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We investigated the viscoelastic response of model interphase chromosomes by tracking the three-
dimensional motion of hundreds of dispersed Brownian particles of sizes ranging from the thickness
of the chromatin fiber up to slightly above the mesh size of the chromatin solution. In agreement
with previous computational studies on polymer solutions and melts, we found that the large-time
behaviour of the diffusion coefficient and the experienced viscosity of moving particles as functions
of particle size deviate from the traditional Stokes-Einstein relation and agree with a recent scaling
theory of diffusion of non-sticky particles in polymer solutions. Interestingly, we found that at short
times large particles are temporarily “caged” by chromatin spatial constraints, which thus form effec-
tive domains whose sizes match remarkably well with recent experimental results for micro-tracers
inside interphase nuclei. Finally, by employing a known mathematical relation between the time
mean-square displacement of tracked particles and the complex shear modulus of the surrounding
solution, we calculated the elastic and viscous moduli of interphase chromosomes. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4903996]

I. INTRODUCTION

In eukaryotic cells, the nucleus is a well recognizable
organelle, which plays the role of maintaining the genome
physically separated from the rest of the cell. Inside the nu-
cleus, the genome is organized into single bodies, the chro-
mosomes. Each chromosome is constituted of a variably long
linear filament of DNA and protein complexes, known as the
chromatin fiber.1 In human cells, the nucleus is approximately
10 µm wide and the length of a chromatin filament associ-
ated with a single chromosome is of the order of 1 mm, i.e.
≈100 times longer. Hence, chromatin fibers form an intricated
polymer-like network inside the nucleus of the cell.2 In spite
of this “intricacy” though, macromolecular complexes and en-
zymes which need to run and bind to specific target sequences
along the genome are relatively mobile inside the nucleus.2

In order to study quantitatively the dynamic properties of
macromolecular compounds inside the chromatin mesh, pas-
sive microrheology has been recently introduced.3,4 Artificially
designed beads of sub-micron size are carefully injected inside
the nucleus, and their thermally driven Brownian motion is
tracked by fluorescence microscopy. From the analysis of the
microscopic passive dynamics of the beads inside the nuclear
medium, it is then possible4 to extract quantitative information
on the viscoelastic properties of the medium.

Compared to standard rheology, microrheology offers
several advantages. Specifically, because of the feasibility to
design trackable particles of sizes ranging from a few nanome-
ters5 to hundreds of nanometers3 and microns,6 microrheology
can probe very efficiently a remarkably wide range of length-
and time-scales. This offers an unprecedented possibility to
address specific questions in complex materials which can-
not be answered by traditional bulk rheology. Nowadays,

a)Electronic mail: anrosa@sissa.it

micro-rheology is extensively used to study biological mate-
rials because it offers methods which, being minimally inva-
sive, can be used to perform experiments in vivo by employing
very small samples.7

In this work, and along the lines of previous computa-
tional investigations aiming at measuring the viscoelastic prop-
erties of polymer solutions and melts,8,9 we have employed
molecular dynamics computer simulations in order to study the
diffusive behavior of (sub-)micron sized, non-sticky particles
probing the rheological properties of a coarse-grained polymer
model of interphase chromosomes.10–12

Our approach complements and extends in many different
ways the above-mentioned experimental work. First, pas-
sive non-sticky particles undergoing simple Brownian mo-
tion represent the simplest minimally invasive tools whose
microscopic dynamics can be directly linked to the visco-
elastic properties of the surrounding medium. Contrarily, if
particles become sticky or they become actively driven as
a consequence of some cellular process, the corresponding
link to the viscoelastic properties of the medium is much
less transparent and more interpretative tools are needed.13

Second, by our computational approach we are able to single
out the nominal contribution of chromatin fibers to the whole
nuclear viscoelasticity. We believe this also to be an important
point, as the viscoelastic response obtained through wet-lab
experiments likely originates from the unavoidable coupling
of chromatin fibers with any other organelle present in the
nucleus. Third, while the sizes of probing particles available
in experiments appear to be limited,3,5,6 here we monitor
systematically quite an extensive range of spatial scales, from
the nominal chromatin thickness up to just above the mesh
(entanglement) size of the chromatin solution.

In qualitative agreement with recent findings from a com-
putational study on entangled polymer melts,8 we found that
the diffusive behavior of probe particles as a function of particle

0021-9606/2014/141(24)/245101/10/$30.00 141, 245101-1 © 2014 AIP Publishing LLC
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size deviates from the traditional Stokes-Einstein picture. Our
results can be well understood instead in terms of a recently
proposed14 scaling theory of diffusion of non-sticky particles in
polymer solutions. We demonstrated further that large particles
at short time scales are temporarily “caged” by chromatin
spatial constraints and remain confined to domains whose sizes
match remarkably well with recent experimental results for
micro-tracers inside interphase nuclei. Finally, we calculated
the elastic and viscous moduli of interphase chromosomes and
found that, in the available frequency range, they are more
liquid- than solid-like.

The paper is organized as follows: In Sec. II, we describe
the technical details of the chromosome polymer model, and
the theoretical framework to study the visco-elastic properties
of chromatin solution. In Sec. III, we present our results.
Finally, we conclude (Sec. IV) with a brief discussion and
possible perspectives about future work.

II. MODEL AND METHODS

A. Simulation protocol I. Force field

In this work, the monomers used in the coarse represen-
tation of the chromatin fiber building the model chromosome
and the non-sticky micro-probes were modeled as spherical
particles, interacting through the following force field.

The intra-polymer interaction energy is the same as the
one used in our previous works on the modeling of interphase
chromosomes.10,11,15 It consists of the following terms:

Hintra =

N
i=1

�
UFENE(i, i+1)+Ubr(i, i+1, i+2)

+

N
j=i+1

ULJ(i, j)�, (1)

where N = 39 154 is the total number of monomers constitut-
ing the ring polymer modeling the chromosome (Sec. II C),
and i and j run over the indices of the monomers. The latter

are assumed to be numbered consecutively along the ring from
one chosen reference monomer. The modulo-N indexing is
implicitly assumed because of the ring periodicity.

By taking the nominal monomer diameter, σ = 30 nm
= 3000 basepairs (bps),11 the vector position of the ith mono-
mer, r⃗i, the pairwise vector distance between monomers i and
j, d⃗i, j = r⃗ j− r⃗i, and its norm, di, j, the energy terms in Eq. (1)
are given by the following expressions:

(1) The chain connectivity term, UFENE(i, i+1) is expressed
as

UFENE(i, i+1)

=




− k
2

R2
0 ln


1−

(
di, i+1

R0

)2
, di, i+1 ≤ R0

0, di, i+1 > R0

, (2)

where R0 = 1.5σ, k = 30.0ϵ/σ2 and the thermal energy
kB T equals 1.0ϵ .16

(2) The bending energy has the standard Kratky-Porod form
(discretized worm-like chain):

Ubr(i, i+1, i+2)= kB T ξp

σ
*
,
1−

d⃗i, i+1 · d⃗i+1, i+2

di, i+1 di+1, i+2

+
-
, (3)

where ξp = 5.0σ = 150 nm is the nominal persistence
length17 of the chromatin fiber. We remind the reader, that
this is equivalent to a Kuhn length, lK = 2ξp = 300 mn.10

(3) The excluded volume interaction between distinct mono-
mers (including consecutive ones) corresponds to a purely
repulsive Lennard-Jones potential:

ULJ(i, j)

=



4ϵ[(σ/di, j)12− (σ/di, j)6+1/4], di, j ≤ σ21/6

0, di j > σ21/6 . (4)

We model the monomer-particle (Ump) and the particle-
particle (Upp) interactions by the potential energy functions
introduced by Everaers and Ejtehadi18 for studies on colloids.

Ump is given by

Ump(i, j)=



2R3σ3Amp

9(R2−d2
i, j)3


1−

(5R6+45R4d2
i, j+63R2d4

i, j+15d6
i, j)σ6

15(R−di, j)6(R+di, j)6

, di j < dmp

0, di j > dmp

, (5)

where R = a
2 is the particle radius, Amp = 75.398 kBT , and

dmp is the relative potential cut-off. Since we model non-sticky
particles, we took dmp in accordance with the minimum of
Ump.

Upp is given by

Upp(i, j)=



Ua,pp(i, j)+Ur,pp(i, j), di j < dpp

0, di j > dpp

, (6)

where

Ua,pp(i, j)=− App

6



2R2

d2
i, j−4R2

+
2R2

d2
i, j

+ ln*
,

d2
i, j−4R2

d2
i, j

+
-


(7)

is the attractive part and

Ur,pp(i, j)= App

37 800
σ6

r



d2
i, j−14Rdi, j+54R2

(di, j−2R)7
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+
d2
i, j+14Rdi, j+54R2

(di, j+2R)7 −2
d2
i, j−30R2

d7
i, j


(8)

is the repulsive part. Here, App = 39.478kBT and dpp is the
relative cut-off, again taken in accordance with the minimum
of Upp.

Values of dmp and dpp as functions of particle diam-
eter a are summarized in Table I. Notice that for a = 1.0σ
particle-particle and monomer-particle excluded volume inter-
actions simply reduce to the same Lennard-Jones function as
of monomer-monomer interaction, Eq. (4).

B. Simulation protocol II. Molecular dynamics
simulations

As in our previous studies,10,11,15 polymer/particle dy-
namics was studied by using fixed-volume Molecular Dy-
namics (MD) simulations at fixed monomer density ρ= N/V
= 0.1/σ3 with periodic boundary conditions.19 V is the volume
of the region of the box accessible to polymer, i.e., not occu-
pied by the dispersed particles, hence the total volume of the
simulation box is Vbox = V + 4π

3 NpR3. With this choice: (1)
polymer density matches the nominal nuclear DNA density of
≈0.012 bp/nm3, which was used in our previous studies,10,11,15

and (2) the entanglement length Le = 1.2 µm = 1.2× 105 bps

and the corresponding tube diameter (mesh size) dT =


lKLe

6
≈ 245 nm,10–12 of the polymer solution (which are functions
of fiber stiffness and density20) are not affected by insertion
of particles. Interestingly, as reported by a recent study9 on
microrheology of unentangled polymer melts, simulations at
fixed V also guarantee that loss and storage moduli are mini-
mally perturbed by the insertion of dispersed particles.

The system dynamics was integrated by using LAMMPS21

with a Langevin thermostat in order to keep the temperature of
the system stable at 1.0kBT . The elementary integration time
step is equal to tint = 0.012τMD, where τMD = σ(m/ϵ)1/2 is
the Lennard-Jones time, m=M = 1 are the chosen values22 for
the mass of monomers and particles, respectively. γ = 0.5/τMD

is the monomer/particle friction coefficient16 which takes into

TABLE I. Summary of parameters used in this work. a: diameter of dis-
persed particles expressed in Lennard-Jones “σ = 30 nm” and “nm” units.
dmp and dpp: cut-off distances for monomer-particle (Eq. (5)) and particle-
particle (Eq. (6)) interaction terms, respectively. For a = 1.0σ = 30 nm,
monomer-particle and particle-particle excluded volume interactions reduce
to the same functional form as of monomer-monomer interaction, Eq. (4).

D∞ ≡ limτ→∞
δx2(τ)

6τ is the particle terminal diffusion coefficient. Values
for different a are obtained as best fits to data reported in Fig. 2(b) in the
time window 103–104 s. η∞ ≡ kBT

2π(a+σ)D∞
is the corresponding terminal

viscosity.

a dmp dpp D∞ η∞

(σ) (nm) (σ) (σ) ×10−3 (µm2/s) (Pa s)
1.0 30 . . . . . . 50.0 0.21
2.0 60 1.880 2.635 28.0 0.25
4.0 120 2.865 4.602 10.0 0.42
6.0 180 3.862 6.591 3.3 0.92
8.0 240 4.861 8.585 1.3 1.81

10.0 300 5.860 10.581 0.5 3.86

account the corresponding interaction with a background im-
plicit solvent. The total numerical effort corresponds to 2.52
× 107τMD per single run, amounting to ≈104 h on a single
typical CPU. The first 1.2 × 106 MD time steps have been
discarded from the analysis of the results.

C. Simulation protocol III. Initial configuration

1. Construction of model chromosome conformation

In spite of the complexity of the chromatin fiber and
the nuclear medium, three-dimensional chromosome confor-
mations are remarkably well described by generic polymer
models.23–25 In particular, it was suggested10,26 that the exper-
imentally observed27 crumpled chromosome structure can be
understood as the consequence of slow equilibration of chro-
matin fibers due to mutual chain uncrossability during ther-
mal motion. As a consequence, chromosomes do not behave
like equilibrated linear polymers in solution.28,29 Instead, they
appear rather similar to unlinked and unknotted circular (ring)
polymers in an entangled solution. In fact, under these condi-
tions ring polymers are known to spontaneously segregate
and form compact conformations,12,24,26 strikingly similar to
images of chromosomes in live cells obtained by fluorescence
techniques.30

Due to the typically large size of mammalian chromo-
somes (∼108 bps of DNA), even minimalistic computational
models would require the simulation of large polymer chains,
with tens of thousands of beads or so.10,11,15 For these reasons,
in this work we resort to our recent mixed Monte Carlo/Mol-
ecular Dynamics multi-scale algorithm12 in order to design a
single, equilibrated ring polymer conformation at the nominal
polymer density of ρ= 0.1/σ3 (Sec. II B). The ring is consti-
tuted by N = 39 154 monomer particles, which correspond
to the average linear size of a mammalian chromosome with
≈1.18 × 108 bps. By construction, the adopted protocol guar-
antees that the polymer has the nominal local features of the
30 nm-chromatin fiber (stiffness, density, and topology conser-
vation) that have already been employed elsewhere.10,11,15 For
the details of the multi-scale protocol, we refer the reader
to Ref. 12.

2. Insertion of probe particles

In order to place Np = 100 spherical particles of increas-
ing radii inside the chromatin solution, we have proceeded
as follows. First, we have inserted particles of radius = 1.0σ
= 30 nm at random positions inside the simulation box. Next,
we have carefully removed unwanted overlaps with chromatin
monomers by a short MD run (≈100τMD) with the LAMMPS
option NVE/LIMIT, which limit the maximum distance a par-
ticle can move in a single time-step, see Ref. 31. At the end
of this run, we have gently inflated the simulation box so
as to reestablish the correct polymer density of ρ = 0.1/σ3.
Initial configurations with particles of larger radii are obtained
from initial configurations with particles with the immediately
smaller radii by making use again of the NVE/LIMIT option
in order to gently remove possible overlaps, followed again by
gentle inflation of the simulation box.
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D. Particle-tracking microrheology

Microrheology32 employs the diffusive thermal motion of
particles dispersed in a medium in order to derive the com-
plex shear modulus Ĝ(ω)=G′(ω)+ iG′′(ω) of the medium.32

Following Mason and Weitz,32 the motion of each dispersed
particle is described by a generalised Langevin equation:

M
dv(t)

dt
=−

 t

0
γ(t−τ)v(τ)dτ+ f(t), (9)

where M is the mass of the particle, v is its velocity, and f(t)
represents the stochastic force acting on the particle conse-
quent from its interaction with the surrounding visco-elastic
medium, and the function γ(t) represents the (time-dependent)
memory kernel. Equation (9) is complemented by the fluctuat-
ion-dissipation relation:

⟨f(t) · f(t ′)⟩= 6 kB T γ(t− t ′). (10)

By taking the Laplace transform33 of Eq. (9), one gets

Ms ṽ(s)−Mv(0)=−γ̃(s) ṽ(s)+ f̃(s) (11)

or

ṽ(s)= Mv(0)+ f̃(s)
Ms+ γ̃(s) . (12)

Then, by multiplying Eq. (12) by v(0) and taking the thermal
average, we get

⟨ṽ(s) ·v(0)⟩= M⟨v(0)2⟩+ ⟨f̃(s) ·v(0)⟩
Ms+ γ̃(s) =

3kBT
Ms+ γ̃(s) , (13)

where we have used the equipartition relation M⟨v(0)2⟩ = 3
kBT and the result ⟨f̃(s) ·v(0)⟩= 0.9 The average thermal mo-
tion of the dispersed particle is defined through the time mean-
square displacement, δx2(τ) ≡ ⟨(x(t + τ)− x(t))2⟩, where x(t)
=
 t

0 v(t ′)dt ′+x(0) is the particle position at time t. Since δx2(τ)
= 2

 τ

0 (τ − t)⟨v(t) · v(0)⟩dt, or δ x̃2(s) = 2
s2 ⟨ṽ(s) · v(0)⟩, the

Laplace transform of the memory kernel γ̃(s) can be expressed
as a function of the Laplace transform of the mean-square
displacement, δ x̃2(s),

γ̃(s)= 6kBT
s2 δ x̃2(s) −Ms. (14)

By assuming32 that γ̃(s) is proportional to the bulk frequency-
dependent viscosity of the fluid, η̃(s), we get finally

η̃(s)= γ̃(s)
νπa

, (15)

as in the case of a standard viscous fluid. The parameter ν
depends on the boundary condition at the particle surface:34

for sticky boundary condition ν = 3 and for slip boundary
condition ν = 2. The Laplace-transform of the shear modulus
G̃(s)= s η̃(s) is given by

G̃(s)= s
νπa


6kB T

s2 δ x̃2(s) −M s

≈ 6 kB T
νπa s δ x̃2(s) , (16)

where the last expression is obtained by neglecting the inertia
term.32 Finally, the complex shear modulus Ĝ(ω) as a function
of frequency ω is obtained from G̃(s) by analytical continua-
tion upon substitution of “s” with “iω”: Ĝ(ω) = −i

6 kB T

νπa ω δ x̃2(s=iω) . Its real (G′(ω)) and imaginary (G′′(ω)) parts
correspond to the so-called storage and loss moduli and are a
measure of the elastic and viscous properties of the solution,29

respectively.

III. RESULTS

Before proceeding to analyse our results on the diffusion
of particles dispersed in the chromatin solution, we validated
our system setup whether (1) the chromosome conformation
is not perturbed by the insertion of particles, and (2) particles
diffusion is exclusively influenced by particle-chromatin inter-
action and not by particle-particle interactions. In order to test
(1) as a measure of chromosome conformation, we considered
the average-square internal distances ⟨R2(L)⟩10 between pairs
of chromatin beads at genomic distance, L. Fig. 1(a) shows
plots of ⟨R2(L)⟩ for all sizes of dispersed particles. The almost
perfect match between different curves shows that, on average,
the polymer maintains the same spatial conformation. In order
to test (2), we removed the chromosome and measured particle
diffusion then. Fig. 1(b) shows that particles diffuse normally
with diffusion coefficients barely depending on particle size.
Hence, even if particle-particle collisions were not completely
excluded from our system, their effect is small. In particular, it
is much smaller than the effect due to collisions between parti-

FIG. 1. (a) Average-square internal distances, ⟨R2(L)⟩, between pairs of
monomers at genomic separation, L, along the ring. L is taken up to 1/4
of the entire ring contour length (≈118 Mbps). (b) Time mean-square dis-
placement δx2(τ) of dispersed particles in the absence of the polymer. Color
code is as in panel (a).
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FIG. 2. (a) Time mean-square displacement, δx2(τ), of particles of diameter a dispersed in the polymer (chromatin) solution. At short times and for large
particle sizes, we observe an anomalous behavior δx2(τ) ≈ τα, with α slowly approaching 0.5 as predicted by Cai et al.14 For comparison, vertical dashed lines
mark the position of the nominal entanglement time τe ≈ 32 s (Ref. 10) of chromatin solution. (b) Corresponding diffusion coefficient, D(τ) = δx2(τ)/6τ. At
lag-times longer than τe, diffusion becomes normal and D takes a constant value. (c) Corresponding viscosities, η(τ) = kBT

2π (a+σ) D(τ) .
scale

cles and chromatin monomers (see Fig. 2 below). Of course,
the effect of particle-particle collisions can be reduced even
further by considering a larger polymer system at the same
number of diffusing particles, Np.

After validation of our model, we proceeded to anal-
yse the dynamics of dispersed particles in the presence of
the polymer and as a function of particle diameter, a. We
considered first, the time mean-square displacement, δx2(τ),
of the particles, and the corresponding instantaneous diffusion
coefficient and viscosity, respectively, defined as D(τ)= δx2(τ)

6 τ

and η(τ) = kBT
2π (a+σ) D(τ) , where “a+σ” is the cross-diameter

of the dispersed particle and the slip boundary condition
applies.34

Table I and Fig. 2 summarize our results. We found that, af-
ter a short ballistic time regime, small particles with a = 30 nm
and a = 60 nm diffuse normally at δx2(t)= 6D∞t, with termi-
nal diffusion coefficients D∞≡ limτ→∞

δx2(τ)
6τ ≈ 5×10−2 µm2/s

and D∞ ≈ 3× 10−2 µm2/s, respectively, corresponding to ter-
minal viscosities η∞ ≡ kBT

2π (a+σ)D∞
≈ 0.21 Pa s and η∞ ≈ 0.25

Pa s. As particle size was increased from a = 120 to a =
300 nm, we observed: (1) the appearance of a small-time
anomalous regime δx2(τ) ∼ τα with α slowly approaching
0.5 (Ref. 14) for large a, (2) a dramatic drop in the terminal
diffusion coefficient down to ≈5 × 10−4 µm2/s, and (3) an
increase of the corresponding viscosity with particle size up
to ≈4 Pa s.

We interpreted our results in the light of the scaling
argument discussed by Cai et al.14 As in the case of any
general polymer solution, our model chromatin mesh can
be characterized by two fundamental quantities:10,28,29 (1)
the fiber stiffness, measured in terms of the Kuhn length lK
= 300 nm = 3 × 104 bps, and (2) the entanglement length,
Le = 1.2 µm= 1.2×105 bps, which is a function of chromatin
stiffness and density10,20 and represents the characteristic chain
contour length value above which polymers start to entangle.
Kinetic properties of the chromatin solution are affected by
entanglements on length scales larger than the so-called tube

diameter (or mesh size) of the solution, dT =


lKLe

6 ≈ 245 nm,
and on time scales larger than the entanglement time, τe ≈ 32
s.10 According to Cai et al.,14 since particle size is at most only
slightly larger than dT (see Table I), entanglements are not
expected to significantly affect particle diffusion. Under these

conditions, particle dynamics is coupled to the “Rouse-like”
relaxation modes of chromatin segments with contour length
shorter than Le, namely made of nK(τ) ∼ (τ/τK)1/2 Kuhn
segments and having spatial size ∼ lK nK(τ)1/2∼ lK (τ/τK)1/4.
The corresponding chromatin viscosity is then given29 by
η(τ) ∼ ηK nK(τ) ∼ ηK(τ/τK)1/2, where ηK and τK are the
viscosity and relaxation time of a Kuhn segment, respec-
tively. The mean-square displacement of the particle is then
given by δx2(τ) ∼ kBT

a η(τ) τ ∼ kBT
a ηK

(τ τK)1/2, up to time-scale
τr , where polymer sections become comparable to particle
size lK (τr/τK)1/4 ∼ a or τr ∼ τK(a/lK)4. On longer time-
scales, particle displacement is normal, δx2(τ)∼ kBT

a η(τr ) τ, with
terminal diffusion coefficient D∞∼ kBT

a η(τr ) ∼ 1/a3 and viscosity
η∞∼ 1

a D∞
∼ a2. Fig. 3 summarizes our results for D∞ and η∞

showing good agreement with theoretical predictions. None-
theless, we report some deviation from the predicted behavior
when the particle size reaches the nominal tube diameter dT

≈ 245 nm (rightmost symbols in Fig. 3).
In spite of the reported evidence that particle dynamics

appears to be dominated by the relaxational Rouse modes of

FIG. 3. Long-time limit of particle diffusion coefficient, D∞ (�), and particle
viscosity,η∞ (◦), as a function of particle diameter, a. Power-laws correspond
to theoretical predictions by Cai et al.14 In particular, deviation from the
intermediate power-law behavior ∼a−3 for D∞ and ∼a2 for η∞ arises when
particle size becomes comparable to the tube diameter of chromatin solution,
dT ≈ 245 nm.10
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chromatin linear sections <Le, we found that entanglements
play nonetheless a (although quite more subtle) role: in fact,
they lead to the formation of effective “domains” which cage
the particles. In order to show that, we computed the prob-
ability distribution functions, P(δx(τ)), of particle displace-
ments δx(τ)≡ x(t+τ)−x(t) at lag-times τ. To fix the ideas, we
chose lag-times τ = 0.24, 2.4, 24, 240 s for all particle sizes,
see Fig. 4. Interesting features emerge upon calculation of the
corresponding scaling plots (insets) obtained by substitutions
δx(τ)→ δx(τ)/δx2(τ) and P(δx(τ))→ P(δx(τ)) δx2(τ)3/2.
In particular, at long lag-times and for all particle sizes, the
distribution is described by a simple Gaussian, P(δx(τ))
=

(
3

2π δx2(τ)
)3/2

exp
(
− 3 (δx(τ))2

2 δx2(τ)
)

(black lines). At short lag-

times, the Gaussian distribution holds for small particles only.
In fact, at large particle sizes and small δx(τ), P(δx(τ)) shows
significant deviations from the Gaussian behavior which can
be understood in terms of partial trapping due to the emerging
topological constraints.8 This conclusion is further supported
(see Fig. 5) by the behaviour of the distribution function Q(θτ)
of angles θτ ≡ cos−1

( (x(t+τ)−x(t))·(x(t+2τ)−x(t+τ))
|x(t+τ)−x(t)| |x(t+2τ)−x(t+τ)|

)
between τ-

lagged particle vector displacements taken consecutively along

the trajectory. At τ = 0.24 s, Q(θτ) for small particles diameters
of 30 and 60 nm matches the random distribution Q(θτ)
= sin(θτ)/2 (black solid lines in Fig. 5). For larger particle
sizes, Q(θτ) is constantly shifted towards higher values of θτ,
which is compatible with the picture where particles revert
their motion frequently as a consequence of trapping inside
chromatin domains. Finally, at large τ where particle motion
is diffusive for all particle sizes, Q(θτ) becomes compatible
again with the random distribution (see corresponding panels
in Fig. 5), as expected.

To complete our analysis, we calculated the storage (G′

(ω)) and loss (G′′(ω)) modulus of the chromatin solution
from, respectively, the real and imaginary part of the com-
plex shear modulus Ĝ(ω) = −i 3 kB T

π(a+σ)ω δ x̃2(s=iω) , see Sec.
II D. For the generic case where particle motion is subdif-
fusive at short times and diffusive at large times, the mean-
square displacement can be phenomenologically described
by δx2(τ) = 6Dα τ

α + 6D∞ τ, where Dα is the (generalized)
diffusion coefficient associated to the anomalous time regime
with exponent 0 < α < 1. In this case, δ x̃2(s) = 6Dα Γ(α+1)
s−(α+1)+ 6D∞ s−2. After some algebra, G′(ω) and G′′(ω) are
given by the following expressions:

FIG. 4. Distribution function, P(δx(τ)), of particle displacements, δx(τ) = |x(t + τ) − x(t)|, for different values of lag-times τ (see captions). Insets: data
rescaled according to δz(τ) = δx(τ)/δx2(τ) and P(δz(τ)) = P(δx(τ)) δx2(τ)3/2. At long lag-times, rescaled data are described by a universal Gaussian

function P(δz(τ)) = (
3

2π

)3/2
exp

(
− 3

2δz(τ)2
)

(black solid lines), as expected. At short lag-times τ and large particle sizes, P(δz(τ)) deviates significantly from
Gaussian behavior.
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FIG. 5. Distribution function, Q(θτ), of angles θτ between τ-lagged particle vector displacements x(t + τ) − x(t) and x(t + 2τ) − x(t + τ) taken consecutively
along the trajectory. Values of τ are as in Fig. 4. At small τ and large particles, significant deviations from the random distribution sin(θτ)/2 (black solid lines)
appear.

G′(ω) = 3 kB T
π(a+σ)

6Dα Γ(α+1)cos(πα/2)ω−α

(6Dα Γ(α+1)cos(πα/2)ω−α)2+ (6Dα Γ(α+1)sin(πα/2)ω−α+6D∞ω−1)2 ,

G′′(ω) = 3 kB T
π(a+σ)

6Dα Γ(α+1)sin(πα/2)ω−α+6D∞ω−1

(6Dα Γ(α+1)cos(πα/2)ω−α)2+ (6Dα Γ(α+1)sin(πα/2)ω−α+6D∞ω−1)2 .
(17)

In the limit ω→ 0 they simplify to

G′(ω) = kB T
2π(a+σ) D∞

Dα Γ(α+1)
D∞

cos(πα/2)ω2−α,

G′′(ω) = kB T
2π(a+σ) D∞

ω.

(18)

Notice that in this limit, G′(ω) is always <G′′(ω) and that the
coefficient of G′′(ω) is just the terminal viscosity, η∞. In the
opposite limit ω→ ∞ we find instead

G′(ω) = kB T
2π(a+σ) Dα

cos(πα/2)
Γ(α+1) ωα, (19)

G′′(ω) = kB T
2π(a+σ) Dα

sin(πα/2)
Γ(α+1) ωα.

In this limit, G′(ω) and G′′(ω) have the same power-law
behavior, with G′(ω) smaller (respectively, larger) than G′′(ω)
for 1/2 < α < 1 (respectively, 0 < α < 1/2). Our results for the
mean-square displacement δx2(τ)∼ τα with α & 0.5 (Fig. 2(a))
then predict that G′(ω)<G′′(ω) on the entire frequency range
considered here.

In order to derive the complex shear modulus Ĝ(ω) of
the chromatin solution, we resorted to the numerical method
developed by Evans and coworkers.35–37 The method allows
a straightforward evaluation of the Laplace transform δ x̃2(s
= iω) of δx2(τ) through the formula
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FIG. 6. Storage, G′(ω), and loss, G′′(ω), moduli as a function of frequency ω. For small frequencies, G′′(ω) ≈ η∞ω (solid lines) with G′′(ω) ≫ G′(ω)
∼ ω1.5, i.e., the medium responds as a standard viscous fluid, see Eq. (18) with α = 0.5. For large frequencies and large length-scales, the elastic modulus
becomes comparable to the loss modulus G′(ω) ≈ G′′(ω) ≈ ω1/2 as expected, see Eq. (20) with α = 0.5. Numerical data for G′ and G′′ have been obtained
from numerical calculation of δ x̃2(s = iω), Eq. (20), followed by smoothing35 for better visualization. Vertical dashed lines mark the position of the frequency
τ−1
e equal to the inverse of the entanglement time τe ≈ 32 s, see Fig. 2 for comparison.

−ω2δ x̃2(s = iω)= iω δx2(0)+ �1−e−iωτ1
�
�
δx2(τ1)−δx2(0)�

τ1
+6D∞ e−iωτJ

+

J
j=2

(
δx2(τj)−δx2(τj−1)

τj−τj−1

) �
e−iωτ j−1−e−iωτ j

�
, (20)

where ((τ = 0, δx2(τ = 0)), (τ = τ1, δx2(τ = τ1)), . . ., (τ
= τJ, δx2(τ = τJ))) is the time-series for δx2(τ).

Results are summarized in Fig. 6. For small frequen-
cies, we confirm the predicted results G′(ω) ∼ω1.5 ≪ G′′(ω)
≈ η∞ω, i.e., the polymer solution behaves as a typical viscous
medium. For large frequencies, deviation from this behavior is
particularly evident in the case of large particles where G′(ω)
. G′′(ω) ∼ ω1/2, and the polymer solution behaves like a
“power-law” liquid. Representative values for G′(ω) and
G′′(ω) at ω = 0.1, 1, and 10 Hz are reported in Table II.

IV. DISCUSSION AND CONCLUSIONS

The nucleus of eukaryotic cells is a highly crowded me-
dium dominated by the presence of chromatin fibers which
form an intricated polymer network. In this network, several
protein complexes diffuse while targeting specific genome

sequencing.1 In order to understand the mechanisms of
macromolecular diffusion inside the nucleus, the tracking of
artificially-designed injected micron-sized particles (micro-
rheology) has been recently introduced.3,4

In this work, we investigated the diffusion of 100 tracer
particles inside a polymer environment modelling the structure
of interphase chromosomes in mammals. In particular, we
considered particle sizes ranging from 30 to 300 nm in order to
explore the dynamic response on polymer length-scales from
the nominal chromatin diameter (30 nm) up to just slightly
above the so-called mesh (entanglement) size of the chromatin
solution, dT ≈ 245 nm.10

In qualitative agreement with other computational stu-
dies8,9 on the generic behaviour of micro-tracers in model
polymer melts, we found that small particles undergo normal
diffusion at all times, while intermediate-size particles sub-
diffuse at short times and diffuse normally later on, see Fig. 2.
In particular, terminal diffusivities can be understood in terms

TABLE II. Representative values of G′(ω) and G′′(ω) taken at frequencies ω = 0.1, 1, and 10 Hz. Data which
are too noisy have not been reported.

0.1 Hz 1 Hz 10 Hz

a (nm) G′ (Pa) G′′ (Pa) G′ (Pa) G′′ (Pa) G′ (Pa) G′′ (Pa)
30 . . . 0.0214 . . . 0.2045 . . . 2.0651
60 0.0004 0.0238 0.0079 0.2532 . . . 2.2061

120 . . . 0.0423 0.0712 0.3948 0.7009 2.3778
180 0.0086 0.0882 0.2260 0.6865 1.6126 2.8336
240 0.0349 0.1469 0.4959 1.0163 2.6690 3.5608
300 0.0747 0.2972 0.8674 1.4476 3.7901 4.5105
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of the scaling theory proposed recently by Cai et al.,14 see
Fig. 3. Of remarkable interest is the dynamic behaviour at
times shorter than the entanglement time, τe, in particular for
big particles. In fact, the sub-diffusive behaviour appears here
to be associated to temporary trapping on scales compatible
with the emerging of topological constraints in the underly-
ing chromatin solution, see Figs. 4 and 5. Interestingly, two
independent experimental studies on murine fibroblasts3 and
human HeLa cells6 employing micro-tracers of, respectively,
0.1 and 1.0 µm of diameter found particle trapping in nuclear
domains of size ≈290 nm and ≈250 nm, respectively, which
is in good quantitative agreement with the nominal mesh size
of our chromatin solution. We stress, nonetheless, that here
we reinterpret the experimentally observed caging as simply
being the consequence of the formation of entanglements in
the chromatin fiber, i.e., as a genuine polymer effect.28,29

We then compare our predictions for the storage, G′(ω),
and loss, G′′(ω), moduli to corresponding results for fibro-
blasts and HeLa cells. For micro-tracers of 0.1 µm-diameter
in fibroblasts, Tseng et al.3 found that the nuclear medium re-
sponds elastically in the range 1–10 Hz with a plateau modulus
G′(ω)≈ 10 Pa and G′′(ω) in the range 3–10 Pa. This contrasts
with our findings in several respects: our predicted environ-
ment is in general much softer (see Table II), and we do not
observe any plateau, for our simulated medium results are more
liquid-like than solid-like. On the other hand, the work by
Hameed et al.6 on HeLa cells explored by 1 µm-sized parti-
cles suggests a much softer nuclear environment with G′(ω)
≈ 0.1 Pa >G′′(ω)≈ 0.05 Pa atω = 1 Hz. While still suggesting
a nucleus which is more solid- than liquid-like, these results are
quantitatively closer to ours, although they were obtained with
a quite larger tracer bead than the ones used in our simulations.

Quantitative differences between these two experiments
can be due to the different cell lines used, while differences
between experiments and theory might be due to the simplicity
of the polymer model. In particular, we would like to stress two
important points which were neglected in our study.

First, a conspicuous number of experimental observa-
tions27,38,39 demonstrated that chromatin loci far along the
sequence frequently interact with each other because of the
presence of specific protein bridges. From a polymer physics
perspective, this creates effective chromatin-chromatin cross-
links. It was suggested8 that permanent cross-links in poly-
mer solutions and melts might alter significantly the diffu-
sive behavior of micro-particles when their size becomes
comparable to the polymer mesh size. Therefore, as a possible
avenue for further investigations, it would be interesting to
clarify to which extent cross-links added to the system would
alter the viscoelastic behaviour reported here for non-cross-
linked chromatin fibers.

Second, recent experimental studies6,40 demonstrated that
chromosomal activity and chromosomal loci dynamics are
the result of a subtle interplay between passive thermal diffu-
sion and active ATP-dependent motion triggered by chro-
matin remodeling and transcription complexes. The mentioned
work by Hameed et al.6 showed that the persistent, caged
behavior of the micro-tracers can be altered by imposing an
external force on the tracers above a certain threshold which
stimulates frequent jumps between the cages. Remarkably,

these jumps become almost suppressed after ATP-depletion.
This observation seems then to point to the important role
played by active mechanisms during micro-tracers dynamics.
Later on in the paper, these mechanisms were ascribed to
dynamic remodeling of the chromatin fiber.6 Consistent with
that, Weber et al.40 showed that diffusion of chromosomal loci
in bacteria and yeast is also ATP-dependent. Taken together,
these results suggest a picture where chromatin fibers are
modeled as just as passive polymer filaments is necessarily an
approximation. To move beyond this approximation, recently
Ganai et al.41 proposed a novel computational approach where
chromosomes were modeled as chains of beads which were
let evolving by a Langevin equation with a non-uniform,
monomer-dependent temperature linking—at a phenomeno-
logical level—monomer gene content to “out-of-equilibrium”
activity: gene-rich monomers are “hot/active” while gene-
poor monomers are “cold/passive.” Interestingly, the work
comes to the conclusion that quantitative understanding of
the observed chromosomal arrangement inside the nucleus
by purely passive mechanisms is incomplete, namely, active
mechanisms are also needed. For all these reasons, it would be
also interesting to explore in the near future to which extent
the viscoelastic properties of active-driven chromatin fibers
deviate from the theoretical predictions presented in this work.
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