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We present a systematic study of a recently developed ab initio simulation scheme based on molec-
ular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics
is employed by using a statistical evaluation of the forces acting on each atom by means of quantum
Monte Carlo. This allows the use of an highly correlated wave function parametrized by several vari-
ational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as
these parameters are determined at the minimum energy condition. However, in a statistical method
both the minimization method and the evaluation of the atomic forces are affected by the statistical
noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting
the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur
dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled
and reliable frequencies can be obtained with a reasonable computational effort. This work provides
convincing evidence that this molecular dynamics scheme can be safely applied also to realistic sys-
tems containing several atoms. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901430]

I. INTRODUCTION

In the last decade, much progress has been done for the
simulation of electronic systems by quantum Monte Carlo
(QMC), namely, by a fully ab initio approach aimed to solve
in a stochastic way the Schrödinger equation, with an appro-
priate and consistent description of the electron correlation.
Only a few years ago, a very general and robust method of
optimization1 was introduced, that has opened the possibility
to determine by QMC a variational wave function containing
up to 10 000 parameters.2, 3 This progress is particularly re-
markable, as the variational Monte Carlo (VMC) method was
introduced in the early 1960s4 and, until a few years ago, only
a few tens of parameters were optimized within the VMC ap-
proach. Another recent and important development in QMC
was the solution5–7 of the infinite variance problem occurring
in the straightforward calculation of nuclear forces in the sim-
plest variational Monte Carlo scheme.5, 8 Moreover, thanks to
the algorithmic differentiation,7 the cost of computing all the
force components in a system containing several atoms, can
be afforded with a computational time at most a factor four
larger than the one corresponding to the energy. This progress
has led to several works, where structural optimization and
highly accurate evaluations of the equilibrium configurations
as well as related properties were possible even for quite large
systems containing several atoms.9–13

Despite this remarkable progress, we notice that ab initio
molecular dynamics (MD) simulation based on quantum

a)Electronic mail: xw111luoye@gmail.com
b)Electronic mail: zen.andrea.x@gmail.com
c)Electronic mail: sorella@sissa.it

Monte Carlo remains so far at a very early stage, as only
a few simulations on liquid hydrogen8, 14–16 are known. In-
stead, within the density functional theory (DFT) community,
MD simulations in the Born-Oppenheimer (BO) approxima-
tion, are quite well established, due to almost three decades of
achievements from the pioneering work of Roberto Car and
Michele Parrinello.17 Indeed, DFT-based MD simulations are
routinely used to study several properties of condensed matter
systems at ambient conditions up to extremely high pressures
and temperatures,18–26 and represents nowadays a quite reli-
able tool to predict new materials, sometimes more effective
or at least much cheaper than experiments.

The application of quantum Monte Carlo for ab initio
simulation of bulk materials or large chemical compounds re-
mains difficult not only because of the heavy computational
cost, but also, in our opinion, due to the theoretical difficul-
ties in applying the Newton’s equations of motion when the
forces are given with a statistical uncertainty. For instance,
the basic law of energy conservation cannot be met at all,
when the forces are not exactly given at each step. In this con-
text, it is worth mentioning that Ceperley and Dewing have
introduced the penalty method27 that does not rely on any dy-
namics, and therefore is not affected by this problem. In their
method the canonical distribution is directly sampled without
using forces, while the statistical uncertainty in the knowl-
edge of the energy is compensated by rejecting the proposed
moves more frequently than in the standard Metropolis algo-
rithm. Unfortunately this method is very expensive, especially
in the low temperature regime, because of too many rejected
moves, and so far applications have been limited to hydrogen
with up to 54 protons in this regime.28–30
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Generally speaking it is clear that, when the computa-
tional cost for the calculation of the nuclear forces is com-
parable to that of the energy, MD should be more efficient,
because with the same cost all the atoms are moved in a sta-
tistically relevant region of the phase space, without any re-
jection. For instance in DFT, where the forces are obtained
almost for free by applying the Hellmann-Feynman theorem,
MD is a common practice to sample the canonical distribu-
tion, and, to our knowledge, only hybrid methods based on
Monte Carlo and MD31 can be competitive.

As we have already emphasized, at present QMC allows
us to compute forces in an efficient way, and we believe it
is now important to study systematically how reliable is the
standard MD by means of the QMC evaluation of forces. In
particular, we want to understand:

� how the noise in the forces affects the reliability of the
dynamics,

� how the systematic error due to the discretization in
time affects the calculation in presence of noisy forces,

� how well the Born-Oppenheimer constraint is sat-
isfied, namely, how accurately it is possible to
evolve the electronic wave function following the
minimum energy condition. Indeed in a statistical
method, the variational parameters cannot be opti-
mized with machine precision accuracy and the depar-
ture of the wave function from its minimum energy
may represent an important bias requiring a careful
study.

In order to answer to the above issues, we show in this
paper the performances of QMC-based approaches (includ-
ing MD simulations) by benchmark calculations of structural
and vibrational properties of small molecules. These proper-
ties are often of interest in Chemistry and Materials Science
because they help the interpretation of experiments, for in-
stance, of infrared and Raman spectroscopy.32

In ab initio approaches, the vibrational properties are
usually obtained within the Born-Oppenheimer approxima-
tion, that separates the electronic and nuclear degrees of
freedom. Thus, their evaluation relies on the properties of
the potential energy surface (PES) in the neighborhood of
the structural minimum of the molecule.32, 33 The simplest ap-
proach is to assume that the PES in the neighborhood of the
minimum is well characterized in harmonic approximation, so
the frequencies are obtained from the diagonalization of the
mass-weighted Hessian matrix,32 which is calculated by per-
forming static ab initio computations in the minimum of the
PES, or in its neighborhood. This approach neglects the an-
harmonicity of the PES, so ad hoc scaling factors34, 35 have to
be introduced in order to compare with the experimental fre-
quencies. The most accurate approaches36–47 go beyond the
harmonic approximation, for instance, taking the force fields
of the PES around the configurational minimum up to the
fourth order expansion and using the second order vibrational
perturbation theory (PT2).44–47 Other ab initio approaches are
based on ab initio molecular dynamics simulations, which di-
rectly includes finite temperature nuclear motions, and the In-
frared and Raman spectra can be directly obtained from the
Fourier transform of dipole and polarizability autocorrelation

functions,33, 49 as obtained by the Linear Response Theory48

and the Fermi Golden Rule.
In this work, we have evaluated the structural and vi-

brational properties by using and comparing three different
methods: (i) a simple fitting method with the Hessian, and
in a few cases with higher order derivatives of the PES that
are estimated by a careful fit of independent measurements
of energy and forces. These quantities are calculated over a
set of molecular configurations arranged on a grid9, 47 around
the equilibrium structure of the molecule; (ii) a fitting method
with finite temperature molecular dynamics which is similar
as (i) by using in the fitting samples of energies and forces at
various molecular configurations. However, these configura-
tions are generated automatically by a QMC-based MD sim-
ulation, at a given temperature T, with noisy forces;8, 15 (iii) a
covariance matrix method by using time averaged correlations
in a QMC-based MD simulation.

It is clear that, if the QMC-based MD simulation is con-
sistent and the BO constraint is satisfied correctly, all differ-
ent methods should provide consistent results, provided all
sources of systematic errors can be removed in a controlled
way, in order to converge to unbiased evaluations of the geo-
metrical and vibrational properties.

In this work, we show that the method (ii) provides very
accurate results with an efficiency comparable with the stan-
dard method (i), whereas the method (iii) is computationally
very demanding and is used therefore here only for testing
the MD, as emphasized above. The method (ii), that we are
proposing, is in our opinion better than the standard one (i)
because it can be easily and systematically extended to com-
plex systems containing several atoms. In such cases, it is very
difficult to work with the standard method, because it relies on
a careful choice of the grid of atomic positions that are used to
fit the PES.47 This method is difficult to be generalized to very
complicated systems, and in particular the grid cannot be gen-
erated by a black box tool, as it depends instead on the user’s
choice. Instead we propose here the much more general and
flexible method (ii), allowing a systematic and robust evalua-
tion of harmonic frequencies. In this technique, only a single
parameter has to be tuned, namely, the target temperature of
the MD simulation.

The paper is organized as follows: in Sec. II, we intro-
duce the molecular dynamics scheme with noisy forces eval-
uated by QMC; in Sec. III, the three approaches of evaluating
vibrational properties are explained in detail; in Sec. IV, we
describe the wave functions and the basis sets we use for all
the molecules; whereas the discussion of all sources of sys-
tematic errors related to the present QMC dynamics is given
in Sec. V; Sec. VI contains our results on several molecules
with some discussion; finally in Sec. VII we draw our conclu-
sions.

II. MD WITH NOISY FORCES

Our ab initio MD simulations are performed via
variational quantum Monte Carlo (VMC) by employing
TurboRVB QMC package.50 A second order Langevin
dynamics51 (SLD) is used in the sampling of the ionic config-
urations within a ground state Born-Oppenheimer approach.
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Ionic forces are computed with finite and small variance by al-
gorithmic differentiation,7 which allows feasible simulations
of a large number of atoms. Moreover the statistical noise,
corresponding to the forces, is used to drive the dynamics
at finite temperature by means of an appropriate generalized
Langevin dynamics.8 A similar approach has been proposed
in Refs. 52 and 53, where a SLD algorithm has been devised
also at the DFT level. In this work, we adopt a different nu-
merical integration scheme for the SLD which allows us to
use large time steps, even in presence of large friction matri-
ces. For reasons of clarity and completeness, we present in
this section the method introduced in the original paper of
Attaccalite and Sorella,8 with more details in the derivations,
whereas the more advanced techniques, that can be straight-
forwardly derived following the same analysis, are described
in Appendix B.

Let us consider solving the set of differential equations
of the SLD,

v̇ = −γ (R) · v + f (R) + η(t), (1)

Ṙ = v, (2)

〈η(t)〉 = 0,
(3)〈

ηi(t)ηj (t ′)
〉 = αij (R) δ(t − t ′),

where R, v, f , η are the 3N-dimensional vectors made by the
positions, the velocities, the deterministic, and the stochastic
forces of the N nuclei, respectively, and the indices i, j run
over all the 3N nuclear coordinates. The symbol 〈···〉 indicates
the average over the ensemble of possible realizations, and it
is used to define properties of the stochastic force η, which are
determined by the fluctuation-dissipation theorem, namely, its
instantaneous correlation α is given by

α(R) = 2T γ (R), (4)

where T ≡ 1/β is the temperature63 and both γ (R) and α(R)
are 3N-dimensional square matrices, implicitly depending on
the atomic positions.

Notice that in the above equations we have assumed that
all the masses of the particles are set to unit values in atomic
Rydberg units, namely, twice the electronic mass 2me is one
in our conventions. In the following we will always use unit
masses, because, in order to sample the canonical distribu-
tion the actual values of the masses are immaterial. In order
to match the usual atomic units, for instance in the hydrogen
case already studied in Refs. 8 and 15, the time units have
to be scaled by the square root of the ratio between the pro-
ton mass and twice the electron mass (

√
mp/2me ∼ 30.3). In

a polyatomic molecule — like water — the inverse mass of
each different atom multiples the force components f (R) in
the commonly adopted Langevin equations. However, also in
this case, it is possible to reduce back to the case studied,
by a further appropriate scaling of the length of each parti-
cle (distinguishable in classical dynamics). Thus our formu-
lation is quite general up to an appropriate scaling of time and
lengths,64 and therefore can be also used to study the phys-
ical Newtonian dynamics — e.g., necessary to compute the

diffusion constant in liquid water — with γ → 0 and physi-
cal masses.

In Eq. (4), one of the two matrices is arbitrary and we can
choose

α(R) = α0I + �0α
QMC(R), (5)

γ (R) = α(R)

2T ,
(6)

where I is the identity matrix, α0 and �0 are two constants
that should be suitably defined in order to minimize the auto-
correlation time and therefore the efficiency of the sampling,
and the 3N-dimensional matrix αQMC(R) is the variance-
covariance matrix of the nuclear forces f (R) evaluated by
QMC at the nuclear configuration R, and it is defined as

α
QMC
ij (R) = 〈(fi(R) − 〈fi(R)〉)(fj (R) − 〈fj (R)〉)〉, (7)

where 〈···〉 refers to the average over the QMC sampling.
In practice, αQMC is computed as Cs

δ in Eq. (40) (see
Sec. III C for more details).

We now assume only that in the time interval

tn − τ/2 < t < tn + τ/2,

n indexing the time steps tn = n × τ , the positions R are
changing very little and, within a good approximation, we can
neglect the R dependence in the RHS of Eq. (1), and indicate
R(tn) = Rn. The second equation (2) can be integrated easily
once the value of a velocity is known at a given time

Rn+1 − Rn � τv(t), (8)

where tn ≤ t ≤ tn+1. A better way to integrate the equation
is given in Appendix B. For the time being, we assume the
above simple form, and for a better accuracy it is useful to
consider that the velocities vn are computed at half-integer
times tn − τ /2,

vn ≡ v(tn − τ/2) (9)

and the quantities that are functions of R in Eq. (1) are
calculated in Rn,

f n ≡ f (Rn), (10)

γ n ≡ γ (Rn) . (11)

Once in this small time integration interval the values of
f (R) = f n and γ (R) = γ n are assumed constant, the solu-
tion to Eq. (1) is given in a closed form in Eq. (A7) of Ap-
pendix A, with the initial time t̄ and the final one t arbitrary

v(t) = exp[γ n(t̄ − t)]vn

+
t∫

t̄

exp[γn(t ′ − t)][ f n + η(t ′)]dt ′ . (12)

In this way, after substituting the initial and final time
with tn ∓ τ /2 a Markov chain of the following form is
obtained:

vn+1 = e−γ
n
τvn + �n · ( f n + η̃), (13)

Rn+1 = Rn + τvn+1, (14)
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namely, we have singled out the “noisy” corrections to
the force components in Eq. (13) ( f n + η̃) by defining the
following quantities:

�n = γ −1
n (I − e−γ

n
τ ), (15)

η̃ = γ n

2 sinh(γ nτ/2)

t
n
+τ/2∫

t
n
−τ/2

eγ
n
(t−t

n
)η(t) dt . (16)

By using that [α, γ ] = 0 and a little algebra, the correlator
defining the discrete (time integrated) noise can be computed
by substitution of Eqs. (16) in (3) and is given by the
following 3N × 3N matrix:

〈η̃i η̃j 〉 = ᾱ = T γ 2
n coth(γ nτ/2) . (17)

The simulation temperature T appearing in the above
expression is an input parameter of the dynamics. If the
discretization of the SLD is accurate enough this temperature
should be related to the mean square velocities measured
during the dynamics (〈v2

i 〉 = T/2 for each Cartesian compo-
nent). In the following, and in particular in Sec. V A, we refer
to this quantity as the “effective temperature” Tmes, as Tmes
− T can be used to judge the quality of the approximations in
discretizing the SLD.

As discussed also in Ref. 8 (see also Sec. III C), all the
QMC force evaluations f are affected by an intrinsic stochastic
noise, that usually determines an effective temperature higher
than the target one. This problem can be avoided, by means
of the noise correction introduced in Ref. 8. Indeed, we can
follow the correct dynamics by adding to the QMC noise of
the force the external noise η̃ext so that the total noise η̃ satis-
fies the correct expressions in Eq. (17). In this way, we have
to subtract the 3N × 3N QMC correlation of the forces αQMC

from the above described correlation matrix ᾱ and obtain that

ᾱext = ᾱ − αQMC (18)

is the true external noise, we have to add to the force com-
ponents during the dynamics. Indeed the correlation matrix
αQMC can be independently evaluated during the dynamics
and the computation of Eq. (7) is possible with some statis-
tical error. In this way, it is possible to take into account that
QMC forces are affected by a correlated noise, and obtain an,
in principle, unbiased simulation following the correct SLD.

It can be shown, by a simple numerical calculation, that
the resulting matrix ᾱext is indeed positive definite provided
�0 > τ , so that ᾱext is a well defined correlation for an ex-
ternal noise. In the present work, we have discovered after
several tests, that the value of �0, optimizing the efficiency
of the calculation, is not necessarily the minimum one, i.e.,
�0 = τ . Indeed much larger time steps and better perfor-
mances are possible if �0 � τ . In order to understand this
behavior, it is important to realize that the covariance ma-
trix αQMC obtained with QMC is empirically proportional to
the dynamical matrix (see Fig. 1). Therefore with a finite and
large �0, the high energy modes with high frequency vibra-
tions can be systematically damped, and this clearly allows a
faster propagation with larger time step τ .

We have already shown in Ref. 15 that the present inte-
gration scheme of the Langevin equations is much better than
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the lowest eigenvalue.

the Euler integration method. In this work, we also show that
the present dynamics is also much more convenient within
QMC because we can use a friction matrix proportional to the
mentioned QMC covariance matrix (�0 > 0). To this purpose
we have implemented exactly the same dynamics within the
Quantum ESPRESSO54 package, and showed in Fig. 2 that,
within the DFT dynamics, only quite smaller time steps τ are
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QMC calculations are −34.410806 and −34.50405(4) Ha. The same friction
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studied because the friction matrix in this case contains also an important
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and Fig. 1). In the top panel, we compare the average distance that ions ex-
perience at each step in QMC and DFT dynamics. The increased stability
achieved by using this covariance matrix in the friction is therefore obtained
with an almost negligible slowing down of the QMC dynamics.
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Since this potential expanded up to the fourth order is fitted with forces,
the zeroth order coefficient is set to zero and the QMC internal energy, for
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possible, just because in this case αQMC = 0, and it is not pos-
sible to damp the too high frequency vibrations.

In order to confirm that our SLD scheme samples the
exact partition function Z = ∫

dx exp(−V (x)/kT ), we have
also done a conventional Monte Carlo simulation with the fit-
ted potential for the water monomer. In Fig. 3, both simula-
tions show a perfect agreement in the internal energy at vari-
ous temperatures consistent with the harmonic approximation
up to 1000 K.

III. CALCULATION OF VIBRATIONAL PROPERTIES

The standard method of calculating vibrational modes is
well known in the literature.55 In this section, we summarize
the main formulas and introduce the notations adopted in the
rest of the paper.

Within the Born-Oppenheimer approximation, the full
Hamiltonian is separated into electronic and nuclear parts
and only the latter is related to the calculation of vibrational
modes. The nuclear Hamiltonian Ĥ is a summation of ki-
netic energy T̂ and potential energy V̂ . Given a molecule
with N atoms, Ĥ can be expressed in terms of 3N-dimensional
Cartesian coordinates R,

Ĥ = T̂ + V̂ = −1

2

N∑
ξ

1

Mξ

∇2
ξ + V (R) , (19)

where Mξ is the mass of the atom ξ . Since the potential energy
V (R) is generally assumed to be invariant under the transla-
tion and rotation of molecules, it is independent of both the
molecule’s center of mass and orientation. Therefore, it can
be written in terms of 3N − 6 (or 3N − 5 for linear molecules)
internal coordinates s̄.

Since the molecule is usually assumed to be semi-rigid,
its potential energy can be simply recast in terms of the dis-
placement from the equilibrium structure R0, corresponding

to the (local) minimum of the PES. The Cartesian displace-
ment is X = R − R0. Similarly, the displacement in the in-
ternal coordinates is s = s̄ − s̄0.

In general, the mapping between Cartesian coordinates
and internal coordinates is curvilinear. With the Taylor ex-
pansion, s becomes

si = Ba
i Xa + 1

2!
Bab

i XaXb + 1

3!
Babc

i XaXbXc + · · · , (20)

where i = 1, . . . , 3N − 6 labels the internal coordinates and
a, b, c = 1, . . . , 3N label the Cartesian coordinates. The
Einstein summation notation of repeated indices is assumed
hereafter. The coefficients in the series are the derivatives
with respect to the Cartesian displacement: Ba

i = ∂si/∂Xa ,
Bab

i = ∂2si/(∂Xa∂Xb) and so on and so forth. The coeffi-
cients Ba

i in the linear term define the so-called Wilson B
matrix.

Hence, the potential energy can be expanded around the
equilibrium structure in terms of internal coordinate displace-
ments as

V (s) = F 0 + F isi + 1

2!
F ij sisj + 1

3!
F ijksisj sk + · · · ,

(21)
where the coefficients in the expansion are defined as
F 0 ≡ V , F i ≡ ∂V/∂si , F ij ≡ ∂2V/(∂si∂sj ), etc., calculated
at s = 0. Clearly, all the coefficients Fi = 0. Since F0 is an
irrelevant offset for all the vibrational modes, we ignore it by
putting V (s) − F 0 instead of V (s). In the following paper,
V2 and V4 are used to indicate the potential energy surface
expanded up to the second and the fourth orders.

In the standard method of calculating vibrational modes
within the harmonic approximation, only the leading terms,
i.e., the quadratic ones, are kept in both the potential and ki-
netic energies, while all the rest are neglected

Vhar(s) = 1

2
F ij sisj = 1

2
s†Fs, (22)

Thar(ṡ) = 1

2
(G−1)ij ṡi ṡj = 1

2
ṡ†G−1 ṡ , (23)

where ṡ is the time derivative of s, and the symbol † indicates
the transpose. Meanwhile, the (3N − 6) × (3N − 6) matrix G
is calculated as

Gij =
N∑
ξ

3∑
α

1

Mξ

B
ξ,α

i B
ξ,α

j , (24)

where B
ξ,α

i are the same linear terms defined in Eq. (20),
upon replacement of the index a with the pair (ξ , α), indi-
cating more explicitly the component α corresponding to the
atom ξ .

By introducing 3N − 6 normal coordinates q, the poten-
tial and kinetic energies are recast as

Vhar(q) = 1

2

3N−6∑
i

λiq
2
i (25)
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Thar(q̇) = 1

2

3N−6∑
i

q̇2
i , (26)

where λi = ω2
i are the harmonic force constants correspond-

ing to harmonic frequencies ωi.
65 Assuming the transfor-

mation between internal coordinates and normal coordinates
s = Lq, we replace s in Eqs. (22) and (23) and compare them
with Eqs. (25) and (26). The final relations are written in ma-
trix form as

L†FL = �, L†G−1 L = I , (27)

where � is a diagonal matrix with λi on the diagonal and I is
a 3N − 6 dimensional identity matrix. With some very simple
algebra, Eqs. (27) turns into G FL = L� which represents
a standard generalized eigenvalue problem, where λr are the
corresponding eigenvalues. This approach is also called Wil-
son’s GF method.55

Ab initio methods can be used to calculate the Hessian
matrix F in the potential energy, so that the application of the
GF method is possible. In the standard method, it is neces-
sary to perform a very accurate structural optimization of the
molecule, and then to calculate the derivatives for the opti-
mized geometry using analytic or finite-difference methods.
A very tight structural optimization is computationally very
demanding for QMC, thus alternative methods specifi-
cally engineered for stochastic-error affected approaches are
preferable, as discussed in Ref. 47 and summarized in Sec. III
A. We propose here other two possible approaches, described
in Secs. III B and III C.

We have reported also some results, labeled as fundamen-
tal frequencies, coming from second order perturbation theory
(PT2), that uses also the third and fourth order derivatives of
V (s), in order to take into account of the anharmonicity of the
PES. The use and implementation of PT2 in presence of error
affected PES have been widely discussed in Ref. 47, and we
remand to this reference.

A. Simple fitting method

The conventional way to obtain the Hessian of V is to
fit the parametrized Hessian matrix F with energies or forces
computed at the chosen grid points of the 3N multidimen-
sional space defined by the nuclear positions. In each of the
3N directions, at least 3 points are needed in the neighbor-
hood of the equilibrium position in order to fit the Hessian.
Obviously, this requires a tight (gradient <10−5 a.u., for the
harmonic approach) or very tight (gradient <10−7 a.u., for
PT2) structure optimization criteria47 which can be easily
achieved by self-consistent iterations in DFT or other deter-
ministic methods.

However, these criteria are not feasible for QMC since all
the energies and forces calculated by QMC are error-affected.
The stochastic error σ QMC is inversely proportional to the
square root of the number of QMC samples NQMC. Thus, in
order to have an error 10 times smaller, 100 times more expen-
sive calculation is required. For this reason, the QMC stochas-
tic errors are never pushed to very small values, especially
for vibrational property calculations. Typically, the errors are
σ E ∼ 10−4 a.u. for energy and σ F ∼ 10−3 a.u. for each force

component. In brief, both the PES and equilibrium structure
are very much affected by the stochastic noise.

Zen et al.47 proposed a multidimensional fitting scheme
of the PES of a molecule in proximity of its equilibrium con-
figuration, by using a function Vk(R) that is parametrized by
parameters k, in order to obtain the accurate Hessian and equi-
librium structure. In particular, a data set DF containing Nm

samples {Rm, f m, Cm}m, m = 1, . . . ,Nm – where the QMC
force f m and its 3N-dimensional covariance matrix Cm (see
definition Eq. (7) and discussion in Sec. III C) are calculated
at the atomic configuration Rm – is used to determine the pa-
rameters k that provide the best fit of the PES via the function
Vk(R). They showed that the fitting using QMC forces brings
smaller stochastic error than the fitting with energies. So we
stick to forces for the fitting. Moreover, for our calculations
with the water molecule we choose the “mesh-5” (see defini-
tion in Ref. 47), which consists of 59 independent grid point
calculations.

The fitting with forces of the PES, against the data set
DF , is achieved by maximizing the likelihood function

L(k|DF ) =
N

m∏
m

e− 1
2

∑3N
a,b (C

m
−1)

ab
�Fa

m(k)�Fb
m(k)

(2π )3N/2
√

det(Cm)
, (28)

where �Fa
m(k) is defined as

�Fa
m(k) = Fa(Rm, k) − f a

m ,

namely, the difference between the QMC force f a
m of compo-

nent a and the corresponding value of the parametrized force
Fa(Rm, k), which is given by

Fa(Rm, k) = −∂Vk(R)

∂Ra

∣∣∣∣
R

m

. (29)

The problem of maximizing L(k|DF ) is equivalent to mini-
mize the function

N
m∑

m

3N∑
a,b

(Cm
−1)ab�Fa

m(k̃)�Fb
m(k̃) (30)

and, as discussed in Ref. 47, in the case that we can neglect
the covariance between QMC force evaluations of the differ-
ent components (i.e., we can assume Cm diagonal, and the di-
agonal elements (Cm)aa = (σa

m)2 are the variance of the QMC
force evaluations of component a), the previous expression
corresponds to the chi-squared-function

χ2
F =

N
m∑

m

3N∑
a

(Fa(Rm, k) − f a
m

σ a
m

)2

. (31)

We can quantify the quality of the fit by using the reduced-
chi-squared function (goodness of fit),

χ2
red = χ2

F

(3N × Nm − Nk − 1)
, (32)

where 3N is the number of force components, Nm is the num-
ber of molecular configurations considered, and Nk is the
number of fitted parameters. According to statistical theory,
the closer χ2

red � 1, the better the fit is.
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B. Fitting method with finite temperature
molecular dynamics

In the simple fitting method described in Sec. III A, the
choice of the grid points, where energy and forces are evalu-
ated, is crucial for accessing accurate vibrational frequencies.
A good mesh should span a region neither too small, in order
to be less affected by the stochastic noise, nor too large, to
avoid strong anharmonicity (which cannot be well described
by simple parametrization of the PES in a truncated Taylor
expansion around the minimum). In order to reduce the sys-
tematic error, the best mesh should be expanded along the di-
rections of the normal coordinates which are however known
only after the fitting. An efficient compromise is to use in-
ternal coordinates based on certain conventional rules. After
the region and expansion direction of the mesh is given, the
density of the grid points should be also chosen properly. Too
sparse mesh limits the accuracy while too dense mesh wastes
computation. Since we did only once the evaluation of energy
and forces on each grid point in the simple fitting method,
good optimization of the wavefunction and accurate calcu-
lation of energy and forces are both necessary and therefore
expensive. Usually, for each step during the optimization, rel-
atively small statistics is used. In this way, the accuracy of the
energy and forces evaluated in the last iteration of the opti-
mization does not meet the necessary precision for the fitting.
So a further much longer run at fixed optimal values of the
variational parameters is required to compute the energy and
forces precisely. This has also the drawback that the error in
the optimization has to be negligible compared with the re-
quested statistical error, a condition that is difficult to control
systematically.

With finite temperature molecular dynamics, things are
instead much easier. By controlling only the temperature, a
proper mesh is automatically decided by the trajectory of the
moving ions. Since the dynamics follows the normal modes,
the mesh has already been expanded around the best direc-
tions. The density and range of the mesh is directly tuned
by the temperature. Since ions move very little for each it-
eration of MD, a heavy optimization is no longer necessary
because the electronic wave function obtained in the previ-
ous iteration of the dynamics is a very good starting point
for the current iteration, once only the positions of the atomic
localized orbitals are consistently updated. The possibility to
expand our electronic variational wave function in terms of
localized atomic orbitals is actually a very remarkable advan-
tage. Indeed, after a few optimization steps, the wave function
is usually converged within given statistical errors, and, as we
will see later, the error in the optimization can be systemat-
ically controlled. Apart from the cheap optimization, energy
and forces also require much less accuracy. In Table I, the
error bars of the energy and forces during the dynamics are
about 40 and 60 times larger than those of the simple fitting.
The values obtained in the last step of the optimization are
already sufficient and thus, a substantial amount of compu-
tation is saved. The fitting procedure of the sampled config-
urations coming from finite temperature molecular dynamics
is exactly the same described in Sec. III A, and we can use
Eqs. (28)–(31).

TABLE I. Specifications of the fitting with manually chosen grid and MD.

Grid Cpuh
Name χ2

red points σ (E) (Ha) σ (F) (a.u.) BG/Q

Simple fitting V4 4.444 59 9.0 × 10−5 1.5 × 10−4 22.2k
MD fit V2 50 K 1.007 13784 3.5 × 10−3 6.2 × 10−3 24.0k
MD fit V4 1000 K 1.021 13784 3.7 × 10−3 6.3 × 10−3 23.5k

In our tests on the water monomer, the anharmonic ef-
fects are quite strong if the MD is performed at high tempera-
ture. We have systematically studied the effect of the temper-
ature in Fig. 4, where it is clear that anharmonic effects can
be neglected only below 50 K, namely, when the temperature
corresponds to a frequency 50 times smaller than the lowest
frequency of the system (� 2300 K). This criterion cannot be
easily extended to larger systems as the smallest frequency
significantly drops, and a calculation at too small tempera-
tures cannot provide enough information for the fit, yielding
large statistical errors for the frequencies. For this reason it is
important to include in the fitting also the cubic and quartic
terms, and, as it is also shown in Fig. 7, it is really remarkable
that we can obtain a very reliable and converged estimate of
the frequencies even at 1000 K.
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In order to improve further the fit, we generate more sta-
tistical samples by taking advantage of the molecular symme-
try. For example, H2O, H2S, and SO2 have the C2v symmetry,
while NH3 and PH3 have the C3v symmetry. By simply swap-
ping the positions and forces of each pair of H or O atoms in
the molecules, we obtain once or twice more samples, without
an extra computational effort. This procedure does not change
much the frequencies and equilibrium geometry, as well as
their statistical errors, but allows to enforce the symmetry of
a molecule, namely, recovering all equal X–H bond lengths
and degenerate frequencies, if related by the mentioned sym-
metries. We have used a similar method also in the simple
fitting (Subsection III A), but in that case the purpose was
mainly to reduce the number of points in the grid and to save
computational resources.

C. Covariance matrix method

The previous two methods of evaluating vibrational fre-
quencies give very accurate results but require an explicit
parametrization of the PES in the neighborhood of the min-
imum, as well as the reduction of the number of parameters
by using the symmetries of the molecule. To avoid this human
overhead, we introduce another way of computing vibrational
frequencies based on the evaluation of few appropriate covari-
ance matrices, described in the following.

By employing a simple Gaussian integral over the sta-
tistical weight exp(−Vhar(s)/kT ) where Vhar(s) is defined in
Eq. (22), we easily obtain the relation

Cs = kT F−1, (33)

where Cs is the covariance matrix of the internal coordinates
s according to the definition

Cs = 〈(s − 〈s〉)(s − 〈s〉)†〉, (34)

where 〈···〉 refers to the ensemble average, while in practice it
is computed as the time average along the trajectory of MD.
Therefore the matrix F, necessary in the Wilson’s GF method,
can be obtained by computing Cs with a simple algebraic in-
version and a scaling by kT.

In a more direct method, the information of the matrix
F can be obtained by computing the covariance matrix of the
forces. Indeed, the forces f (s) defined as

fi(s) = −∂V (s)

∂si

(35)

have a very simple form if we can reliably work in harmonic
approximation, namely, V (s) � Vhar(s), and are

fi(s) � −Fs . (36)

Therefore, the covariance matrix of the forces is more simply
related to the matrix F as

C f = kT F, (37)

where C f is the covariance matrix of f similar to Eq. (34).
However, in QMC the forces are noisy and correlated

since they are evaluated with the same Markov chains of fi-
nite length NQMC, namely,

f noisy ≡ 〈 f local〉 = f exact + δ, (38)

where f local is the local force evaluated in each QMC sample
and δ is the statistical error associated with the QMC evalu-
ation of the force. In order to obtain accurate frequencies, it
is necessary to remove this bias for calculating the covari-
ance matrix of forces, which we have done in the follow-
ing way. The thermal average which is used to compute the
covariance matrix can be divided into two steps – the aver-
age of all electronic realizations generated by quantum Monte
Carlo at fixed ionic configuration s and the average of all the
ionic configurations obtained during the Langevin dynamics.
In the first step, it is necessary to accumulate the covariance
of the exact force components which however are known only
with some statistical error ( f noisy). Therefore we can write
f exact = f noisy − δ, where the error δ depends on the quantum
Monte Carlo statistics and vanishes only for NQMC → ∞. It
follows therefore that

〈 f exact f †
exact〉s ≈ 〈 f noisy f †

noisy〉s − Cs
δ, (39)

where the superscript s refers to the restriction of a given ionic
configuration s, whereas Cs

δ is the covariance of the noise, that
can be in turn estimated by standard statistical methods using
the finite number NQMC of Monte Carlo electronic samples
used for the given ionic configuration s, namely,

Cs
δ ≈ 1

NQMC(NQMC − 1)

×
NQMC∑
j=1

(
f j,s

local − f s
noisy

)(
f j,s†

local − f s†
noisy

)
, (40)

where f j,s
local are the force components corresponding to

an independent electronic QMC sample j. This matrix can
be more conveniently evaluated with the Jackknife tech-
nique and the reweighting method8, 9 to ensure a finite vari-
ance calculation of the forces. With a finite number NQMC
of independent samples, Cs

δ scales as 1/NQMC and hence,
the frequencies have a corresponding correction propor-
tional to Cs

δ and therefore the bias scales as 1
NQMC

if the

proposed noise correction is not applied. We will show
the clear advantage to use this noise correction scheme
in Sec. V C.

IV. VARIATIONAL WAVE FUNCTIONS

In all the following calculations, we have used a vari-
ational wave function of a standard Jastrow-Slater form ex-
panded on a localized basis set. According to our previous
work9 for the water monomer, we use (4s,5p,1d) primitive
basis with 4 hybrid orbitals on oxygen (in the shorthand no-
tation, O:(4s,5p,1d)/{4}) and H:(3s,1p)/{1} in the determi-
nant part, whereas the Jastrow is expanded as a two-body part
1

2b
(1 − e−br ) with one body rescaled and a three-body part

with O:(3s,2p,1d)/{2} and H:(2s,2p)/{2} on hydrogen. The
exponents of the primitive basis in both the determinant and
Jastrow parts are optimized at the equilibrium configuration
and kept fixed during the dynamics. This choice is also made
for all the other molecules. Its VMC ground state energy at the
equilibrium geometry is −17.24927(3). During the dynam-
ics, the exponents of the primitive basis in both determinant
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TABLE II. Total energies and geometries of the structural minimum of H2S, SO2, NH3, and PH3 molecules.
Potential V4 is fitted for H2S and SO2, while only V2 are fitted for NH3 and PH3.

Equilibrium geom. GS energy

Name Basis set Bond (nm) Angle (◦) Hatree

H2S S–H H-S-H
JHF_nooptZ S:(7s,8p,1d)/{4} H:(3p,1d)/{1} 1.33216(6) 92.00(3) − 11.40043(2)
JHF S:(5s,4p,1d)/{4} H:(3p,1d)/{1} 1.33180(5) 92.42(2) − 11.40902(2)
JAGP S:(5s,4p,1d)/{5} H:(3p,1d)/{3} 1.33237(5) 92.36(2) − 11.41154(2)
CCSD(T) aug-cc-pVTZ 1.3419 92.299 . . .
Exp. . . . 1.328 92.2 . . .

SO2 S–O O-S-O
JHF S:(6s,6p,1d)/{6} O:(6s,7p,1d)/{5} 1.4180(2) 119.91(6) − 42.27474(8)
JAGP S:(6s,6p,1d)/{6} O:(6s,7p,1d)/{5} 1.4193(2) 120.06(6) − 42.28255(7)
CCSD(T) aug-cc-pVTZ 1.4553 118.367 . . .
Exp. . . . 1.432 119.5 . . .

NH3 N–H H-N-H
JHF N:(6s,6p,1d)/{4} H:(3p,1d)/{1} 1.00886(3) 107.01(1) − 11.74967(2)
JAGP N:(4s,4p,1d)/{4} H:(3p,1d)/{1} 1.01014(3) 106.53(2) − 11.7512(3)
CCSD(T) aug-cc-pVQZ 1.0128 106.541 . . .
Exp. . . . 1.012 106.67 . . .

PH3 P–H H-P-H
JHF P:(6s,7p,1d)/{4} H:(3p,1d)/{1} 1.40925(7) 93.72(1) − 8.34788(1)
JAGP P:(6s,7p,1d)/{4} H:(3p,1d)/{1} 1.41067(5) 93.580(9) − 8.34899(1)
CCSD(T) cc-pVTZ 1.4186 93.501 . . .
Exp. . . . 1.421 93.3 . . .

and three body Jastrow are all fixed and only 232 parame-
ters in total are optimized on the fly. This basis is much more
compact compared with the ones used in our previous work.9

We have indeed verified that a larger basis does not improve
much the inter-atomic description but decreases only the total
energy. On the other hand, too many parameters make the op-
timization part too heavy and inefficient during the dynamics.
Hence, we have to choose a compromise between accuracy
and efficiency due to the available computational resources.
Despite this limitation, we are generally working close to the
Complete Basis Set limit as long as relevant chemical proper-
ties are concerned, thanks also to the rapid convergence in the
basis set obtained within explicitly correlated wavefunctions,
satisfying for instance all the electron-electron and electron-
ion cusp conditions even with a finite basis set.

For H2S, SO2, NH3, and PH3 molecules, the basis sets
used for the determinant part of the wave function are listed
in Table II. The Jastrow has the same two body part as H2O
and its three-body part consists of (3s,2p,1d) on N/O/P/S and
(2s,2p) on H.

In our calculation, energy-consistent pseudopotentials
(ECP) of Burkatzki et al.56 are used to replace the core elec-
trons of N, O, P, and S atoms in order to have a reduced com-
putational cost. Helium core is used for both N and O and
Neon core is used for both P and S.

V. CONTROL OF ALL SOURCES OF SYSTEMATIC
ERRORS IN QMC DYNAMICS

In the standard electronic structure calculation based on
molecular dynamics, there are essentially three systematic er-
rors to take into consideration: the time step τ used to inte-

grate the SLD equations of motions, the accuracy in satisfy-
ing the Born-Oppenheimer approximation and the total time
of simulation tTOT. In the following, we consider simple small
molecules such that the simulation time is much larger than
any reasonable correlation time of the system, so that this er-
ror can be safely neglected for simplicity. In QMC, we have to
take into account also that, at each step of the discretized dy-
namics in Eqs. (13), only a statistical evaluation of the forces
fi with a finite number of samples NQMC is possible. This
yields a statistical error ∝ 1√

NQMC

that can be decreased very

slowly with the computational time ∝ NQMC.

A. Time step error

As far as the time step τ error, this is simple to control,
because unbiased solutions of the SLD equations of motion
can be obtained by reducing τ to a sufficiently small value,
within any reasonable integration scheme. In QMC, we can
perform the limit of τ → 0 for instance at fixed NQMC. As
long as there is no other source of bias (see Subsection V B
and V C) other than a finite NQMC, we expect to have unbi-
ased results for τ → 0 even within QMC, as explained in the
following. After the time integration of the SLD equations in
a small time interval τ , the statistical noise associated with the
forces is multiplied by the integration time τ in Eq. (13), that
is negligible compared to the stochastic part ∝ √

2T τ used to
keep the temperature within the given target. In this way, the
systematic QMC error is expected to vanish linearly in τ and
for τ → 0 the exact canonical distribution can be sampled,

exp(−V (R)/kT ), (41)
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FIG. 5. The measured temperature and internal potential energy versus the
time step used in the dynamics of water monomer. The target temperature
is set at 150 K, the friction is 0.3 a.u. and �0 = 8.0. The minimum of the
PES is −17.24909(3) Ha. At each step of MD we perform nopt � 10 steps of
optimization, where all energy derivatives are estimated with NQMC = 20480
samples generated by the Metropolis algorithm with 80 proposed attempts for
each new sample (acceptance rate � 50%). The same plot, without using the
noise correction (see Eq. (18)) is also shown. The dashed lines indicate the
“exact” results for the average temperature and the internal energy, the latter
obtained by sampling exactly the fitted potential.

where V (R) is the BO-energy surface corresponding to a vari-
ational wavefunction ψα, R defined by several variational pa-
rameters α for given atomic positions

V (R) = Minα

〈�α,R|HR|�α,R〉
〈�α,R|�α,R〉 . (42)

This error can be made in principle smaller by the “noise
correction” scheme that was introduced in a previous work.8

In practice, as it is shown in Fig. 5, the convergence in τ

looks very well behaved and a reasonable accuracy is ob-
tained also by using quite large time steps. In this case, the
mentioned noise correction scheme does not lead to a mean-
ingful improvement probably because the use of a finite large
�0 = 8 makes our dynamics more stable and less sensitive to
the stochastic noise.

B. Error in sampling the BO energy surface nopt → ∞
In the previous estimate of the error in τ we have to

assume that, given the atomic positions, the energy deriva-
tives of the BO energy surface V (R) can be computed sta-
tistically, but without systematic bias. This means that the
variational parameters α are exactly at the minimum energy
condition that defines V (R) in Eq. (42), and only in this case
the forces are unbiased. Unfortunately, this condition is never
met in a statistical optimization of the variational parame-
ters and some approximation has to be done in practice. In
the following we introduce the control parameter nopt. Each
run of MD is obtained by performing several thousand it-
erations of the SLD discretized with a time interval τ . For
each step of MD, we perform nopt optimization steps of the
electronic wave function with the linear method introduced in
Refs. 1 and 3. For nopt → ∞ and fixed NQMC, the optimized
wavefunction converges to an approximate minimum of the
BO energy surface where the energy derivatives, namely, the
atomic forces, differ at most by 1√

NQMC

from the exact BO

ones. Therefore, we have found that it is convenient to study

 0.99

 1.01

 1.03

 1.05

 1.07

2 4 8  12  16  20

R
ed

uc
ed

 Χ
2

Number of optimization steps

V2 fitting
perfect fit

 1655

 1660

 1665

 1670

 1675

 1680

H
ar

m
. f

re
q.

 (
cm

-1
) ω2

 3850

 3900

 3950

 4000

 4050

 4100

H
ar

m
. f

re
q.

 (
cm

-1
) ω3

ω1

FIG. 6. Harmonic vibrational frequencies of water monomer obtained by
fitting V2 with samples generated by MD simulation at 150 K as a function
of QMC optimization steps nopt.

long, well equilibrated MD simulations at fixed statistical ac-
curacy (i.e., NQMC fixed) and given τ , by increasing nopt in
a systematic way. In the optimization method, we have used
a given tolerance ε = 0.001 in the inversion of the ill con-
ditioned overlap matrix S corresponding to the chosen set of
atomic orbitals used in the Jastrow and the determinantal part
of our wave function. As now well established, the knowledge
of this matrix S is extremely useful for an efficient optimiza-
tion scheme (see Refs. 3 and 57). Moreover, for the sake of
a stable and systematic optimization technique we have also
attenuated the wave function change predicted by the linear
method1 by 50%. As it is shown in Figs. 6 and 7, the finite
nopt error is probably the most important one in QMC, because
several optimization steps are necessary to achieve converged
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of QMC optimization steps nopt.
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frequencies, especially the high frequency ones. Notice that,
in this plot we use the fitting method, and the systematic error
in τ , as defined in Subsection III A, is not present. Despite the
slow convergence in nopt, it is quite evident that, by using nopt
≥ 10 the simulations are still affordable and the error bars of
the frequencies are quite small with reasonable computational
resources, even for large nopt. In these plots, the error bars
have been evaluated by the standard Jackknife technique.

C. Residual QMC error NQMC → ∞
Once all the above sources of error have been controlled,

we are still left with the Monte Carlo statistical noise, namely,
the fact that we have to work with a finite number of samples
NQMC for each iteration of the dynamics. Among the various
techniques considered in this work, this error affects mostly
the method described in Sec. III C.

As we have mentioned in Sec. III B, this systematic er-
ror is affecting the evaluation of the energy derivatives by an
error of order 1√

NQMC

. This means that the variational parame-

ters α have a typical error of this magnitude 1√
NQMC

during the

MD simulation. However, since the energy at the minimum is
affected quadratically by the error in the variational param-
eters, we can expect that all the frequency estimates, based
only on energy expectation values, show a much smaller er-
ror inversely proportional to the number of sampling NQMC.
This is readily seen in Fig. 8 where the calculation of frequen-
cies is seen to converge linearly in 1

NQMC
. In this calculation

it is also simple to identify the most important source of er-
ror, that is due to the stochastic estimation of the covariance
matrix of the forces. Once we correct this source of bias de-
scribed in Sec. III C, we see that this error is almost negligible
(see Fig. 9).

Indeed, the other two fitting methods are also affected
by the statistical correlation of the force components due to
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FIG. 9. Vibrational frequencies of water monomer obtained with force-force
covariance matrix plus noise correction as a function of 1/NQMC from MD
simulation at 300 K.

the finite QMC samples NQMC. A better control of this bias
is obtained by minimizing the function given in Eq. (30) in-
stead of the one corresponding to Eq. (31) in Sec. III A. In
Table III, the two sets of frequencies labeled with “cov” are
done with the force covariance matrix, and differ very little
from the simpler ones where different force components are
assumed to be uncorrelated. This means that this approxima-
tion is almost correct in practice.

Finally, in order to quantify more clearly the statistical
error, we have also performed a calculation with NQMC dou-
bled and we have not been able to measure a sizable departure
from the measured frequencies (see Table III, the harmonic
frequencies at 150 K, “db” indicates double NQMC).

In this work, we have not studied how these different
errors will affect larger systems, but it is clear that all the
sources of errors, that we have described in detail in this sec-
tion, can be systematically reduced by changing three param-
eters τ → 0, nopt,NQMC → ∞ in the same way we have done
for the smaller system simulations.

VI. RESULTS

In this section, we summarize our final results on the wa-
ter monomer in Table III, as well as the calculation of fre-
quencies for several systems of chemical interest within our
Jastrow-Slater ansatz (see Tables II and IV).

As far as the water monomer is concerned, the χ2
red

(χ2
red ∼ 1) obtained by fitting samples generated by finite

temperature molecular dynamics is much smaller and there-
fore superior to the one obtained in the standard approach
(χ2

red > 4) with a fixed grid. In the data for the geometry,
the H-O-H angle, a very sensitive parameter, has been im-
proved significantly (0.11◦ closer to the experimental value)
and the O–H bond length, a rather insensitive parameter, re-
mains very good. The two sets of harmonic frequencies for
the V2 and V4 fitting are both consistent within the error bars.
According to our experience, anharmonic fit including the V4
term is preferred and more robust thanks to its more accurate
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TABLE III. Equilibrium geometries and vibrational frequencies of the water monomer obtained by all the methods described in Sec. III.

Equilibrium geom. Harmonic freq. (cm−1) Fundamental freq. (cm−1)

Method Temp. (K) χ2
red OH bond (nm) H-O-H angle (◦) ω2 ω1 ω3 ω2 ω1 ω3

Simple fitting V4 . . . 4.444 0.9565(1) 104.21(2) 1672(3) 3897(7) 3990(4) 1614(1) 3698(5) 3771(3)
MD fit V2 50 1.007 0.95632(3) 104.32(1) 1676(3) 3893(9) 3890(9) . . . . . . . . .
MD fit V2 cov 50 0.672 0.95634(3) 104.32(1) 1677(3) 3892(9) 3989(8) . . . . . . . . .
MD fit V4 150 1.005 0.95605(3) 104.31(2) 1669(8) 3895(11) 3982(12) 1614(90) 3738(178) 3628(210)
MD fit V4 db 150 1.002 0.95596(3) 104.34(2) 1666(6) 3892(5) 3986(10) 1670(38) 3697(99) 3661(174)
MD fit V4 1000 1.021 0.95597(3) 104.31(3) 1673(3) 3893(3) 3992(4) 1615(2) 3689(5) 3754(5)
MD fit V4 cov 1000 0.681 0.95598(2) 104.31(4) 1672(2) 3892(4) 3993(3) . . . . . . . . .
Covariance matrix 300 . . . . . . . . . 1673(24) 3765(28) 3912(20) . . . . . . . . .
Experiment58 . . . . . . 0.95721(30) 104.522(50) 1648.47 3832.17 3942.53 1594.59 3656.65 3755.79

parametrization of PES. Furthermore, for the same amount of
computation time, the frequencies obtained by V4 fitting have
statistical errors about one half smaller than those of the V2
fitting and even smaller than the ones of the simple fitting. In
addition, Figs. 6 and 7, show a very nice feature – the lower
the frequency is, the smaller the corresponding error is. On
the other hand, the calculation based on the covariance matrix
method shows that this technique requires much more statis-
tics than all the other methods because it requires a simulation
much longer than the correlation time, that in turn can be ex-
tremely large at low temperatures.

The other four molecules we considered are divided into
two groups – AB2 and AB3. In the first group, we use the

same parametrization of the Hessian as in H2O because this
type of nonlinear AB2 molecules is very similar to H2O. The
other group consists of two non-planar AB3 molecules. The
Hessian matrices used in both groups are simplified by using
the molecular symmetries in order to improve the accuracy.
We choose both JHF and JAGP types of wave function to
compute the vibrational frequencies and compare them with
CCSD(T) and experimental data from NIST database.59, 60

H2S molecule has 8 valence electrons which is exactly
the same as the water monomer. In Table II, the equilibrium
geometry obtained with JHF wavefunction but without the op-
timized exponents (JHF_nooptZ) gives the worst values. Af-
ter optimizing the exponents, both geometry and frequencies

TABLE IV. Vibrational frequencies of H2S, SO2, NH3, and PH3. The exponents of the primitive basis in both the
determinant and Jastrow parts are optimized at the equilibrium configurations and kept fixed during the dynamics.

Name T(K) χ2
red Type Freq. (cm−1)

H2S A1 A1 B2
JHF_nooptZ 1000 1.077 Harm. 1248(5) 2774(6) 2789(6)

Fund. 1217(4) 2652(4) 2656(7)
JHF 1000 1.018 Harm. 1246(1) 2756(3) 2772(4)

Fund. 1215(1) 2639(2) 2654(4)
JAGP 1000 1.049 Harm. 1235(3) 2752(3) 2767(4)

Fund. 1206(2) 2630(1) 2643(2)
CCSD(T) . . . . . . Harm. 1206 2711 2727
Expt. . . . . . . . . . 1183.0 2615.0 2626.0

SO2 A1 A1 B2
JHF 800 1.024 Harm. 570(4) 1214(8) 1441(11)

Fund. 563(3) 1211(5) 1429(8)
JAGP 800 1.006 Harm. 559(2) 1204(8) 1445(13)

Fund. 557(2) 1193(7) 1426(10)
CCSD(T) . . . . . . Harm. 506 1136 1332
Expt. . . . . . . . . . 517.7 1151.4 1361.8

NH3 A1 E A1 E
JHF 50 1.006 Harm. 1064(3) 1712(4) 3523(8) 3651(5)
JAGP 50 1.021 Harm. 1098(7) 1709(6) 3523(7) 3640(7)
CCSD(T) . . . . . . Harm. 1159 1673 3476 3607
Expt. . . . . . . . . . 950.0 1627.0 3337.0 3444.0

PH3 A1 E A1 E
JHF 50 1.025 Harm. 1048(6) 1181(3) 2445(8) 2461(13)
JAGP 50 1.022 Harm. 1045(4) 1178(3) 2431(8) 2437(4)
CCSD(T) . . . . . . Harm. 1018 1142 2412 2421
Expt. . . . . . . . . . 992.0 1118.0 2323.0 2328.0
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are improved, in agreement with the conclusions of Ref. 9.
For this reason, we have optimized all the exponents at equi-
librium positions for all the remaining molecules studied.
By using the JAGP wavefunction, the H-S-H angle of the
equilibrium geometry is further improved as compared
with experiments and the fundamental frequencies lower by
∼10 cm−1 for each mode in the best calculation reported in
Table IV. Compared with the experimental data, its RMS dif-
ference from fundamental frequencies is only 19 cm−1.

SO2 molecule has 18 valence electrons and requires a
calculation much heavier than H2S. Similar to H2S, the use
of JAGP wave function provides better results than those ob-
tained with JHF wave function. Its RMS difference of fun-
damental frequencies from experimental values is 50 cm−1.
Even though CCSD(T) frequencies are much closer to the
experiments, we should notice that they are harmonic fre-
quencies rather than fundamental ones and the equilibrium
geometry of CCSD(T) (+0.023 nm for S–O bond and −1.1◦

for O-S-O angle) is much worse than our values (−0.013 nm
for S–O bond and +0.5◦ for O-S-O angle).

Both NH3 and PH3 have 8 valence electrons. Since we do
not include the anharmonic correction for the fit, we compare
their harmonic frequencies with the corresponding ones cal-
culated with CCSD(T). For both molecules, the frequencies
obtained with JAGP wavefunction are again better than those
corresponding to JHF wavefunctions. Both NH3 and PH3 have
equilibrium geometries very close (<0.01 nm for N/P–H bond
and <0.1◦ for H-N/P-H angle) to those obtained by CCSD(T).
The RMS difference of harmonic frequencies from CCSD(T)
values are 46 cm−1 and 26 cm−1 for NH3 and PH3, respec-
tively.

VII. CONCLUSIONS

In this work, we have studied the performance of a re-
cently developed molecular dynamics scheme based on quan-
tum Monte Carlo. We have considered particularly simple
systems by targeting the vibrational properties of simple
molecules, that are well studied and understood with well es-
tablished quantum chemistry methods. In this way, we have
been able to identify and systematically control all possible
sources of systematic error which may affect this molecular
dynamics. The main conclusion of this work is that the statis-
tical error (the finite number of samples NQMC used for each
iteration of MD) and the time discretization error due to fi-
nite τ can be easily pushed to negligible values. On the other
hand, we have found that the most difficult bias comes from
the requirement to satisfy the BO constraint along the dynam-
ics. We have found that it is important to employ a sufficiently
large number nopt � 10 of energy optimization for each step
of molecular dynamics, in order to satisfactorily fulfill the
BO constraint. Since the computational time is proportional
to nopt, in the present scheme this is probably the most dif-
ficult bias to remove. Despite this difficulty, the calculation
remains still feasible and can be extended to large systems by
using massively parallel supercomputers.

Our work is also relevant to establish vibrational frequen-
cies in complex electronic systems. Among the three meth-
ods that we have used for evaluating vibrational properties,

the fitting method with samples generated by finite tempera-
ture molecular dynamics gives the best results for the same
amount of computation cost. Compared with the standard fit-
ting procedure of Ref. 47, it is easier and more systematic
to set up and use, and yields better distributions of the con-
figurations around the equilibrium structure, thus improving
the quality of fit as well as an equilibrium geometry closer to
the experiment. Even though our method based on the force-
force correlations is the most direct and simplest approach,
it usually requires much more statistics. All methods, apart
from the one containing the anharmonic corrections, have fa-
vorable scaling with the system size, and are in principle very
promising because can be extended to large systems, as well
as generalized to the calculation of phonons in solids. How-
ever we have seen that, in order to neglect anharmonic effects,
we have to work with so small temperatures that it is already
very difficult to simulate a slightly larger system (such as the
water dimer). On the other hand, we expect that the method
which includes in the fitting also the anharmonic corrections,
should work also for larger systems, despite the difficulty to
represent the V4 term with a number of parameters scaling
with the fourth power of the number of atoms. Also for this
reason this method is very difficult to implement in practice
for large systems, and therefore we have limited our study to
molecules containing at most four atoms.

A very interesting feature that we have noted in the esti-
mation of vibrational frequencies by QMC is that the small
frequencies are much less biased by the systematic errors
in our tests. This is really promising because small frequen-
cies are often more interesting as they characterize the inter-
molecular interactions, whereas the high frequency modes are
determined by the well understood intra-molecular properties.
Moreover, we have systematically found that the use of the
JAGP wave function in place of the more commonly-adopted
Jastrow-Slater paradigm, improves significantly the calcula-
tion of both equilibrium structures and vibrational frequen-
cies, basically without extra computational effort.

As well-known QMC scales very well with system size
and, once the problem of including anharmonic effects will be
solved at least in an approximate way, say by self-consistent
harmonic approximation,61 the computation of vibrational
frequencies in large systems will be possible with a reason-
able cost. In addition, we have shown that the present molec-
ular dynamics can be extended to large systems already at
present,15, 62 provided the little systematic errors and espe-
cially the BO constraint are under control in the way we have
carefully described in this work.
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APPENDIX A: INTEGRATION OF SLD EQUATIONS

In this Appendix, we sketch how to integrate exactly the
differential Eq. (1),

v̇(s) = −γ (R) · v(s) + f (R) + η(s) (A1)
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in an arbitrary interval t̄ ≤ s ≤ t within the assumption that
the vector R is not changing much during the integration in-
terval and that therefore it can be considered independent of s.
In this Appendix, in order to avoid confusion, we indicate by
s the generic time defining the SLD dynamics, whereas with t̄

and t, the initial and final time of the integration, respectively,
so that the initial condition reads

v(t̄) = v̄ . (A2)

As well known this kind of equations can be solved in terms of
the simple exponential solution v(s) = exp

[
γ (R)(t̄ − s)

]
v̄,

valid in absence of the external force and the noise (i.e.,
f (R) + η(s) = 0). We search therefore a solution of the
form

v(s) = exp[−γ (R)s] y(s) . (A3)

By replacing the above equation in Eq. (A1), we easily obtain
that

ẏ(s) = exp[γ (R)s][ f (R) + η(s)] (A4)

with the initial condition given by inverting Eq. (A3) for
s = t̄ ,

y(t̄) = exp[γ (R)t̄]v̄ . (A5)

Equation (A4) can be integrated immediately from t̄ to t, be-
cause its RHS is a known function of s,

y(s) = y(t̄) +
s∫

t̄

exp[γ (R)t ′][ f (R) + η(t ′)]dt ′ . (A6)

We now go back to the original ansatz (Eq. (A3)), and by re-
placing the initial condition (Eq. (A5)) in the above equation,
we obtain the final solution

v(t) = exp[γ (R)(t̄ − t)]v(t̄)

+
t∫

t̄

exp[γ (R)(t ′ − t)][ f (R) + η(t ′)]dt ′ . (A7)

APPENDIX B: BETTER INTEGRATION SCHEME

In this Appendix, we describe how to avoid the approx-
imation in Eq. (8) to integrate Eq. (2), with a more involved
method, that was already introduced in Ref. 15. However, we
have noted that in the proposed integrator it is not necessary to
compute the velocities at half-integer times because we per-
form the integration of Eq. (2) in an exact unbiased way. In the
following, we describe this derivation and obtain expression
very similar to the ones introduced in Ref. 15, with the main
difference that here we use integer time both for velocities and
positions

vn ≡ v(tn), (B1)

Rn ≡ R(tn) . (B2)

Having the general expression of the velocity by Eq. (A7),
we can use to integrate Eqs. (1) and (2) in the interval tn ≤ s

≤ tn+1 and obtain, with a little involved algebra, just a bit more
than the original scheme8 described in Sec. II,

vn+1 = e−γ
n
τvn + �n · ( f n + η̃), (B3)

Rn+1 = Rn + �n · vn + �n · ( f n + ˜̃η), (B4)

where we have introduced the following matrices, mainly to
single out, as before, the actual noisy terms η̃ and ˜̃η, that have
to be added to the force components in the above Markov
iterations for the velocities and coordinates, respectively,

�n = γ −1
n (I − e−γ

n
τ ), (B5)

�n = γ −1
n (τ I − �n) , (B6)

η̃ = �−1
n e−γ

n
τ

t
n+1∫

t
n

eγ
n
(t−t

n
)η(t) dt

= �−1
n e−γ

n
τ

τ∫
0

eγ
n
tη(t) dt , (B7)

˜̃η = �−1
n

t
n+1∫

t
n

dt

t∫
t
n

dt ′eγ
n
(t ′−t)η(t ′)

= �−1
n

τ∫
0

dte−γ
n
t

t∫
0

dt ′eγ
n
t ′η(t ′) . (B8)

In order to define the Markov process, it is enough to
compute the correlation of the previously mentioned noisy
terms, which we define as follows:

〈η̃i η̃j 〉 ≡ ᾱ1,1
ij , (B9)

〈 ˜̃ηi
˜̃ηj 〉 ≡ ᾱ2,2

ij , (B10)

〈η̃i
˜̃ηj 〉 ≡ ᾱ1,2

ij , (B11)

〈 ˜̃ηi η̃j 〉 ≡ ᾱ2,1
ij = ᾱ1,2

ij . (B12)

Then a straightforward integration in time, by using that
the assumed correlation is given by Eq. (3) and that, by
Eq. (4) the corresponding matrix ᾱ = 2T γ , we obtain

ᾱ1,1 = T γ 2
n coth(γ nτ/2),

ᾱ2,2 = T (2�n − �2
n) · �−2

n ,

ᾱ1,2 = T γ n�n · �−1
n .

The above Markov process can be straightforwardly imple-
mented, as well as the very similar one described in Ref. 15.
However, we have tested that all methods, including the sim-
plest one described in Sec. II, behave equally well, with com-
parable performances, probably because a too high accurate
integration scheme is not necessary for the available accuracy,
possible at present with QMC.

As discussed also in Ref. 8 (see also Sec. III C), all the
QMC force evaluations f are affected by an intrinsic stochas-
tic noise, which usually determines an effective temperature
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higher than the target one. This problem can be avoided, by
generalizing the method of the noise correction described in
Sec. II to this specific case. Indeed, we can follow the cor-
rect dynamics by adding to the QMC noise of the forces the
two external noises η̃ext and ˜̃ηext so that the total noises η̃ and
˜̃η satisfy the correct expressions in Eqs. (B9)–(B12). In this
way, we have to subtract the 3N × 3N QMC correlation of the
forces αQMC to each of the four submatrices, namely,

ᾱ
a,b
ext = ᾱa,b − αQMC , (B13)

is the true external noise we have to add to the system, to take
into account that QMC forces contain already a correlated
noise, that is independently evaluated during the dynamics.
It can be shown that the resulting matrix ᾱext is indeed posi-
tive definite provided �0 is large enough, so that ᾱext is a well
defined correlation for an external noise.
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