
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Master's Thesis 

 
 

 

Monte-Carlo Dropout based Uncertainty Analysis 

in Input Attributions of Multivariate Temporal 

Neural Networks 

 

 

 

 

 

 

 

 

Ginkyeng Lee 

 

Department of Computer Science and Engineering 

 

 

 

 

Graduate School of UNIST 

 

2020 

 



Monte-Carlo Dropout based Uncertainty Analysis 

in Input Attributions of Multivariate Temporal 

Neural Networks 

 

 

 

 

 

 

 

 

 

 

Ginkyeng Lee 

 

 

 

 

 

 

 

 

Department of Computer Science and Engineering 

  
 

 

 

Graduate School of UNIST 







Abstract

As deep learning has grown fast, so did the desire to interpret deep learning black boxes. As

a result, many analysis tools have emerged to interpret it. Interpretation in deep learning has

in fact popularized the use of deep learning in many areas including research, manufacturing,

finance, and healthcare which needs relatively accurate and reliable decision making process.

However, there is something we should not overlook. It is uncertainty. Uncertainties of models

are directly reflected in the results of interpretations of model decision as explaining tools are

dependent to models. Therefore, uncertainties of interpreting output from deep learning model

should be also taken into account as quality and cost are directly impacted by measurement

uncertainty. This attempt has not been made yet.

Therefore, we suggest Bayesian input attribution rather than discrete input attribution by

approximating Bayesian inference in deep Gaussian process through dropout to input attribution

in this paper. Then we extract candidates that can sufficiently affect the output of the model,

taking into account both input attribution itself and uncertainty of it.
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I Introduction

AI-based systems can perform very complex tasks and make good predictions on a wide range

of topics, but these systems are often called as black box as it is hard to tracing which features

influenced the prediction, and the user does not know how the decision is made from it. In these

days, the direction to explain the cause of the decision of deep learning model to the user has

emerged, which is called XAI, and many efforts are underway to interpret, explain, and visualize

deep learning [1]. These explainable AI techniques has improved usability of deep learning in

many areas including research, manufacturing, finance, and healthcare which needs relatively

accurate, reliable and transparent decision making process. For example, LRP [2] explains

the model’s decision by decomposing the output of model to each input pixel with amount of

contribution to model’s output, and it is applied to assist clinicians in explaining neural network

decisions for diagnosing Alzheimer’s Disease(and potentially other disease) based on structural

MRI data [3].

However, there is important issue we overlook : how reliable can we have this result? Un-

certainties should be considered along with quality and cost as they are directly impacted by

measurement uncertainty [4]. Product quality, experiment results, financial decisions, and

medical diagnosis can all be directly impacted by errors introduced from the omission of mea-

surement uncertainty.Ignoring the impact of the uncertainty might result in a higher probability

of increased operating costs and failure rates.

Let’s assume that a cancer diagnosis model with input (A,B,C,D) diagnosed that the patient

has cancer. Let us assume we have contribution of each input to this cancer from XAI tools.

If A is a major contributor to the decision to be cancer, but the uncertainty associated with

this contribution is large, doctors should doubt that the A is actually important in determining

cancer when reflecting the model’s decisions in actual decisions. On the contrary, if B has a high

contribution with a small uncertainty. doctor can be sure that B is the main decision reason

for the model. Let’s also consider a case with less input contribution with large uncertainty, C

, and less uncertainty, D. If doctor only consider input attribution itself, he or she can conclude

that only A and B were factors that influenced the outcome of cancer. But with uncertainty,

physicians think that C is also likely to be a high impact candidate, so he or she can look carefully

at C and incorporate the model’s judgment into their actual judgment. Lastly, physicians can

easily sure D as a less influential factor in model decisions.

As you can see from this representative example, it is important for model to make the right

decision, but it is also important to be able to explain the obvious reason for its decision. It will

help user see how acceptable the model makes decisions, and how much to reflect the results of

this model in actual decisions. If there is uncertainty analysis on explaining reasons for output,

it will reduce the cost and risk of doing this.

While there are many uncertainty analyses of deep learning model or output of deep learning

itself, as shown in [5–7], there are still needs for uncertainty analysis of result of input attri-

1



bution methods. In this paper, we propose Monte-Carlo Dropout based Uncertainty Analysis

in Input Attributions. We firstly use one of explainable method, called LRP using using DTD

for explaining output of model with input as before. But, we use MC dropout backwardly for

approximation of uncertainty of input attribution in this process. Unlike the existing method

which provide deterministic input attribution, the proposed method shows the distribution of

input attribution, so we can see uncertainty about how each feature affect the results of the

model. In addition, rather than ending with uncertainty analysis, we extract candidates that

can sufficiently affect the output of the model, taking into account both input attribution itself

and uncertainty of it. Although our focus is on multivariate time series data, the method is also

applicable to a broad set of input data.

The rest of this paper is organized as follows: In chapter 2, we will briefly introduce back-

ground with explainable AI tools ,LRP using DTD, pattern attribution and uncertainty methods

called MC dropout. In chapter 3, we will introduce our algorithm. Firstly, we will approximate

Bayesian inference in deep Gaussian process using MC dropout to input attribution from LRP

using DTD. Secondly, we will extract possible influential features to model’s output with mean

and standard deviation value of input attribution as criterion. In chapter4, we will introduce

the experiment and results of 1 real-industrial data, and 1 open multi variate time series data.

Lastly, we conclude our results in chapter 5.

Contributions

1. Provide a Bayesian approximate for input attribution through MC dropout.

2. Not only find input data point which has high input attribution, but also find all possible

influential point which has the potential to affect the output of the model.

3. Visualize possible influential point in input attribution for users to understand and inter-

pret easily.

Notation

We denote scalars by lowercase letters (e.g.,i), column vectors by bold (e.g.,u), random variable

by X, and an estimate of a random variable by lowercase letters with a hat (X̂).
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II Related Work

2.1 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation

Reference [2] proposes a general solution to the problem of understanding classification deci-

sions by pixel-wise decomposition of nonlinear classifiers using Taylor-type decomposition, and

reference [8] extends the idea of this paper to be applied to deep neural networks by the divide-

and-conquer paradigm, and exploits the property that the function learned by a deep network

is structurally decomposed into a set of simpler sub-functions that relate quantities in adjacent

layers.

Deep Taylor Decomposition

In order to decompose the prediction of deep neural network, [8] utilized Taylor series. Instead

of considering the whole neural network function f like [2], they consider the mapping of a set

of neurons xi at a i layer to to the relevance Rj which is the relevance of next layer at the output

direction and assigned to a neuron xj . Assuming that these two objects are functionally related

by some function Rj(xi), they apply Taylor decomposition on this local function in order to

redistribute relevance Rj onto lower-layer relevance Ri. Running this redistribution procedure

in a backward pass leads eventually to the pixel-wise relevance Rp that forms the heatmap.

Equations below introduce the Taylor series for arbitrary smooth function and real number.

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n. (1)

= f(a) +
f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2 + f ′′′(a)

3!
(x− a)3. (2)

Using error term ε, we can express the first-order Taylor series as

f(x) = f(a) +
d

dx
f(x)

∣∣
x=a

(x− a) + ε. (3)

Rj =
∑
k

zjk∑
j zjk

Rk. (4)

The propagation procedure implemented by LRP is subject to a conservation property, where

what has been received by a neuron must be redistributed to the lower layer in equal amount.

That is, for the d dimensional input considering multivariate function, we can write the

first-order Taylor series as follows

f(x) = f(a) +

d∑
p=1

∂f

∂xp

∣∣
x=a

(x− a) + ε. (5)

In equation (5) , f(a) and ε are constant. The second term on the right side represents the

change in f(x) in xp. Equation (5) helps us to decompose the output into a relevance score,
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but there are 2 unnecessary terms, f(a) and ε. We can find d dimensional input aaa that makes

f(a) = 0 called root point mathematically as introduced in [8] which depends on input domain

as follow [
xi ∈ Rt×s, xi ∈ Rt×s

+ , xi ∈ [li;hi] , li ≤ 0 ≤ hi
]
.

. Finally, output can be resolvable only by the relevance score , approximating the function from

the root point aaa that makes f(a) = 0, and using the properties of the ReLu activation function

to make ε as 0.

f(x) = f(a) +
d∑

i=1

∂f

∂xi

∣∣
ai=ai

(xi − ai) + ε (6)

=

d∑
i=1

∂f

∂xi

∣∣
xi=ai

(xi − ai) (7)

=
d∑

i=1

Ri (8)

There are 2 things we have to consider when we use this method. As Deep Taylor Decompo-

sition has 3 different methods to find root point depends on input domain, we should consider

the input domain, and check if all relevance satisfy certain properties defined by [8] at the same

time when we utilize this method.

Definition 1 A heat-mapping R(x) is conservative if the sum of assigned relevance in the

pixel space corresponds to the total relevance detected by the model: ∀x : f(x) =
∑

pRp(x)

Definition 2 A heat-mapping R(x) is positive if all values forming the heat-map are greater

or equal to zero, that is : ∀x, p : Rp(x) ≥ 0

Definition 3 A heat-mapping R(x) is consistent if it is conservative and positive. That is,

it is consistent if it complies with Definitions 1 and 2.

2.2 Pattern net

[9] proposed a generalization that yields two explanation techniques, PatternNet and Patter-

nAttribution. These techniques are theoretically sound for linear models and produce improved

explanations for deep networks.

A linear model can be represented as below

x = s+ d

x = asy + adε

4



(a) 2 samples of LRP results with image data.
The redder the heatmap, the greater the rele-
vance. Each pixel in the heatmap represents a
relevance of the pixels in the input image.

(b) Part of LRP results with multi-variate tempo-
ral data. The darker the heatmap, the greater the
relevance, and each pixel in the heatmap represents
the relevance of the same line feature at each input
time.The lines of various colors indicate features of
the label data of the corresponding color.

Figure 1: Difficulty of interpreting and understanding of multivariate time series data. All input

pixels will have as much relevance as they affect the output through LRP. Figure1a shows the

result of LRP through MVLS GoogLeNet network with image as input, and figure 5b shows the

part of result of LRP with sensors time sequence input. As mentioned in section 1, it is able to

intuitively interpret the input attribution results for images, but it is not easy to interpret for

multivariate temporal data when the input time is long or the number of features is large.

where x is total data, s is the signal in data,distractor d is the component of the data that

does not contain information about the desired output, and as and ad are directions of spread

information. Assuming the filter w has been trained sufficiently well to extract y, we have

wTx = y,wT s = y,wTd = 0

In addition, they introduce the following quality measure ρ for a signal estimator S(x) = ŝ,

and suggest to learn the signal estimators S from data by optimizing this criterion with below

equation (9) with additional constraints by measuring how much information about y can be

reconstructed from the residual x− ŝ using linear projection

ρ(S) = 1−max
v
coor(wtx,vT (x− S(x))) = 1−max

v

vT cov
[
d̂, y

]
√
σ2
vT d̂

σ2y

. (9)

The best signal estimators remove most of the information in the residuals and thus yield large

ρ(S). In addition, they present two possible solutions to this problem, the linear estimator as-
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suming a linear dependency between s and y, yielding a signal estimator, and the two-component

estimator to move beyond the linear signal estimator, considering the gate of the ReLU closes

for negative activations. Based on the presented analysis, they propose PatternNet and Patter-

nAttribution. PatternNet yields a layer-wise back-projection of the estimated signal to input

space. The signal estimator is approximated as a superposition of neuron-wise, nonlinear sig-

nal estimators in each layer. It is equal to the computation of the gradient where during the

backward pass the weights of the network are replaced by the informative directions. Patter-

nAttribution can be seen as a root point estimator for the Deep Taylor Decomposition. Here,

the explanation consists of neuron-wise contributions of the estimated signal to the classification

score. By ignoring the distractor, PatternAttribution can reduce the noise and produces much

clearer heat maps. By working out the back-projection steps in the Deep-Taylor Decomposition

with the proposed root point selection method, it becomes obvious that PatternAttribution is

also analogous to the backpropagation operation.

Other approaches take weight vector w as importance measure which highly depends on the

distractor and this approach detect as to be learned from data. It is important to recognize

at this point that selecting a root point for the DTD corresponds to estimating the distractor

x0 = d and, by that, the signal ŝ = x−x0. Pattern Attribution is a DTD extension that learns

from data how to set the root point.

This method is an attempt to increase the reliability of the input attribution itself by setting

the root point learned from data. In contrast, our direction is to inform the user of the existence

of uncertainty by analyzing the uncertainty of the input attribution.

2.3 Bayesian Neural Networks and Monte-Carlo Dropout

Bayesian Neural Network

Bayesian Neural Networks (BNNs) introduce uncertainty to deep learning models from a Bayesian

perspective. By giving a prior to the network parameters W , the network aims to find the pos-

terior distribution of W , instead of a point estimation. Unfortunately, due to the complicated

non-linearity and non-conjugacy in deep models, exact posterior inference is rarely available.

In addition, most traditional algorithms for approximate Bayesian inference cannot scale to the

large number of parameters in most neural networks. In order to perform inference about the dis-

tribution of the parameters of the deep learning model with the Bayesian approach, the necessary

content is variational Inference. Because deep learning models have very high-level parameters,

obtaining a posterior distribution is intractable. Therefore, we have to use an approximation

method and the most commonly used method is variational inference. However, recent studies

have demonstrated that this approach approximates the use of Monte-Carlo Dropout in network

[6]
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Monte-Carlo Dropout

Reference [6] show that the use of dropout in neural networks can be interpreted as a Bayesian

approximation of a Gaussian process, a well known probabilistic model. Dropout is used in

many models in deep learning as a way to avoid over-fitting [10], and [6] show that dropout ap-

proximately integrates over the models weights. This approach, called Monte Carlo dropout,

will mitigates the problem of representing model uncertainty in deep learning without sacrificing

either computational complexity or test accuracy and can be used for all kind of models trained

with dropout.

Modelling uncertainty with Monte Carlo dropout works by running multiple forward passes

through the model with a different dropout masks with probability p every time. Consider

a trained neural network with dropout fnn. To derive the uncertainty for one sample x, we

collect the predictions of B inferences with different dropout masks with probability p. Here

fdinn represents the model with dropout mask di. So we obtain a sample of the possible model

outputs for sample x as {
fd0nn(x), ..., f

dB
nn (x)

}
.

By computing the average and the variance of this sample, we get an ensemble prediction,

which is the mean of the models posterior distribution for this sample and an estimate of the

uncertainty of the model regarding x.

predictive posterior mean : p =
1

B

B∑
i=0

fdinn(x).

uncertainty : c =
1

B

B∑
i=0

[
fdinn(x)− p

]2
.

This method can be easily implemented using existing deep learning tools which means no

change of the existing model architecture and provides uncertainty estimation almost for free.

Specifically, stochastic dropouts are applied after each hidden layer, and the model output can

be approximately viewed as a random sample generated from the posterior predictive distribu-

tion. As a result, the model uncertainty can be estimated by the sample variance of the model

predictions in a few repetitions. We will use this method to get random sample generated from

the posterior predictive distribution of input attribution with LRP using DTD.

7



(a) Standard dropout in prediction step

(b) MC dropout in prediction step

Figure 2: Difference between standard dropout and MC dropout. Standard dropout in predic-

tion or test time has single output from expected output from training. However,Monte-Carlo

dropout in prediction time has multiple outputs from several model variations and averages

stochastic forward passes through the model.

III Methods

3.1 Input Attribution with Monte-Carlo dropout Network

In this section, we will do Monte Carlo dropout backward passes when calculating input at-

tributions using LRP. We will be able to approximate the distribution of input attribution by

by running multiple backward passes through the model with a different dropout masks with

probability p every time and obtaining input attribution through several modified model struc-

tures. In addition, we will see multiple input attribution from dropout network whether satisfy

consistency defined in Definition3 referred in section 3.2 when modelling uncertainty of input

8



attribution,

The algorithm for the input attribution with MC dropout network is described in Algo-

rithm 1. In this algorithm, we apply MC dropout as a backward pass to different dropout

models with probability p for getting several input attributes through LRP using DTD. We will

introduce our methods by explaining each line of the algorithm in below.

Algorithm 1: Input Attribution with Monte-Carlo dropout Network
Input : data X, prediction network fnn(·), dropout probability p, number of iterations

B

Output: MCDropoutRelevance

1 for i← 1 to N do

2 yi ← fnn(Xi)

3 for b← 1 to B do

4 f bnn ← MCDropout (fnn(·), p) // Apply MC dropout in trained network with

probability p for model perturbation

5 input attribution rbi ← DeepTaylorDecomposition (f bnn, yi)// Calculate input

attribution with dropout network and output using Deep Taylor

Decomposition

6 if not ( CheckConservative (rbi) and CheckPositive (rbi) ) then

7 /* Check if consistency of relevance is maintained after dropout */

8 break

9 end if

10 end for

11 end for

12 return MCDropoutRelevance :
{[
r11, ..., r

B
1

]
,
[
r12, ..., r

B
2

]
...,
[
r1N , ..., r

B
N

]}
For every input data Xi with shape [length of time t× Number of features f] in X{1,...,N}, we

can get corresponding output from trained prediction network fnn(·)(line 1-2, Algorithm1). And

based on the given network and output, we can get input attribution with several XAI methods.

Here, we are using LRP with DTD method to get the input attribution, but we don’t simply

get a single input attribute over a given network fnn(·). Instead, we will use MC dropout with

backward pass to make B times of random sampling of each hidden layers with probability p.

Then, we can obtain input attribution rbi from each of the models f bnn that gave this change for

each input data Xi(line 3-5, Algorithm1). Figure 3 shows the multiple input attributions of 30

input sensors in real industrial data from models with randomly dropped node with probability

p. Through the B input attribution samples, we can approximate the distribution of the input

attribution. Importantly, as we utilize LRP in this step, we have to make sure if these relevance

output has still maintained consistency.(line6-9, Algorithm1). After we do all these procedure,

we will be able to get input relevance with B number of MC dropout network for each data Xi,

9



Algorithm 2: Dropout
Input : prediction network fnn(·), dropout probability p
Output: dropout network f∗nn

1 /* Apply dropout to every hidden layers of network */

2 for layer in fnn do

3 if isHiddenLayer (layer) then

4 fnn[layer] ← SelectNode (layer, p ) // Apply dropout for hidden layer.

5 end if

6 f∗nn ← fnn

7 end for

8 return f∗nn

Figure 3: 50 different input attributions for 3 sensors with 30 data through LRP with backward

Monte-Carlo Dropout. Different input attributions are derived from randomly dropped out

model structures.

shaped [B ×N × t× f ], (line 12, Algorithm1).

3.2 Input Attribution Analysis with Uncertainty

In this section, we defineMonte-Carlo Layer-wise Relevance Decomposition,MC dropout

LRP, as LRP input attribution results from MC dropout network in section 3.1. We will extract

possible influential features to model’s output with mean and standard deviation value of MC

dropout LRP as criterion.

predictive posterior mean for r1,...,Bi : pi =
1

B

B∑
j=0

rji

uncertainty for r1,...,Bi : ci =

√√√√ 1

B

B∑
j=0

[
rji − pi

]2

10



So far, we have MCDropoutRelevance,which means multiple input attributions with LRP

from B numbers of random sampled trained network using MC dropout backward pass from

section 3.1. Now we will calculate the mean and uncertainty value for B relevance scores and will

use them as the criterion to distinguish inputs that possibly affect the output in Algorithm 3.

Algorithm 3: Input Attribution Analysis with Uncertainty
Input : MCDropoutRelevance, data X

Output : Possible Influential Data

1 p = PredictivePosteriorMean (MCDropoutRelevance)

2 c = Uncertainty (MCDropoutRelevance)

3 Q1p,Q1c = getQuantile(p, 1), getQuantile(c, 1)

4 Q3p,Q3c = getQuantile(p, 3), getQuantile(c, 3)

5 IQRp, IQRc = Q3p −Q1p,Q3c −Q1c

6 fencep, fencec = Q3p + 1.5× IQRp,Q3c + 1.5× IQRc

7 thresholdp, thresholdc = fencep + εp, fencec + εc

8 candidate1 ← {Xi ∈ X|pi > thresholdpi > and ci > thresholdci}
9 candidate2 ← {Xi ∈ X|pi > thresholdpi > and ci ≤ thresholdci}

10 candidate3 ← {Xi ∈ X|pi ≤ thresholdpi > and ci > thresholdci}.
11 return candidate1, candidate2, candidate3

In case of relevance, there are few inputs that affect the results to some degree, especially

when data has many features and long input time as the output of model between 0 to 1 should

be decomposed to all inputs. Therefore, we can think of high value of attribution as outlier which

is an observation that lies an abnormal distance from other values in a random sample from a

population. We use interqurtile range(IQR) of mean and uncertainty value which is defined to

be the spread of the middle of data values, and upper fence as Q3 + 3 ∗ IQR and call points

beyond the outer fences as High, and within the outer fences as Low.(line 1-5, Algorithm3) and

pick out data candidates of influential input (line 8-10, Algorithm3) as follow.

• Data with High uncertainty condition {xi ∈ x|ci > thresholdci}

– with condition of High mean {xi ∈ x|pi > thresholdpi}

– with condition of with Low mean {xi ∈ x|pi ≤ thresholdpi}

• Data with Low uncertainty condition {xi ∈ x|ci ≤ thresholdci}

– with condition of High mean {xi ∈ x|pi > thresholdpi}

As data in attribution of [High Mean, High Uncertainty](upper-right) case have high attri-

bution, but it also have a high uncertainty, we have to look carefully with some doubt when
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analyzing this result with possibility that it does not have much effect to the output of model. In

case of [High Mean, Low Uncertainty](lower-right), we can trust this result to some extent with

little uncertainty. And lastly, we have to focus on the data with input attribution of [Low Mean,

High Uncertainty](upper-left) since certainty is less for the less influence, the possibility of being

sufficiently large should also be considered. Figure 4 shows the result after dividing the cases for

input attribution with proposed method. Before considering the uncertainty, it can be said that

only input data with high attribution is influential on the output, but considering uncertainty,

data with low attribution but high uncertainty has the potential to have high attribution also

and need to be considered.

Figure 4: Scatter plot of the mean and uncertainty of the input attribution. X axis represents

mean, and Y axis represents uncertainty(standard deviation) of input attribution after MC

dropout.The blue dots are the ones that have the possibility of affecting the output of the

model, given uncertainty and mean of input attribution
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(a) Sample of input attribution that has low values
but has high uncertainty at the same time.

(b) Sample of input attribution that has high values
but has high uncertainty at the same time.

Figure 5: Examples of input attributions with several sub-divided cases. X-axis represent time,

Y-axis represent sensors, and Z-axis represent input attribution. The data points in the case are

marked with a red dot and the uncertainty of the input attribution is represented with green

shadow.

IV Experiments

4.1 Experimental Setup

In this section, we will compare the results of proposed algorithm with those of the existing

algorithm. For comparison, we use several evaluation method for XAI on time series domain

suggested by [11]. They suggested four methods below with assumption. The assumption

follows the time series t = (t0, t1, t2, ..., tm) and the relevance generated by the XAI method,

LRP in this paper, as r = (r0, r1, r2, ..., rm) to get a worse result of the quality metric for the

classifier if combined. Under this assumption,a time point ti gets changed if ri is in the set

of influential input candidates. The time point ti is set to zero or the inverse (1 − ti) (data

is normalized) and leads to the new time series samples, called zero perturbation and inverse

perturbation. Another method is that swap time points in consecutive time points in candidates

of influential input, called swap time points. The last method they propose is mean time points.

Instead of swapping the time points, the mean of the sub-sequence is taken to exchange the

whole sub-sequence.

Based on these evaluation method, we did experiments using steel industrial data and a public

multi variate time series data from UCI dataset [12]. In case of industrial data, we cannot reveal

details about the data, so it is not specified numerically because of security concerns. However,

we maintained the overall form of the result. In addition, as the proposed algorithm is applicable

not only to time series data but also to various domains, we will simply show the difference

between existing algorithm and proposed method by visualization.

The model we used in this experiment section is composed of three convolution layers, and

two fully connected layers. ReLu function is used for the activation function in every hidden

layer. In the training phase, dropout of 0.5 was applied after the activation function of every

fully connected layer to prevent over-fitting. Batch size and epoch was set to 128 and 500

respectively. In the prediction phase, we use the model with the lowest validation loss and MC
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Description/Data Steel Industrial Data Human Activity Recognition(HAR)

Number of instances 771,547 10,299

Input time A 128

Number of Attributes B 561

Number of Class 3 6

Table 1: Data Description for the experiments.

dropout was applied at a rate of 0.5 before the non-linear activation function of all hidden layers

for Bayesian approximate. We have done 100 times of Monte-Carlo dropout, and then we have

applied LRP method using DTD to get input attribution for each random sampled network.

4.2 Experimental Result

Steel Industrial Data

In the first experiment, real industry data from steel company were used and due to security

issues, the values were randomly changed while maintaining the overall form of the result. We

trained the classification model to classify whether to lower, maintain or raise the airflow with

300 epochs in this experiment.

The statistics of input attribution are well shown in figure 6. Dotted line represent threshold.

Most of input data has low uncertainty and low input attribution at the same time as only a

few points of input data directly affect the result.

Bayesian Input Attribution
Low Mean

(mean ≤ 0.002055)

High Mean

(mean > 0.002055)

High uncertainty

(std > 0.000524)
33,638 231,822

Low uncertainty

(std ≤ 0.000524)
2,295,859 29,817

(a) Table from steel industrial data representing numbers of each sub-divided cases with input attribution
and its uncertainty.

Discrete Input Attribution
Low Mean

(mean ≤ 0.00151)

High Mean

(mean > 0.00151)

2,311,319 279,817

(b) Table from steel industrial data representing numbers of each sub-divided cases with input attribution.

Table 2: Result difference from steel industrial data between considering input attribution only

and with uncertainty also.

Table 2a shows the number of subdivided cases with the criterion of mean and uncertainty of
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multiple input attributions from MC dropout. The shaded area in blue is the number of input

data that have the possibility of influencing the output of the model, given the uncertainty. We

would simply think that input with a high attribution were candidates of influential data for

the output which is (2, 301, 822 + 29, 817), but after considering uncertainty, we could found

33,638 more candidates with our proposed method. On the contrary, table 2b shows the number

of subdivided cases with the single discrete input attribution. The shaded area in blue is the

number of input data that have the possibility of influencing the output of the model without

the uncertainty.

Zero Inverse Swap Mean

LRP with uncertainty 0.342 0.443 0.363 0.360

LRP 0.302 0.435 0.361 0.362

Random 0.039 0.203 0.108 0.094

Table 3: Result table from steel industrial data with the averaged changed accuracy from the

different candidates of influential input over 1000 random sampled for each class.

We randomly sampled 1000 data in each class and evaluated the existing and proposed

methods using mentioned methods. Table 3 shows averaged changed accuracy from the different

candidates of influential input over 1000 random sampled for each class. In case of perturbation

with zero,inverse and swap for influential candidates, our proposed method have most different

result.

Human Activity Recognition

In the second experiment, dataset from UCI is used. Each person performed six activities

(WALKING,WALKING UPSTAIRS, WALKING DOWNSTAIRS, SITTING, STANDING, LAY-

ING) wearing a smartphone on the waist. Data is consist of 3-axial linear acceleration and 3-axial

angular velocity at a constant rate of 50Hz.

The statistics of input attribution are well shown in figure 7. Dotted line represent threshold.

Most of input data has low uncertainty and low input attribution at the same time as only a

few points of input data directly affect the result.

Table 4a shows the number of subdivided cases with the criterion of mean and uncertainty of

multiple input attributions from MC dropout. The shaded area in blue is the number of input

data that have the possibility of influencing the output of the model, given the uncertainty.

We would simply think that input with a high attribution were candidates of influential data

for the output which is (80, 897 + 39, 061), but after considering uncertainty, we could found

57,815 more candidates with our proposed method. On the contrary, table 4 shows the number

of subdivided cases with the single discrete input attribution. The shaded area in blue is the

number of input data that have the possibility of influencing the output of the model without

the uncertainty.
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Bayesian Input Attribution
Low Mean

(mean ≤ 0.002455)

High Mean

(mean > 0.002455)

High uncertainty

(std > 0.000611)
57,815 80,897

Low uncertainty

(std ≤ 0.000611)
1,519,123 39,061

(a) Table from Human Activity Recognition(HAR) representing numbers of each sub-divided cases with
input attribution and its uncertainty.

Discrete Input Attribution
Low Mean

(mean ≤ 0.002278)

High Mean

(mean > 0.002278)

1,553,243 143,653

(b) Table representing numbers of each sub-divided cases with input attribution.

Table 4: Result difference from Human Activity Recognition(HAR) between considering only

input attribution itself and with uncertainty also.

Zero Inverse Swap Mean

LRP with uncertainty 0.223 0.338 0.299 0.294

LRP 0.219 0.338 0.264 0.264

Random 0.048 0.122 0.098 0.085

Table 5: Result table from Human Activity Recognition(HAR) with the averaged changed ac-

curacy from the different candidates of influential input over 1000 random sampled for each

class.

We evaluated the existing and proposed methods as same as previous experiments. Table 5

shows changed accuracy from the different candidates of influential input over whole 1474 test

time sequence points. In case of perturbation with zero,inverse and mean for influential candi-

dates, our proposed method have most different result, and in case of swapping, existing method

has same difference with our proposed one.
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V Conclusion

Other approaches focus on reducing uncertainty of input attribution, but we dealt with this

uncertainty in a slightly different direction. We show the existence of uncertainty in input attri-

bution from LRP with MC dropout, and suggest all possible influential input as considering both

the uncertainty and input attribution itself at the same time. Lastly, we present visualization

to make people understand and able to interpret better, especially for multi-variate time series

data which is usually complicated to do so.

Here, we summarize the main results. In thesis, we

1. Provide a Bayesian approximate for input attribution through MC dropout.

2. Not only find input data point which has high input attribution, but also find all possible

influential point which has the potential to affect the output of the model.

3. Proved proposed method is improved over the existing method with several evaluation

methods for XAI on time series domain.

We address here some limitations in our current work and some potential future directions that

we can extend our ideas.

1. It depends heavily on how you set the criteria for dividing the input attribution on a

case-by-case basis.

2. The procedure of MC dropout costs a lot in terms of space and time.
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(a) Box plot and histogram of mean of LRP

(b) Box plot and histogram of mean of MC dropout LRP

(c) Box plot and histogram of uncertainty of MC dropout LRP

Figure 6: Box plot and histogram of single LRP values from existing method and box plot and

histogram of mean and uncertainty values from multiple LRPs with MC dropout
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(a) Box plot and histogram of mean of LRP

(b) Box plot and histogram of mean of MC dropout LRP

(c) Box plot and histogram of uncertainty of MC dropout LRP

Figure 7: Box plot and histogram of single LRP values from existing method and box plot and

histogram of mean and uncertainty values from multiple LRPs with MC dropout
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