condition Rate = (𝑡𝑝 + 𝑓𝑝)/(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛) 

19 Positive Likelihood Ratio (LR+) = 𝑅𝑒𝑐𝑎𝑙𝑙/𝐹𝑃𝑅 

20 Negative Likelihood Ratio (LR−) = 𝐹𝑁𝑅/(𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙) 

21 Diagnostic Odds Ratio (DOR) = (𝐿𝑅+)/(𝐿𝑅−) 

22 Prevalence = (𝑡𝑝 + 𝑓𝑛)/(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛) 
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Cohen's kappa probabilities are calculated as follows: 

Pr(𝑎): is the observed agreement probability among raters  

Pr(𝑎) =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Pr(𝑒): is the agreement by chance probability among raters  

Pr(𝑒) = 𝑅1(𝑃)𝑅2(𝑃) + 𝑅1(𝑁)𝑅2(𝑁) 

Rater1 percentage of positive responses  

𝑅1(𝑃) =
𝑡𝑝 + 𝑓𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Rater1 percentage of negative responses  

𝑅1(𝑁) = 1 − 𝑅1(𝑃) 

Rater2 percentage of positive responses  

𝑅2(𝑃) =
𝑡𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Rater2 percentage of negative responses  

𝑅2(𝑁) = 1 − 𝑅2(𝑃) 
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CHAPTER 5: EVALUATION RELIABILITY AND VALIDITY 

Every aspect of our lives requires measurement, especially in engineering fields. 

However, no measurement can be useful, unless it possesses a minimum of two 

characteristics:  reliability and validity. Reliability means the ability for a measurement to 

produce consistent results when repeated in many trials. The more consistent the results 

are, the more reliable the measurement is. On the other hand, a measurement is considered 

to be valid if it measures what it is intended to measure [8]. 

Every measurement is affected by both random and non-random errors. Random 

errors occur in every trial, causing a measurement to produce variant results. Non-random 

errors occur systematically in every trial and cause the measurement results to cluster 

around specific erroneous values. The extent to which we can control these two sources of 

errors is variant and dependent on the specific application area. In software engineering, it 

seems that we have less control over those errors, compared to other engineering areas. 

This argument naturally leads us to the question, which measurement should we 

choose to evaluate classifiers’ performance? Numerous publications proposed a vast 

spectrum of measurements, proposed by people working in the software engineering field 

having IT or business backgrounds. Consequently, these measurements seemed to be 
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relevant, as they reflected the viewpoint of their creators within their own specific contexts. 

Nonetheless, many of these measurements have failed to take into its consideration the 

rigorous requirements of the measurement theory, which is known as the Metrology. 

Therefore, their reliability and validity are facing serious challenges. Evans [49] described 

this paradox as “While software metrics has not yet achieved a degree of scientific maturity, 

it is still a valid concept and much work has been undertaken in the field.” 

This failure to fully comply with the measurement theory requirements has led to 

many of these software quality measures being considered invalid. Abran discussed this 

contradiction in detail in his book titled “Software metrics and software Metrology [50].” 

He suggested a preliminary solution for this contradiction: “If software engineering is to 

mature into a recognized engineering discipline, it needs to be supported by measures, 

measurement methods and well tested descriptive and quantitative models [51].” Further, 

Abran asserted that the only way to develop very well- matured measurement knowledge 

in the discipline of software engineering is to explore, investigate, and apply Metrology 

concepts and principles. 

On the other hand, some software engineers argue that Metrology principles 

should not be applied to the software engineering discipline, since software is not a 

physical object [50] [51]. Consequently, they consider that the current software metrics 

are acceptable, although they failed to comply completely with the Metrology 

requirements. 
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In our opinion, this thinking has led to the phenomenal gap between research 

outcomes and industry practitioners’ practices. Moreover, this gap has become very 

obvious by recognizing the serious lack of validation of any proposed measurements that 

usually lead to conflicting claims by academia and industry researchers [22]. Finally, since 

software engineering carries the ‘engineering’ title, it necessarily implies its explicit 

compliance with engineering practices and principles. 

In recent years, many scholars have started to pay increasing attention to the 

deficiencies in measurement reliability and validity in the software engineering field.  For 

example, Abran [51] proposed a framework for validating software measurements as a 

potential solution to the current uncertainty. The framework contained three major 

components: 

• Validation of the design of a measurement method 

• Validation of the application of a measurement method 

• Validation of the use of measurement results in a predictive system 

             

Moreover, he asserted that before any measurement is accepted as reliable and 

valid, it should pass the requirements of this framework. Even though he referenced many 

other authors’ works in this regard, he believed that none of the many proposed 

verifications of validity is complete or covers the whole variety of measurement methods 

used. Therefore, a practical and acceptable validation framework still does not exist! 
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Other authors have listed their own recipes for what a reliable and valid 

measurement should look like [22] [21] [52] [53]. Below is a summary of the common 

ingredients that must be clearly defined for any measurement system to be deemed reliable 

and valid: 

• What are the entities measured? 

• What are the attributes of the entities we are interested in? 

• What are the units applicable to each measured attribute? 

• Which scale is the most appropriate for each measured attribute? 

 

Missing any of these elements will result in awkward measurements system 

outcomes that are difficult to analyze and comprehend. Likewise, other authors have 

mentioned the importance of following the broader requirements of the measurement 

theory (the Metrology) [52] [54] [55]. Below is a summary of the most notable questions 

any measurement system must answer: 

• How do we know if we have really measured an attribute? 

• When an error margin is acceptable or not? 

• Which statements about a measurement are meaningful? 

• Which types of attributes can/cannot be measured? 

• What kind of scales can these measurements use? 

• How to define these scales? 
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As the result of this vast inconsistency in measurements, it has become a common 

practice today among researchers in academia and the software development industry alike, 

to choose personally preferred measures to use in their research. This phenomenon is 

known as “researcher bias” [3]. 
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CHAPTER 6: FUZZY ANALYTICAL HIERARCHY 

PROCESS (FAHP) 

To avoid the researchers’ bias when evaluating the performance of software defect 

classifiers, this dissertation proposes the application of multi-criteria decision-making 

(MCDM). MCDM is a set of very effective methodological tools for dealing with complex 

problems in various domains such as, medicine, business, engineering, etc. Some example 

tools are AHP, FAHP, TOPSIS, etc. [56] [57] [58].  

The Analytical Hierarchy Process (AHP) technique has been implemented widely 

in the multi-criteria decision-making (MCDM) field. The essence of this technique is based 

on an expert judgement method to perform pair-wise comparisons between all 

implemented criteria. However, AHP suffers from a crucial criticism: it is unable to deal 

with the impression and subjectivity of the expert judgement when performing the pair-

wise comparisons method [59] [60] [61].  

In recent years, Fuzzy AHP – or for short, FAHP – has gained noticeable 

attention as a superior substitute to the AHP technique. The essence of the FAHP 

method is based on the ability to capture the uncertainty when performing the expert 

judgement method. Zadeh [62] introduced the fuzzy set theory to compromise the 

human thought vagueness, which was oriented to the rationality of uncertainty due to 
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imprecision or vagueness, i.e., the consideration of the gradual membership of an 

element to a particular set of elements [59]. 

Kabir and Peng [45] [63] applied AHP successfully in the field of classifiers’ 

performance evaluation. In this dissertation, the authors apply FAHP in evaluating binary 

classifiers’ performance as a more robust multi-criteria procedure. To our knowledge, this 

is the first such application. 

In 1983, Laarhoven, et al. proposed the use of a triangular fuzzy membership 

function as the best fit in performing expert judgement: Figure (6.1.a) [64]. Other functions 

were proposed as well to fit various uses: Figure (6.1.b and 6.1.c). We chose to use the 

triangular membership method for its suitability to the software defect classifier domain 

equation (6.1). The reason for this choice is that we need to provide only two boundaries 

to our judgement, the upper and lower boundaries, when comparing measures pair-wise. 

Trapezoidal function, for example, provides two middle values in addition to the upper and 

lower boundaries, which is not necessary in our research. Similar arguments are applicable 

to other fuzzy membership functions that might require unnecessary complications. Thus, 

for the sake of simplicity, we made this choice.  
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Figure (6.1) Membership functions used in FAHP. 

 

𝜇(𝑥|𝑀̃) = {

0,                                      𝑥 < 𝑙,
(𝑥 − 𝑙)/(𝑚 − 𝑙),          𝑙 ≤ 𝑥 ≤ 𝑚,
(𝑢 − 𝑥)/(𝑢 − 𝑚),        𝑚 ≤ 𝑥 ≤ 𝑢,
0,                                      𝑥 > 𝑢.

          (6.1) 

 

Throughout this dissertation, fuzzy quantities are differentiated by a tilde ‘   ̃’ above 

symbols. A triangular fuzzy number TFN is denoted as (𝑙, 𝑚, 𝑢), where 𝑙 denotes the 

smallest possible value, 𝑚 the most promising value, and 𝑢 the largest possible value that 

describes a fuzzy event. Readers interested in a more detailed introduction to fuzzy 

numbers and their algebraic operations are recommended to read Harding et al. [65]. 
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CHAPTER 7: EXPERIMENTAL SETUP AND RESULTS 

We utilized eleven software defect classifiers table (3.1), chosen based on their 

popularity in software defect research [4] [31]. The experiments were carried out using 

KNIME [66] [67], a popular data mining platform and twelve NASA software defect data 

sets. 

KNIME data mining platform was used to run the classifiers on all experimented 

data sets.  The corresponding confusion matrices were constructed and utilized to calculate 

the classifiers’ performance measures, i.e., 𝐸[𝑐 × 𝑝] matrices, where c is the number of 

classifiers and p is the number of performance measures. To validate the results, 10-fold 

cross-validation technique was run on all experiments. Additionally, we normalized all 

experimented data sets to avoid the dominance of some attributes with large values. 

Imbalanced data sets can degrade classifiers’ performance and contribute to the 

unreliability of results [14] [68]. It is quite common for software defect data sets to have 

non-defective modules as the majority class, with the defective modules as the minority 

class. Therefore, stratified sampling technique was used to avoid sampling bias. Stratified 

functionality guaranteed that all created cross-validation folds had class distribution similar 

to the original data sets distributions, i.e., the ratio of defective to non-defective modules. 
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For clarity, we start with presenting a summary of the FAHP steps implemented in 

this study, followed by more detailed calculations in section 7.2 FAHP Application. 

Note: Matrices are denoted by italicized capital letters, and vectors by bold face italicized 

small letters. 

𝐿𝑒𝑡, 

𝑐 = 11, 𝑐 is number of classifiers,  

𝑝 = 22, 𝑝 is number of performance measures,  

𝑑   data set 

𝐷   the set of 12 NASA data sets 

1)   Construct the fuzzy performance measures’ pair-wise comparisons 𝐴̃[𝑝 × 𝑝] matrix. 

2)   Compute the 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 fuzzy 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝒘̃ from 𝐴̃ 𝑚𝑎𝑡𝑟𝑖𝑥. 

   𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒅 ∈ 𝑫 𝒅𝒐 

3) Compute the classifiers’ evaluation matrix 𝐸[𝑐 × 𝑝]. 

4) Compute the classifiers’ scores 𝑆[𝑐 × 𝑝] matrix. 

a) Compute 𝑝 number of 𝐵(𝑗) matrices (classifiers’ pair-wise 

comparisons) with respect to each criterion 𝑗 =  1 …  𝑝 

b) From each 𝐵(𝑗), compute 𝒔(𝑗) score vectors 

c) Construct the 𝑆[𝑐 × 𝑝] matrix by combining all 𝒔(𝑗) vectors, column 

wise. 

5) Compute the classifiers’ ranking 𝒗 =  𝑆 ∙ 𝒘, where 𝒗𝑖 of the vector 𝒗 

represents the global score (i.e. rank) assigned by the FAHP to the 

𝑖𝑡ℎ classifier. 

6) Identify the highest performing classifier compared to the list of 

experimented classifiers. 

   𝒆𝒏𝒅 𝒇𝒐𝒓 
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7.1 Data Sets 

As the requirement of research replication has become vital for many researchers, 

we have decided to use the publicly available and widely used NASA software defect data 

sets [15]. The reasons for this choice are to support the ability to reproduce and verify the 

published results, and to ease data sharing among researchers [14].  

However, NASA data sets suffered from many data quality problems. Shepperd et 

al. [69] have analyzed in depth these problems that are summarized in table (7.1.1). For 

clarity, we repeat here the common assumptions about software data sets structure. NASA 

data sets are organized as matrices of rows and columns. Each row represents one software 

module (i.e. case), and each column represents one feature (i.e. attribute). 

Shepperd et al. [15] performed a comprehensive cleaning strategy to remove all 

problematic cases and features, table (7.1.2). They published the cleaned-up data sets after 

removing all cases and features that had one or more of the discussed data quality 

problems. These data sets are available online at 

“https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1”. 

 

 

 

 

https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1
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Table (7.1.1) Data quality issues with NASA data sets. 

 

Data Quality 

Problem 
Meaning Consequences 

Identical 

values 

Two or more features have the same values 

for all cases. Similarly, two or more cases 

have the same values for all features 

including the prediction label. 

Identical features 

present no additional 

information. Identical 

cases confuse 

learners. 

Conflicting 

values 

This problem arises whenever there is a 

violation of a relational integrity constraint. 

For example, LOC_TOTAL cannot be less 

than LOC_EXECUTABLE or 

LOC_COMMENTS. Fan et al. [70] have 

discussed integrity constraints in more detail. 

Untrustworthy data 

Implausible 

values 

The presence of negative or fractional values 

does not make sense and is not acceptable. 
Untrustworthy data 

Case 

inconsistency 

Some cases have inconsistent predictions, 

i.e., two identical cases each result in a 

different prediction. 

Untrustworthy data 

Constant 

values 
Features with constant values 

They do not present 

any information. 

Missing 

values 
Features with missing values Confuses the learner 
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Table (7.1.2) Changes made to NASA data sets after applying the cleaning strategy. 

* df % is the percentage of defective modules. 

 

NASA Data Sets 
Original Data sets Cleaned-up Data sets 

#Modules #Attributes df % * #Modules #Attributes df % * 

CM1 505 41 9.50 327 38 12.84 

JM1 10878 22 19.32 7782 22 21.49 

KC1 2107 22 15.42 1183 22 26.54 

KC3 458 41 9.39 194 22 18.56 

MC1 9466 40 0.72 1988 22 2.31 

MC2 161 41 32.30 125 22 35.20 

MW1 403 41 7.69 253 22 10.67 

PC1 1107 41 6.87 705 22 8.65 

PC2 5589 41 0.41 745 22 2.15 

PC3 1563 41 10.24 1077 22 12.44 

PC4 1458 41 12.21 1287 22 13.75 

PC5 17186 40 3.00 1711 22 27.53 

 

7.2 FAHP Application 

The following are the details of FAHP implementation steps [59] [45]: 

Step 1: 

Decompose the problem into three hierarchical levels, Figure (7.2.1). 

Goal: evaluating the performance of software defect classifiers to select the best- 

performing classifier 

Criteria: twenty-two performance measures 

Alternatives: eleven software defect classifiers 
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Figure (7.2.1) FAHP hierarchical structure. 
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Step 2: 

Perform fuzzy pair-wise comparisons between all criteria elements using the 

fundamental scale proposed by Saaty [58], table (7.2.1). At the end of this step, a criteria 

fuzzy weights vector 𝒘̃ is computed. However, this scale is based on crisp evaluation 

values. As discussed in Chapter 6, crisp evaluation usually leads to unreliable results, due 

to the expert judgement uncertainty and vagueness. Thus, the scale must be modified to 

meet FAHP requirements. That is, instead of evaluating the criteria using the crisp scale 

values, we can use the Triangular Fuzzy Numbers (TFN) to compensate for human 

uncertainty and increase the reliability of the evaluation. It is to be noted that for any fuzzy 

number 𝑎̃, the reciprocal can be defined as 

𝑎̃−1 = (𝑙, 𝑚, 𝑢)−1 = (
1

𝑢
,

1

𝑚
,

1

𝑙
)          (7.2.1) 

Table (7.2.1) AHP and FAHP score interpretations. 

AHP Crisp 

Scale 

𝒂𝒋𝒌 

FAHP TFN 

(𝒍, 𝒎, 𝒖) 

𝒂̃𝒋𝒌 

Interpretation 

j and 𝒌 denote criteria 

9 9,9,9 j is extremely more important than k 

7 6,7,8 j is strongly more important than k 

5 4,5,6 j is more important than k 

3 2,3,4 j is slightly more important than k 

1 1,1,1 j and k are equally important 

1/3 1/4,1/3,1/2 j is slightly less important than k 

1/5 1/6,1/5,1/4 j is less important than k 

1/7 1/8,1/7,1/6 j is strongly less important than k 

1/9 1/9,1/9,1/9 j is extremely less important than k 
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Table (7.2.1) entries are only suggestive for translating the decision-maker 

qualitative evaluations of the criteria into quantitative values. It is possible to use other 

similar scales. 

The authors use their extensive experience in the field of binary classifiers 

evaluation measures to rank their relative importance, following Saaty’s fundamental scale 

of weights. Additionally, the literature provides a large body of research to evaluate the 

reliability and validity of each of these measures. For brevity, a representative sample is 

cited in this dissertation [22] [48] [12]. Table (7.2.2) shows the relative fuzzy weights 

established for these measures. 

By assuming that we have 𝑝 performance evaluation measures (i.e. criteria), we can 

construct the criteria pair-wise comparison matrix 𝐴̃ as follows: 

𝐴̃[𝑝 × 𝑝] = [

𝑎̃11 ⋯ 𝑎̃1𝑘

⋮ ⋱ ⋮
𝑎̃𝑗1 ⋯ 𝑎̃𝑗𝑘

]            (7.2.2) 

where 𝑗 = 1 ⋯ 𝑝 & 𝑘 = 1 ⋯ 𝑝. 

Every entry 𝑎̃𝑗𝑘 represents the importance of criterion 𝑗 relative to criterion 𝑘, where 

𝑎̃𝑗𝑘 = (1,1,1)  ∀ 𝑗 = 𝑘.  

Once matrix 𝐴̃ is constructed, we can calculate the criteria fuzzy weights vector 𝒘̃ 

by applying the Geometric Mean method proposed by Buckley [71]. The method can be 

applied in three steps:  
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Firstly, we calculate the fuzzy geometric mean value 𝑟̃𝑗  for each row 𝑗 in 𝐴̃𝑗    

𝑟̃𝑗 = ((∏ 𝑙𝑘
𝑝
𝑘=1 )

1
𝑝⁄

,   (∏ 𝑚𝑘
𝑝
𝑘=1 )

1
𝑝⁄

,   (∏ 𝑢𝑘
𝑝
𝑘=1 )

1
𝑝⁄

)    (7.2.3) 

Secondly, sum all fuzzy geometric mean values column wise and find their 

reciprocal, (𝑟̃1 ⨁ 𝑟̃2 ⨁ ⋯ ⨁ 𝑟̃𝑗)
−1

. The multiplication and addition of two fuzzy numbers 

operations are defined as, 

𝑎̃1⨂𝑎̃2 = (𝑙1, 𝑚1, 𝑢1) ⊗ (𝑙2, 𝑚2, 𝑢2) = (𝑙1 × 𝑙2, 𝑚1 × 𝑚2, 𝑢1 × 𝑢2) (7.2.4) 

𝑎̃1⨁𝑎̃2 = (𝑙1, 𝑚1, 𝑢1) ⨁ (𝑙2, 𝑚2, 𝑢2) = (𝑙1 + 𝑙2, 𝑚1 + 𝑚2, 𝑢1 + 𝑢2)  (7.2.5) 

Lastly, calculate the criteria fuzzy weights vector 𝒘̃, 

𝒘̃𝑗 = 𝑟̃𝑗  ⨂ (𝑟̃1 ⨁ 𝑟̃2 ⨁ ⋯ ⨁ 𝑟̃𝑗)
−1

          (7.2.6) 

To ease the comparisons of classifiers’ rankings, we can defuzzify 𝒘̃ using the 

center of area COA concept [72], 

𝒘𝑗 = (
𝑙,𝑚,𝑢

3
) , 𝑗 = 1 ⋯ 𝑝          (7.2.7) 

At the end of this step, table (7.2.3) is computed. 

Step 3:  

Perform pair-wise comparisons between all classifiers with respect to every 

criterion. At the end of this step, the classifiers scores matrix 𝑆 is constructed. 
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[𝑐 × 𝑝] = [

𝑠11 ⋯ 𝑠1𝑗

⋮ ⋱ ⋮
𝑠𝑖1 ⋯ 𝑠𝑖𝑗

]         (7.2.8) 

where 𝑖 = 1 ⋯ 𝑐 & 𝑗 = 1 ⋯ 𝑝. 

Every entry 𝑠𝑖𝑗 of matrix 𝑆 represents the score of the 𝑖𝑡ℎ classifier with respect to 

the 𝑗𝑡ℎ criterion. To construct the matrix 𝑆, we have first to compute classifiers’ pair-wise 

comparison 𝐵(𝑗) matrices with respect to every criterion 𝑗.  

𝐵(𝑗)[𝑐 × 𝑐] = [
𝑏11 ⋯ 𝑏1ℎ

⋮ ⋱ ⋮
𝑏𝑖1 ⋯ 𝑏𝑖ℎ

]       (7.2.9) 

where 𝑖 = 1 ⋯ 𝑐 & ℎ = 1 ⋯ 𝑐. 

Each entry 𝑏𝑖ℎ
(𝑗)

 of the matrix 𝐵(𝑗) represents the evaluation of the 𝑖𝑡ℎ classifier 

compared to the ℎ𝑡ℎ classifier with respect to the 𝑗𝑡ℎ criterion. We can compute 𝑏𝑖ℎ
(𝑗)

 by 

dividing the performance evaluation of classifier 𝑖 over the performance evaluation of 

classifier ℎ with respect to the measure 𝑗. If 𝑏𝑖ℎ
(𝑗)

> 1, then the 𝑖𝑡ℎclassifier is better than 

the ℎ𝑡ℎclassifier, and if 𝑏𝑖ℎ
(𝑗)

< 1, then the 𝑖𝑡ℎclassifier is worse than the ℎ𝑡ℎclassifier. When 

two classifiers’ performances are equal, then 𝑏𝑖ℎ
(𝑗)

= 1. Matrix 𝐵 entries satisfy the 

following properties: 

𝑏𝑖ℎ
(𝑗)

∙ 𝑏ℎ𝑖
(𝑗)

= 1 and 𝑏𝑖ℎ
(𝑗)

= 1, ∀ 𝑖 = ℎ. 

The matrix 𝐸[𝑐 × 𝑝] entries are utilized in computing 𝐵(𝑗) matrices. The matrix 𝐸 

contains the performance evaluation of each classifier presented by the 22-performance 
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measures. In total, we have 12 𝐸 matrices for the 12 data sets experimented. The process 

of computing 𝐸 matrices is as follows: 

1) Start KNIME   

     𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒅 ∈ 𝑫 𝒅𝒐     ⊳ 𝐷 is the set of 12 NASA data sets and 𝑑 is a data set  

2) Load data set 𝑑 

3) Run every classifier to generate its confusion matrix 

4) Use the generated confusion matrix to compute the 22-performance measures 

5) Construct the corresponding 𝐸 matrix  

      𝒆𝒏𝒅 𝒇𝒐𝒓 

Once 𝐵(𝑗) matrices are computed, they need to be normalized column wise. That 

is, divide each entry 𝑏𝑖ℎ in a particular column ℎ over the sum of all entries of this column, 

equation (7.2.10). This operation is repeated for all columns in matrix 𝐵(𝑗). 

𝑏𝑖ℎ =
𝑏𝑖ℎ

∑ 𝑏𝑖ℎ
𝑐
𝑖=1

                     (7.2.10) 

We use equation (7.2.11) to find the scores vector 𝒔(𝑗) that contains the classifiers’ 

pair-wise comparisons scores with respect to every criterion 𝑗. The c-dimension column 

vector 𝒔(𝑗) is computed by taking the averages row-wise for every row 𝑖 in 𝐵(𝑗). 

𝒔(𝑗) =
∑ 𝑏𝑖ℎ

𝑐
ℎ=1

𝑐
                    (7.2.11) 
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Now, we can construct matrix 𝑆 by combining all computed 𝒔(𝑗) scores vectors,  

𝑆 = [𝒔(1) ⋯ 𝒔(𝑗)] , where 𝑗 = 1 ⋯ 𝑝                  (7.2.12) 

Each column in the matrix 𝑆 corresponds to one of the 𝒔(𝑗) column vectors.  

Step 4:  

Calculate the vector 𝒗 of the classifiers’ priorities by multiplying the classifiers’ 

pair-wise comparison scores matrix 𝑆 by the defuzzified criteria weights vector 𝒘, equation 

(7.2.13). 

𝒗 =  𝑆 ∙ 𝒘                      (7.2.13) 

Each 𝒗𝑖 entry represents the score (i.e. rank) assigned by the FAHP process to the 

𝑖𝑡ℎ classifier in comparison to all other (𝑐 − 1) classifiers. 

7.3 Results 

The experiments resulted in 12 𝐸 matrices, 12 𝑆 matrices, and 264 𝐵 matrices. For 

brevity, we will report the summary of the results. The appendices A and C contain 

matrices E and S respectively.  

We can notice from table (7.3.1) that every data set reveals a unique order of the 

experimented classifiers’ performance ranks. These results conform to much-published 

research that every data set (i.e. software project) is a unique product and possesses unique 

characteristics. Kastro et al. [73] concluded that it is almost impossible to have two 

identical software products in terms of developing process, programming languages used, 
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programmers’ experience, algorithm complexity, or even the development methodology.  

Myrtveit et al. [8] reported similar findings. 

 

 

 

Table (7.3.1) Classifiers’ ranks per every data set. 
 

 Data sets 

Ranks CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

1 MLP RF RF CART RF MLP RF FR FR RF RF RF 

2 CART FR SOTA DT FR NB FR RF DT FR FR FR 

3 FR CART CART FR DT RF DT SOTA RF CART MLP DT 

4 DT DT DT PNN KNN FR CART CART MLP DT CART CART 

5 RF KNN FR MLP CART KNN MLP DT KNN SOTA KNN MLP 

6 SOTA SOTA KNN RF SOTA CART LR KNN SOTA KNN PNN PNN 

7 LR MLP PNN KNN MLP LR SOTA MLP CART MLP DT KNN 

8 KNN LR MLP SOTA PNN PNN PNN PNN LR PNN SOTA SOTA 

9 PNN PNN LR NB LR SOTA KNN LR PNN LR LR LR 

10 NB NB NB LR NB DT NB NB NB NB NB NB 

11 SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM SVM 

 

 

However, some interesting trends can be inferred. Random Forest RF has won the 

first rank 7 times and the second rank once. Fuzzy Rule FR has won the first rank twice 

and the second rank 6 times. This shows that these particular classifiers perform very well. 

On the contrary, SVM has won the last rank (i.e. the 11th rank) 12 times, which implies that 

this classifier consistently performs poorly in these experiments. Close to this performance 

is NB that won the 10th rank 10 times, the 9th rank once and surprisingly won the 2nd rank 

once too. 

To make clear the final comparisons among all the competing classifiers, table 

(7.3.2) shows the average rank for each classifier over all experimented data sets. The 

procedure we follow is to count the number of times each classifier achieves a particular 
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rank, then multiply this number by the rank itself. The sum of these numbers is divided by 

the total number of available ranks. Small average rank values indicate better performing 

classifiers, in comparison to classifiers having larger averages. Table (7.3.2) confirms our 

earlier observations in this section.  

 

Table (7.3.2) Averaged Data Sets Ranks. 
 

 

 Classifiers 

Ranks RF FR CART DT MLP KNN SOTA PNN LR NB SVM 

1 7 2 1 0 2 0 0 0 0 0 0 

2 2 12 2 4 0 0 2 0 0 2 0 

3 6 6 9 9 3 0 3 0 0 0 0 

4 0 4 16 16 4 4 0 4 0 0 0 

5 5 5 5 5 15 20 5 0 0 0 0 

6 6 0 6 0 0 18 24 12 6 0 0 

7 0 0 7 7 28 14 7 7 14 0 0 

8 0 0 0 0 8 8 24 40 16 0 0 

9 0 0 0 0 0 9 9 27 54 9 0 

10 0 0 0 10 0 0 0 0 10 100 0 

11 0 0 0 0 0 0 0 0 0 0 132 

            

Sum 26 29 46 51 60 73 74 90 100 111 132 

Average 2.4 2.6 4.2 4.6 5.5 6.6 6.7 8.2 9.1 10.1 12.0 

 

On the other hand, we averaged the matrix 𝐸 for the 12 data sets and applied FAHP 

to this one averaged matrix. As expected, the final rankings perfectly match the previous 

ones.  

7.4 Threats to validity 

The first threat to validity comes from the fact that this dissertation results and 

conclusions are biased in favor of the data sets and classifiers we used [74]. However, we 
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believe that by choosing the publicly available NASA data sets, replication should be 

possible and would be encouraged by other researchers. The same argument applies for 

choosing the most common classifiers in the field of software defect prediction [4] [31] 

[73]. Moreover, NASA data sets meet all the requirements that would increase the external 

validity of our research, as stated by Khoshgoftaar et al. [75], that is, increasing the 

generalization of the results outside our experimental settings: 

• Be large enough to be comparable to real industry projects 

• Developed in an industrial environment, rather than an artificial setting 

• Developed by a group of developers rather than an individual 

• Developed by professionals, rather than students 

On the other hand, and in order to decrease the presence of internal validity threats, 

we decided to use the cleaned-up NASA data sets instead of the original ones, as discussed 

earlier in section (7.1). This allows us to avoid the noise sources existing in the original 

NASA data sets.  

Moreover, some data sets contain a relatively small number of modules, such as, 

MC2 and KC3, especially when the 10-fold cross-validation technique is employed. Some 

classifiers that are sensitive to the size of data sets might lose some of their performance 

quality [76]. This effect might be increased after performing the cleaning procedures on 

NASA data sets. As table (7.1.2) shows, this resulted in a smaller number of observations 

for each experimented data set. 
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CHAPTER 8: CONCLUSIONS 

 

There is a substantial need to design and develop reliable software defect classifiers 

that classify software components into defective and non-defective. The benefit of 

achieving this objective is the ability to focus software defect- detection efforts and project 

resources on part of a system, rather than testing the whole system.  

However, the major problem that software practitioners face is how to reliably 

evaluate classifiers and how to select the best fit for their software development projects. 

Since the evaluation of software defect classifiers’ performance is highly dependent on the 

specific measures employed, the performance evaluation might improve or deteriorate, if 

practitioners choose different performance measures.  

As we believe that performance evaluation must be seen as a comprehensive 

strategy rather than relying on preferred selection of performance measures, Fuzzy 

Analytical Hierarchy Process FAHP is used in this research to satisfy this requirement. 

FAHP allowed us to combine a wider spectrum of evaluation measures, in contrast to 

relying on preferred selection of one or two evaluation measures. Another strength comes 

from the fact that FAHP employs fuzzy membership function to account for human nature 

of uncertainty and vagueness when evaluating and comparing performance measures with 

one another. The results show that this approach will increase software developers’ 
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confidence in research outcomes, help them in avoiding false conclusions and providing 

them with reasonable boundaries. 

 

  



 

 
 

52 

 

 

APPENDIX A: 𝑬 MATRICES 

 

𝐸[𝑐 × 𝑝] is the classifiers’ performance evaluation matrix computed for 12 NASA 

software defect data sets.  
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Data Set: CM1           
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Data Set: JM1  
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Data Set: KC1  
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Data Set: KC3  
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Data Set: MC1  
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Data Set: MC2 
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Data Set: MW1 
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Data Set: PC1 
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Data Set: PC2 
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Data Set: PC3 
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Data Set: PC4 
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Data Set: PC5 
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APPENDIX B: 𝑩 MATRICES 

 

Since B matrices must be computed for each of the 22 evaluation measures and repeated 

for each of the 12 experimented data sets, our research resulted in computing 264 B 

matrices. For obvious reasons, we cannot provide all of them in this dissertation. However, 

in future, we will provide a permeant cloud-based repository location, where interested 

researchers can access our work for further scrutiny and replication. 
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APPENDIX C: 𝑺 MATRICES 

 

 

𝑆[𝑐 × 𝑝] score matrix represents the classifiers’ pair-wise comparisons with respect to 

every evaluation measure j for the 12 NASA software defect data sets. The measures are 

numbered from 1 ... 22 to manage the limited space in the tables. Every column in matrix 

S is a 𝒔(𝑗) vector that represents the classifiers’ pair-wise comparisons with respect to a 

specific evaluation measure ( j ). 
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Data Set: CM1 
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Data Set: JM1  
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Data Set: KC1  
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Data Set: KC3 
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Data Set: MC1 
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Data Set: MC2 
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Data Set: MW1 
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Data Set: PC1   
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Data Set: PC2 
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Data Set: PC3 
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Data Set: PC4  
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Data Set: PC5 
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