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Abstract. We prove a Bishop volume comparison theorem and a
Laplacian comparison theorem for three dimensional contact sub-
riemannian manifolds with symmetry.

1. Introduction

Recently, there are numerous progress in the understanding of curva-
ture type invariants in subriemannian geometry and their applications
to PDE [12, 14, 15, 1, 2, 3, 4, 16]. In this paper, we continue to in-
vestigate some consequences on bounds of these curvature invariants.
More precisely, we prove a Bishop comparison theorem and a Lapla-
cian comparison theorem for three dimensional contact subriemannian
manifolds with symmetry (also called Sasakian manifolds). Weaker
results of volume comparison on Sasakian manifolds have previously
been obtained in [10]. We would like to thank Professor Chanillo for
pointing this out.

The paper is organized as follows. In section 2, we recall various
notions in subriemannian geometry needed in this paper. In particular,
we recall the definition of curvature R11 and R22 for three dimensional
contact subriemannian manifolds introduced in [14, 15, 1]. In section
3, we show that the curvature R11 is closely related to the Tanaka-
Webster curvature in CR geometry. In section 4, we collect various
results on the cut loci of Sasakian manifold with constant Tanaka-
Webster curvature (also called Sasakian space forms). In section 5, we
give an estimate for the volume of subriemannian balls. In section 6, we
prove the subriemannian Bishop theorem which compares the volume
of subriemannian balls of a Sasakian manifold and a Sasakian space
form. We introduce the subriemannian Hessian and sub-Laplacian in
section 7 and give the formula for the Laplacian of the subriemannian
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distance in Sasakian space form in section 8. We prove a subriemannian
Hessian and a subriemannian Laplacian comparison theorem in section
9. As an application, we give a lower bound of the solution to the
subriemannian heat equation in section 10. Finally, the approach of
this paper can also be used in the higher dimensional cases with much
more lengthy computations. This generalization will be discussed in a
forthcoming paper.

Acknowledgment

The authors would like to thank N. Garofalo for stimulating discus-
sions.

2. Subriemannian Geometry

In this section, we recall various notions in subriemannian geometry
needed in this paper. A subriemannian manifold is a triple (M,∆, g),
where M is a smooth manifold, ∆ is a distribution (a vector subbundle
of the tangent bundle of M), and g is a fibrewise inner product defined
on the distribution ∆. The inner product g is also called a subrieman-
nian metric. An absolutely continuous curve γ : [0, 1] → M on the
manifold M is called horizontal if it is almost everywhere tangent to
the distribution ∆. We can use the inner product g to define the length
l(γ) of a horizontal curve γ by

l(γ) =

∫ 1

0

g(γ̇(t), γ̇(t))1/2dt.

The distribution ∆ is called bracket-generating if vector fields con-
tained in ∆ together with their iterated Lie brackets span the whole
tangent bundle. More precisely, let ∆1 and ∆2 be two distributions on
a manifold M , and let X(∆i) be the space of all vector fields contained
in the distribution ∆i. Let [∆1,∆2] be the distribution defined by

[∆1,∆2]x = span{[w1, w2](x)|wi ∈ X(∆i)}.

We define inductively the following distributions: [∆,∆] = ∆2 and
∆k = [∆,∆k−1]. A distribution ∆ is called bracket generating if ∆k =
TM for some k. Under the bracket generating assumption, we have
the following famous Chow-Rashevskii Theorem (see [17] for a proof):

Theorem 2.1. (Chow-Rashevskii) Assume that the manifold M is con-
nected and the distribution ∆ is bracket generating, then there is a
horizontal curve joining any two given points.
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Assuming the distribution ∆ is bracket generating, we can define the
subriemannian or Carnot-Caratheodory distance d(x, y) between two
points x and y on the manifold M is defined by

(2.1) d(x, y) = inf l(γ),

where the infimum is taken over all horizontal curves which start from
x and end at y.

The horizontal curves which realize the infimum in (2.1) are called
length minimizing geodesics. From now on all manifolds are assumed
to be a complete metric space with respect to a given subriemannian
distance. In particular, a version of Hopf-Rinow theorem for subrie-
mannian manifolds ([5]) guarantees that there is at least one geodesic
joining any two given points.

Next we discuss the geodesic equation in the subriemannian setting.
Let α be a covector in the cotangent space T ∗xM at the point x. By
nondegeneracy of the metric g, we can define a vector v in the distribu-
tion ∆x such that g(v, ·) coincides with α(·) on ∆x. The subriemannian
Hamiltonian H corresponding to the subriemannian metric g is defined
by

H(α) :=
1

2
g(v, v).

Note that this construction defines the usual kinetic energy Hamilton-
ian in the Riemannian case.

Let π : T ∗M → M be the projection map. The tautological one
form θ on T ∗M is defined by

θα(V ) = α(dπ(V )),

where α is in the cotangent bundle T ∗M and V is a tangent vector on
the manifold T ∗M at α.

Let ω = dθ be the symplectic two form on T ∗M . The Hamilton-
ian vector field ~H corresponding to the Hamiltonian H is defined by
ω( ~H, ·) = −dH(·). By the non-degeneracy of the symplectic form ω,

the Hamiltonian vector field ~H is uniquely defined. We denote the flow

corresponding to the vector field ~H by et
~H . If t 7→ et

~H(α) is a trajectory

of the above Hamiltonian flow, then its projection t 7→ γ(t) = π(et
~H(α))

is a locally minimizing geodesic. This means that sufficiently short seg-
ment of the curve γ is a minimizing geodesic between its endpoints. The
minimizing geodesics obtained this way are called normal geodesics. In
the special case where the distribution ∆ is the whole tangent bun-
dle TM , the distance function (2.1) is the usual Riemannian distance
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and all geodesics are normal. However, this is not the case for subrie-
mannian manifolds in general (see [17] and reference therein for more
detail).

Next we restrict our attention to the three dimensional contact sub-
riemannian manifold. Let ∆ be a bracket generating distribution with
two dimensional fibres on a three dimensional manifold M . ∆ is a con-
tact distribution if there exists a covector σ such that ∆ = {v|σ(v) = 0}
and the restriction of dσ to ∆ is non-degenerate. If we fix a subrie-
mannian metric g, then we can choose σ so that the restriction of dσ
to the distribution ∆ coincides with the volume form with respect to
the subriemannian metric g.

Let {v1, v2} be a local orthonormal frame in the distribution ∆ with
respect to the subriemannian metric g and let v0 be the Reeb field
defined by the conditions σ(v0) = 1 and dσ(v0, ·) = 0. This defines a
frame {v0, v1, v2} in the tangent bundle TM and we let {α0 = σ, α1, α2}
be the corresponding dual co-frame in the cotangent bundle T ∗M (i.e.
αi(vj) = δij).

The frame {v0, v1, v2} and the co-frame {α0, α1, α2} defined above
induce a frame in the tangent bundle TT ∗M of the cotangent bundle
T ∗M . Indeed, let ~αi be the vector fields on the cotangent bundle T ∗M
defined by i~αi

ω = −αi. Note that the symbol αi in the definition
of ~αi represents the pull back π∗αi of the 1-form α on the manifold
M by the projection π : T ∗M → M . This convention of identifying
forms in the manifold M and its pull back on the cotangent bundle
T ∗M will be used for the rest of this paper without mentioning. Let
hi : T ∗M → R be the Hamiltonian lift of the vector fields vi defined by
hi(α) = α(vi). Let ξ1 and ξ2 be the 1-forms defined by ξ1 = h1α2−h2α1

and ξ2 = h1α1 + h2α2, respectively, and let ~ξi be the vector fields

defined by i~ξiω = −ξi. The vector fields ~h0,~h1,~h2, ~σ, ~ξ1, ~ξ2 define a local
frame for the tangent bundle TT ∗M of the cotangent bundle T ∗M . In
the above notation the subriemannian Hamiltonian is given by H =
1
2
((h1)

2 + (h2)
2) and the Hamiltonian vector field is ~H = h1

~h1 + h2
~h2.

We also need the bracket relations of the vector fields v0, v1, v2. Let
akij be the functions on the manifold M defined by

(2.2) [vi, vj] = a0
ijv0 + a1

ijv1 + a2
ijv2.

It is not hard to check that

(2.3) a0
01 = a0

02 = 0, a0
12 = −1, a1

01 + a2
02 = 0.

Recall that a basis {e1, ..., en, f1, ..., fn} in a symplectic vector space
with a symplectic form ω is a Darboux basis if it satisfies ω(ei, ej) =
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ω(fi, fj) = 0, and ω(fi, ej) = δij. We recall the following theorem from
[1].

Theorem 2.2. For each fixed α in the manifold T ∗M , there is a moving
Darboux frame

ei(t) = (et
~H)∗ei(0), fi(t) = (et

~H)∗fi(0), i = 1, 2, 3

in the symplectic vector space TαT
∗M and functions

R11
t = (et

~H)∗R11
0 , R

22
t = (et

~H)∗R22
0 : T ∗M → R

depending on time t such that the following structural equations are
satisfied 

ė1(t) = f1(t),
ė2(t) = e1(t),
ė3(t) = f3(t),

ḟ1(t) = −R11
t e1(t)− f2(t),

ḟ2(t) = −R22
t e2(t),

ḟ3(t) = 0.

Moreover,

e1(0) = 1√
2H
~ξ1,

e2(0) = 1√
2H
~σ,

e3(0) = − 1√
2H

(h0~α0 + h1~α1 + h2~α2),

f1(0) = 1√
2H

[h1
~h2 − h2

~h1 + χ0~α0 + (~ξ1h12)~ξ1 − h12
~ξ2],

f2(0) = 1√
2H

[2H~h0 − h0
~H − χ1~α0 + (~ξ1a)~ξ1 − a~ξ2],

f3(0) = − 1√
2H
~H,

R11
0 = h2

0 + 2Hκ− 3
2
~ξ1a,

R22
0 = R11

0
~ξ1a− 3 ~H~ξ1 ~Ha+ 3 ~H2~ξ1a+ ~ξ1 ~H

2a.

where

a = dh0( ~H),

χ0 = h2h01 − h1h02 + ~ξ1a,

χ1 = h0a+ 2 ~H~ξ1a− ~ξ1 ~Ha,
κ = v1a

2
12 − v2a

1
12 − (a1

12)
2 − (a2

12)
2 − 1

2
(a2

01 − a1
02).

3. Connection with the Tanaka-Webster Scalar
Curvature

In this section, we show that κ defined in Theorem 2.2 is up to a
constant the Tanaka-Webster scalar curvature in CR geometry.
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Let gR be the Riemannian metric on the manifold M such that the
basis v0, v1, v2 is orthonormal. Let K(v, w) be the sectional curvature
of the plane spanned by v and w and let Rc(v) be the Ricci curvature
of the vector v.

Theorem 3.1. The invariant W satisfies

W = 2K(v1, v2) + Rc(v0) + 1.

Remark 3.2. From now on, we called W the Tanaka-Webster scalar
curvature. It follows from the above theorem that 4W coincides with
the definition of Tanaka-Webster scalar curvature in [19].

Proof. Let ∇ denotes the Riemannian connection of the Riemannian
metric gR. By Koszul’s formula, we have the following.

∇v1v1 = a1
01v0 − a1

12v2,

∇v2v2 = a2
02v0 − a2

21v1,

∇v1v2 =
1

2
(a1

02 + a2
01 − 1)v0 + a1

12v1,

∇v2v1 =
1

2
(a2

01 + a1
02 + 1)v0 − a2

12v2,

∇v1v0 = −a1
01v1 +

1

2
(−a1

02 − a2
01 + 1)v2,

∇v2v0 = −a2
02v2 +

1

2
(−a2

01 − a1
02 − 1)v1,

∇v0v1 = a2
01v2 +

1

2
(−a1

02 − a2
01 + 1)v2,

∇v0v2 = a1
02v1 +

1

2
(−a2

01 − a1
02 − 1)v1.

Let R be the Riemann curvature tensor of the Riemannian metric
gR. By definition of R, we also have

gR(R(vi, vj)vi, vj)

= gR(∇[vi,vj ]vi −∇vi
∇vj

vi +∇vj
∇vi

vi, vj).

It follows from the above that

Rc(v0) = gR(R(v0, v1)v0, v1) + gR(R(v0, v2)v0, v2)

= −2(a1
01)

2 − 1

2
(a2

01 + a1
02)

2 +
1

2
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and

K(v1, v2) = gR(R(v1, v2)v1, v2)

=
1

2
(a1

02 − a2
01)− (a1

12)
2 − (a2

12)
2 + v1a

2
12

− v2a
1
12 + (a1

01)
2 +

1

4
(a1

02 + a2
01)

2 − 3

4
.

�

4. Examples and Sasakian Space Forms

A three dimensional contact subriemannian manifold is Sasakian if
the Reeb field preserves the subriemannian metric. Using the notation
of this paper, it is the same as a = dh0( ~H) = 0.

A three dimensional Sasakian manifold is a Sasakian space form if
the Tanaka-Webster scalar curvature is constant. In this section, we
collect various facts about the injectivity domain (see below for the
definition) of Sasakian space forms including the recent results in [7].

Let (M,∆, g) be a subriemannian manifold. Let H be the sub-

riemannian Hamiltonian and let et
~H be the Hamiltonian flow. Let

π : T ∗M → M be the projection map and let us fix a point x in the
manifold M . Let Ωx be the set of all covectors α in the cotangent space

T ∗xM such that the curve γ : [0, 1] → M defined by γ(t) = π(et
~H(α))

is a length minimizing geodesic. We call Ω =
⋃
x Ωx the injectivity

domain of the subriemannian manifold. We also let ΩR
x be the set of

covectors in Ωx such that the corresponding curve γ has length less than

or equal to R. A point α in T ∗xM is a cut point if γ(t) = π(et
~H(α)) is

minimizing geodesic on [0, 1] and not minimizing on any larger interval.

A point α is a conjugate point if the map π(e1·
~H) is singular at α.

The Heisenberg group H is a well-known example of a Sasakian man-
ifold with vanishing Tanaka-Webster curvature. The manifold in this
case is given by R3 and the distribution ∆ is the span of two vector
fields ∂x − 1

2
y∂z and ∂y + 1

2
x∂z. These two vector fields also define a

subriemannian metric for which they are orthonormal. In this case all
cut points are conjugate points and ΩR is given by

(4.1) ΩR
0 = {α|

√
2H(α) ≤ R,−2π ≤ h0(α) ≤ 2π}.

Recall that SU(2), the special unitary group, consists of 2×2 matri-
ces with complex coefficients and determinant 1. The Lie algebra su(2)
consists of skew Hermitian matrices with trace zero. The left invariant
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vector fields of the following two elements in su(2)

u1 =

(
0 1/2

−1/2 0

)
, u2 =

(
0 i/2
i/2 0

)
span the standard distribution ∆ on SU(2). Let gc be the subrieman-
nian metric for which gc(cu1, cu2) = 1. The Reeb field in this case is
c2u0, where

u0 =

(
0 −1/2

1/2 0

)
.

A computation shows that the Tanaka-Webster curvature is given by
c2. It follows from the result in [7] that all cut points are conjugate
points in this case and ΩR is given by

(4.2) ΩR
id = {α|

√
h0(α)2 + 2c2H(α) ≤ 2π}.

Remark 4.1. The notations in here and that of [7] are slightly different.
It was shown in [7, Theorem 12] that all cut points are conjugate points

in the case SU(2) with c = 1. Moreover, the path t 7→ π(et
~H(α)) hits

the first conjugate point at the time 2π√
1+h0(α)2

, where H(α) = 1
2
. This

is equivalent to (4.2). The rest of the cases with c 6= 1 follow from
scaling.

The special linear group SL(2) is the set of all 2 × 2 matrices with
real coefficients and determinant 1. The Lie algebra sl(2) is the set of
all 2× 2 real matrices with trace zero. The left invariant vector fields
of the following two elements in sl(2)

u1 =

(
1/2 0
0 −1/2

)
, u2 =

(
0 1/2

1/2 0

)
span the standard distribution ∆ on SL(2). Let gc be the subrieman-
nian metric for which gc(cu1, cu2) = 1. The Reeb field in this case is
c2u0, where

u0 =

(
0 −1/2

1/2 0

)
.

The Tanaka-Webster curvature is given by −c2. The structure of the
set of cut points in this case is much more complicated. However, the
result in [7] and a computation shows the following.

Theorem 4.2. Assume that a cut point α in the cotangent bundle of
SL(2) with subriemannian metric gc is contained in ΩR

id, where R =
2
√

2π
c

. Then it is a conjugate point. Moreover, it satisfies√
|h0(α)2 − 2c2H(α)| = 2π
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Proof. Let τ = h2
0 − 2Hc2. From the proof of [7, Section 5.3, Theorem

15], α in the cotangent space T ∗xSL(2) at a point x is a cut point if it
satisfies

(4.3)
tan(h0(α)/2)

h0(α)
=

tanh(
√
−τ(α)/2)√
−τ(α)

for τ(α) < 0,

(4.4)
tan(h0(α)/2)

h0(α)
=

tan(
√
τ(α)/2)√
τ(α)

for τ(α) > 0, or

(4.5)
tan(h0(α)/2)

h0(α)
=

1

2

for τ(α) = 0.
Let r1, r2, r3 be the infimum of 2H(α)c2 where α runs over positive

solutions of (4.3), (4.4),(4.5), respectively. The goal is to find the min-
imum of {r1, r2, r3}.

Let f(x) = tan(
√
x)√

x
and g(x) = tanh(

√
x)√

x
. Let F1 be a branch of inverses

of f
∣∣∣
[0,∞)

and let G be the inverse of g
∣∣∣
[0,∞)

. Finding r1 is the same as

minimizing 4(F1 +G).
A computation shows that that the derivatives of F1 and G satisfy

(4.6) F ′
1(x) =

1 + x2F1(x)− x

2F1(x)
, G′(x) =

1− x2G(x)− x

2G(x)
.

Since F1 and G are nonnegative, F ′
1 + G′ = 0 implies that x = 1. It

follows that r1 ≥ r3.

Let F2 be another branch of inverses of f
∣∣∣
[0,∞)

for which F2 > F1.

We can assume that F1 is the smalllest branch and F2 is the second
smallest branch. In this case, finding r2 is the same as minimizing
4(F2−F1). It follows from (4.6) that F ′

2(x)−F ′
1(x) = 0 implies x = 1.

Therefore, there are two possibilities. Either the minimum of F2 − F1

occurs at x = 1 which implies that r2 ≥ r3 or 4(F2 − F1) goes to the

infimum as x→∞ which implies that r2 = 4
(

3π
2

)2−
(
π
2

)2
= 8π2 < r3.

The last assertion follows from [7]. �
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5. Volume of Subriemannian Balls

In this section, we give an estimate on the volume of subriemannian
balls of Sasakian manifolds assuming the Tanaka-Webster curvature is
bounded below. More precisely, let us fix a point x in the manifold
and let v1, v2 be an orthonormal basis of the subriemannian metric
around x. Let v0 be the Reeb field and α0, α1, α2 be the dual coframe
of the frame v0, v1, v2 (i.e. αi(vj) = δij). We use this coframe to
introduce coordinates on the cotangent space T ∗xM and let m be the
corresponding volume form. We will also denote the corresponding
Lebesgue measure by the same symbol. Let (r, θ, h) be the cylindrical
coordinates on T ∗xM corresponding to the above coordinate system

(i.e. h = h0(α), r2 = 2H(α), and tan(θ) = h2(α)
h1(α)

). Recall that ΩR

denotes the set of all covectors α such that
√

2H(α) ≤ R and the

curve t 7→ π(et
~H(α)), 0 ≤ t ≤ 1 is length minimizing. We use the

coordinate system introduced above on T ∗xM to identify the set ΩR

with a subset in Rn. Finally, let η be the volume form defined by the
condition η(v0, v1, v2) = 1. We denote the measure induced by η using
the same symbol.

Theorem 5.1. Assume that there exists a constant k1 (resp. k2) such
that the Tanaka-Webster curvature W of a three dimensional Sasakian
manifold satisfies W ≥ k1 (resp. ≤ k2) on the ball B(x,R) of radius R
centered at the point x. Then

η(B(x,R)) ≤
∫

ΩR

bk1dm

(
resp. ≥

∫
ΩR

bk2dm

)
,

where bk : T ∗xM → R is defined via the above mentioned cylindrical
coordinates by

bk =


r2(2−2 cos(τ)−τ sin(τ))

σ2 if σ > 0,
r2(2−2 cosh(τ)+τ sinh(τ)))

σ2 if σ < 0,
r2

12
if σ = 0,

σ = h2 + r2k, and τ =
√
|σ|.

As a corollary, we have a formula for the volume of subriemannian
balls on Sasakian space forms. Remark that explicit formula for the set
ΩR in various examples are present in Section 4 (see also [7] for more
details).
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Corollary 5.2. Assume that the three dimensional subriemannian man-
ifold is a Sasakian space form with Tanaka-Webster curvature k. Then

η(B(x,R)) =

∫
ΩR

bkdm.

Proof of Theorem 5.1. Recall that η is the measure on M defined by

η(v0, v1, v2) = 1. Let ψt : T ∗xM → M be the map ψt(α) = π(e1·
~H(α))

and let ρt : T ∗xM → R be the function defined by

(5.1) ψ∗t η = ρtm.

Let us fix a covector α in T ∗xM . Let e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)
be a canonical Darboux frame at α defined by Theorem 2.2. Let aij(t)
and bij(t) be defined by

(5.2) ei(0) =
3∑
j=1

(aij(t)ej(t) + bij(t)fj(t)).

Finally let At and Bt be the matrices with (i, j)-th entry equal to aij(t)
and bij(t), respectively.

By definition of m, we have m(e1(0), e2(0), e3(0)) = 1. It also follows
from Theorem 2.2 that η(f1(0), f2(0), f3(0)) = 2H(α). Therefore, (5.1)
implies that

(5.3) ρt = 2H(α) detBt.

It follows that from (5.3) that

(5.4) η(B(x, r)) =

∫
ψ1(Ωr)

dη =

∫
Ωr

|ρ1|dm =

∫
Ωr

2H(α)| detB1|dm.

Let Et = (e1(t), e2(t), e3(t))
T and let Ft = (f1(t), f2(t), f3(t))

T . Here
the superscript T denote matrix transpose. By the definition of the
matrices At and Bt, we have

E0 = AtEt +BtFt.

If we differentiate the above equation with respect to time t, we have

0 = ȦtEt + AtĖt + ḂtFt +BtḞt

= ȦtEt + AtC1Et + AtC2Ft + ḂtFt +Bt(−RtEt − CT
1 Ft),

Since the manifold is Sasakian, a = dh0( ~H) = 0. Therefore, by
Theorem 2.2, Et and Ft satisfy the following equatoins

Ėt = C1Et + C2Ft, Ft = −RtEt − CT
1 Ft,
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where

C1 =

 0 0 0
1 0 0
0 0 0

 , C2 =

 1 0 0
0 0 0
0 0 1

 ,

Rt =

 R11
t 0 0
0 0 0
0 0 0

 =

 h2
0(α) + 2WtH(α) 0 0

0 0 0
0 0 0

 ,

and Wt = W(ψt(α)).
It follows that the matrices At and Bt satisfy the following equations

(5.5) Ȧt + AtC1 −BtRt = 0, Ḃt + AtC2 −BtC
T
1 = 0

with initial conditions B0 = 0 and A0 = Id.
If we set St = B−1

t At and Ut = S−1
t = A−1

t Bt, then they satisfy the
following Riccati equations.

Ṡt − StC2St + CT
1 St + SC1 −Rt = 0

and

U̇t + UtRtUt − C1Ut − UtC
T
1 + C2 = 0

with initial condition U0 = 0.
Let us fix a constant k and consider the following Riccati equation

with constant coefficients

(5.6) U̇k
t + Uk

t R
kUk

t − C1U
k
t − Uk

t C
T
1 + C2 = 0

and initial condition Uk
0 = 0, where Rk =

 h2
0(α) + 2kH(α) 0 0

0 0 0
0 0 0

.

The solution of (5.6) can be found by the method in [13]. If h2
0 +

2H(α)k > 0, then

Uk
t =


−t sin(τt)
τt cos(τt)

t2(cos(τt)−1)

τ2
t cos(τt)

0
t2(cos(τt)−1)

τ2
t cos(τt)

t3(τt cos(τt)−sin(τt))

τ3
t cos(τt)

0

0 0 −t

 .

If h2
0 + 2H(α)k < 0, then

Uk
t =


−t sinh(τt)
τt cosh(τt)

t2(1−cosh(τt))

τ2
t cosh(τt)

0
t2(1−cosh(τt))

τ2
t cosh(τt)

t3(sinh(τt)−τt cosh(τt))

τ3
t cosh(τt)

0

0 0 −t

 .
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If h2
0 + 2H(α)k = 0, then

Uk
t =

 −t − t2

2
0

− t2

2
− t3

3
0

0 0 −t

 ,

where τt = t
√
|h2

0 + 2H(α)k|.
If we call the inverse Skt = (Uk

t )−1, then

Skt =


τt(τt cos(τt)−sin(τt))

t(2−2 cos(τt)−τt sin(τt))

τ2
t (1−cos(τt))

t2(2−2 cos(τt)−τt sin(τt))
0

τ2
t (1−cos(τt))

t2(2−2 cos(τt)−τt sin(τt))

−τ3
t sin(τt)

t3(2−2 cos(τt)−τt sin(τt))
0

0 0 −1
t

 ,

if h2
0 + 2H(α)k > 0.

Skt =


τt(sinh(τt)−τt cosh(τt))

t(2−2 cosh(τt)+τt sinh(τt))

τ2
t (cosh(τt)−1)

t2(2−2 cosh(τt)+τt sinh(τt))
0

τ2
t (cosh(τt)−1)

t2(2−2 cosh(τt)+τt sinh(τt))

−τ3
t sinh(τt)

t3(2−2 cosh(τt)+τt sinh(τt))
0

0 0 −1
t

 ,

if h2
0 + 2H(α)k < 0.

Skt =

 −4
t

6
t2

0
6
t2

−12
t3

0
0 0 −1

t

 ,

if h2
0 + 2H(α)k = 0.

By [18], if k1 ≤ W ≤ k2, then

(5.7) Uk2
t ≤ Ut ≤ Uk1

t ≤ 0.

Therefore, Sk1t ≤ St ≤ Sk2t .
On the other hand, by (5.5) and the definition of St, we have

Ḃt +Bt(StC2 − CT
1 ) = 0.

It follows that d
dt

detBt = tr(CT
1 − StC2) detBt = −tr(StC2) detBt.

If we replace the matrix Rt in (5.5) by Rk and denote the solution by
Akt and Bk

t , then we have

d
dt

detBt

detBt

= −tr(StC2) ≥ −tr(Sk2t C2) =
d
dt

detBk2
t

detBk2
t

.

It follows that detBt

detB
k2
t

is nondecreasing. By definition of Ut and (5.7),

we also have

lim
t→0

detBt

detBk2
t

= lim
t→0

detAt detUt

detAk2t detUk2
t

≥ lim
t→0

detAt

detAk2t
= 1
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Therefore, it follows that

detBt

detBk2
t

≥ lim
t→0

detBt

detBk2
t

≥ 1.

Similarly, we also have

detBt

detBk1
t

≤ 1.

A calculation gives

(5.8) | detBk
t | := bkt =

t(2− 2 cos(τt)− τt sin(τt))

τ 4
1

if h2
0 + 2H(α)k > 0,

(5.9) bkt =
t(2− 2 cosh(τt) + τt sinh(τt))

τ 4
1

if h2
0 + 2H(α)k < 0, and

(5.10) bkt =
t5

12

if h2
0 + 2H(α)k = 0.

It follows that bk2t ≤ | detBt| ≤ bk1t . Therefore, we have the following
as claimed ∫

ΩR

r2bk21 dm ≤ η(B(x, r)) ≤
∫

ΩR

r2bk11 dm.

�

6. Subriemannian Bishop Theorem

In this section, we prove a subriemannian analog of Bishop theorem
for three dimensional Sasakian manifolds. Recall that η is the volume
form defined by the condition η(v0, v1, v2). We denote the measure
induced by η using the same symbol and let ηk be the corresponding
measure in a Sasakian space form of curvature k. Let Bk(R) be a
subriemannian ball of radius R in one of the Sasakian space forms
SU(2), H, or SL(2) of curvature k (see Section 4 for a discussion of
these space forms).

Theorem 6.1. (Subriemannian Bishop Theorem) Assume that the
Tanaka-Webster scalar curvature W of a three dimensional Sasakian
manifold satisfies W ≥ k on the ball B(x,R) for some constant k. If
k ≥ 0, then

(6.1) η(B(x,R)) ≤ ηk(Bk(R))
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and equality holds only if W = k on B(x,R). The same conclusion

holds for k < 0 provided that R ≤ 2
√

2π√
−k .

Proof. By Theorem 5.1, we have

η(B(x,R)) ≤
∫

ΩR

bkdm.

If we can show that

(6.2) ΩR ⊆ Ω′
R := {α ∈ T ∗xM |

√
|h0(α)2 + kH(α)| ≤ 2π},

then Corollary 5.2, together with (4.1), (4.2), and Theorem 4.2, implies
that

η(B(x,R)) ≤
∫

Ω′
R

bkdm = ηk(Bk(R))

which is (6.1). Note that the condition R ≤ 2
√

2π√
−k is needed when k < 0

because of Theorem 4.2.
To show (6.2) let us suppose that there is a covector α in ΩR such

that

τ1 :=
√
|h0(α)2 + kH(α)| > 2π.

Using the notation in the proof of Theorem 5.1, we let

E0 = AtEt +BtFt,

where Et = (e0(t), e1(t), e2(t))
T and Ft = (f0(t), f1(t), f2(t))

T are canon-
ical Darboux frame at α.

By the proof of Theorem 5.1, we have that | detBt| ≤ bkt , where
bkt is defined in (5.8), (5.9), and (5.10). Since τ1 > 2π, it follows
that detBt = 0 for some t < 1. Therefore, tα is a conjugate point
contradicting the fact that α is contained in ΩR.

Next, suppose equality holds in (6.1) and W > k on an open set
O contained in the ball B(x,R). For each point y in O, let γ(t) =

π(et
~H(α)) be a minimizing geodesic connecting x and y. It follows that

Rt > Rk
t for all t close enough to 1. By the result in [18] and a similar

argument as in Theorem 5.1, we have | detB1| < | detBk
1 |. It follows

from (5.4) that η(B(x,R)) < ηk(Bk(R)) which is a contradiction. �

7. Subriemannian Hessian and Laplacian

In this section, we introduce subriemannian versions of Hessian and
Laplacian. For the computation, we will also give an expression for it
in the canonical Darboux frame.
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Assume that a functon f : M → R is twice differentiable at a point
x in the manifold M . The canonical Darboux frame

{e1(t), e2(t), e3(t), f1(t), f2(t), f3(t)}

at dfx gives a splitting of the tangent space TdfxT
∗M = H⊕V defined

by

H = span{f1(0), f2(0), f3(0)}, V = span{e1(0), e2(0), e3(0)}.

The differential dπ of the projection map π : T ∗M → M defines
an identification between H and TxM . On the other hand, the map
ι : T ∗xM → V defined by ι(α) = −~α also gives an identification between
T ∗xM and V .

Let us consider the differential d(dfx) : TxM → TdfxT
∗M at x of

the map x 7→ dfx. It defines a three dimensional subspace Λ :=
d(dfx)(TxM) of the tangent space TdfxT

∗M . Since Λ is transvesal to
the space V , it defines a linear map S from H to V for which the graph
is given by Λ. More precisely, if w = wh+wv is a vector in the space Λ,
where wh and wv are inH and V , respectivly. Then S(wh) = wv. Under
the identifications of the tangent space TxM with H and the cotangent
space T ∗xM with V , we obtain a linear map HSRf(x) : TxM → T ∗xM
called subriemannian Hessian. More precisely,

HSRf(x)(dπ(w)) = ι−1Sw.

Proposition 7.1. The subriemannian Hessian HSRf is symmetric i.e.〈
HSRf(x)v, w

〉
=

〈
HSRf(x)w, v

〉
.

Proof. Let w1 and w2 be two vectors in the subspace H. Since the
subspace Λ is a Lagrangian subspace, we have

ω(w1 + S(w1), w2 + S(w2)) = 0.

Since both H and V are Lagrangian subspaces, we also have

ω(w1, S(w2)) + ω(S(w1), w2) = 0.

It follows from skew symmetry of ω and the definition of subrieman-
nian Hessian that 〈

HSRf(x)dπ(w2), dπ(w1)
〉

= ω(w1, S(w2))

= ω(w2, S(w1))

=
〈
HSRf(x)dπ(w1), dπ(w2)

〉
.

�
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Let ιi = dπ(fi(0)) and let Hf(x) be the subriemannian Hessian ma-
trix with ij-th entry Hijf(x) defined by

Hijf(x) =
〈
HSRf(x)ιi, ιj

〉
= ω(Sfi(0), fj(0)).

Recall that v0 denotes the Reeb field and v1, v2 be an orthonormal
basis with respect to the subriemannian metric g.

Proposition 7.2. The subriemannian Hessian matrix Hf satisfies the
following

H11f =
(v1f)2v2

2f + (v2f)2v2
1f − (v1f)(v2f)(v1v2f + v2v1f)

(v1f)2 + (v2f)2

+ a1
12v2f − a2

12v1f,

H12f = (v1f)v2v0f − (v2f)v1v0f + (v0f)H13f + ~ξ1a(df),

H13f =
(v1f)(v2f)(v2

1f − v2
2f)− (v1f)2(v2v1f) + (v2f)2(v1v2f)

(v1f)2 + (v2f)2
,

H22f = ((v1f)2 + (v2f)2)v2
0f − (v0f)(v1f)v1v0f − (v0f)(v2f)v2v0f

+ v0f(H23f + a(df))− χ1(df)

H23f = (v0f)H33f − (v1f)v0v1f − (v2f)v0v2f,

H33f =
(v1f)2v2

1f + (v1f)(v2f)(v2v1f + v1v2f) + (v2f)2v2
2f

(v1f)2 + (v2f)2
.

Proof. Let A be the matrix with the ij-th entry aij defined by

d(dfx)(ιi) = fi(0) +
3∑

k=1

aikek(0),

By the definition of the linear map S, we have

S(fi(0)) =
3∑
j=1

aijej(0).

It follows that

Hijf(x) = ω(S(fi(0)), fj(0)) = −aij.

Let us look at the case a11. We have 2H(df) = (v1f)2 +(v2f)2. Since
π(dfx) = x, we also have

π∗αi(d(dfx))(ι1) = αi(ι1).
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Therefore, by Theorem 2.2, we have

Hijf(x) = −a11

= −ω(f1(0), d(dfx)(ι1))

=
(v1f)2v2

2f + (v2f)2v2
1f − (v1f)(v2f)(v1v2f + v2v1f)

(v1f)2 + (v2f)2

+ a1
12v2 − a2

12v1.

Similar calculations give the rest of the entries of A. �

We define the horizontal gradient ∇H by g(∇Hf, v) = df(v) for all
vectors v in the distribution ∆. Recall that η is the volume form defined
by η(v0, v1, v2) = 1. The sub-Laplacian ∆H is defined by ∆Hf =
divη∇Hf . Here divη denotes the divergence with respect to the volume
form η. Let C2 be the matrix defined by

C2 =

 1 0 0
0 0 0
0 0 1

 .

Corollary 7.3. The subriemannian Hessian matrix H and the sub-
Laplacian satisfies

tr(C2Hf) = ∆Hf,

where tr denote the trace of the matrix.

Proof. A simple calculation using Proposition 7.2 shows that

tr(C2Hf) = (v2
1 + v2

2 + a1
12v2 − a2

12v1)f = ∆Hf.

�

Let d be the subriemannian distance function of a subriemannian
manifold (M,∆, g). Let us fix a point x0 in the manifold M . Let
r : M → R be the function r(x) = d(x, x0) and let f(x) = −1

2
r2(x).

Finally, we show that the subriemannian Hessian of the function f takes
a very simple form.

Proposition 7.4. The subriemannian Hessian matrix Hf satisfies the
following wherever f is twice differentiable

H11f = ∆Hf + 1,

H12f = (v1f)v2v0f− (v2f)v1v0f + ~ξ1a(df),

H13f = 0,

H22f = −2f v2
0f + (v0f)

2 − χ1(df),

H23f = 0,

H33f = −1.
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If we assume that the subriemannian manifold is Sasakian, then the
above simplifies to

H11f = ∆Hf + 1,

H12f = (v1f)v2v0f− (v2f)v1v0f,

H13f = 0,

H22f = −2f v2
0f + (v0f)

2,

H23f = 0,

H33f = −1.

Proof. The first formula follows from differentiating the following equa-
tion by v0, v1, and v2

(v1f)
2 + (v2f)

2 = −2f

and combining them with Proposition 7.2.
The second follows from a = 0. �

8. Sub-Laplacian of Distance Functions in Sasakian Space
Forms

In this section, we give a formula for the sub-Laplacian of the subrie-
mannian distance function of a Sasakian space form. Let d be the sub-
riemannian distance function of a subriemannian manifold (M,∆, g).
Let us fix a point x0 in the manifold M . Let r : M → R be the function
r(x) = d(x, x0) and let f(x) = −1

2
r2(x).

Theorem 8.1. Assume that the subriemannian manifold (M,∆, g) is
a three dimensional Sasakian space form of Tanaka-Webster curvature
k. Then the subriemannian Hessian matrix Hf satisfies the following
wherever f is twice differentiable.

Hf =



−


τ(sin τ−τ cos τ)
2−2 cos τ−τ sin τ

τ2(1−cos τ)
2−2 cos τ−τ sin τ

0
τ2(1−cos τ)

2−2 cos τ−τ sin τ
τ3 sin τ

2−2 cos τ−τ sin τ
0

0 0 1

 if σ > 0,

−


τ(τ cosh τ−sinh τ)
2−2 cosh τ+τ sinh τ

τ2(cosh τ−1)
2−2 cosh τ+τ0 sinh τ

0
τ2(cosh τ−1)

2−2 cosh τ+τ0 sinh τ
τ3 sinh τ

2−2 cosh τ+τ sinh τ
0

0 0 1

 if σ < 0,

−

 4 6 0

6 12 0

0 0 1

 if σ = 0,

where σ = (v0f(z))
2 − 2f(z)k and τ =

√
|σ|.
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By combining Theorem 8.1 and Proposition 7.3, we obtain the fol-
lowing.

Corollary 8.2. Let d be the subriemannian distance function of a
three dimensional Sasakian space form of Tanaka-Webster curvature
k. Then the sub-Laplacian ∆Hr satisfies the following wherever r is
twice differentiable.

∆Hr =


τ(sin τ−τ cos τ)

r(2−2 cos τ−τ sin τ)
if σ > 0,

τ(τ cosh τ−sinh τ)
r(2−2 cosh τ+τ sinh τ)

if σ < 0,
4
r

if σ = 0,

where σ = r(z)2((v0r(z))
2 + k) and τ =

√
|σ|.

Proof of Theorem 8.1. Let ϕt(x) = π(et
~H(dfx)). Assume that z is a

point where f is twice differentiable. Let Λ be the image of the linear
map d((df)z) : TzM → TdfzT

∗M . Let Et = (e1(t), e2(t), e3(t))
T , Ft =

(f1(t), f2(t), f3(t))
T be a Darboux frame at dfz and let ιi = dπ(fi(0)).

Let At and Bt be the matrices with ij-th entry aij(t) and bij(t), respec-
tively, defined by

d(dfy)(ιi) =
3∑
j=1

(aij(t)ej(t) + bij(t)fj(t)) .

We define the matrix St by St = B−1
t At. Since π(e1·

~H(dfx)) = x0 for
all x, we have limt→1 S

−1
t = 0. The same argument as in Theorem 5.1

shows that

Ṡt −R + StC1 + CT
1 St − StC2St = 0,

where R =

 σ 0 0
0 0 0
0 0 0

 and σ is defined by

σ = h0(dfz)
2 + 2H(dfz)k = (v0f(z))

2 − 2f(z)k = r(z)2((v0r(z))
2 + k).
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By the proof of Proposition 7.2 and B0 = I, we have Hf(z) = −A0 =
−S0. By the result in [13], we can compute St and it is given by

St =




τ0(sin τt−τt cos τt)
2−2 cos τt−τt sin τt

τ2
0 (1−cos τt)

2−2 cos τt−τt sin τt
0

τ2
0 (1−cos τt)

2−2 cos τt−τt sin τt

τ3
0 sin τt

2−2 cos τt−τt sin τt
0

0 0 1
1−t

 if σ > 0,


τ0(τt cosh τt−sinh τt)
2−2 cosh τt+τt sinh τt

τ2
0 (cosh τt−1)

2−2 cosh τt+τt sinh τt
0

τ2
0 (cosh τt−1)

2−2 cosh τt+τt sinh τt

τ3
0 sinh τt

2−2 cosh τt+τt sinh τt
0

0 0 1
1−t

 if σ < 0,


4

1−t
6

(1−t)2 0
6

(1−t)2
12

(1−t)3 0

0 0 1
1−t

 if σ = 0,

where τt = (1− t)
√
|σ|.

By setting t = 0, we obtain the result. �

9. Subriemannian Hessian and Laplacian Comparison
Theorem

In this section, we prove a Hessian and a Laplacian comparison the-
orem in our subriemannian setting. Let (M1,∆1, g1) and (M2,∆2, g2)
be three dimensional contact subriemannian manifolds. Let xi0 be a
point on the manifold M i, let ri be the subriemannian distance from
the point xi0, and let fi = −1

2
r2
i . Let vi0 be the Reeb field in M i and

let (R11
t )i and (R22

t )i be the curvature invariant on M i introduced in
section 2. Finally let

Ri
t =

 (R11
t )i 0 0
0 (R22

t )i 0
0 0 0

 .

Theorem 9.1. (Subriemannian Hessian Comparison Theorem I) Let
z1 and z2 be points on the three dimensional contact subriemannian
manifolds M1 and M2, respectively, such that fi is twice differentiable

at zi. Assume that R1
t

∣∣∣
(df1)z1

≤ R2
t

∣∣∣
(df2)z2

for all t in the interval [0, 1].

Then
Hf1(z1) ≤ Hf2(z2).

Remark 9.2. By the result in [9], fi is twice differentiable Lebesgue
almost everywhere.

If we restrict to Sasakian manifolds, then we have the following.
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Theorem 9.3. (Subriemannian Hessian Comparison Theorem II) Let
d be the subriemannian distance function of a Sasakian manifold (M,∆, g)
and let f(x) = −1

2
d2(x, x0), where x0 is a point on M . Assume that the

Tanaka-Webster curvature W of M satisfies W ≥ k (resp. W ≤ k).
Then the following holds wherever f is twice differentiable.

Hf ≥



−


τ(sin τ−τ cos τ)
2−2 cos τ−τ sin τ

τ2(1−cos τ)
2−2 cos τ−τ sin τ

0
τ2(1−cos τ)

2−2 cos τ−τ sin τ
τ3 sin τ

2−2 cos τ−τ sin τ
0

0 0 1

 if σ > 0,

−


τ(τ cosh τ−sinh τ)
2−2 cosh τ+τ sinh τ

τ2(cosh τ−1)
2−2 cosh τ+τ sinh τ

0
τ2(cosh τ−1)

2−2 cosh τ+τ sinh τ
τ3 sinh τ

2−2 cosh τ+τ sinh τ
0

0 0 1

 if σ < 0,

−

 4 6 0

6 12 0

0 0 1

 if σ = 0,

(resp. ≤) where σ = (v0f)
2 − 2kf and τ =

√
|σ|.

If we combine Theorem 9.3 and Proposition 7.3, then we have the
following sub-Laplacian comparison theorem.

Corollary 9.4. (Sub-Laplacian Comparison Theorem) Under the no-
tation and assumptions of Theorem 9.3, the following holds wherever r
is twice differentiable.

∆Hr ≤


τ(sin τ−τ cos τ)

r(2−2 cos τ−τ sin τ)
if σ > 0,

τ(τ cosh τ−sinh τ)
r(2−2 cosh τ+τ sinh τ)

if σ < 0,
4
r

if σ = 0,

(resp. ≥)

where r(x) = d(x, x0), σ = r(z)2((v0r(z))
2 + k), and τ =

√
|σ|.

Proof of Theorem 9.1. Let ϕit(x) = π(et
~H((dfi)x)) and let

Ei
t = (ei1(t), e

i
2(t), e

i
3(t))

T , F i
t = (f i1(t), f

i
2(t), f

i
3(t))

T

be a Darboux frame at (dfi)zi
and let ιij = dπ(fj(0)). Let Ait and Bi

t be

the matrices with jk-th entry aijk(t) and bijk(t), respectively, defind by

d(dfzi
)(ιj) =

3∑
k=1

(aijk(t)e
i
k(t) + bijk(t)f

i
k(t)).

We define the matrix Sit by (Bi
t)
−1Ait. As in the proof of Theorem

8.1, we have Hfi(zi) = −Si0 = −Ai0 and

Ṡit −Ri
t + SitC1 + CT

1 S
i
t − SitC2S

i
t = 0 lim

t→1
(Sit)

−1 = 0,
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where Ri
t here denotes Ri

t

∣∣∣
dfzi

.

Therefore, by assumption and the result in [18], we have the following
as claimed

Hf2 = −S2
t ≥ −S1

t = Hf1.

�

Proof of Theorem 9.3. Let us first assume that W ≥ k. Here we use
the same notation as in proof of Theorem 8.1. The matrix St satisfies
the equation

Ṡt −Rt + StC1 + CT
1 St − StC2St = 0, lim

t→1
(St)

−1 = 0,

where

Rt =

 σ 0 0
0 0 0
0 0 0

 .

By the result in [18], we have St ≤ Skt , where Skt is the solution of

Ṡt −Rk + StC1 + CT
1 St − StC2St = 0, lim

t→1
(St)

−1 = 0,

and

Rk =

 (v0f)
2 − 2kf 0 0
0 0 0
0 0 0

 .

If we set t = 0, then we get Hf = −S0 ≥ −Sk0 . Finally the matrix Sk0
can be computed using the result in [13] which gives the first statement
of the theorem. The reverse inequalities under the assumption W ≤ k
are proved in a similar way. �

10. Cheeger-Yau Type Theorem in Subriemannian
Geometry

In this section, we give a lower bound on the solution of the sub-
riemannian heat equation u̇ = ∆Hu in the spirit of its Riemannian
analogue in [11]. More precisely, let φ be the function defined by

φ(s) =

{√
k(sin(s

√
k)−s

√
k cos(s

√
k))

2−2 cos(s
√
k)−s

√
k sin(s

√
k)

if k > 0
4
s

if k = 0.

Let h = h(t, s) : [0,∞) × (0,∞) → R be a smooth solution to the
following equation

(10.1) ḣ = h′′ + h′φ.
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where ḣ and h′ denotes the derivative with respect to t and s, respec-
tively.

Theorem 10.1. Let (M,∆, g) be a three dimension Sasakian manifold
with non-negative Tanaka-Webster curvature. Let h be a solution of
(10.1) which satisfies the conditions

h′(0, s) ≤ 0, lim
s→0

h′(t, s) ≤ 0.

Let x0 be a point on the manifold M and let r(·) = d(x0, ·), where d
is the subriemannian distance function. Let Ω be an open set which
contains x0 and have smooth boundary ∂Ω. Let u = u(t, x) be a smooth
solution to the subriemannian heat equation u̇ = ∆Hu on [0,∞)×M\Ω
which satisfies

u(0, ·) ≥ h(0, r(·)), u(t, y) ≥ h(t, r(y)) y ∈ ∂Ω.

Then we have u ≥ h ◦ r.

Remark 10.2. When k = 0, the function

h(t, s) = (t+ ε)−5/2e
−s2

4(t+ε)

is a solution to the equation (10.1) for every ε > 0.

Proof. Let r be the subriemannian distance function from the point
x0 (i.e. r(x) = d(x0, x)). By Corollary 9.4 and the chain rule, the
following holds η-a.e.

∆Hr ≤

{
τ(sin τ−τ cos τ)

r(2−2 cos τ−τ sin τ)
if σ > 0

4
r

if σ = 0

where σ = r2((v0r)
2 + k) and τ = r

√
(v0r)2 + k.

If we differentiate (10.1) with respect to s. Then we get

(10.2) ḣ′ = h′′′ + h′′φ+ h′φ′.

By the maximum principle, we see that h′(t, s) ≤ 0 for all t and for
all s since h′(0, s) ≤ 0 for all s and h′(t, 0) ≤ 0 for all t by assumptions.

Therefore, the following holds wherever r is twice differentiable.

∆H(g(t, r)) = h′′(t, r) + h′(t, r)∆Hr

≥ h′′(t, r) + h′(t, r)φ(r)

= ḣ(t, r).

(10.3)

Let (t0, z) be a local minimum of the function G(t, x) = u(t, x) −
h(t, r(x)) + δt, where δ is a positive constant. Let us assume that
t0 > 0 and z in contained in the interior of M\Ω. By the result in
[9], r is locally semiconcave on M\ {x0}. Since g is nondecreasing in
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s, G(t, x) is locally semiconcave on M\ {x0} as well. Therefore, by [8,
Theorem 2.3.2], we can find a sequence of points zi on the manifold M
converging to z and a sequence of numbers εi converging to 0 such that

∆HG(t0, zi) ≥ −εi.

Since u is the solution of the subriemannian heat equation, it follows
from (10.3) that d

dt
G(t0, zi) ≥ −εi + δ. If we let i go to ∞, then we

have 0 = d
dt
G(t0, z) ≥ δ which is a contradiction.

Since we have the condition u(t, x) ≥ h(t, r(x)) for all points x on the
boundary of Ω and u(0, ·) ≥ h(0, r(·)), it follows that G ≥ 0. Therefore,
if we let δ go to 0, then we have u ≥ h ◦ r as claimed. �
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