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Abstract 

 

The organic compounds which have four-membered ring structure are fascinating in organic 

chemistry, since they have been found in numerous bioactive molecules and used as useful synthon 

due to their ring strain. Among them, the azetidine which is nitrogen-containing four-membered 

heterocycle starts to gain in popularity as an interesting pharmacophore in current medicinal chemistry 

because of their desirable biological activity and improved metabolic stability. Also, as a synthon, 

their strained structure makes them excellent candidates for ring expansion reactions. In spite of their 

strong points, the lack of efficient synthetic method of azetidine is still remaining challenge. 

Among the known synthetic strategies, the [2+2] photocycloaddition reaction between imine and 

alkene has emerged as prominent method, which can directly afford the functionalized azetidine. 

However, because of low reactivity between imines and alkenes, previous methods usually relied on 

UV irradiation in order to activate the imine or alkene. UV irradiation can excite both alkene and 

imine so that the C=N bond can undergo undesired relaxation pathways such as isomerization, 

fragmentation, or decomposition. Some research groups designed rigid imine and alkene substrates to 

solve that, but still UV light is hazardous, and it has limited the functional groups of substrates. 

To break through these drawbacks, we developed the visible light induced photocatalytic [2+2] 

cycloaddition reaction between imine and alkene. The selective activation of alkene was achieved via 

redox mechanism to avoid the excitation of imine or other functional groups. Using blue LED as light 

source and acridinium catalyst as organophotocatalyst, a variety of azetidine compounds were 

synthesized in moderate to excellent yield without any by-product. 

This redox neutral method gives product only and utilizes acridinium photocatalyst which is eco-

friendly, cheap, and less toxic than metal photocatalysts. Therefore, it allows a highly atom economic 

reaction and it is highly desirable in green chemistry. Also, the constructed bicyclic azetidine moiety 

have great potential in biological activity and further modification. 
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I. INTRODUCTION 

 

1.1. Azetidine 

The four-membered azaheterocycles, azetidines have got growing attention for their versatility in 

medicinal chemistry and many areas of chemistry1. Their molecular rigidity and robustness allow an 

efficient tuning of pharmacological properties and often improve the pharmacokinetic effects and 

biological activities. Also, their rigid conformations exhibit a wide range of bioavailability, and 

superior metabolic stability or ligand efficiency. The azetidine-bearing molecules have been found in 

natural products, approved drugs, and ligands for transition metals2. The representative examples are 

shown in Figure 1. 

Figure 1. Representative examples of azetidine bearing molecules. 

 

Azetidines have been widely used as a prominent synthon (Figure 2) 3. Their ring strain energy is 

quite high, so they can serve as a valuable building blocks for several transformations. Activating the 

azetidine generally afforded acyclic amine via ring-opening reaction with electrophilic reagents or 

Lewis acid followed by addition of external nucleophile. Also, the azetidine can undergo the ring-

expansion reaction to 5- or 6-membered and medium-sized heterocycles. It can be achieved by using 

Lewis acid, oxidant4, transition metal or external nucleophile. 
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Figure 2. The application of azetidine in organic synthesis. 

 

Many research groups have developed a number of synthetic methods for the azetidine which is 

attractive scaffold having broad range of utilization. The traditional methods mostly relied on lactam 

reduction or ionic processes like nucleophilic substitution reaction. Then, [2+2] photocycloaddition 

reaction between imine and alkene has been considered as the most efficient method for azetidine 

synthesis, which can directly synthesize the functionalized azetidine. 

 

1.2. Traditional methods for azetidine synthesis 

In the group of common azaheterocycles, the azetidine has been known as the hardest ring system 

to form. Although their inherent ring strain is a challenge in preparation, several methods were 

developed, in general, nucleophilic substitution, lactam reduction, and strain release reaction5. 

In case of the nucleophilic substitution reaction, the formation of the three-membered ring is 

favorable because it undergoes preferred conformation for SN2 cyclization, but the four-membered 

ring has unfavorable eclipsed conformation so that the reaction generally requires much higher energy 

(Scheme 1a). 

The β-lactam was generally synthesized via ketene and imine [2+2] cycloaddition known as 

Staudinger synthesis, then reduction of the β-lactam readily afforded azetidine. Also, the aza-

bicyclobutane can be transformed to azetidine by using its ring strain (Scheme 1b, 1c). 
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 Scheme 1. Traditional synthetic methods for azetidine (a) nucleophilic substitution, (b) 𝛽-lactam 

reduction, (c) strain release. 
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Scheme 2. Examples of traditional synthetic methods for azetidine. 

 

However, these reactions need multiple steps and previous installation of the functional groups, 

and generally require harsh conditions like high temperature. As a result, they failed to incorporate the 

diverse products with a wide range of substituents; the several examples are shown in Scheme 26. 

Thus, the mild and efficient synthetic methods for azetidine were highly desirable. 

 

1.3. [2+2] photocycloaddition between imine and alkene using UV light 

[2+2] photocycloaddition reaction between imine and alkene also known as aza Paternò-Büchi 

reaction can yield azetidine product. Especially, [2+2] photocycloaddition of imine and alkene needs 

substrates and the light only, and it can directly give product without any waste. Therefore, this 

reaction has been expected as the most efficient strategy for azetidine synthesis. 

As a result of some researcher’s effort, [2+2] photocycloaddition of imine and alkene could be 
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established using UV light which has high enough energy to excite the alkene. However, UV 

irradiation can’t selectively activate the alkene. The excited C=N π bond of imine undergoes the 

radiationless decay processes such as isomerization or fragmentation7 so that the imine has low chance 

to react with alkene8. 

This problem was solved by using rigid imine or alkene as substrates which were designed to 

avoid the relaxation pathways9. Also, the imine that has electron-withdrawing group on nitrogen could 

be adopted for this reaction. 

Just irradiation of UV, without photocatalyst, can induce the azetidine product via 𝜋-𝜋 stacking 

between aryl groups of both imine and alkene substrates (Scheme 3a)10. In this reaction, the imine 

groups bearing tosyl or other protecting groups were used. Reaction between the enamide derivatives 

and imine groups was developed from Sivaguru group (Scheme 3b)11. Oxime, hydrazone, or hydrazine 

were used as imine group and cyclic enamide was alkene moiety. UV-sensitized xanthone transfers its 

energy to the substrate, then excited imine and alkene undergo intramolecular [2+2] cycloaddition. 

 

 

Scheme 3. [2+2] photocycloaddition of imine and alkene via UV light irradiation. 

 

But still this reaction has limited substrate range because of the UV light which is hazardous and 

has very high energy enough to decompose the susceptible functional groups. Thus, milder condition 

which can selectively activate the alkene and have broader substrate scope is highly demanded. 

 

1.4. Visible light photocatalysis 

Recently, visible light photocatalysis has drawn significant interest as unique and valuable 

catalytic process12. This process uses visible light as energy source which is inexpensive, abundant, 

safe, and sustainable. Since organic compounds generally do not absorb the visible light, photocatalyst 

which can absorb the light in visible region is selectively excited. Organic dyes or transition metal like 

ruthenium and iridium with polypyridyl complex are typical photocatalysts (Figure 3). Resulting 

excited photocatalyst can induce the reactive intermediate which has different reactivity patterns from 
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the polar or two-electron manifolds. Thus, synthetic methods using visible light photocatalysis can 

build the new covalent bonds even in low loading of catalyst, which were hard to be achieved using 

established protocols. In addition, visible light photocatalysis has a number of advantages against UV 

photocatalysis. Both organic molecules and photocatalysts can absorb the UV light which has high 

energy. As a result, UV irradiation can’t selectively photoexcite the catalysts or particular functional 

groups and various side reactions can be caused. 

However, in visible light photocatalysis, visible light can selectively excite the photocatalyst 

because it has lower energy. This excited catalyst can efficiently activate the substrate. This low 

energy demand of itself can broaden the available functional groups and decrease the possibility of 

side reactions. Also, it doesn’t need specialized reactor or glassware, contrast to UV photochemistry13. 

Therefore, visible light photocatalysis has emerged as the most prominent tool for synthetic organic 

reactions. 

 

 

Figure 3. Typical photocatalysts. 

 

1.4.1. General mechanism of visible-light photocatalysis  

Absorption of light can provide an electronically excited photocatalyst, which means the electron 

is promoted to a higher energy level from the ground singlet state (S0) to a singlet excited state. 

Actually, this singlet excited state rapidly relaxes to the lowest energy level called the first singlet 

excited state (S1). This excited state can undergo radiative or nonradiative transition such as 

fluorescence or internal conversion to the ground state. Otherwise, it can proceed to a triplet excited 
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state (T1) via intersystem crossing (ISC). These excited states S1 and T1 can participate in reactions 

via energy transfer or electron transfer, but T1 is more potent redox reagent and sensitizer due to 

sufficient lifetime. 

 

 

Figure 4. General mechanism of photocatalysis.12 

 

The electron transfer mechanism refers to the single electron transfer between the excited state 

photocatalyst and a ground state substrate. The photocatalysts can play a role as strong oxidant or 

reductant and this approach has greater benefits than methods requiring the stoichiometric amount of 

oxidant or reductant. In general, for successful electron transfer from donor to acceptor, their redox 

potentials have to match, which means the acceptors need to have a bigger redox potential than donors. 

If the reduction potential of excited state photocatalyst is bigger than oxidation potential of substrate, 

the photocatalyst gets an electron from the substrate. This process is called reductive quenching cycle 

since the photocatalyst starts its catalytic cycle as getting reduced. The opposite case is called 

oxidative quenching cycle. 

When conducting one electron redox reactions, there is inevitable limitation. That is, the scope of 

the reaction is limited because the reduction of electron-rich substrate or the oxidation of electron-

deficient substrate are hardly achieved in general conditions. However, energy transfer reaction can 

overcome this electrochemical constraint. This process depends not on redox properties but triplet 

energy level. In explanation above, excited T1 state of the donor (photocatalyst) can transfer its 

energy to acceptor (substrate). Then, the acceptor is elevated to the triplet excited state (T1 for A) 

from ground state. This excited substrate can undergo certain organic reactions. For this energy 

transfer process known as Dexter triplet-triplet energy transfer, the triplet energy level of donor should 
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be higher than acceptor. 

 

1.4.2. [2+2] photocycloaddition between imine and alkene using visible-light 

The prospect of conducting visible-light photocatalysis reactions has become the top interest 

from a number of research groups. Because utilization of this photocatalysis in organic reactions can 

provide direct C-C bond formation (C-N, C-O, and etc.) which were hard to be achieved using other 

traditional methods such as substitution reactions. Thus, we were engaged in developing the azetidine 

synthetic method which could directly afford functionalized azetidines using visible light 

photocatalysis. Visible light induced [2+2] photocycloaddition between imine and alkene will be the 

most efficient method for azetidine synthesis. 

 

 

Scheme 4. [2+2] photocycloaddition of imine and alkene via energy transfer. 

 

To the best of our knowledge, there is only one report, which is very recently published, about 

visible light photocatalysis [2+2] cycloaddition between imine and alkene from Schindler group 

(Scheme 4)5. On this paper, intramolecular aza Paternò-Büchi reaction was achieved via energy 

transfer mechanism using blue LED as light source and Ir[dF(CF3)ppy]2(dtbbpy)PF6 as a photocatalyst. 

Among the photocatalysts which absorb visible light, that was known to have the biggest triplet energy 

60.8 kcal/mol. The alkene which has lower triple energy level than 60.8 kcal/mol could be selectively 

activated to diradical intermediate by this photocatalyst, so that the reaction was successfully applied 

to 24 examples, including styrene moiety which possesses a triplet energy of approximately 60 

kcal/mol, up to 99% yield. 

However, the limitations exist in this reaction. The imine part was still limited to oxime or 

hydrazone because of imine stability and they used iridium photocatalyst which is expensive and 

environmentally hazardous metal.  
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Figure 5. Our design.  

 

Herein, we introduced more desirable metal-free photocatalytic [2+2] intramolecular aza-

cycloaddition reaction which was achieved via electron transfer mechanism. The use of 

organophotocatalyst which is cheap and eco-friendly made it possible to selectively activate the alkene. 

Also, we tried to design the imine part away from the oxime or hydrazone so that multi-functionalized 

bicyclic azetidine could be readily synthesized. 

 

II. RESULTS AND DISSCUSION 

 

2.1. Research design and development 

Firstly, we started our investigation on the imine part changing from oxime, hydrazone, 

sulfonamide, or other rigid imines. As a result, the iminomalonate was chosen which is stable, easy to 

prepare. The iminomalonate was synthesized from keto-malonate hydrate and easily purified by 

column chromatography14. Among the malonate groups, the isopropyl group was used because ethyl 

iminomalonate was easily hydrolyzed, and tert-butyl had low reactivity (Figure 6a). In addition, 

although iminomalonate was barely studied in photochemistry, we thought that it might be used as 

nitrogen radical precursor via oxidative photocatalytic quenching cycle since the malonate had 

electron withdrawing effect. Thus, there was a possibility that the [2+2] reaction between imine and 

alkene proceeded as the generated nitrogen radical attacked the alkene, followed by oxidation and 

cyclization (Figure 6b. eq. 1). However, unfortunately, cyclic voltammetry data revealed that the 

reduction potential of N-butyl iminomalonate was 𝐸1∕2
𝑟𝑒𝑑  = - 1.9 V (vs. SCE in MeCN) and the 

oxidation potential wasn’t detected, which meant reduction of the iminomalonate moiety is hard to 

occur and oxidation is nearly impossible by photocatalysts (Figure 6c). 

In case of alkene, the styrene moiety looked good candidate for [2+2] reaction which would be 

initiated by alkene oxidation, because the β-alkylated styrene was known to have oxidation potential 

𝐸1∕2
𝑜𝑥  = + 1.6 V (vs. SCE)15. On our initial expectation, the alkene was oxidized via reductive 

quenching cycle, then the generated radical cation was nucleophilic attacked by imine nitrogen, 

followed by reduction and cyclization to afford azetidine (Figure 6b. eq. 2). 
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Figure 6. Reaction design and electrochemical property of substrates. 

 

Accordingly, we synthesized 2a as a basic substrate to test the reactivity of styrene and 

iminomalonate (Figure 6c). Before the photocatalysts screening, we measured redox potential of the 

substrate to find out its electrochemical properties. The result displayed reduction potential 𝐸1∕2
𝑟𝑒𝑑  = – 

2.0 V (vs. SCE in MeCN) and oxidation potential 𝐸1∕2
𝑜𝑥  = + 1.5 V (vs. SCE in MeCN), which means 

this substrate would be barely reduced but could be oxidized by some photocatalysts. 

Thus, we envisioned the intramolecular [2+2] reaction between imines and alkenes which 

involved reductive quenching catalytic cycle based on visible light. As we expected, irradiation of 2a 

with blue LED in the presence of some photocatalysts resulted in the formation of bicyclic azetidine 

products. 

 

 

  



17 

Table 1. Optimization tablea  

 
 

Entry Catalyst [5 mol%] Solvent Concentration Yield (%)b 3 : 4 

1 Rose Bengal MeCN 0.1 M NR - 

2 Eosin Y MeCN 0.1 M NR - 

3 Riboflavin MeCN 0.1 M NR - 

4 Ru(bpy)3(PF6)2 MeCN 0.1 M NR - 

5 fac-[Ir(ppy)3] MeCN 0.1 M NR - 

6 Ir(ppy)2(dtbbpy)PF6 MeCN 0.1 M NR - 

7 Ir(Fppy)2(dtbbpy)PF6 MeCN 0.1 M Trace - 

8 Ir(dFppy)2(dtbbpy)PF6 MeCN 0.1 M 11 4.5 : 1 

9 Ir[dF(CF3)ppy]2(dtbbpy)PF6 MeCN 0.1 M 17 2 : 1 

10 Ir[dF(CF3)ppy]2(bpy)PF6 MeCN 0.1 M 26 2 : 1 

11 T(p-Cl)PPT MeCN 0.1 M 70 4 : 1 

12 Mes-Acr+ClO4
- MeCN 0.1 M > 99 4 : 1 

13c Mes-Acr+ClO4
- DMSO 0.1 M Trace - 

14c Mes-Acr+ClO4
- Toluene 0.1 M 51 16 : 1 

15c Mes-Acr+ClO4
- Acetone 0.1 M 82 15 : 1 

16c Mes-Acr+ClO4
- CH2Cl2 0.1 M 97 23 : 1 

17c Mes-Acr+ClO4
- MeCN 0.1 M > 99 10 : 1 

18c Mes-Acr+ClO4
- MeCN 0.2 M 88 8 : 1 

19c Mes-Acr+ClO4
- MeCN 0.02 M > 99 1 : 0 

20c,d Mes-Acr+ClO4
- MeCN 0.02 M > 99 (74e) 16 : 1 

21 - MeCN 0.02 M NR - 

22d,f Mes-Acr+ClO4
- MeCN 0.02 M NR - 

a. 2a 0.05 mmol; 24 h; NR = No reaction 

b. Yield was determined via 1H NMR analysis versus an internal standard (1,1,2,2-Tetrachloroethane) 

c. 48 h 

d. Catalyst [2.5 mol%] 

e. 2a 0.1 mmol; isolated yield; 

f. dark 
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Beginning with some typical photocatalysts such as Ru(bpy)3(PF6)2, fac-[Ir(ppy)3], 

Ir(ppy)2(dtbbpy)PF6, Rose Bengal, Eosin Y and Riboflavin, these reactions didn’t work at all (Table 1. 

entry 1 ~ 6). After that, several iridium-based photocatalysts were used, and they could deliver the 

desired product but in low yield (entry 7 ~ 10). Then, in use of T(p-Cl)PPT and Mes-Acr+ClO4
-, the 

desired products were obtained in excellent yield (entry 11, 12). These organophotocatalysts had high 

reduction potential 𝐸𝑟𝑒𝑑
∗ (cat*/cat·) = + 2.3 V (vs. SCE) and 𝐸𝑟𝑒𝑑

∗ (cat*/cat·) = + 2.0 V (vs. SCE), 

respectively, and these were high enough value to oxidize the 2a [𝐸1∕2
𝑜𝑥  = + 1.5 V (vs. SCE)]. 

Although T(p-Cl)PPT had higher reduction potential than Mes-Acr+ClO4
-, the reaction with Mes-

Acr+ClO4
- worked more efficiently. That’s because, the pyrylium catalysts like T(p-Cl)PPT could be 

deactivated by primary amines which came from the hydrolysis of trace amount of iminomalonate. 

Therefore, Mes-Acr+ClO4
- was selected as optimal catalyst. 

In these reactions, to our surprises, two products were generated 3a and 4a. After the oxidation of 

styrene moiety, generated radical cation intermediate which had resonance between styrene α- and β-

position could undergo nucleophilic addition of imine so that two kinds of bicyclic azetidine could be 

produced. We thought that if imine attacked β-position of the styrene, resulting product was 3a which 

had 5-membered bicyclic structure, and if α-position, the 6-membered bridged bicyclic product 4a. 

However, 4a was readily reversed to starting material in the MeCN solution. Thus, we could get 

almost 3a only as we kept longer reaction time up to 48 h. 

Next, the effect of a variety of solvent was explored. Although MeCN and CH2Cl2 showed similar 

performance, MeCN was chosen as the most effective one because various types of substrates 

dissolved better in MeCN. Also, further optimization indicated that more diluted condition was 

effective, and 2.5 mol% catalyst loading could display quantitative yield. Since the yield of 4a was in 

the range of error of 1H NMR yield, the ratio between 3a and 4a wasn’t accurate (entry 16, 17, 19, 20). 

In addition, 4a couldn’t be detected in isolation procedure which meant very trace amount of 4a 

remained in those cases. 

Finally, control experiments revealed that no product formation occurs in the absence of light or 

photocatalyst (entry 21, 22) and optimal condition was established as 2a (1.0 equiv.), Mes-Acr+ClO4
- 

(2.5 mol%), MeCN (0.02 M) under N2 atmosphere at room temperature with irradiation of 12 W blue 

LED. 

 

2.2. Plausible mechanism 

The results above said that the photocatalysts which had lower reduction potential than 1.5 V (vs. 

SCE) was shown ineffective for reaction, and in use of higher reduction potential catalysts, the 

reaction worked well. Accordingly, we suggested that the reaction included oxidation of the 2a, which 

was conducted by electron transfer with excited state photocatalyst. However, in several iridium 

photocatalysts, the cycloadduct was obtained, even though their reduction potential was lower. As we 
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looked into the reason, we found out that their triplet energy matched with 2a. 

 

Table 2. Reaction profilea 

 

Entry Catalyst 𝑬𝒓𝒆𝒅
∗ (cat*/cat-) 𝑬𝒐𝒙

∗ (cat*/cat+) ET (kcal/mol) Yieldb (%) 

1 Mes-Acr+ClO4
- + 2.06 V - 45 > 99 

2 T(p-Cl)PPT + 2.30 V - 53 70 

3 Ir[dF(CF3)ppy]2(bpy)PF6 + 0.97 V - 0.97 V 60.4 26 

4 Ir[dF(CF3)ppy]2(dtbbpy)PF6 + 1.21 V - 0.89 V 60.8 17 

5 Ir(dFppy)2(dtbbpy)PF6 + 1.14 V - 0.93 V 55.4 11 

6 Ir(Fppy)2(dtbbpy)PF6 + 1.07 V - 1.04 V 53 Trace 

7 fac-[Ir(ppy)3] + 0.31 V - 1.73 V 58 NR 

8 Ir(ppy)2(dtbbpy)PF6 + 0.66 V - 0.96 V 49 NR 

9 Ru(bpy)3(PF6)2 + 0.77 V - 0.81 V 46 NR 

10 Eosin Y + 0.79 V - 1.06 V 44 NR 

11 Rose Bengal + 0.99 V - 0.68 V 41 NR 

a. 2a 0.05 mmol; MeCN (0.1 M); 24 h 

b. 3 and 4 combined 1H NMR yield (internal standard: 1,1,2,2-Tetrachloroethane) 

 

In general, styrene moiety was known to possess triplet energy of approximately 60 kcal/mol.16 

Thus, in the case of iridium photocatalysts which have triplet energy around 60 kcal/mol, [2+2] 

reaction proceeded as the alkene was activated to diradical intermediate A* via energy transfer 

(Scheme 5a). This diradical intermediate A* can undergo relaxation pathways, so the E/Z 

isomerization can occur. Actually, the isomerization of remaining starting material was observed 

(Table 2. entry 3 ~ 6). The E:Z ratio was changed to 1:1, although the initial starting material has only 

E conformation. In addition, radical cation intermediate B could be also returned to starting material 

via back electron transfer, so that E:Z ratio 1:1 was observed even in trace amount of remaining 

starting material (entry 1, 2).  

We could notice no reaction occurred when photocatalysts had lower value of both reduction 

potential and triplet energy (entry 8 ~ 11). However, there was an exceptional case, fac-[Ir(ppy)3] 

which had triplet energy of 58 kcal/mol (entry 7), the starting material was recovered 100% with E:Z 

ratio 2.5:1.  

Interestingly, those cases which energy transfer could occur showed much inferior performance 

to the reactions using Mes-Acr+ClO4
- and T(p-Cl)PPT which could undergo redox mechanism. This 

result demonstrated the iminomalonate much prefers radical cation intermediate to diradical one for 

[2+2] cycloaddition. In other words, overall results said markedly low reactivity between triplet 

excited alkene and iminomalonate, which is contrast to the oxime or hydrazone moiety in reports from 
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other groups5,10,11. Additionally, Mes-Acr+ClO4
- has triplet energy of 45 kcal/mol which is insufficient 

to activate the styrene. 

 

 

 Scheme 5. Proposed mechanism via (a) energy transfer, (b) electron transfer. 

 

On the basis of these mechanistic investigations, we proposed feasible reaction mechanism as 

described in Scheme 5b. Firstly, blue LED irradiation17 induces excited state of Mes-Acr+ClO4
-. This 

excited photocatalyst oxidizes the substrate via SET. Then imine moiety attacks radical cation 

intermediate B18. The generated iminium cation undergoes SET reduction19 by cat· so that the 

photocatalytic cycle could be used again. Consequently, resulting diradical intermediate gives 

azetidine product by radical coupling each other. 

 

2.3. Substrate synthesis 

With our established condition, we tried to test the reactivity of several substrates in [2+2] 

photocycloaddition. Different kinds of iminomalonate were readily obtained by ketone-amine 

condensation. Amine intermediates were generally synthesized from reduction of oxime or Gabriel 

synthesis. In case of oxime reduction, firstly, the benzaldehyde or ketone was treated with vinyl 

magnesium bromide. Then, allylic alcohol underwent O-allylation and Claisen condensation 

simultaneously. Resulting tethered aldehyde was converted to oxime by hydroxylamine and followed 

by reduction to give amine. In case of 18, the allylic alcohol intermediate was prepared by Corey-

Chaykovsky type reaction. 
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In case of 2d which has strong electron withdrawing group, the amine couldn’t be prepared 

because p-NO2 group made the alkene very electrophilic and intramolecular cyclization occurred20. As 

a solution, we used azide instead of amine, then aza-Wittig reaction could afford the 2d. For azide 

intermediate, p-NO2 benzaldehyde underwent Wittig reaction with 10, followed by deprotection, 

tosylation, and azidation.  

For Gabriel synthesis, methyl hydrazine was used instead of hydrazine, because hydrazine made 

side reaction like alkene reduction. Phthalimide intermediate was prepared via SN2 reaction between 

tosylate and potassium phthalimide. Sulfur atom adopted substrate 5d was synthesized differently 

using 2-Mercaptoethylamine, and 5c was obtained from 15, which 14 was converted to via processes 

of protection, oxidation, and deprotection. Overall synthetic scheme is described in Scheme 6~8. and 

detailed procedure is in Experimental section. 
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Scheme 6. Synthesis of iminomalonate with p-substituted styrene. Reagents and conditions:  

a) VinylMgBr, THF, 0 °C, b) Hg(OAc)2, NaOAc, Butyl Vinyl Ether, 100 °C, 81% (R=H, 2 steps), 44% 

(R=CF3, 3 steps), c) NH2OH·HCl, Pyridine, rt, 99% (R=H), 100% (R=CF3), d) LAH, THF, 0 °C, 71% 

(R=H), 56% (R=CF3), e) 1, CSA, 4Å  Molecular sieves, 100 °C, 84% (R=H), 55% (R=CF3), f) 10, n-

BuLi, THF, - 30 °C, 75% (E:Z=1:4), g) TsOH, CH2Cl2/MeOH, rt, 76% (E:Z=1:4), h) TsCl, TEA, 

DMAP, CH2Cl2, rt, 87% (E:Z=1:4), i) NaN3, DMF, rt, 97% (E:Z=1:1), j) PPh3, Toluene, 70 °C, 3 h, 

then 1, Toluene, 100 °C, 92% (E:Z=20:1), k) TrCl, pyridine, CH2Cl2, rt, 92%, l) Imidazole, PPh3, I2, 

Et2O/MeCN, 0 °C, 91%, m) PPh3, Benzene, 90 °C, 85% 



23 

 
 

Scheme 7. Synthesis of heteroatom adopted iminomalonate. Reagents and conditions:  

a) Ethylene glycol, NaH, NaI, THF, 70 °C, 63%, b) TsCl, TEA, DMAP, CH2Cl2, 0 °C, 96%, c) PPI, 

DMF, 90 °C, 82%, d) MeNHNH2·H2SO4, TEA, MeOH, 70 °C, 79%, e) 1, CSA, 4Å  Molecular sieves, 

100 °C, 74%, f) 2-Aminoethanol, MeCN, rt, 76%, g) TsCl, TEA, DMAP, CH2Cl2, rt, 95%, h) PPI, 

DMF, 90 °C, 90%, i) MeNHNH2·H2SO4, TEA, MeOH, 70 °C, 58%, j) 1, CSA, 4Å  Molecular sieves, 

100 °C, 59%, k) Cysteamine hydrochloride, LiOH·H2O, Ethanol/H2O, 90%, l) 1, CSA, 4Å  Molecular 

sieves, 100 °C, 66%, m) Boc2O, TEA, CH2Cl2, 0 °C, 97%, n) m-CPBA, THF, 0 °C, 96%, o) TFA, 

CH2Cl2, 0 °C, 98%, p) 1, CSA, 4Å  Molecular sieves, 100 °C, 72% 
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Scheme 8. Synthesis of iminomalonate with alkyl substituted alkene. Reagents and conditions:  

a) VinylMgBr, Toluene, 0 °C, 57%, b) Hg(OAc)2, NaOAc, Butyl Vinyl Ether, 100 °C, 70%, c) 

NH2OH·HCl, Pyridine, rt, 91%, d) LAH, THF, 0 °C, 60%, e) 1, CSA, 4Å  Molecular sieves, 100 °C, 

54%, f) KOtBu, DMSO, 0 °C, 57%, g) 1, CSA, 4Å  Molecular sieves, 100 °C, 58%, h) NBS, THF/H2O, 

0 °C, i) NaOH, Et2O, rt, 90% (2 steps), j) (CH3)3SI, n-BuLi, THF, - 10 °C, 61%, k) Hg(OAc)2, NaOAc, 

Butyl Vinyl Ether, 100 °C, 68%, l) NH2OH·HCl, Pyridine, rt, 92%, m) LAH, THF, 0 °C, 53%, n) 1, 

CSA, 4Å  Molecular sieves, 100 °C, 51% 
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Table 3. Substrate scope 1 

 

 

We investigated the reactivity of various kind of iminomalonate with our standard condition. 

Firstly, the electronic effect of the styrene was explored. As we expected, when the electron donating 

group was on aryl group, the standard condition afforded azetidine product 3b in excellent yield. 

However, in case of the substrate which had electron withdrawing group such as CF3 or NO2, the 

reaction didn’t work at all. We assumed these electron deficient substrates have higher oxidation 

potential than Mes-Acr+ClO4
- and oxidation of the substrate couldn’t proceed. So, T(p-Cl)PPT (5 

mol%) was applied which is stronger oxidant than Mes-Acr+ClO4
-. As a result, 3c was obtained in 

good yield. Although this reaction has electrochemical constraint which the oxidation of electron 

deficient substrate is hard, we can overcome it by using T(p-Cl)PPT and expand the range of available 

substrates. But, unfortunately, nitro group prevents formation of 3d even in presence of T(p-Cl)PPT, 

implying there is still oxidation limitation. 
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Table 4. Substrate scope 2 

 

 

Next, we changed the tether between imine and alkene and prepared the substrates 5a~5d. 

Surprisingly, the reaction only provided 6 which is the product from C-N bond formation on α-

position of styrene. The heteroatom adopted bicyclic azetidines were obtained in moderate yield but 

the substrate with sulfide moiety 5d wasn’t successful. Probably, there was little chance of alkene 

oxidation because the sulfur atom could get oxidized and undergo back electron transfer. In contrast, 

the sulfone adopted azetidine 6c could be generated, as the sulfone prevents that side reaction. 
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Table 5. Substrate scope 3 

 

 

To further explore the scope, the tri-alkyl substituted alkene substrate 7a was synthesized. 7a 

gave azetidine product 8a in 36% yield, and interestingly, 9 was observed in 19% yield. In our 

proposed mechanism, after C-N bond formation, the diradical intermediate D was generated, then 

direct radical-radical coupling provided 8a. Otherwise, nitrogen alpha radical underwent 1,5-hydrogen 

atom transfer21, so that 9 could be formed. As similar substrates, 7b and 7c which have indene moiety 

were tested, but they showed no reaction.  
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III.  Conclusion 

 
In summary, we have developed intramolecular [2+2] aza cycloaddition of alkene and imine via 

visible light photocatalysis, which can directly produce bicyclic azetidine derivatives up to 92% yield 

without any by-product. More variously functionalized azetidine can be accessed, as iminomalonate 

moiety is used as a new imine group which has different reactivity pattern from others. This mild 

protocol does not require transition metal or external redox reagents, so it has huge benefit over other 

methods utilizing UV light or metal photocatalyst and can be applied to the synthesis and modification 

of bioactive molecules. 
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IV.  Experimental 

 

 
General methods 

 

 
The reactions were carried out in oven dried glassware under N2 atmosphere with dry solvents. All 

photocatalysis reactions were completed under argon atmosphere in glovebox. Organic solutions were 

evaporated under reduced pressure on a Büchi rotary evaporator using water bath. The reaction was 

monitored by analytical thin layer chromatography (TLC) using Merck TLC Silica gel 60 F254 

precoated plate (0.2 mm thickness). After elution, plates were visualized using UV radiation (254 nm). 

Further visualization was possible by staining with solution of potassium permanganate, ceric 

molybdate, or ninhydrin. Flash column chromatography was performed with Silica Flash P60 silica 

gel (230-400 mesh). All reagents were obtained from commercial sources (Alfa Aesar, Sigma Aldrich, 

TCI Chemicals) and were used without further purification. Proton (1H) and carbon (13C) NMR 

spectra were recorded on a 400/100 MHz Agilent 400M FT-NMR spectrometer. NMR solvents were 

obtained from Cambridge Isotope Laboratories and the residual solvent signals were taken as the 

reference (0.0 ppm for 1H NMR spectra and 77.0 ppm for 13C NMR spectra in CDCl3). The signals 

observed are described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling 

constants are reported as J value in Hz. High resolution mass analysis was performed with Bruker 

HCT Basic System coupled with Agilent 1200 Series. Cyclic voltammetry spectra were recorded on 

WizMAC WizECM – 1200 Premium. The reaction mixture of photocatalysis was irradiated with 12 

W blue LED lamp. Systematic nomenclature for the compounds follows the numbering system as 

defined by IUPAC with assistance from CS Chemdraw®  software.
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General procedure A: 

Visible-light photocatalysis for [2+2] cycloaddition between imine and alkene 

Photocatalyst Mes-Acr+ClO4
- (2.5 mol%) were added to an oven-dried 8 ml-vial equipped with a 

stir bar and dissolved in MeCN (4 ml) under argon atmosphere. To this solution was added 

iminomalonate (0.1 mmol, 1.0 equiv.) in MeCN (1 ml), then resulting reaction mixture was irradiated 

by 12W blue LED lamp at room temperature. After completion of the reaction as monitored by TLC, 

the solution was concentrated under reduced pressure. The crude material was purified by flash 

column chromatography on silica gel to give the desired azetidine product. 

 

Diisopropyl 6-phenyl-1-azabicyclo[3.2.0]heptane-7,7-dicarboxylate (3a) 

Prepared according to General procedure A using Diisopropyl (E)-2-((5-

phenylpent-4-en-1-yl)imino)malonate (2a), 74% yield; 1H NMR (400 MHz, 

CDCl3) δ 7.42 – 7.27 (m, 5H), 5.17 (hept, J = 6.2 Hz, 1H), 4.61 (hept, J = 6.1 Hz, 

1H), 4.33 (d, J = 8.6 Hz, 1H), 3.79 (ddd, J = 10.4, 7.3, 2.6 Hz, 1H), 3.13 (td, J = 

8.1, 3.3 Hz, 1H), 2.42 (td, J = 9.2, 7.2 Hz, 1H), 1.97 - 1.75 (m, 3H), 1.49 - 1.42 

(m, 1H), 1.34 - 1.29 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 162.25, 157.03, 136.70, 128.61, 127.55, 

101.73, 77.97, 73.03, 67.14, 59.94, 52.59, 25.70, 22.81, 22.35, 22.21, 22.05, 21.90; MS (APCI): m/z 

346.2 [M+H] +. 

 

Diisopropyl 6-(4-(tert-butyl)phenyl)-1-azabicyclo[3.2.0]heptane-7,7-dicarboxylate (3b) 

Prepared according to General procedure A using Diisopropyl (E)-2-((5-(4-

(tert-butyl)phenyl)pent-4-en-1-yl)imino)malonate (2b), 92% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.41 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 5.16 

(hept, J = 6.1 Hz, 1H), 4.62 (hept, J = 6.1 Hz, 1H), 4.32 (d, J = 8.6 Hz, 1H), 

3.77 (ddd, J = 10.5, 7.7, 2.5 Hz, 1H), 3.12 (td, J = 8.1, 3.2 Hz, 1H), 2.41 (td, J 

= 9.2, 6.9 Hz, 1H), 1.96 - 1.76 (m, 3H), 1.49 - 1.43 (m, 1H), 1.33 - 1.27 (m, 21H); 13C NMR (100 

MHz, CDCl3) δ 165.31, 157.09, 151.58, 133.70, 127.22, 125.52, 101.65, 77.81, 72.87, 67.09, 59.88, 

52.61, 34.61, 31.29, 25.81, 22.80, 22.34, 22.22, 22.06, 21.88; MS (APCI): m/z 402.3 [M+H] +. 

 

Diisopropyl 6-(4-(trifluoromethyl)phenyl)-1-azabicyclo[3.2.0]heptane-7,7-dicarboxylate (3c) 

Prepared according to General procedure A using Diisopropyl (E)-2-((5-(4-

(trifluoromethyl)phenyl)pent-4-en-1-yl)imino)malonate (2c), and T(p-Cl)PPT 

(5 mol%) instead of Mes-Acr+ClO4
- (2.5 mol%), 65% yield; 1H NMR (400 

MHz, CDCl3) δ 7.67 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 5.17 (hept, J 

= 6.3 Hz, 1H), 4.59 (hept, J = 6.2 Hz, 1H), 4.37 (d, J = 8.5 Hz, 1H), 3.80 (m, 

1H), 3.10 (td, J = 8.2, 3.4 Hz, 1H), 2.43 (td, J = 9.4, 7.2 Hz, 1H), 1.96 - 1.76 (m, 3H), 1.46 - 1.40 (m, 
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1H), 1.34-1.31 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 165.05, 156.61, 140.58, 130.82 (q, J = 32.5 

Hz), 127.88, 125.63 (q, J = 3.7 Hz), 122.55 (q, J = 270 Hz), 102.07, 77.31, 73.40, 67.33, 60.03, 52.57, 

25.86, 22.82, 22.37, 22.19, 22.03, 21.90; MS (APCI): m/z 414.2 [M+H] +. 

 

Diisopropyl 8-phenyl-4-oxa-1-azabicyclo[4.1.1]octane-7,7-dicarboxylate (6a) 

Prepared according to General procedure A using Diisopropyl 2-((2-

(cinnamyloxy)ethyl)imino)malonate (5a), 58% yield; 1H NMR (400 MHz, 

CDCl3) δ 7.44 – 7.37 (m, 3H), 7.34 – 7.31 (m, 2H), 5.46 (d, J = 9.3 Hz, 1H),  

5.13 (hept, J = 6.2 Hz, 1H), 4.72 (m, 1H), 3.87 (dd, J = 11.4, 3.6 Hz, 1H), 3.79 (ddd, J = 11.9, 8.5, 2.9 

Hz, 2H), 3.46 (d, J = 12.2 Hz, 1H), 3.29 (dt, J = 12.1, 2.0 Hz, 1H), 2.81 (td, J = 11.8, 3.8 Hz, 1H), 

2.68 (dd, J = 9.2, 2.6 Hz, 1H), 1.32 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 165.00, 158.98, 136.65, 

128.83, 128.74, 126.94, 102.83, 75.54, 72.69, 67.40, 67.22, 65.17, 58.03, 49.55, 22.34, 22.22, 22.13, 

22.09; MS (APCI): m/z 362.2 [M+H] +. 

 

Diisopropyl 8-phenyl-4-tosyl-1,4-diazabicyclo[4.1.1]octane-7,7-dicarboxylate (6b) 

Prepared according to General procedure A using Diisopropyl 2-((2-((N-

cinnamyl-4-methylphenyl)sulfonamido)ethyl)imino)malonate (5b), 55% yield; 

1H NMR (400 MHz, CDCl3) δ 7.52 – 7.41 (m, 7H), 7.28 – 7.26 (m, 2H), 5.54 

(d, J = 9.3 Hz, 1H), 5.07 (hept, J = 5.8 Hz, 1H), 4.75 (hept, J = 6.1 Hz, 1H), 

3.65 (dd, J = 11.1, 2.7 Hz, 1H), 3.38 (dt, J = 12.1, 2.8 Hz, 1H), 3.27 (d, J = 12.0 Hz, 1H), 2.85 (m, 2H), 

2.52 (td, J = 11.8, 3.4 Hz, 2H), 2.40 (s, 3H), 1.30 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 164.92, 

159.25, 144.01, 136.05, 131.02, 129.60, 129.02, 128.84, 127.97, 127.03, 101.63, 75.78, 72.75, 67.28, 

57.72, 48.47, 46.43, 44.80, 22.39, 22.16, 22.13, 22.09, 21.45; MS (APCI): m/z 515.2 [M+H] +. 

 

Diisopropyl 8-phenyl-4-thia-1-azabicyclo[4.1.1]octane-7,7-dicarboxylate 4,4-dioxide (6c) 

Prepared according to General procedure A using Diisopropyl 2-((2-

(cinnamylsulfonyl)ethyl)imino)malonate (5c), 61% yield;  1H NMR (400 MHz, 

CDCl3) δ 7.45 – 7.41 (m, 5H), 5.64 (d, J = 9.5 Hz, 1H), 5.12 (hept, J = 6.2 Hz, 

1H), 4.74 (hept, J = 6.2 Hz, 1H), 3.61 (m, 1H), 3.39 (m, 3H), 3.21 (dd, J = 14.6, 5.6 Hz, 1H), 3.03 (m, 

1H), 2.77 (dt, J = 14.6, 3.7 Hz, 1H), 2.68 (dd, J = 9.2, 2.6 Hz, 1H), 1.34 (m, 6H), 1.30 (m, 6H); 13C 

NMR (100 MHz, CDCl3) δ 164.63, 158.86, 135.21, 129.38, 129.12, 127.48, 101.31, 76.52, 73.04, 

67.70, 60.01, 51.12, 49.50, 47.86, 22.35, 22.16, 22.13, 22.08; MS (APCI): m/z 410.1 [M+H] +. 
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Diisopropyl 1',3'-dihydro-1-azaspiro[bicyclo[3.2.0]heptane-6,2'-indene]-7,7-dicarboxylate (8a) 

Prepared according to General procedure A using Diisopropyl 2-((4-(1,3-

dihydro-2H-inden-2-ylidene)butyl)imino)malonate (7a), 36% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.25 - 7.16 (m, 4H), 5.16 (hept, J = 6.2 Hz, 1H), 4.35 

(hept, J = 6.2 Hz, 1H), 3.73 (td, J = 9.0, 2.6 Hz, 1H), 3.44 (dd, J = 8.5, 3.9 Hz, 

1H), 3.22 - 2.93 (m, 4H), 2.82 (td, J = 9.3, 7.6 Hz, 1H), 2.28 - 2.21 (m, 1H), 2.06 – 1.84 (m, 2H), 1.72 

- 1.64 (m, 1H), 1.31 (dd, J = 6.3, 4.8 Hz, 6H), 1.18 (d, J = 6.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

165.06, 154.05, 140.80, 139.79, 126.75, 126.73, 124.52, 124.50, 89.08, 72.83, 67.14, 59.78, 51.09, 

43.41, 38.75, 25.80, 22.94, 22.23, 22.20, 22.06, 21.80; MS (APCI): m/z 372.1 [M+H] +. 

 

Diisopropyl 2-(2-(1H-inden-2-yl)pyrrolidin-1-yl)malonate (9) 

Prepared according to General procedure A using Diisopropyl 2-((4-(1,3-

dihydro-2H-inden-2-ylidene)butyl)imino)malonate (7a), 19% yield; 1H 

NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H) 

7.23 (t, J = 7.4 Hz, 1H), 7.13 (td, J = 7.4, 1.3 Hz, 1H), 6.74 (s, 1H), 5.06 (m, 

2H), 4.16 (s, 1H), 4.04 (t, J = 7.5 Hz, 1H), 3.36 (m, 3H), 3.03 (td, J = 8.5, 7.0 Hz, 1H), 2.13 - 2.05 (m, 

1H), 1.94 - 1.76 (m, 3H), 1.23 (t, J = 6.0 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 167.62, 167.34, 

151.19, 144.72, 143.57, 129.14, 126.23, 124.18, 123.76, 120.40, 68.80, 68.67, 64.94, 62.16, 48.26, 

37.35, 32.77, 23.88, 21.88, 21.79, 21.65, 21.58; MS (APCI): m/z 372.1 [M+H] +. 
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Synthesis of substrates: 

- Synthesis of photocatalyst Mes-Acr+ClO4- 

 

Prepared with slightly modified procedure from previous reportS1. To a solution of 10-methylacridin-

9(10H)-one (220 mg, 1.0 equiv.) in THF (5.3 ml, total 0.125 M) was slowly added MesMgBr (3.15 ml, 

1 M in THF, 3.0 equiv.) at rt under N2, then the mixture was stirred for 48 h. After completion 

(monitored by TLC, 10%MeOH/CH2Cl2 as eluent), the reaction was quenched with water (30 ml) and 

extracted three times with ethyl acetate (20 ml). The combined organic layer was dried over Na2SO4, 

concentrated, the red oil was obtained. 

The oil was then dissolved in CH2Cl2 (3.2 ml, 0.33 M), and HClO4 (108 ul, 70%, 1.2 equiv.) was 

added. The mixture was stirred at rt for 1 h, diethyl ether was added dropwise, and the yellow solid 

appeared. The yellow solid was then filtered, washed with ether to afford the acridinium photocatalyst, 

380 mg, 88% yield. 

9-mesityl-10-methylacridin-10-ium perchlorate (Mes-Acr+ClO4-)  

 

1H NMR (400 MHz, CDCl3) δ 8.75 (d, J = 9.2 Hz, 2H), 8.4 (ddd, J = 9.2, 6.7, 1.6 Hz, 2H), 7.87 (dd, J 

= 8.5, 1.4 Hz, 2H), 7.79 (ddd, J = 8.6, 6.6, 0.7 Hz, 2H), 7.16 (m, 2H), 5.10 (s, 3H), 2.49 (s, 3H), 1.74 

(s, 6H); The compound was identified by spectral comparison with literature dataS1. 

 

- Synthesis of diisopropyl 2,2-dihydroxymalonate 

 

Prepared with slightly modified procedure from previous reportS2. In a reaction flask, diisopropyl 

malonate (7.5 g, 1.0 equiv.) was dissolved in acetonitrile (200 ml, 0.2 M) and to the resulting solution 

ceric ammonium nitrate (3.3 g, 15 mol%) was added in one portion under constant stirring. The 
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reaction vessel was fitted with O2 balloon and heated to 50 °C. Progress of the reaction was monitored 

by checking the TLC of the reaction mixture. After confirming the consumption of the starting 

material, water was added to the reaction mixture and stirred until the reaction mixture became 

colorless. Next, the reaction mixture was extracted three times with ethyl acetate (equal volume). The 

combined organic layers were washed with brine, dried over anhydrous Na2SO4 and concentrated in 

vacuo. The crude product was obtained and purified by column chromatography to give ketomalonate 

hydrate, 5.9 g, 70% yield. 

Diisopropyl 2,2-dihydroxymalonate  

 

1H NMR (400 MHz, CDCl3) δ 5.16 (hept, J = 6.3 Hz, 2H), 4.78 (s, 2H), 1.3 (d, J = 6.3 Hz, 12H); The 

compound was identified by spectral comparison with literature dataS2. 

 

- Synthesis of Wittig reagent (10) 

 

To a vigorously stirred solution of 1,4-butanediol (13.5 g, 10 equiv.) in CH2Cl2 (150 ml, 0.1 M) were 

added Trityl Chloride (4.2 g, 1.0 equiv.) and pyridine (1.3 g, 1.1 equiv.) at room temperature. After 90 

min, the solution was washed three times with brine (50 ml). The organic phase was dried over 

Na2SO4 and the solvents were evaporated in vacuo. The residue was purified by silica gel flash 

column chromatography to afford 4-(trityloxy)butan-1-ol (4.1 g, 82%) as a white solid. 

4-(trityloxy)butan-1-ol  

 

1H NMR (400 MHz, CDCl3) δ 7.44 (m, 6H), 7.27 (m, 9H), 3.64 (d, J = 6.4 Hz, 2H), 3.12 (t, J = 5.7 Hz, 

2H), 1.71 - 1.61 (m, 5H); The compound was identified by spectral comparison with literature dataS3. 

 

To a solution of 4-(trityloxy)butan-1-ol (4.1 g, 1.0 equiv.) in Et2O/MeCN (62 ml, 0.2 M, 3:1) were 

added imidazole (2.5 g, 3.0 equiv.) and triphenylphosphine (4.9 g, 1.5 equiv.) at room temperature. 

The solution was cooled to 0 °C and iodine (4.7 g, 1.5 equiv.) was added in portions over 5 min. After 

30 min at 0 °C, the solution was allowed to warm to room temperature overnight. After 1 h at room 

temperature, the solution was diluted with Et2O (50 ml). The precipitate was filtered off and washed 
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with Et2O. The filtrate was washed two times with a saturated aqueous Na2S2O3 solution (50 ml) and 

dried over Na2SO4. The solvents were evaporated in vacuo and the residue was purified by silica gel 

flash column chromatography to afford ((4-iodobutoxy)methanetriyl)tribenzene (4.7 g, 86%) as a 

white solid. 

((4-iodobutoxy)methanetriyl)tribenzene  

 

1H NMR (400 MHz, CDCl3) δ 7.43 (m, 6H), 7.26 (m, 9H), 3.16 (t, J = 7.0 Hz, 2H), 3.09 (t, J = 6.2 Hz, 

2H), 1.94 (p, J = 7.1 Hz, 2H), 1.71 (m, 2H); The compound was identified by spectral comparison 

with literature dataS3. 

 

To a solution of ((4-iodobutoxy)methanetriyl)tribenzene (4.7 g, 1.0 equiv.) in benzene (50 ml, 0.2 M) 

was added triphenylphosphine (5.6 g, 2.0 equiv.) at room temperature. The solution was heated under 

reflux for 30 h, and then allowed to cool to room temperature. The phosphonium salt was filtered off, 

washed three times with benzene (30 ml), and dried under vacuum to afford 10 (6.4 g, 85%) as a white 

solid. 

triphenyl(4-(trityloxy)butyl)phosphonium iodide (10) 

 

1H NMR (400 MHz, CDCl3) δ 7.82 - 7.60 (m, 15H), 7.36–7.16 (m, 15H), 3.68 (m, 2H), 3.16 (m, 2H), 

2.05 (m, 2H), 1.83 (m, 2H); The compound was identified by spectral comparison with literature 

dataS3. 

 

- Synthesis of p-substituted iminomalonate 

 

Corresponding benzaldehyde (1.0 equiv.) was dissolved in dry THF (0.4 M). The solution was cooled 

to 0 °C and vinyl magnesium bromide (1 M in THF, 1.1 equiv.) was added dropwise. After 15 min, the 
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reaction mixture was allowed to warm to rt and stirred at rt for 1 h. The reaction was quenched by 

addition of sat. aq. NH4Cl (equal volume), the phases were separated, and the aqueous phase was 

extracted three times with EtOAc (equal volume), then dried over Na2SO4, filtered and concentrated 

in vacuo to yield the allylic alcohol as pale-yellow liquid.  

Under argon atmosphere, Hg(OAc)2 (10 mol%), NaOAc (10 mol%), and allylic alcohol (1.0 equiv.) 

were dissolved in n-butyl vinyl ether (0.8 M). The reaction mixture was stirred at reflux for 17 h. The 

mixture was cooled to rt and poured into sat. aq. NaHCO3 solution (equal volume) and extracted three 

times with EtOAc (equal volume). The combined organic layers were dried over anhydrous MgSO4, 

filtered, and evaporated. Column chromatography afforded aldehyde compound as a yellow liquid. 

 

(E)-5-phenylpent-4-enal 

Prepared according to right above procedure using benzaldehyde, 81% yield 

(2 steps); 1H NMR (400 MHz, CDCl3) δ 9.83 (t, J = 1.3 Hz, 1H), 7.35 – 

7.19 (m, 5H), 6.43 (d, J = 15.8 Hz, 1H), 6.20 (dt, J = 15.8, 6.6 Hz, 1H), 

2.63 (m, 2H), 2.56 (m, 2H); The compound was identified by spectral comparison with literature 

dataS4. 

 

(E)-5-(4-(trifluoromethyl)phenyl)pent-4-enal 

Prepared according to right above procedure using 4-trifloromethyl 

benzaldehyde, 44% yield (2 steps); 1H NMR (400 MHz, CDCl3) δ 

9.83 (t, J = 1.2 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 

2H), 6.46 (d, J = 15.9 Hz, 1H), 6.31 (dt, J = 15.8, 6.5 Hz, 1H), 2.66 (m, 2H), 2.58 (m, 2H); 13C NMR 

(100 MHz, CDCl3) δ 201.28, 140.65, 131.02, 129.91, 129.01 (q, J = 32.3 Hz), 126.16, 125.45 (q, J = 

3.8 Hz), 122.84 (q, J = 271 Hz), 43.03, 25.42; MS (APCI): m/z 229.3 [M+H] +. 

 

A solution of aldehyde (1.0 equiv.) in 0.5 M of pyridine was cooled with an ice bath. hydroxylamine 

hydrochloride (1.2 equiv.) was added slowly with stirring. After the reaction was completed 

(monitored by TLC), pyridine was evaporated, and the residue was purified by flash chromatography 

to give oxime as a colorless oil. 

(4E)-5-phenylpent-4-enal oxime 

Prepared according to right above procedure using (E)-5-phenylpent-

4-enal, 99% yield; 1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H), 7.35 – 

7.18 (m, 5H), 6.78 (t, J = 5.3 Hz, 1H), 6.44 (d, J = 15.8 Hz, 1H), 6.20 

(dt, J = 15.8, 6.7 Hz, 1H), 2.57 (q, J = 7.2 Hz, 2H), 2.42 (q, J = 7.1 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 151.88, 137.34, 130.98, 128.72, 128.51, 127.14, 126.05, 29.30, 24.55; MS (APCI): m/z 

176.0 [M+H] +. 
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(4E)-5-(4-(trifluoromethyl)phenyl)pent-4-enal oxime 

Prepared according to right above procedure using (E)-5-(4-

(trifluoromethyl)phenyl)pent-4-enal, quantitative yield; 1H NMR 

(400 MHz, CDCl3) δ 8.80 (s, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.42 

(d, J = 8.1 Hz, 2H), 6.79 (t, J = 5.3 Hz, 1H), 6.47 (d, J = 15.9 Hz, 

1H), 6.30 (dt, J = 15.7, 6.5 Hz, 1H), 2.59 (q, J = 6.9 Hz, 2H), 2.45 (q, J = 7.0 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 151.55, 140.77, 131.53, 129.76, 128.97 (q, J = 32.5 Hz), 126.17, 125.45 (q, J = 3.8 

Hz), 122.84 (q, J = 270 Hz), 29.28, 24.31; MS (APCI): m/z 244.1 [M+H] +. 

 

To a mixture of LAH (2.2 equiv.) in THF (0.3 M) at 0 °C, was added dropwise a solution of oxime 

(1.0 equiv.) in THF over 15 min under nitrogen. The reaction was warmed up to room temperature. 

After the reaction was completed (monitored by TLC), the reaction was cooled down to 0 °C, and 

quenched with H2O (x ul) and an aqueous solution of NaOH (2x ul, 15%) then H2O (3x ul) (for x mg 

of LAH). Crude material was dried over Na2SO4 and filtered. The filtrate was purified by short 

column chromatography. 

(E)-5-phenylpent-4-en-1-amine (11a) 

Prepared according to right above procedure using (4E)-5-phenylpent-4-

enal oxime, 82% yield; 1H NMR (400 MHz, CDCl3) δ 7.35 - 7.17 (m, 5H), 

6.40 (d, J = 15.8 Hz, 1H), 6.22 (dt, J = 16.0, 6.9 Hz, 1H), 2.76 (t, J = 7.1 

Hz, 2H), 2.26 (q, J = 7.2 Hz, 2H), 1.63 (p, J = 7.2 Hz, 2H), 1.33 (brs, 2H); The compound was 

identified by spectral comparison with literature dataS5. 

 

 (E)-5-(4-(trifluoromethyl)phenyl)pent-4-en-1-amine (11c) 

Prepared according to right above procedure using (4E)-5-(4-

(trifluoromethyl)phenyl)pent-4-enal oxime, 56% yield; There were 

inseparable mixture which could be isolated in next step, so (E)-5-(4-

(trifluoromethyl)phenyl)pent-4-en-1-amine, 11c was used as crude. 

 

General procedure B (condensation reaction to give iminomalonate, slightly modified procedure 

from previous reportS2) 

Diisopropyl 2,2-dihydroxymalonate (1.0 equiv.) was taken in a flask with toluene (0.2 M) and freshly 

activated 4 Å  molecular sieves. To this solution corresponding amine (1.0 equiv.) was added followed 

by CSA (5 mol%). The reaction mixture was heated at 100 °C for 2 h. After confirming the 

completion of the reaction (monitored by TLC), the reaction mixture was allowed to cool to room 

temperature. Toluene was removed under reduced pressure and the crude material was purified by 

column chromatography to give iminomalonate. 
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Diisopropyl (E)-2-((5-phenylpent-4-en-1-yl)imino)malonate (2a) 

Prepared according to General procedure B using (E)-5-

phenylpent-4-en-1-amine (11a), 84% yield; 1H NMR (400 MHz, 

CDCl3) δ 7.34 - 7.26 (m, 4H), 7.21 – 7.16 (m, 1H), 6.40 (dt, J = 

15.8, 1.5 Hz, 1H), 6.20 (dt, J = 15.8, 6.9 Hz, 1H), 5.21 (m, 2H), 3.65 (t, J = 7.1 Hz, 2H), 2.28 (m, 2H), 

1.93 (p, J = 7.2 Hz, 2H), 1.33 (d, J = 6.3 Hz, 6H), 1.30 (d, J = 6.3 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 162.16, 160.48, 154.31, 137.57, 130.61, 129.56, 128.44, 126.92, 125.93, 70.53, 70.11, 54.93, 

30.69, 29.48, 21.64, 21.59; MS (APCI): m/z 346.3 [M+H] +. 

 

Diisopropyl (E)-2-((5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)imino)malonate (2c) 

Prepared according to General procedure B using (E)-5-(4-

(trifluoromethyl)phenyl)pent-4-en-1-amine (11c), 55% yield;  

1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.1 Hz, 2H), 7.41 

(d, J = 8.2 Hz, 2H), 6.43 (d, J = 15.9 Hz, 1H), 6.31 (dt, J = 

15.8, 6.7 Hz, 1H), 5.21 (m, 2H), 3.65 (t, J = 7.0 Hz, 2H), 2.32 (m, 2H), 1.95 (p, J = 7.1 Hz, 2H), 1.33 

(d, J = 6.3 Hz, 6H), 1.31 (d, J = 6.3 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 162.09, 160.43, 154.41, 

141.06, 141.04, 132.50, 129.40, 128.74 (q, J = 32.5 Hz), 126.05, 125.39 (q, J = 3.9 Hz), 122.89 (q, J = 

270 Hz), 70.57, 70.17, 54.78, 30.69, 29.23, 21.63, 21.56; MS (APCI): m/z 414.3 [M+H] +. 

 

- Synthesis of p-nitro iminomalonate 

 

To a solution of phosphonium salt (10, 1.5 equiv.) in THF (0.1 M) was added n-BuLi (2.5 M in hexane, 

1.5 equiv.) at - 30 °C. The orange solution was stirred for 15 min at - 30 °C and a solution of p-nitro 

benzaldehyde (1.0 equiv.) in THF was added dropwise. The resulting solution was stirred for 15 min 

at 0 °C and then allowed to warm to room temperature for 30 min. The solution was treated with a 

saturated aqueous NaHCO3 solution (equal volume) and diluted with EtOAc (equal volume). The 

aqueous phase was extracted with EtOAc three times (equal volume). The combined organic phases 

were dried over Na2SO4 and the solvent was evaporated in vacuo. The residue was purified by silica 
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gel flash column chromatography to give (((5-(4-nitrophenyl)pent-4-en-1-

yl)oxy)methanetriyl)tribenzene as an inseparable E/Z mixture. 

p-TsOH·H2O (0.1 equiv.) was added in portions to a solution of (((5-(4-nitrophenyl)pent-4-en-1-

yl)oxy)methanetriyl)tribenzene (1.0 equiv.) in CH2Cl2/MeOH 2:1 (0.3 M) at room temperature and the 

reaction mixture stirred for 2 h. After addition of a sat. NaHCO3 solution (equal volume), the aqueous 

layer was separated and extracted three times with CH2Cl2 (equal volume). The combined extracts 

were dried over Na2SO4 and concentrated in vacuo. The residue was purified by column 

chromatography to give 5-(4-nitrophenyl)pent-4-en-1-ol as a separable E/Z mixture (E:Z=1:4). 

 5-(4-nitrophenyl)pent-4-en-1-ol 

Prepared according to right above procedure, 57% yield (2 steps); E 

isomer: 1H NMR (400 MHz, CDCl3) δ 8.16 (m, 2H), 7.46 (m, 2H), 

6.46 (m, 2H), 3.73 (t, J = 6.5 Hz, 2H), 2.39 (td, J = 7.6, 5.5 Hz, 2H), 

1.79 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 146.46, 144.15, 135.54, 128.61, 126.37, 123.95, 62.14, 

31.81, 29.49; Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.19 (m, 2H), 7.43 (m, 2H), 6.49 (dt, J = 11.7, 

1.9 Hz, 1H), 5.88 (dt, J = 11.7, 7.4 Hz, 1H), 3.69 (t, J = 6.4 Hz, 2H), 2.44 (qd, J = 7.4, 1.9 Hz, 2H), 

1.75 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 146.19, 144.22, 136.03, 129.35, 127.63, 123.51, 62.11, 

32.46, 25.15; MS (APCI): m/z 208.0 [M+H] +. 

 

To a solution of 5-(4-nitrophenyl)pent-4-en-1-ol (E:Z=1:1, 1.0 equiv.), triethylamine (1.2 equiv.), and 

4-(dimethylamino)pyridine (5 mol%) in CH2Cl2 (0.1 M) at 0 °C was added p-toluenesulfonyl chloride 

(1.1 equiv.) in three portions. The reaction mixture was brought to room temperature and stirred for 2 

h. Then sat. aq. NaHCO3 (equal volume) was added, and the mixture was vigorously stirred for 15 min 

at rt. The aqueous layer was extracted three times with CH2Cl2 (equal volume). The combined extract 

was dried over Na2SO4, and the solvent was evaporated in vacuo. The residue was purified by column 

chromatography to give 5-(4-nitrophenyl)pent-4-en-1-yl 4-methylbenzenesulfonate as E/Z mixture 

(E:Z=1:1). 

5-(4-nitrophenyl)pent-4-en-1-yl 4-methylbenzenesulfonate 

Prepared according to right above procedure, 87% yield; E isomer: 

1H NMR (400 MHz, CDCl3) δ 8.16 (m, 2H), 7.80 (m, 2H), 7.41 (m, 

2H), 7.34 (m, 2H), 6.41 (d, J = 15.9 Hz, 1H), 6.3 (dt, J = 15.8, 6.7 

Hz, 1H), 4.09 (m, 2H), 2.44 (s, 3H), 2.34 (m, 2H), 1.86 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 

146.59, 144.83, 143.77, 133.75, 132.98, 129.85, 129.50, 127.86, 126.47, 123.92, 69.45, 28.91, 28.12, 

21.62; Z isomer: 1H NMR (400 MHz, CDCl3) δ 8.16 (m, 2H), 7.75 (m, 2H), 7.37 - 7.32 (m, 4H), 6.49 

(dt, J = 11.7, 1.9 Hz, 1H), 5.76 (dt, J = 11.7, 7.4 Hz, 1H), 4.07 (t, J = 6.2 Hz, 2H), 2.45 (s, 3H), 2.38 

(qd, J = 7.4, 1.9 Hz, 2H), 1.84 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 146.33, 144.88, 143.80, 
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134.27, 132.99, 129.83, 129.32, 128.44, 127.79, 123.53, 69.43, 28.84, 24.70, 21.62; MS (APCI): m/z 

362.0 [M+H] +. 

 

A solution of 5-(4-nitrophenyl)pent-4-en-1-yl 4-methylbenzenesulfonate (E:Z=1:1, 1.0 equiv.) and 

sodium azide (1.1 equiv.) in DMF (0.2 M) was allowed to stir at rt for 9 h. Subsequently, ethyl acetate 

(equal volume) was added to the reaction mixture and it was washed three times with water (equal 

volume). The organic layer was dried over anhydrous Na2SO4, filtered and concentrated in vacuo to 

give azide intermediate as a colorless liquid, which was used in the next reaction without further 

purification.  

Triphenylphosphine (1.0 equiv.) in anhydrous toluene (0.2 M) was added to a solution of azide 

intermediate (1.0 equiv.) in anhydrous toluene dropwise. The solution was stirred for 30 min at room 

temperature, warmed up to 70°C and stirred at 70°C for 2 hours. The resulting freshly prepared 

solution of the Staudinger reagent was transferred to an oven-dried flask charged with molecular 

sieves and diisopropyl 2,2-dihydroxymalonate (1.0 equiv.) in anhydrous toluene. The pale-yellow 

mixture was stirred at room temperature for 1 hour, and then heated to reflux for 2 hours. The mixture 

was cooled to room temperature and concentrated in vacuo. The solid was filtered off and the filtrate 

was evaporated in vacuo. The crude material was purified by column chromatography to give 2d 

which has only E conformation. 

Diisopropyl (E)-2-((5-(4-nitrophenyl)pent-4-en-1-yl)imino)malonate (2d) 

Prepared according to right above procedure using  

5-(4-nitrophenyl)pent-4-en-1-yl-4-methylbenzenesulfonate, 

92% yield (2 steps); 1H NMR (400 MHz, CDCl3) δ 8.15 (d, 

J = 8.1 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 6.46 (m, 2H), 

5.23 (m, 2H), 3.66 (t, J = 6.9 Hz, 2H), 2.35 (q, J = 6.9 Hz, 2H), 1.97 (p, J = 7.2 Hz, 2H), 1.33 (t, J = 

6.0 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 162.03, 160.39, 154.48, 146.52, 144.08, 135.05, 128.87, 

126.39, 123.93, 70.61, 70.17, 54.66, 30.81, 29.07, 21.65, 21.57; MS (APCI): m/z 391.0 [M+H] +. 

 

- Synthesis of oxygen atom adopted iminomalonate 
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A flask was charged with ethylene glycol (372.4 mg, 1.5 equiv.) and THF (30 ml, 0.13 M). NaH 

(160.0 mg, 60%, 1.0 equiv.) was added at 0 °C and the solution was stirred at 0 °C for 0.5 h. Upon 

addition of trans-cinnamyl chloride (610.5 mg, 1.0 equiv.) and NaI (60 mg, 0.1 equiv.), the solution 

was allowed to warm to room temperature and then refluxed for 8 h. The resulting mixture was cooled 

to room temperature and treated with brine (equal volume). The organic layer was separated, and the 

aqueous layer was extracted three times with diethyl ether (equal volume). The combined organic 

layer was dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was 

purified on a silica gel column to give 2-(cinnamyloxy)ethan-1-ol, 451 mg, 63% yield. 

2-(cinnamyloxy)ethan-1-ol 

Prepared according to right above procedure using (E)-cinnamyl 

chloride, 63% yield; 1H NMR (400 MHz, CDCl3) δ 7.39 (m, 2H), 7.32 

(m, 2H), 7.26 (m, 1H), 6.62 (dt, J = 15.9, 1.5 Hz, 1H), 6.30 (dt, J = 15.9, 6.1 Hz, 1H), 4.21 (dd, J = 6.1, 

1.4 Hz, 2H), 3.78 (q, J = 5.4 Hz, 2H), 3.62 (m, 2H), 1.99 (brs, 1H); The compound was identified by 

spectral comparison with literature dataS6. 

 

General procedure C (Tosylation reaction) 

To a solution of alcohol intermediate (1.0 equiv.), triethylamine (1.2 equiv.), and 4-

(dimethylamino)pyridine (5 mol%) in CH2Cl2 (0.1 M) at 0 °C was added p-toluenesulfonyl chloride 

(1.1 equiv.) in three portions. The reaction mixture was brought to room temperature and stirred for 12 

h. Sat. aq. NaHCO3 (equal volume) was added, and the mixture was vigorously stirred for 15 min at rt. 

The aqueous layer was extracted three times with CH2Cl2 (equal volume). The combined organic layer 

was dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified 

on a silica gel column to give p-toluenesulfonate derivatives. 

2-(cinnamyloxy)ethyl 4-methylbenzenesulfonate 

Prepared according to General procedure C using 2-

(cinnamyloxy)ethan-1-ol, 96% yield; 1H NMR (400 MHz, CDCl3) δ 

7.81 (d, J = 8.3 Hz, 2H), 7.37 – 7.23 (m, 7H), 6.54 (dt, J = 15.9, 1.5 

Hz, 1H), 6.18 (dt, J = 15.9, 6.0 Hz, 1H), 4.20 (dd, J = 5.4, 4.1 Hz, 2H), 4.11 (dd, J = 6.0, 1.5 Hz, 2H), 

3.67 (dd, J = 5.3, 4.2 Hz, 2H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 144.77, 136.46, 133.03, 

132.81, 129.79, 128.56, 127.97, 127.80, 126.48, 125.29, 71.79, 69.29, 67.42, 21.61; MS (APCI): m/z 

333.1 [M+H] +. 

 

General procedure D (Phthalimide substitution reaction) 

A suspension of p-toluenesulfonate derivatives (1.0 equiv.) and potassium phthalimide (1.05 equiv.) in 

DMF (1 M) was heated to 90°C for 2 hours. Upon completion, H2O (equal volume) was added to the 

crude reaction mixture. The aqueous layer was then extracted three times with ethyl acetate (equal 
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volume). The organic layers were collected and washed two times with brine (equal volume). The 

organic phase was then dried over Na2SO4, filtered and concentrated under reduced pressure. The 

crude material was purified by column chromatography to give phthalimide derivatives. 

2-(2-(cinnamyloxy)ethyl)isoindoline-1,3-dione 

Prepared according to General procedure D using 2-

(cinnamyloxy)ethyl 4-methylbenzenesulfonate, 82% yield; 1H 

NMR (400 MHz, CDCl3) δ 7.83 (m, 2H), 7.69 (m, 2H), 7.32 - 

7.19 (m, 5H), 6.55 (d, J = 15.9 Hz, 1H), 6.21 (dt, J = 15.9, 6.0 

Hz, 1H), 4.16 (d, J = 6.0 Hz, 2H), 3.93 (t, J = 5.8 Hz, 2H), 3.74 (t, J = 5.8 Hz, 2H); 13C NMR (100 

MHz, CDCl3) δ 168.26, 136.58, 133.89, 132.55, 132.10, 128.48, 127.62, 126.45, 125.67, 123.24, 

71.30, 66.81, 37.53; MS (APCI): m/z 308.3 [M+H] +. 

 

General procedure E (Gabriel synthesis) 

To a solution of phthalimide derivatives (1.0 equiv.) in MeOH (0.11 M) was treated with 

MeNHNH2•H2SO4 (3.0 equiv.) and TEA (6.0 equiv.) and stirred with reflux. After the reaction was 

completed (TLC monitoring), the solvent was removed, the crude material was dissolved in CH2Cl2 

(equal volume), add sat. aq. NaHCO3 solution (equal volume). The separated aqueous layer was 

washed with CH2Cl2 additional two times. The collected organic layer was dried over Na2SO4, then 

purified by column chromatography. 

2-(cinnamyloxy)ethan-1-amine (12) 

Prepared according to General procedure E using 2-(2-

(cinnamyloxy)ethyl)isoindoline-1,3-dione, 79% yield; 1H NMR (400 

MHz, CDCl3) δ 7.39 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.22 

(m, 1H), 6.62 (d, J = 15.9 Hz, 1H), 6.30 (dt, J = 15.9, 6.1 Hz, 1H), 4.18 (d, J = 6.1 Hz, 2H), 3.53 (t, J 

= 5.2 Hz, 2H), 2.91 (t, J = 5.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 136.56, 132.58, 128.54, 127.71, 

126.48, 125.80, 71.63, 70.65, 41.25; MS (APCI): m/z 178.1 [M+H] +. 

 

Diisopropyl 2-((2-(cinnamyloxy)ethyl)imino)malonate (5a) 

Prepared according to General procedure B using 2-

(cinnamyloxy)ethan-1-amine (12), 74% yield; 1H NMR (400 

MHz, CDCl3) δ 7.38 (d, J = 7.2 Hz, 2H), 7.31 (t, J = 7.5 Hz, 

2H), 7.22 (m, 1H), 6.60 (d, J = 15.9 Hz, 1H), 6.27 (dt, J = 15.8, 6.0 Hz, 1H), 5.23 (m, 2H), 4.18 (dd, J 

= 6.0, 1.5 Hz, 2H), 3.84 (t, J = 3.7 Hz, 4H), 1.33 (d, J = 6.3 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 

161.62, 160.49, 155.41, 136.64, 132.49, 128.50, 127.63, 126.46, 125.86, 71.68, 70.57, 70.22, 68.72, 

54.91, 21.65, 21.58; MS (APCI): m/z 362.3 [M+H] +. 
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- Synthesis of nitrogen atom adopted iminomalonate 

 

To a solution of ethanolamine (2.7 g, 15.0 equiv.) in acetonitrile (30 ml, 0.1 M) at room temperature 

was added dropwise a solution of trans-cinnamyl chloride (458 mg, 1.0 equiv.) in acetonitrile. After 5 

hours, the mixture partitioned between ethyl acetate and saturated aqueous NaHCO3 solution. The 

aqueous layer was extracted three times with ethyl acetate, and the combined organic layer were dried 

over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by column 

chromatography to give 2-(cinnamylamino)ethan-1-ol (406 mg, 76%). 

2-(cinnamylamino)ethan-1-ol 

Prepared according to the right above procedure, 76% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.38 – 7.29 (m, 4H), 7.26 – 7.21 (m, 1H), 6.55 (d, 

J = 15.9 Hz, 1H), 6.29 (dt, J = 15.8, 6.4 Hz, 1H), 3.72 (m, 2H), 3.48 (d, 

J = 6.4 Hz, 2H), 2.98 (brs, 2H), 2.86 (t, J = 5.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 136.87, 

131.85, 128.55, 127.63, 127.49, 126.28, 60.79, 51.37, 50.60; MS (APCI): m/z 178.2 [M+H] +. 

 

2-((N-cinnamyl-4-methylphenyl)sulfonamido)ethyl 4-methylbenzenesulfonate 

Prepared according to General procedure C using 2-

(cinnamylamino)ethan-1-ol, TsCl (2.2 equiv.), TEA (2.4 equiv.), and 

DMAP (1.0 equiv.), 95% yield; 1H NMR (400 MHz, CDCl3) δ 7.71 – 

7.67 (m, 4H), 7.32 – 7.25 (m, 9H), 6.43 (d, J = 15.9 Hz, 1H), 5.91 (dt, J = 15.8, 6.9 Hz, 1H), 4.14 (t, J 

= 6.2 Hz, 2H), 3.93 (dd, J = 6.9, 1.2 Hz, 2H), 3.42 (t, J = 6.2 Hz, 2H), 2.43 (s, 3H), 2.42 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 145.00, 143.75, 136.24, 135.93, 134.80, 132.49, 129.90, 129.85, 128.59, 

128.09, 127.91, 127.27, 126.55, 123.27, 68.50, 51.62, 45.79, 21.65, 21.51; MS (APCI): m/z 486.1 

[M+H] +. 

 

N-cinnamyl-N-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-4-methylbenzenesulfonamide 

Prepared according to General procedure D using 2-((N-

cinnamyl-4-methylphenyl)sulfonamido)ethyl 4-methyl benzene 

sulfonate, 90% yield; 1H NMR (400 MHz, CDCl3) δ 7.79 – 7.77 

(m, 2H), 7.68 – 7.63 (m, 4H), 7.29 – 7.22 (m, 5H), 7.17 (m, 2H), 
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6.51 (dt, J = 15.8, 1.2 Hz, 1H), 6.07 (dt, J = 15.8, 6.9 Hz, 1H), 4.10 (dd, J = 6.9, 0.9 Hz, 2H), 3.84 (t, J 

= 5.8 Hz, 2H) 3.47 (t, J = 5.8 Hz, 2H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 168.16, 143.22, 

136.85, 136.03, 134.40, 134.27, 133.81, 132.04, 129.62, 128.57, 127.95, 127.14, 126.50, 123.81, 

123.54, 123.19, 50.37, 44.77, 36.15, 21.48; MS (APCI): m/z 461.1 [M+H] +. 

 

N-(2-aminoethyl)-N-cinnamyl-4-methylbenzenesulfonamide (13) 

Prepared according to General procedure E using N-cinnamyl-N-(2-

(1,3-dioxoisoindolin-2-yl)ethyl)-4-methylbenzenesulfonamide, 58% 

yield; 1H NMR (400 MHz, CDCl3) δ 7.74 – 7.71 (m, 2H), 7.30 – 7.21 

(m, 7H), 6.44 (d, J = 15.9 Hz, 1H), 5.93 (t, J = 15.8, 6.8 Hz, 1H), 3.97 (dd, J = 6.8, 1.3 Hz, 2H), 3.39 

(brs, 2H), 3.27 (t, J = 6.2 Hz, 2H), 2.96 (s, 2H), 2.40 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 143.50, 

136.53, 135.98, 134.19, 129.79, 128.56, 127.98, 127.31, 126.45, 123.67, 51.07, 49.45, 40.17, 21.48; 

MS (APCI): m/z 331.0 [M+H] +. 

 

Diisopropyl 2-((2-((N-cinnamyl-4-methylphenyl)sulfonamido)ethyl)imino)malonate (5b) 

Prepared according to General procedure B using N-(2-

aminoethyl)-N-cinnamyl-4-methylbenzenesulfonamide (13) 

at 50 °C, 59% yield; 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J 

= 8.1 Hz, 2H), 7.31 – 7.21 (m, 7H), 6.45 (d, J = 15.8 Hz, 1H), 5.96 (dt, J = 15.8, 6.8 Hz, 1H), 5.17 

(hept, J = 6.3 Hz, 2H), 4.01 (dd, J = 6.8, 1.3 Hz, 2H), 3.86 (t, J = 7.1 Hz, 2H), 3.50 (t, J = 7.1 Hz, 2H), 

2.42 (s, 3H), 1.30 (d, J = 6.3 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 161.48, 160.28, 155.50, 143.40, 

136.79, 136.12, 134.21, 129.73, 129.70, 128.50, 128.46, 127.89, 127.32, 127.29, 126.49, 126.47, 

123.85, 70.65, 70.59, 54.95, 51.51, 47.15, 21.59, 21.56, 21.48; MS (APCI): m/z 515.0 [M+H] +. 

 

 

- Synthesis of sulfone adopted iminomalonate 

 

An aqueous solution of LiOH•H2O (50.4 mg, 2.1 equiv.) in H2O (1 ml) was added to a solution of 

cysteamine hydrochloride (114.0 mg, 1.0 equiv.) and trans-cinnamyl chloride (153 mg, 1.0 equiv.) in 

ethanol (3 ml) at rt then stirred for 1 h. Ethanol was removed in vacuo and the resulting oily solution 
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was extracted three times with CH2Cl2 (equal volume), dried over Na2SO4 and filtered. This crude 

material was purified by column chromatography to give 14 (174 mg, 90%). 

2-(cinnamylthio)ethan-1-amine (14) 

Prepared according to right above procedure, 90% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.37 (m, 2H), 7.32 (m, 2H), 7.24 (m, 1H), 6.44 

(d, J = 15.7 Hz, 1H), 6.18 (dt, J = 15.6, 7.4 Hz, 1H), 3.31 (dd, J = 7.4, 

1.1 Hz, 2H), 2.88 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 136.61, 

132.22, 128.58, 127.58, 126.28, 125.92, 40.99, 34.91, 34.00; MS (APCI): m/z 194.2 [M+H] +. 

 

To a solution of 14 (174.0 mg, 1.0 equiv.) in CH2Cl2 (4.5 ml, 0.2 M) at 0 °C was added Boc2O (216.1 

mg, 1.1 equiv.) and Et3N (100.2 mg, 1.1 equiv.). The mixture was stirred 1 h at rt and was then washed 

with water and brine (equal volume). The phases were separated, and the organic phase was dried over 

Na2SO4, filtered and concentrated under vacuum. Purification over silica gel afforded the product (260 

mg, 97% yield) as a colorless oil. 

Tert-butyl (2-(cinnamylthio)ethyl)carbamate 

Prepared according to right above procedure, 97% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.38 (m, 2H), 7.31 (m, 2H), 7.25 (m, 1H), 

6.47 (d, J = 15.6 Hz, 1H), 6.16 (dt, J = 15.2, 7.4 Hz, 1H), 4.87 (brs, 

1H), 3.32 (d, J = 7.3 Hz, 4H), 2.63 (t, J = 6.5 Hz, 2H), 1.44 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

155.73, 136.57, 132.58, 128.56, 127.62, 126.33, 125.47, 79.40, 39.47, 33.84, 30.81, 28.39; MS 

(APCI): m/z 194.2 [M-Boc] +. 

 

To a solution of tert-butyl (2-(cinnamylthio)ethyl)carbamate (220.0 mg, 1.0 equiv.) in tetrahydrofuran 

(7.5 ml, 0.1 M) was added m-chloroperoxybenzoic acid (776.3 mg, 50%, 3.0 equiv.) at 0 °C. The 

mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo and the residue 

was dissolved in ethyl acetate. The solution was washed two times with sat. aq. NaHCO3, water, brine, 

and dried over anhydrous Na2SO4. Filtration of the drying agent and removal of the solvent in vacuo 

afforded the crude sulfone, which was purified by column chromatography to give pure product (250.0 

mg, quantitative yield). 

Tert-butyl (2-(cinnamylsulfonyl)ethyl)carbamate 

Prepared according to right above procedure, quantitative yield; 1H 

NMR (400 MHz, CDCl3) δ 7.43 – 7.40 (m, 2H), 7.37 – 7.30 (m, 

3H), 6.73 (d, J = 15.6 Hz, 1H), 6.24 (dt, J = 15.2, 7.6 Hz, 1H), 5.19 

(brs, 1H), 3.89 (dd, J = 7.6, 1.3 Hz, 2H), 3.65 (q, J = 6.0 Hz, 2H), 3.21 (t, J = 6.0 Hz, 2H), 1.44 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 155.71, 139.48, 135.39, 128.81, 128.74, 126.77, 114.84, 80.09, 58.40, 

51.05, 34.34, 28.32; MS (APCI): m/z 270.0 [M-tBu] +. 
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To a solution of Tert-butyl (2-(cinnamylsulfonyl)ethyl)carbamate (230.0 mg, 1.0 equiv.) in CH2Cl2 

(3.5 ml, 0.2 M), TFA (710 ul, 1 M) was added dropwise at 0 °C; then the reaction mixture was stirred 

at room temperature for 0.5 h. After the reaction was finished (monitored by TLC), 1N NaOH solution 

(15 ml) was added slowly and the aqueous layer was extracted with ethyl acetate. The combined 

organic layer was washed with 1N HCl solution (15 ml) and this acidified aqueous layer was basified 

by 1N NaOH solution until PH > 8. Then it was extracted three times with ethyl acetate (10 ml). 

Finally, combined organic layer was dried over Na2SO4 and solvent was evaporated to give 2-

(cinnamylsulfonyl)ethan-1-amine (15) of 156 mg, 98% yield. 

2-(cinnamylsulfonyl)ethan-1-amine (15) 

Prepared according to right above procedure, 98% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.43 – 7.41 (m, 2H), 7.37 – 7.28 (m, 3H), 6.72 (d, 

J = 15.9 Hz, 1H), 6.27 (dt, J = 15.8, 7.6 Hz, 1H), 3.96 (d, J = 7.5 Hz, 

2H), 3.26 (dd, J = 7.0, 5.1 Hz, 2H), 3.11 (dd, J = 7.0, 5.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 

139.01, 135.51, 128.74, 128.72, 126.71, 115.46, 58.77, 54.16, 35.85; MS (APCI): m/z 226.0 [M+H] +. 

 

Diisopropyl 2-((2-(cinnamylsulfonyl)ethyl)imino)malonate (5c) 

Prepared according to General procedure B using 2-

(cinnamylsulfonyl)ethan-1-amine (15) at 50 °C, 72% yield; 

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.41 (m, 2H), 7.36 – 

7.29 (m, 3H), 6.87 (d, J = 15.9 Hz, 1H), 6.27 (dt, J = 15.5, 7.6 Hz, 1H), 5.25 (m, 2H), 4.09 (t, J = 6.1 

Hz, 2H), 4.03 (t, J = 7.5 Hz, 2H), 3.37 (t, J = 6.0 Hz, 2H), 1.35 (dd, J = 6.2, 3.0 Hz, 12H); 13C NMR 

(100 MHz, CDCl3) δ 160.55, 160.20, 155.76, 139.45, 135.74, 128.66, 128.58, 126.75, 115.52, 71.00, 

70.92, 58.95, 50.59, 48.39, 21.63, 21.40; MS (APCI): m/z 410.1 [M+H] +. 

 

- Synthesis of sulfur atom adopted iminomalonate 

 

 

Diisopropyl 2-((2-(cinnamylthio)ethyl)imino)malonate (5d) 

Prepared according to General procedure B using 2-

(cinnamylthio)ethan-1-amine (14), 66% yield; 1H NMR (400 

MHz, CDCl3) δ 7.37 (m, 2H), 7.30 (m, 2H), 7.23 (m, 1H), 

6.47 (d, J = 15.7 Hz, 1H), 6.17 (dt, J = 15.6, 7.4 Hz, 1H), 5.21 (m, 2H), 3.83 (dd, J = 7.8, 6.5 Hz, 2H), 
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3.35 (dd, J = 7.4, 1.1 Hz, 2H), 2.86 (dd, J = 7.8, 6.5 Hz, 2H), 1.33 (dd, J = 6.3, 1.6 Hz, 12H); 13C 

NMR (100 MHz, CDCl3) δ 161.57, 160.48, 154.87, 136.63, 132.56, 128.53, 127.55, 126.34, 125.60, 

70.66, 70.35, 55.44, 34.53, 30.26, 21.66, 21.59; MS (APCI): m/z 378.1 [M+H] +. 

 

- Synthesis of iminomalonate 7a, 7b 

 

2-indanone (1.0 equiv.) was dissolved in dry Toluene (0.4 M). The solution was cooled to 0 °C and 

vinyl magnesium bromide (1 M in THF, 1.1 equiv.) was added dropwise. After 15 min, the reaction 

mixture was allowed to warm to rt and stirred at rt for 1 h. The reaction was quenched by addition of 

sat. aq. NH4Cl (equal volume), the phases were separated, and the aqueous phase was extracted three 

times with ethyl acetate (equal volume). The combined organic phases were washed with brine (equal 

volume), dried over Na2SO4, filtered and concentrated in vacuo, then purified by column 

chromatography to yield 2-vinyl-2,3-dihydro-1H-inden-2-ol. 

2-vinyl-2,3-dihydro-1H-inden-2-ol  

Prepared according to right above procedure, 57% yield; 1H NMR (400 MHz, 

CDCl3) δ 7.24 – 7.17 (m,  4H), 6.18 (dd, J = 17.3, 10.7 Hz, 1H), 5.41 (dd, J = 17.3, 

1.2 Hz, 1H), 5.15 (dd, J = 10.7, 1.2 Hz, 1H), 3.20 (d, J = 16.5 Hz, 2H), 2.99 (d, J = 

16.2 Hz, 2H), 1.81 (brs, 1H); The compound was identified by spectral comparison with literature 

dataS7. 

 

Under argon atmosphere, Hg(OAc)2 (10 mol%), NaOAc (10 mol%), and 2-vinyl-2,3-dihydro-1H-

inden-2-ol (1.0 equiv.) were dissolved in n-butyl vinyl ether (0.8 M). The reaction mixture was stirred 

at reflux for 12 h. The mixture was then poured into sat. NaHCO3 aq. and extracted with ethyl acetate 
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three times. The combined organic layers were dried over anhydrous Na2SO4, filtered, and evaporated. 

Column chromatography afforded 4-(1,3-dihydro-2H-inden-2-ylidene)butanal. 

4-(1,3-dihydro-2H-inden-2-ylidene)butanal   

Prepared according to right above procedure, 70% yield; 1H NMR (400 

MHz, CDCl3) δ 9.80 (t, J = 1.3 Hz, 1H), 7.25 – 7.15 (m, 4H), 5.43 (tp, J = 

7.2, 2.5 Hz, 1H), 3.66 (d, J = 11.4 Hz, 4H), 2.55 (td, J = 6.9, 1.4 Hz, 2H), 

2.41 (q, J = 6.9, 1.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 202.28, 

141.98, 141.74, 140.25, 126.42, 126.39, 124.65, 124.45, 120.74, 43.55, 39.26, 35.89, 22.31; MS 

(APCI): m/z 187.1 [M+H] +. 

 

A solution of 4-(1,3-dihydro-2H-inden-2-ylidene)butanal (1.0 equiv.) in 0.5 M of pyridine was cooled 

with an ice bath. hydroxylamine hydrochloride (1.2 equiv.) was added with stirring. After the reaction 

was completed (monitored by TLC), the solvent was evaporated, and the residue was purified by flash 

chromatography to give 4-(1,3-dihydro-2H-inden-2-ylidene)butanal oxime as a white solid. 

4-(1,3-dihydro-2H-inden-2-ylidene)butanal oxime 

Prepared according to right above procedure, 91% yield; 1H NMR (400 

MHz, CDCl3) δ 8.95 (brs, 1H), 7.23 – 7.14 (m, 4H), 6.75 (t, J = 5.4 Hz, 

1H), 5.44 (tp, J = 7.3, 2.4 Hz, 1H), 3.68 (s, 2H), 3.63 (s, 2H), 2.49 (td, J 

= 7.4, 5.4 Hz, 2H), 2.27 (q, J = 7.3 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 152.32, 151.74, 142.08, 141.82, 140.10, 126.40, 126.36, 124.65, 124.47, 121.40, 39.27, 

35.94, 25.99; MS (APCI): m/z 202.1 [M+H] +. 

 

To a mixture of LAH (2.2 equiv.) in THF (0.3 M) at 0 °C, was added dropwise a solution of 4-(1,3-

dihydro-2H-inden-2-ylidene)butanal oxime (1.0 equiv.) in THF over 15 min under nitrogen. The 

reaction was warmed up to room temperature. After the reaction was completed (monitored by TLC), 

the reaction was cooled down to 0 °C, and quenched with H2O (x ul) and an aqueous solution of 

NaOH (2x ul, 15%) then H2O (3x ul) (for x mg of LAH). Crude material was dried over Na2SO4 and 

filtered. The filtrate was purified by column chromatography to give 4-(1,3-dihydro-2H-inden-2-

ylidene)butan-1-amine (16). 

4-(1,3-dihydro-2H-inden-2-ylidene)butan-1-amine (16) 

Prepared according to right above procedure, 60% yield; 1H NMR (400 

MHz, CDCl3) δ 7.23 – 7.14 (m, 4H), 5.44 (tp, J = 7.2, 2.4 Hz, 1H), 3.67 

(s, 2H), 3.61 (s, 2H), 2.91 (brs, 2H), 2.77 (t, J = 7.3 Hz, 2H), 2.12 (q, J = 

7.2 Hz, 2H), 1.61 (p, J = 7.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 

142.18, 141.98, 139.01, 126.31, 126.28, 124.62, 124.44, 122.29, 41.44, 39.25, 35.87, 32.35, 26.83; 

MS (APCI): m/z 188.2 [M+H] +. 
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To a mixture of 4-(1,3-dihydro-2H-inden-2-ylidene)butan-1-amine (1.0 equiv.) in DMSO (0.1 M) at 

0 °C, t-BuOK (2.0 equiv.) was added. The reaction mixture was warmed to rt, and vigorously stirred. 

After reaction was completed, the mixture was quenched with H2O then extracted with CH2Cl2. The 

residue was purified by column chromatography to give 4-(1H-inden-2-yl)butan-1-amine (17). 

4-(1H-inden-2-yl)butan-1-amine (17) 

Prepared according to right above procedure, 57% yield; 1H NMR (400 

MHz, CDCl3) δ 7.36 (d, J = 7.4 Hz, 1H), 7.24 (m, 2H), 7.09 (t, J = 7.3 

Hz, 1H), 6.50 (s, 1H), 3.29 (s, 2H), 2.72 (t, J = 7.0 Hz, 2H), 2.49 (t, J = 

7.5 Hz, 2H), 1.68 – 1.47 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 150.46, 145.59, 143.05, 126.31, 

126.22, 123.57, 123.37, 119.86, 42.01, 40.99, 33.48, 31.02, 26.28; MS (APCI): m/z 188.2 [M+H] +. 

 

Diisopropyl 2-((4-(1,3-dihydro-2H-inden-2-ylidene)butyl)imino)malonate (7a) 

Prepared according to General procedure B using 4-(1,3-dihydro-

2H-inden-2-ylidene)butan-1-amine (16), 54% yield; 1H NMR 

(400 MHz, CDCl3) δ 7.23 - 7.14 (m, 4H), 5.44 (tp, J = 7.7, 2.9 

Hz, 1H), 5.23 (m, 2H), 3.67 - 3.60 (m, 6H), 2.15 (q, J = 7.4 Hz, 

2H), 1.85 (p, J = 7.3 Hz, 2H), 1.33 (t, J = 6.5 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 162.16, 

160.52, 154.17, 142.15, 142.00, 139.34, 126.29, 126.27, 124.61, 124.42, 122.02, 70.49, 70.06, 55.06, 

39.25, 35.85, 29.67, 27.26, 21.65, 21.60; MS (APCI): m/z 372.3 [M+H] +. 

 

Diisopropyl 2-((4-(1H-inden-2-yl)butyl)imino)malonate (7b) 

Prepared according to General procedure B using 4-(1H-inden-2-

yl)butan-1-amine (17), 58% yield; 1H NMR (400 MHz, CDCl3) δ 

7.36 (d, J = 7.3 Hz, 1H), 7.24 (m, 2H), 7.09 (t, J = 7.3 Hz, 1H), 

6.50 (s, 1H), 5.23 (m, 2H), 3.63 (t, J = 6.9 Hz, 2H), 3.29 (s, 2H), 

2.51 (t, J = 7.5 Hz, 2H), 1.82 (m, 2H), 1.67 (p, J = 7.6 Hz, 2H), 1.33 (dd, J = 6.3, 1.4 Hz, 12H); 13C 

NMR (100 MHz, CDCl3) δ 162.17, 160.49, 154.18, 150.06, 145.53, 143.03, 126.47, 126.20, 123.59, 

123.36, 119.88, 70.53, 70.09, 55.31, 40.97, 30.83, 29.66, 26.70, 21.67, 21.60; MS (APCI): m/z 372.3 

[M+H] +. 
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- Synthesis of iminomalonate 7c 

 

Indene (1.0 equiv.) was dissolved in THF/H2O (1:1, 0.5 M) at room temperature. N-bromosuccinimide 

(1.1 equiv.) was added over the course of 5 minutes at 0 °C. The reaction was allowed to stir open to 

air for 1 h. The yellow organic layer was separated, and the aqueous layer was washed three times 

with ethyl acetate (equal volume). The combined organic layers were washed with saturated sodium 

thiosulfate (equal volume) and brine (equal volume). The solution was dried with Na2SO4 and 

concentrated in vacuo. The resulting crude material was purified by short column chromatography to 

give trans-2-bromo-1-indanol. 

Trans-2-bromo-1-indanol  

Prepared according to right above procedure, 69% yield; 1H NMR (400 MHz, 

CDCl3) δ 7.42 (m, 1H), 7.30 (m, 2H), 7.23 (m, 1H), 5.32 (t, J = 5.9 Hz, 1H), 4.29 

(td, J = 7.4, 5.9 Hz, 1H), 3.59 (dd, J = 16.2, 7.2 Hz, 1H), 3.23 (dd, J = 16.2, 7.4 Hz, 

1H), 2.32 (d, J = 6.0 Hz, 1H); The compound was identified by spectral comparison with literature 

dataS8. 

 

Trans-2-bromo-1-indanol (1.0 equiv.) was dissolved in dry Et2O (0.3 M) at room temperature. Freshly 

ground sodium hydroxide powder (2.5 equiv.) was added portionwise to the reaction. The flask was 

sealed to prevent loss of Et2O and any addition of water, and the reaction was allowed to stir for 4 h 

until the reaction mixture became slightly brown in color. H2O was then added to dissolve the NaBr 

precipitate. The aqueous and organic layers were separated, and the organic layer was washed three 

times with saturated sodium bicarbonate (equal volume) and brine (equal volume). The resulting 

organic layer was dried with Na2SO4 and concentrated in vacuo. This indene oxide crude material was 

directly used in next step without further purification.  

To – 10 °C suspension of trimethyl sulfonium iodide (3.0 equiv.) in dry THF (0.1 M) was added n-

BuLi (2.9 equiv.). After 30 min, indene oxide crude (1.0 equiv.) in THF was introduced, producing a 

milky suspension. The reaction was allowed to warm to 0 °C, over about 30 min and then to r.t and 

stirred for 2 h. The reaction was quenched with water at 0 °C, extracted with ethyl acetate and the 
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combined organic layer dried over Na2SO4. Then, column chromatography of the crude afforded 1-

methylene-2,3-dihydro-1H-inden-2-ol. 

1-methylene-2,3-dihydro-1H-inden-2-ol 

Prepared according to right above procedure, 91% yield (2 steps); 1H NMR (400 

MHz, CDCl3) δ 7.50 – 7.48 (m, 1H), 7.31 – 7.22 (m, 3H), 5.61 (d, J = 2.0 Hz, 1H), 

5.33 (d, J = 1.8 Hz, 1H), 4.94 (s, 1H), 3.33 (dd, J = 16.6, 7.3 Hz, 1H), 2.88 (dd, J 

= 16.6, 4.1 Hz, 1H), 1.82 (brs, 1H); The compound was identified by spectral comparison with 

literature dataS9. 

 

Under argon atmosphere, Hg(OAc)2 (10 mol%), NaOAc (10 mol%), and 1-methylene-2,3-dihydro-

1H-inden-2-ol (1.0 equiv.) were dissolved in n-butyl vinyl ether (0.8 M). The reaction mixture was 

stirred at reflux for 12 h. The mixture was then poured into sat. NaHCO3 aq. and extracted with ethyl 

acetate three times. The combined organic layers were dried over anhydrous Na2SO4, filtered, and 

evaporated. Column chromatography afforded 3-(1H-inden-3-yl)propanal. 

3-(1H-inden-3-yl)propanal  

Prepared according to right above procedure using 1-methylene-2,3-dihydro-

1H-inden-2-ol, 68% yield; 1H NMR (400 MHz, CDCl3) δ 9.85 (t, J = 1.3 Hz, 

1H), 7.46 (d, J = 7.4 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.22 (td, J = 7.3, 1.3 Hz, 

1H), 6.20 (t, J = 1.9 Hz, 1H), 3.33 (d, J = 1.9 Hz, 2H), 2.92 – 2.81 (m, 4H); 

13C NMR (100 MHz, CDCl3) δ 201.92, 144.77, 144.37, 142.51, 128.38, 126.12, 124.86, 123.85, 

118.73, 41.92, 37.78, 20.19; MS (APCI): m/z 173.1 [M+H] +. 

 

A solution of 3-(1H-inden-3-yl)propanal (1.0 equiv.) in 0.5 M of pyridine was cooled with an ice bath. 

hydroxylamine hydrochloride (1.2 equiv.) was added with stirring. After the reaction was completed 

(monitored by TLC), the solvent was evaporated, and the residue was purified by flash 

chromatography to give 3-(1H-inden-3-yl)propanal oxime as a white solid. 

3-(1H-inden-3-yl)propanal oxime 

Prepared according to right above procedure using 3-(1H-inden-3-

yl)propanal, 92% yield; 1H NMR (400 MHz, CDCl3) δ 9.03 (brs, 1H), 7.45 

(d, J = 7.3 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.21 

(t, J = 7.8 Hz, 1H), 6.82 (t, J = 4.6 Hz, 1H), 6.25 (s, 1H), 3.33 (s, 2H), 2.80 

– 2.72 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 151.69, 144.98, 144.42, 142.90, 128.36, 126.09, 

124.76, 123.81, 118.79, 37.81, 24.04, 23.34; MS (APCI): m/z 188.1 [M+H] +. 

 

To a mixture of LAH (2.2 equiv.) in THF (0.3 M) at 0 °C, was added dropwise a solution of 4-(1,3-

dihydro-2H-inden-2-ylidene)butanal oxime (1.0 equiv.) in THF over 15 min under nitrogen. The 
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reaction was warmed up to room temperature. After the reaction was completed (monitored by TLC), 

the reaction was cooled down to 0 °C, and quenched with H2O (x ul) and an aqueous solution of 

NaOH (2x ul, 15%) then H2O (3x ul) (for x mg of LAH). Crude material was dried over Na2SO4 and 

filtered. The filtrate was purified by column chromatography to give 3-(1H-inden-3-yl)propan-1-

amine (18). 

 

3-(1H-inden-3-yl)propan-1-amine (18) 

Prepared according to right above procedure, 53% yield; 1H NMR (400 

MHz, CDCl3) δ 7.46 (d, J = 7.3 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H) 7.29 (t, 

J = 7.4 Hz, 1H), 7.20 (m, 1H), 6.22 (t, J = 1.8 Hz, 1H), 3.33 (d, J = 1.8 

Hz, 2H), 2.80 (t, J = 7.0 Hz, 2H), 2.60 (td, J = 7.6, 2.0 Hz, 2H), 1.85 (p, J 

= 7.3 Hz, 2H); The compound was identified by spectral comparison 

with literature dataS10. 

 

Diisopropyl 2-((3-(1H-inden-3-yl)propyl)imino)malonate (7c) 

Prepared according to General procedure B using 3-(1H-inden-3-

yl)propan-1-amine (18), 56% yield; 1H NMR (400 MHz, CDCl3) δ 

7.45 (dt, J = 7.3, 0.9 Hz, 1H), 7.36 (dt, J = 7.5, 1.0 Hz, 1H) 7.29 (m, 

1H), 7.19 (t, J = 7.3, 1.2 Hz, 1H), 6.23 (p, J = 1.8 Hz, 1H), 5.22 

(hept, J = 6.3 Hz, 2H), 3.69 (t, J = 7.1 Hz, 2H), 3.32 (d, J = 2.0 Hz, 

2H), 2.62 (m, 2H), 2.15 (p, J = 7.2 Hz, 2H), 1.34 (d, J = 6.3 Hz, 6H), 1.30 (d, J = 6.3 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 162.16, 160.52, 154.32, 145.19, 144.40, 143.44, 128.10, 125.97, 124.54, 

123.70, 118.91, 70.55, 70.13, 55.19, 37.71, 28.13, 25.40, 21.63, 21.60; MS (APCI): m/z 358.3 [M+H] 

+. 
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