

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Failure-Atomic Byte-Addressable R-tree for
Persistent Memory

Soojeong Cho

Department of Computer Science and Engineering

Graduate School of UNIST

2020

Failure-Atomic Byte-Addressable R-tree for
Persistent Memory

Soojeong Cho

Department of Computer Science and Engineering

Graduate School of UNIST

Abstract

With the emergence of persistent memory (PM), which enables byte-addressable, 64-byte cache-

line flush and 8-byte store instructions are expected to be used as persist and failure-atomic

write operations, respectively, instead of calls from fsync() and write() system. The granu-

larity of such a small atomic write represents a challenge to the crash consistency of in-PM data

structure. In addition, even if the process does not explicitly invoke clflush, a dirty cachelines

can be flushed to PM unexpectedly and exposed to other concurrent processes when the system

recovers. These challenges occur in PM, but high-density PM is attractive in enabling multi-

dimensional indexing to navigate efficiently through large scientific datasets due to their high

performance, durability and large capacity.

This work proposes a Fail-atomic Byte Addressable R-tree (FBR tree) that utilizes byte-

addressability, persistence and high performance of PM while ensuring crash consistency. We

carefully control the order of the store and cashline flush instruction and prevent any sinble

store instruction from making the FBR tree inconsistent and unrecoverable. We also develop

a non-blocking lock-free range query algorithm for the proposed FBR-tree. Since FBR-tree

allows read transactions to detect and ignore any transient inconsistent states, multiple read

transactions can access tree nodes concurrently without using shared locks while other write

transactions make changes to them. Our performance study shows that FBR-tree successfully

reduces legacy logging overhead, and the lock-free range query algorithm shows up to 9.4x higher

query processing throughputs than the shared lock-based crabbing concurrency protocol.

Contents

I Introduction . 1

II Challenges in Design of Indexing Trees for Persistent Memory 4

III Design and Implementation of FBR-tree for PM 5

3.1 Node Structure . 5

3.2 Failure-Atomic Insertion . 6

3.3 Failure-Atomic Deletion . 9

3.4 Failure-Atomic Page Split . 10

3.5 Failure-Atomic Node Merge . 14

IV Lock-Free Search . 16

V Evaluation . 21

5.1 Node Size: Single vs. Multi-word Bitmap 21

5.2 Concurrency and Recoverability . 23

5.3 PM Latency Effect . 25

5.4 Case Study: Indexing HDF-EOS Datasets 27

VI Conclusion . 29

References . 30

List of Figures

1 Node Structure of FBR-tree . 5

2 Byte-addressable Insertion in FBR-tree . 6

3 Byte-addressable Deletion in FBR-tree . 9

4 CoW Split in FBR-tree . 10

5 In-Place Split in FBR-tree . 12

6 CoW Merge in FBR-tree . 14

7 In-Place Merge in FBR-tree . 15

8 Lock-Free Search with Concurrent In-Place Updates 19

9 Insertion Performance with Varying Node Size 22

10 Performance with Varying Number of Concurrent Transactions (AVG. of 5 Runs) 24

11 Insertion Time with Varying PM Latency (AVG. of 5 Runs) 26

12 Range Query Performance with SAGE III/ISS HDF-EOS Dataset 28

I Introduction

Recent advances in byte-addressable persistent memories (PM) such as 3D Xpoint [1], phase-

change memory [2], and STT-MRAM [3] are expected to open up new opportunities to transform

main memory from volatile device to persistent storage [4–12]. Due to its persistency and byte-

addressability, PM can be used either as slow but large main memory or as fast secondary

storage via legacy block I/O interfaces [4,13–20]. To leverage the high performance, persistence,

and byte-addressability of PM, various opportunities are being pursued in numerous domains,

including operating systems and database systems [16, 21, 22]. However, how PM will interact

with existing systems has not been thoroughly investigated, and a possible role for PM in high-

performance computing is currently an open question.

To manage data objects in PM, the properties of PM must be considered. Although we can

employ traditional techniques, such as logging and shadowing when designing data structures

for PM, logging and shadowing unnecessarily duplicate unmodified portions of data structures,

which incurs significant overhead due to additional memory writes and cache line flush instruc-

tions. Implementing byte-addressable data structures for PM has very different characteristics

from disk-based data structures as well as in-memory data structures. First, there is no guaran-

tee that when modified dirty cachelines will be written back to PM. Even if we do not explicitly

call clflush instructions, dirty cache lines can be flushed by cache replacement mechanisms.

Such a premature cacheline flush can make data structures in PM inconsistent, and such inconsis-

tency becomes permanent and exposed to other processes when a system crashes. Second, when

processors store data in PM, they guarantee at most 8 bytes of data to be written atomically.

Most data structures consist of logical blocks of composite data types; thus, failure-atomicity at

a granularity of 8 bytes is not sufficient to guarantee crash consistency. Third, multiple write

operations may not occur in the same order as they are written by a process running on the

CPU. Such reordering of memory writes does not harm volatile memory because applications

that make changes to volatile memory can protect the inconsistent data via locking mechanisms,

and partially written data will be lost when a system crashes. However, if we store data items

on PM, such transient inconsistent data written in an arbitrary order will persist across system

failures.

To address these challenges associated with a fine-grained write unit in PM, various block-

based indexing structures, such as B+-trees [10, 13, 23, 24] and hash tables [25–27] have been

redesigned. However, to the best of our knowledge, no previous study has attempted to design

multidimensional indexing structures for byte-addressable persistent memory.

1

Multidimensional range queries are an important class of problems in high-performance com-

puting [28–39], In many scientific domains, the size of data files produced by scientific applica-

tions continue to grow, and petabytes or exabytes of data will soon be common. Typically, the

content of scientific data files are a collection of multidimensional arrays along with the associ-

ated spatio-temporal coordinates [35–37,40]. To help navigating through large scientific datasets,

various multidimensional indexing techniques, such as R-trees [41,42], have been developed and

used widely to allow for direct access to particular datasets [28, 29, 43–46]. For example, multi-

physics oil reservoir simulation [47], spatial modeling of the brain [39], and disease transmission

analysis [40] employ multidimensional indexes to accelerate range query processing performance.

For large-scale scientific datasets, persistent memory offers the ability to bring persistent

data closer to the CPU and to extend the capacity of main memory. We note that Intel’s latest

Optane DC Persistent Memory [1] extends the capacity of DRAM and enables very large storage

class memory, i.e., 3 TBytes of memory capacity per server CPU socket.

While R-trees are primarily designed for block-based devices, such as hard disk drives, we

have designed a variant of an R-tree for byte-addressable PM. Byte-addressable PM raises new

challenges in the use of R-trees because legacy R-tree operations are based on the assumption

that block I/O is failure-atomic and memory operations are volatile. However, in PM, each

memory operation at the granularity of a word, e.g., 64 bits, must be failure-atomic, i.e., data

must be consistent for each store instruction. Otherwise, partially updated inconsistent tree

nodes can be exposed to other transactions upon system failures. To prevent the reordering of

memory write operations and to ensure that each cacheline flush to PM does not compromise

the consistency of R-tree structures, we carefully redesign R-tree algorithms to control the order

of memory writes and cacheline flushes so that R-tree can tolerate transient inconsistency [24]

caused by incomplete write transactions.

The key contributions of this work are as follows.

• We carefully analyze the insert, delete, split, and merge R-tree algorithms and show how

byte-addressable updates via a sequence of 8-byte store instructions can avoid unnecessary

duplication of data items while guaranteeing the failure-atomicity of R-tree.

• We present two failure-atomic tree rebalancing algorithms for the split and merge op-

erations - copy-on-write (CoW) based rebalancing and in-place rebalancing with byte-

addressable metadata-only logging. Both algorithms eliminate the need for explicit logging

of entire dirty pages.

• We also show that fine-grained control of failure-atomic 8-byte store instructions enables

the lock-free search for R-trees on PM. Non-blocking queries on R-trees significantly im-

prove the concurrency level and transaction throughput.

2

The remainder of this paper is organized as follows. In Section II, we present the challenges

involved in designing a R-tree index on PM. In Section III, we present the design and imple-

mentation of failure-atomic and byte-addressable persistent R-tree (FBR-tree). In Section IV,

we discuss concurrency and consistency issues associated with an FBR-tree. In Section V, we

evaluate the performance of FBR-trees. Conclusion of this paper is presented in Section VI.

3

II Challenges in Design of Indexing Trees for Persistent Memory

R-tree structures are similar to B-tree structures in that both structures are balanced search

trees and are designed for block device storage where data items are organized in pages. Al-

though, to the best of our knowledge, there exists no prior work that studies multidimensional

indexing trees on PM, various B-tree variants for PM have been proposed to resolve the chal-

lenges of PM and benefit from its high-performance [13,23,24,48].

In legacy B-trees, key-value pairs are stored in a sorted order, which entails a large number

of shifts and cache line flushes. In the legacy disk-based index, the overhead of a large number of

shifts and cacheline flushes is negligible due to incomparably large disk I/O overhead. However,

in high-performance PM, the overhead of memory barriers and cacheline flushes is known to be

the dominant performance factor [10,13,21,23,24,48]. To avoid such a large number of shifts and

cacheline flushes, NV-tree [23], FP-tree [48], and wB+-tree [13] have been proposed to append

unsorted key-value pairs into the array. The append-only update strategy has been shown to

improve write performance, but at the cost of higher lookup overhead because it requires linear

scanning of all unsorted keys.

In R-trees, an internal node stores a set of Minimum Bounding Rectangles (MBR) and point-

ers to the corresponding child node. A leaf node of R-tree stores a set of spatial objects. When

a range query is performed, it must be determined whether or not any MBR in a node overlaps

the query range. For all overlapping MBRs, the corresponding child node must be visited in a

recursive manner until all overlapping nodes have been traversed. When a leaf node is reached,

the spatial coordinates of objects are compared against the query range, and their objects are

put into the result set if they lie within the search range. Since an R-tree query scans all MBRs

in a visited page, the ordering of MBRs in a tree node does not affect the performance of an

R-tree search.

When rebalancing a tree-structured index, recovery methods, such as logging and CoW,

make the structure recoverable by writing a consistent copy elsewhere prior to updating the

tree structure. However, in byte-addressable PM, such per-node logging or per-node CoW is

known to be expensive and sub-optimal because it unnecessarily duplicates the entire tree node,

including the unmodified portion of it. To resolve this problem, NV-tree [23] and FP-tree [48]

use selective persistence that keeps leaf nodes in PM but internal nodes in volatile DRAM.

This is because internal tree nodes can be reconstructed from scratch when a system restarts.

Although the selective persistence makes logging unnecessary, it requires reconstruction of whole

tree structures upon any system fault. In that regard, NV-tree and FP-tree are not persistent

indexes in strict sense.

4

III Design and Implementation of FBR-tree for PM

In this section, we present the details of the tree node structure and tree operations of the

proposed FBR-tree (Failure-atomic and Byte-addressable R-tree) optimized for PM with re-

duced consistency cost.

3.1 Node Structure

(a) Node Structure with 8 Byte Metadata

(b) Node Structure with Metadata of Unlimited Size

Figure 1: Node Structure of FBR-tree

Figure 1 shows the structure of FBR-tree nodes. If the metadata size is bounded by an 8-byte

word, as shown in Figure 1(a), we can update the metadata in a failure-atomic manner with a

single 8-byte store instruction. Each bit in the bitmap indicates whether its corresponding MBR

and pointer are valid. If the kth bit is 0, a pair of MBR[k] and its pointer in the node is a free

space. Otherwise, the MBR and the pointer are valid and consistent. Therefore, the maximum

number of MBRs we can store in a tree node with 8-byte metadata is limited to 55. Note that

we use one bit to store the type of tree node (leaf (LN) or internal node (IN)) and one byte to

store the version number, which is necessary to implement a lock-free search algorithm, which

we will describe in Section IV. The rest of metadata is bitmap. Alternatively, bitmap size can

be set arbitrarily large to have node degrees greater than 55, as shown in Figure 1(b). If we use

5

metadata larger than an 8-byte word, write transactions must carefully order memory writes

to enforce the consistency because the bitmap that spans across multiple 8-byte words cannot

be modified atomically. That is, word B in Figure 1(b) can be unexpectedly flushed to PM

while we are updating word A in CPU cache. To prevent such premature flush, we may employ

PMwCAS (Persistent Multi-word Compare-And-Swap) [49] or hardware transactional memory

to implement an atomic multi-word write function; however, both approaches incur additional

overhead [24,49].

3.2 Failure-Atomic Insertion

(a) Inserting MBR ’R’ into R-tree

(b) Legacy Disk-based Logging

Figure 2: Byte-addressable Insertion in FBR-tree

When inserting a new spatial object into an R-tree, the tree is traversed recursively from

the root node to a leaf node. At each node, a candidate child node is selected using a legacy

heuristic, such as the least enlargement algorithm [41]. If the chosen MBR does not completely

overlap the new spatial object, the MBR must be enlarged to contain the new object, as shown

in Figure 2(a). In legacy disk-based R-trees, an MBR update requires CoW of the entire tree

node to provide atomicity and crash consistency. For example, in the legacy disk-based write-

ahead logging method, a new node is stored as a redo log first, as shown in Figure 2(b) and then

checkpointed to the index later.

6

However, with byte-addressable PM, such per-node CoW incurs unnecessary memory copy

overhead. For example, in the example shown in Figure 2(b), the undo logging method copies

MBR1 to the log so that it can be restored when a transaction aborts. To eliminate such per-node

CoW overhead, FBR-tree employs fine-grained byte-addressable metadata-only logging and per-

forms in-place updates without hurting the consistency and failure-atomicity.

Algorithm 1 Insert(Obj obj, Node *n, Node *parent)

1: n → mutex.lock()

2: if node is NOT leaf then

3: locked = true;

4: pos = PickChild(obj.r, n);

5: n → child[pos].mbr = Combine(n → child[pos].mbr, obj.r);

6: persist(n → child[pos]); // step 1 in Figure 2.(a)

7: if n → child[pos] is NOT FULL then

8: n → mutex.unlock(); locked = false;

9: end if

10: c_sibling = Insert(obj, n → child[pos].ptr, parent);

11: if c_sibling is NOT NULL then

12: child node has split, c_sibling is its sibling node

13: Rect c_sibling_mbr = getMBR(sibling)

14: if n is also full then

15: create a splitLog (parent, current and a new sibling)

16: persist(splitLog);

17: sibling = split(n, c_sibling, parent);

18: n → mutex.unlock();

19: else

20: n → child[free].mbr = c_sibling_mbr;

21: persist(n → child[free]); // step 4 in Figure 4.

22: n → child[pos].mbr = getMBR(n → child[pos]);

23: increase n → version and update valid bit of free;

24: persist(n → metadata); // step 5 in Figure 4.

25: persist(n → child[pos].mbr); // step 6 in Figure 4.

26: persist(n → child[pos].ptr→version = 1); // step 7

27: sibling = NULL;

28: n → mutex.unlock();

29: end if

30: else

31: sibling = NULL;

7

32: if locked is true then

33: n → mutex.unlock()

34: end if

35: end if

36: return sibling;

37: else

38: if n → bitmap is FULL then

39: create a splitLog (parent, current and sibling)

40: sibling = split(n, obj, parent);

41: else

42: pos = n → getFreeSpace()

43: n → child[pos] = obj;

44: persist(n → child[pos]); // step 2 in Figure 2.(a)

45: increase n → version and update valid bit of pos;

46: persist(n → metadata); // step 3 in Figure 2.(a)

47: sibling = NULL;

48: end if

49: n → mutex.unlock();

50: return sibling;

51: end if=0

Algorithm 1 shows the insertion algorithm of FBR-tree. First, we select a child node and

enlarge the MBR of the child node, as shown in Figure 2(a). Then, we call mfence and clflush

to persist the updated MBR. Note that we perform in-place updates for the selected MBR (MBR2

in the example) without logging. An MBR has multiple spatial coordinates, thus it cannot be

updated in a failure-atomic manner. To guarantee failure-atomicity, we CoW the MBR such

that we retain the old MBR while writing a new one. Then, we validate the new copy by atom-

ically flipping the valid bit of the old copy and the new copy. However, we note that such a

CoW is not necessary for MBR updates because insertions only enlarge the size of the MBRs.

In other words, as long as the MBR contains all MBRs of child nodes, MBR updates do not

have to be atomic and the write ordering of spatial coordinates does not violate the correct-

ness of the index. For example, no matter whether the boundary of the first dimension or the

second dimension is updated, the partially updated MBR will still include all child MBRs. Sup-

pose a system crashes after only one of the boundaries is overwritten. Subsequent queries will

still successfully find and visit the child node if their query ranges overlap the child node’s MBR.

We note that partially enlarged MBRs can hurt the efficiency of the index because the par-

tially enlarged MBR may unnecessarily overlap incoming queries due to the dead space, i.e.,

space that contains no data objects. However, such false positive results do not hurt the cor-

rectness, and the partially updated MBRs never return false negative results. We also note that

8

such a dead space problem is not permanent since a dead space can be removed when a node

splits or when underutilized nodes merge.

On the way down to a leaf node, we keep updating MBRs when necessary so that all ancestor

nodes contain the new spatial object. Once we find a leaf node and insert a new spatial object,

we search for free space by checking the bitmap in the leaf node and store the object’s spatial

coordinates in it (step 2 in Figure 2(a)). Then, we call mfence and clflush to persist the new

object. In the next step (step 3 in Figure 2(a)), we increase the version number and update the

bitmap to validate the new object. If the version number and bitmap are stored in an 8-byte

word, they can be atomically updated and flushed. The version number update is necessary to

enable a lock-free search, which we will discuss in Section IV. If a system crashes before the

bitmap is updated, the written object will be ignored and considered as a free space when the

system recovers, i.e., no recovery process is required. In such a sense, the insertion algorithm of

the FBR-tree is failure-atomic although it does not perform logging.

3.3 Failure-Atomic Deletion

Figure 3: Byte-addressable Deletion in FBR-tree

When an indexed spatial object is deleted from a tree node, FBR-tree flips the valid bit

of the object and flushes the bitmap to persist it, as shown in the first step of Figure 3. If

the deleted object is entirely within the MBR of its leaf node, the MBR of the leaf node will

not be modified. However, if the deleted object shares at least one boundary with the MBR

of leaf node, the MBR of the leaf node needs to be shruken by the deletion. In such a case,

we backtrack to the parent node and update the leaf node’s MBR accordingly. To reconstruct

the MBR, we select the minimum and maximum boundaries in each dimension and perform

in-place updates to overwrite the existing MBR. Again, we note that shrinking the MBR also

does not have to be atomic because partially updated MBR does not affect the invariants of the

index. In other words, no matter what dimension has been updated and flushed to PM, when a

system crashes, the partially updated MBR will still contain all spatial objects in the sub-tree,

9

and it will guarantee correct search results. Therefore, the FBR-tree deletion algorithm is also

failure-atomic and guarantees consistency. Note that such in-place updates greatly reduce the

amount of I/O since transactions do not need to perform expensive logging. In addition, in-place

updates simplify the lock-free search, as we will describe in Section IV.

3.4 Failure-Atomic Page Split

Insertions and deletions often result in node overflows and underflows, which respectively

require nodes to split and merge such that the tree height becomes re-balanced. In disk-based

R-trees and B-tree variants [13,23], per-node logging or journaling has been used because multiple

tree nodes including a parent node need to be updated atomically. In legacy logging or journaling,

unmodified portions of tree nodes are duplicated in a log or journal file because the minimum

write granularity of disks is a disk page. Such legacy disk-based logging not only increases

the write traffic but also blocks concurrent access to tree nodes. Unlike a disk-based R-tree,

FBR-tree re-balances the tree height in a byte-addressable and failure-atomic manner without

duplicating a clean portion of the tree nodes. We propose two methods: (1) byte-addressable

CoW-based split and (2) in-place split with minimal metadata logging.

Byte-addressable Copy-on-Write Split

Figure 4: CoW Split in FBR-tree

Figure 4 shows the steps required to perform byte-addressable CoW when a node overflows.

First, we allocate two new nodes and copy half of the entries to these nodes (steps 1 and 2 in

the example). Then we insert their MBRs and pointers into the parent node P. Once we flush

the new MBRs (step 3 in the example), we overwrite the bitmap via a single store instruction

and call clflush to persist it.

If a system crashes before we add the new nodes to the parent, the index is consistent because

nothing has been changed. If a system crashes after we add the two new nodes to the parent

node but before we update the bitmap, the index is still consistent because the two child nodes

10

will be considered invalid, i.e., free spaces. PM heap manager, such as Intel’s PMDK [50] or

HPE’s NVMM [51] should be able to deal with memory leak problems. For example, a PM heap

manager should create a log when it allocates a PM block. Then, the heap manager can check

whether each PM block is being used by an application when a system recovers. If not, the

block must be garbage collected. Note that this is not a requirement specific to our FBR-tree.

All other PM-based data structures also require this feature to prevent memory leak problems.

If a system crashes after the bitmap is updated, the index is in a consistent state; thus, recovery

is not required.

CoW split updates three bits, two bits to validate new nodes and another bit to invalidate

the overflow node. If the size of a bitmap is larger than 8 bytes, CoW split does not provide

failure-atomicity because three bits can be in different words. Therefore, the maximum number

of child nodes we can store in each tree node is limited to 55. If we want a tree node to have a

larger number of child nodes, as shown in Figure 1(b), we must use explicit logging for a bitmap.

However, the size of a log will still be much smaller than legacy per-node logging. If a system

crashes before we put a commit mark in the bitmap log, the logged bitmap will be ignored, and

the index will be in its previous consistent state. If a system crashes after we put a commit

mark in the bitmap log, the index will be in a new consistent state. Therefore, our CoW split

algorithm is failure-atomic.

A drawback of a CoW split is that we need at least two free spaces on the parent node. If

there is only one last free space in the parent node, the parent node cannot accommodate two

new child nodes; thus the parent node also has to split. For example, after we update the bitmap

of parent node P in the example shown in Figure 4, MBR2 will become a free space. However, if

another child node splits again, node P must split even though there is a single free space. Such

a premature split degrades node utilization.

Byte-addressable In-Place Split with Minimal Logging

We can also avoid such a premature split problem if we employ small metadata-only logging

and perform in-place updates. Figure 5 shows the steps for the in-place split algorithm, and

Algorithm 2 shows the in-place split algorithm.

First, when a node overflows, we create a log space and write minimal metadata to indicate

which node is splitting, which node is created as a sibling, and which node is the parent node.

In the example, we write the address of node B, C, and P. The split log stores the address of the

overflow node as key and a pair of siblings and the parent node addresses as values. Then, we

allocate memory space for a sibling node (C in the example) and copy half of the entries to this

sibling node (step 2). For the other half, we reuse the overflow node (B in the example). Note

that the order of the first two steps can be changed as they do not affect the invariants of the

index.

11

Figure 5: In-Place Split in FBR-tree

In the third step, we set the version of the overflow node to 0 and invalidates the migrated

entries by overwriting the bitmap (step 3). Since we store the version and bitmap in the same

8-byte word, the version and bitmap are atomically updated. Version 0 indicates that the node

is splitting. Any subsequent transaction that accesses a version 0 tree node must check its split

log and access the newly created sibling node. Note that we have not added the new sibling

node (C) to the parent node; however, the migrated entries are invalidated in the overflow node.

At first glance, it appears as though the index is not in a consistent state because the migrated

entries are not accessible from the root node. However, since subsequent transactions can find

the sibling node from the split log, the correctness of search operations is not compromised.

In the next step (step 4), we add the address and MBR of the new sibling node to the parent

(MBR11). Note that the MBR is not valid until the bitmap is updated in the next step (step

5). Again, we update the bitmap and version number atomically. After validating the new

child node, we update the MBR of the overflow node to make it just small enough to include

the remaining MBRs (step 6). The MBR of the overflow node must not be updated prior to

validating a new child node. Otherwise, a query that searches for a migrated entry may fail

to find it. For example, suppose a query is searching for MBR5 in Figure 5. If we reduce the

size of MBR2 and MBR5 does not overlap the reduced MBR2, the query will not visit node B and

will never know MBR5 has been moved to a new sibling node because node C is not added to

the parent node. To avoid this problem, the order of each update must be strictly enforced.

Otherwise, failure-atomicity and consistency will not be guaranteed. Therefore, we call mfence

and clflush in each step. Finally, we increase the version of the overflow node to indicate the

split process has completed (step 7), and we delete the log entry (step 8).

12

Suppose a system crashes before the version of the overflow node is set to zero (step 3). Since

nothing has changed in the index, recovery is trivial. If a system crashes after the version of the

overflow node has been set to zero but before the sibling node has been added to the parent (step

5), we can recover from the system failure by replaying the split log. If a system crashes after

the sibling node has been added to the parent and validated but before the version of overflow

node (step 7) has been increased, we will replay the log and determine that the sibling node has

already been added to the parent node. Again, recovery is possible. If a system crashes after the

version of the overflow node has been increased, the index is now in the next consistent state;

therefore, recovery is unnecessary.

Algorithm 2 split(Node *n, Entry *entry, Node *parent)
1: sibling = create a sibling node;

2: cluster existing entries into group A and B

3: B is the group that the new entry belongs to

4: tmp_metadata.bitmap = n→bitmap;

5: for i = 0; i < size; i++ do

6: if n → branch[i] is in group B then

7: addEntry(sibling, n → child[i]);

8: tmp_metadata.bitmap[i] = 0;

9: end if

10: end for

11: sibling → version = 1;

12: persist(sibling);

13: tmp_metata.version = 0;

14: n → metadata = tmp_metdata;

15: persist(n → metadata);

16: if parent is NULL then

17: n is the root node

18: new_root = create a new node;

19: write_log(new_root, n, sibling);

20: AddEntry(new_root, n);

21: AddEntry(new_root, sibling);

22: initialize new_root.metadta;

23: persist(new_root);

24: root = new_root;

25: return NULL;

26: end if

27: return sibling; =0

13

3.5 Failure-Atomic Node Merge

If deleting a key from a node causes an underflow, FBR-tree redistributes entries between

sibling nodes. Such redistribution requires bitmap logging because multiple bitmaps must be

updated atomically. If a sibling node also has the minimum number of keys, the two nodes are

merged to improve node utilization. We propose and compare two merge operation methods,

i.e., (1) byte-addressable CoW merge and (2) in-place merge with minimal metadata logging.

Byte-addressable Copy-on-Write Merge

Figure 6: CoW Merge in FBR-tree

Figure 6 shows the steps required for a merge operation. In the walking example, we delete

an entry from leaf node B, which causes an underflow. Since the leaf node B cannot borrow

an entry from its sibling node C, nodes B and C need to be merged. Therefore, we allocate a

new node D and copy MBR6, MBR7, MBR8, and MBR9 to this new node. Then, we persist node

D (step 1). In the next step, we add the MBR of node D to the parent node P as in normal

insertion algorithm (step 2 and 3). Since the failure-atomic bitmap update will invalidate two

under-utilized nodes and validate the new merged node atomically, the CoW merge algorithm

is failure-atomic.

Byte-addressable In-Place Merge with Minimal Logging

Differing from CoW split, CoW merge does not cause the node utilization problem. However,

CoW operations require more memory copy operations than in-place updates. Thus, we design

and implemented the in-place merge algorithm.

As shown in Figure 7, when a node underflows, a merge log is created. This merge log stores

the address of the underflow node as key and the addresses of the sibling node and parent node

14

Figure 7: In-Place Merge in FBR-tree

as values (step 1). Then, we copy all entries from a sibling node to the underflow node (step

2), and update the bitmap to validate the migrated entries (step 3). Note that the sibling node

must be also underutilized when merging. We also set the version of node B to 0 to indicate that

the merge log must be accessed. If a system crashes at this point, the recovery process will read

the log and replay the merge process. In the next step (step 4), the MBR of node B in the parent

node is updated to include the entry migrated from an underutilized node. Then, the bitmap

of the parent node and its version number are updated atomically to invalidate the underflow

node C (step 5). Once the underflow node is removed from the parent node, the version of the

merged node is increased (step 6) and the merge log is deleted (step 7). Note that we have not

discussed crash consistency due to its symmetry with the in-place split algorithm.

15

IV Lock-Free Search

With the increasing prevalence of many-core systems, the importance of concurrent data

structures also increases. One challenge for concurrent data structures is the lock contention

between concurrent transactions. If a transaction accesses a data structure while it is being

modified by another transaction, it may access the data structure in an inconsistent state. Vari-

ous lock methods have been used to protect data structures from concurrent accesses. However,

due to synchronization overhead, lock methods often degrade the concurrency level and degrade

performance.

Optimistic synchronization has been proposed to reduce synchronization overhead [24,52,53].

With optimistic synchronization, search operations access data structures without acquiring

shared locks. Instead, search operations optimistically access each node of the data structures

and rollback when they later find that inconsistent nodes have been accessed.

FBR-tree takes this optimistic approach, and the non-blocking search operations of the FBR-

tree guarantee system-wide progress and consistency. As described previously, the sequences of

8-byte store operations in the FBR-tree guarantee that the index is recoverable from system fail-

ures at any time. In other words, if every 8-byte store operation in write transactions guarantees

recovery, and if a read thread knows when it needs to read a metadata log to avoid accessing

a transient inconsistent tree, no read thread will ever access inconsistent tree nodes. Even if a

write thread fails while making changes to tree nodes, subsequent transactions after recovery

will be able to replay or rollback to a consistent state of the partially written index. Similarly,

even if a read transaction accesses a tree node partially updated by a suspended write thread,

it is guaranteed that read transactions can detect the partially written transient inconsistent

tree nodes, and they can construct a consistent view of tree nodes without waiting for write

transactions to release the exclusive lock.

In FBR-tree nodes, a version number is stored along with a bitmap in each node to indicate

the node is in a transient inconsistent tree state, i.e., when an entry in a tree node is added or

deleted, its version number is increased. When a search query visits a tree node for the first time,

it remembers its version number. Later, when the query is done accessing the node, it verifies

that the version number has not changed. If the version has changed, the query knows that

the node has been changed and that it has to read the node again to guarantee serializability

and strong consistency. Such a rollback operation is expensive as it may result in re-traversal of

sub-trees. However, we note that the rollback operation is less expensive than the reader-writer

lock mechanism, which requires write operations.

We note that our lock-free search algorithm always returns a result set even if the search algo-

rithm does not verify the version of tree nodes. However, if the version metadata is not used,

16

the query result becomes vulnerable to dirty reads although it may return query results faster.

I.e., if an application does not require serializability, our search algorithm may omit checking the

version metadata and work in read uncommitted mode [54] to improve the query performance. If

the version metadata and rollback method are employed, the presented lock-free search operates

in serializable mode [54]. The detailed algorithm of lock-free search in FBR-tree is shown in

Algorithm 3.

Algorithm 3 Search(Node *n, Query *q)
1: hitCount = 0;

2: if n != leaf then

3: version = n → version;

4: initialize ’childqueue’;

5: while true do

6: for i=0; i<n → size; i++ do

7: if branchOverlap(n→branch[i],q) && n→bitmap[i]==1 then

8: childqueue.push(n→branch[i]);

9: end if

10: end for

11: if version==n→version && version != 0 then

12: while !childqueue.empty() do

13: hitCount += Search(childqueue.front(), q);

14: childqueue.pop();

15: end while

16: break;

17: else if version!=n→version then

18: // child was split and added branch

19: remove all entries in childqueue

20: version = n→version;

21: else if version == 0 && n→version == 0 then

22: // need to check a log

23: logEntry=searchLog(n);

24: if logEntry then

25: for i=0; i<n → size; i++ do

26: if branchOverlap(logEntry→branch[i], q) && logEntry→bitmap[i]==1 then

27: childqueue.push(logEntry→branch[i]);

28: end if

29: end for

30: else

31: remove all entries in the childqueue

17

32: version = n→version;

33: end if

34: while !childqueue.empty() do

35: hitCount += Search(childqueue.front, q);

36: childqueue.pop();

37: end while

38: break;

39: end if

40: end while

41: else if n is leaf then

42: for i=0; i<size; i++ do

43: if branchOverlap(n→branch[i], q) && n→bitmap[i]==1 then

44: hitCount++;

45: end if

46: end for

47: end if

48: return hitCount =0

Note that FBR-tree insertion, deletion, split, and merge algorithms do not allow lock-free

writes. Therefore, we use legacy exclusive locking to avoid write-write conflicts. This is be-

cause the FBR-tree must guarantee not only byte-addressable consistency but also durability

as an additional challenge. In future, we intend to consider lock-free writes for a persistent index.

Consider the example shown in Figure 2. If a read transaction accesses leaf node B when an-

other write transaction stores the MBR R into the same node prior to its bitmap being updated.

If the read transaction returns without reading R because the version is not updated, the two

transactions are serializable without incurring a consistency issue (read → write). If the write

transaction updates the bitmap before the read transaction returns, the read transaction must

rescan the leaf node and thus will read the new MBR R. Therefore, again the two transactions

are serializable (write → read). We omit a discussion of deletions due to its symmetry with

insertions.

Now, consider the example shown in Figure 4. Suppose a read transaction accesses the leaf

node B and returns to its parent node P while another write transaction is making changes to

P using CoW. If the node P version has not yet been changed, the read transaction does not

have to read the spatial object written by the write transaction. Thus, the read transaction

will successfully return, and the two transactions are serializable (read → write). If the write

transaction updated the bitmap of node P, the read transaction will discard the results found

in leaf node B and visit new child nodes C and D. Again, the two transactions are serializable

(write → read).

18

As for the in-place split, we update versions three times as shown in Figure 5. If a read

transaction accesses a leaf node and returns from its parent node prior to the version of an

overflowing node being set, the transactions are serializable (read → write) and there is no con-

sistency issue. However, a transaction can be suspended indefinitely, which can complicate the

interaction between concurrent read and write transactions.

Figure 8: Lock-Free Search with Concurrent In-Place Updates

Figure 8 shows all possible execution orderings of concurrent read and write transactions.

Vertical dash lines indicate when a write transaction updates each version number. The left end

of the arrow indicates when a read transaction reads the version of a child node, and the right

end of the arrow indicates when the read transaction verifies the version of a parent node.

(i) In the case of B in Figure 8, a read transaction accesses a leaf node before a write trans-

action migrates one half of the entries to a new sibling node and accesses its parent node before

the sibling node is added to its parent node. Since the read transaction has already accessed all

entries from the overflow node, the read transaction returns correct results.

(ii) In the case of C, a read transaction will determine if the parent node was modified by

a write transaction, and the read transaction will discard the results found from the previous

sub-tree traversal and read child nodes again. If the version of a child node is 0, it has to access

the split log. Since the new sibling node is already pointed by its parent node, we make read

transactions keep track of the version of visited tree nodes to avoid unnecessary multiple visits

to the same node.

19

(iii) Case D is the same as case C except that the read transaction does not read the split log.

(iv) In case of E, a read transaction accesses a leaf node after the leaf node deletes migrated

entries but before its sibling node is added to the parent node. Since we always check the split

log if the version of a tree node is zero, the read transaction reads the split log to find the sibling

node.

(v) Case F is similar to E. However, because the version of the parent node has been changed,

the read transaction must rollback the previous sub-tree traversal, reread the parent node, and

visit the child nodes. Although the sibling node can be pointed by both parent node and split

log, we avoid visiting the same nodes unnecessarily by keeping track of the version of visited

tree nodes.

(vi) Case G is similar to F except that the read transaction does not have to read the split log.

(vii) For cases H and I, a read transaction accesses a consistent tree structure. However, for

cases H and I, the version of a leaf node is 0, which makes the read transaction access a split

log and consider a new sibling node. However, our tree traversal algorithm allows us to avoid

visiting the same nodes unless their version has changed. Therefore, the read transaction can

return correct results.

As discussed above, our non-blocking range query algorithm can detect any transient incon-

sistency caused by a concurrent write transaction. Therefore, read transactions can access the

FBR-tree in a non-blocking manner even if some nodes are being modified by concurrent write

transactions.

20

V Evaluation

We designed and implemented variants of FBR-trees and evaluate their performance on a

workstation that has two Intel Xeon Gold 6230 processors (20 cores, 2.1GHz, 20x32 KB instruc-

tion cache, 20x32 KB data cache, 20x1024 KB L2 cache, and 27.5 MB L3 cache), 375 GB of

DDR4 DRAM and 1 TB Intel Optane DC Persistent Memory (DCPM). To create and manage

FBR-trees in DCPM, we use Persistent Memory Development Kit (PMDK), which is designed

by Intel to facilitate programming for persistent memory. To make use of atomic 8-byte instruc-

tions, we allocate a single large persistent memory pool for each index and call pmemobj_alloc()

for each page, which returns an 8-byte pointer to the page. For failure-atomicity, we carefully

enforce the ordering of mfence and clwb instruction rather than using the PMDK transaction

APIs, which performs expensive logging.

Among numerous heuristics, we use the least enlargement algorithm [41] to select a child node

when inserting spatial objects. In the evaluation experiments, we used two datasets. One is HDF-

EOS L1B solar event transmission datasets that is collected by SAGE (Stratospheric Aerosol and

Gas Experiment) III/ISS instrument mounted on the International Space Station. SAGE III/ISS

dataset is being used to understand the Earth’s atmosphere and ozone depletion. The other

dataset is a time series multidimensional taxi service trajectory dataset that has more than 80

million polylines and a total of nine attributes 1 For both datasets, we generated synthetic range

queries simulating a varying number of users posing queries to the index, modeled as a Poisson

process. The workload generator creates range queries from various synthetic distributions such

as uniform and zipfian. We present the performance results of query workloads in uniform

distribution due to the lack of space, but the results of other workloads is not significantly

different.

5.1 Node Size: Single vs. Multi-word Bitmap

In the first set of experiments shown in Figure 9, we insert 80 million Taxi trajectory polylines

into the FBR-tree and evaluate performance while increasing the size of bitmaps. With 80

million polylines, the index size is approximately 10 Gbytes. Note that the tree node size in

in-memory data structures is a performance tuning parameter that can be set arbitrarily, i.e.,

unlike disk-based data structures, each node size does not have to match the disk block size.

In addition, the number of degrees (fan-outs) in FBR-tree nodes is determined by the bitmap

size not the dimension. In legacy disk-based R-trees, the number of degrees is reduced as the

number of dimensions in increased, which aggravates the well-known curse of dimensionality

problem. However, the FBR-tree on PM alleviates the drawback of handling a small number of

child nodes.
1The dataset is available at https://archive.ics.uci.edu/ml/machine-learning-

databases/00339/Porto_taxi_data_test_partial_trajectories.csv.

21

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

55 119 183 247In
se

rt
io

n
 t

im
e

(u
se

c)

Bitmap size (bits, degree)

In-place (traversal)
CoW (traversal)

Logging (traversal)

In-place (clflush)
CoW (clflush)

Logging (clflush)

(a) Insertion Time

 0

 2

 4

 6

 8

 10

 12

 14

55 119 183 247

N
u

m
b

er
 o

f
c
l
f
l
u
s
h

Bitmap size (bits, degree)

In-place CoW Logging

(b) Number of clflush

 0

 100

 200

 300

 400

 500

 600

55 119 183 247

N
u

m
b

er
 o

f
b

it
 f

li
p

s

Bitmap size (bits, degree)

In-place CoW Logging

(c) Number of bit flips

 0

 2

 4

 6

 8

 10

 12

55 119 183 247

S
ea

rc
h

 t
im

e
(u

se
c)

Bitmap size (bits, degree)

In-place CoW Logging

(d) Search Time

Figure 9: Insertion Performance with Varying Node Size

When the bitmap size is 7 bytes, CoW does not require bitmap logging when rebalancing.

Note that we reserve 1 byte for version and node type metadata. For larger bitmap sizes, CoW

requires bitmap logging because the bitmap cannot be updated atomically without logging. For

In-place, we require the split and merge log for any bitmap size is. However, since the bitmap

and split/merge logs are so small in PM, they incur negligible performance overhead.

Overall, legacy logging, denoted as Logging, demonstrates the worst performance because it

duplicates entire dirty nodes. CoW and In-place yield comparable performance, but the number

of clflush required for CoW is approximately 12% and 42% greater than that of In-place and

Legacy logging respectively. In particular, the insertion time involves of two parts, i.e., tree

traversal and cacheline flush times. In terms of cacheline flush time, In-place is up to 19.8%

faster than CoW.

Relative to tree traversal time, denoted as traversal, In-place is also approximately 5.1%

faster than CoW because it spends less time selecting a child node. However, the difference in

traversal time requires extensive investigation. A side effect of the CoW split algorithm is that

it can compact MBRs and child pointers when new nodes are created. In contrast, In-place

creates holes when migrating entries to a sibling node. Such fragmentation can increase the

number of cacheline accesses and reduce search performance when MBRs are scanned. However,

22

due to the difference in managing free space, the order of MBRs stored by CoW and In-place

differs, which affects how quickly an insert query finds a completely overlapping MBR, i.e., if

an insert query finds a completely overlapping MBR, it stops scanning the remaining MBRs

and visits the corresponding child node. In other words, different MBR ordering in two schemes

accounts for the difference in traversal time. We observe that In-place outperforms CoW and

other times underperforms because the traversal time for insert transaction is primarily affected

by how quickly an insert query finds a completely overlapping MBR, i.e., for In-place schemes,

the fragmentation issue is not a critical performance problem relative to insertion queries.

Figure 9(b) shows the number of bit flips. PM technologies only support a limited number of

writes per cell, and bit flipping consumes most of the power required for PM; thus, the number

of bit flipping is an important performance metric in PM systems. The results demonstrate that

that In-place reduces the number of bits flipped by up to 1.3x and 2.85x over CoW and Logging,

respectively.

Relative to range query performance, shown in Figure 9(d), we do not observe significant

difference between In-place, CoW, and Logging. However, the 183-bit (three words) bitmap

demonstrates the fastest search performance for all methods. With larger bitmap sizes, the

tree node degree increases and tree height is reduced. However, a very large tree node requires

more comparisons against MBRs in each node; therefore, search performance improvement is

saturated when the degree is sufficiently large. For the rest of the experiments, we set the bitmap

size to 23 bytes (183 bits) because this gave the fastest search performance and good insertion

performance with all three schemes.

5.2 Concurrency and Recoverability

In the experiments shown in Figure 10, we evaluate the performance of multi-threaded FBR-

trees on Optane DCPM. We implemented the lock-free search algorithm we described in Sec-

tion IV and the crabbing protocol [54] as a baseline, which uses std::shared_mutex class in

C++17.

In the experiments shown in Figure 10(a), we increase the number of concurrent threads

that insert 80 million polylines. As the number of concurrent insert transactions is increased,

insertion throughput decreases due to lock contention. Note that the crabbing protocol we use

for insert transactions must hold an exclusive lock on a parent node including the root node

until its child node splits or it determines that its child node has sufficient free space such that

a split is not required. Therefore, due to lock contention in upper-level tree structures, the

crabbing protocol does not scale because it fails to benefit from high parallelism. As a result,

for all schemes, insertion throughput decreases as the number of threads is increased. Note that

the lock-free search implementation also uses the exclusive lock for insert queries. Therefore,

23

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

2 4 8 16 32 64 80 100

T
h
ro

u
g
h
p
u
t

(i
n
se

rt
/m

se
c)

Number of threads

Lock-free (In-place)
Shared Lock (In-place)

Lock-free (CoW)
Shared Lock(CoW)

(a) Concurrent Insert Throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 4 8 16 32 64 80 100

T
h
ro

u
g
h
p
u
t

(s
ea

rc
h
/m

se
c)

Number of threads

Lock-free (In-place)
Shared Lock (In-place)

Lock-free (CoW)
Shared Lock(CoW)

(b) Concurrent Search Throughput

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

2 4 8 16 32 64 80 100

T
h
ro

u
g
h
p
u
t

(q
u
er

y
/m

se
c)

Number of threads

Lock-free (In-place)
Shared Lock (In-place)

Lock-free (CoW)
Shared Lock(CoW)

(c) Concurrent Mixed Throughput

Figure 10: Performance with Varying Number of Concurrent Transactions (AVG. of 5 Runs)

the performance of lock-free search implementation, denoted as Lock-free, is not very different

from the performance of shared lock implementation, denoted as Shared Lock. We note that the

performance difference between in-place updates and CoW decreases as the number of threads

increases. This is because as the number of threads increases, queries suffer from more serious

lock contention and it becomes a dominant performance factor rather than the memory copy

operations.

In the experiments shown in Figure 10(b), we measure the range query throughput with vary-

ing the number of concurrent range queries. In this experiments, there is no write transaction.

Therefore, both the lock-free and shared lock implementations of CoW and In-place demonstrate

good scalability up to 32 threads because the testbed machine has 40 cores. Note that perfor-

mance scalability becomes saturated when we run more than 64 transactions. Interestingly,

the lock-free implementation shows a similar performance with the shared lock implementation.

This is because if there is no write transaction, shared lock implementation does not block any

read transaction as in lock-free implementation. I.e., there is no lock contention between read

transactions.

The range query throughput is much lower than the insertion throughput, although the read

transaction does not include clflush overhead. This is because a multidimensional range query

traverses a large number of tree nodes up and down, whereas the number of tree nodes that a

write transaction visits is fixed as the tree height.

24

Figure 10(c) shows transaction throughput when the workload is mixed with both reads and

writes, which is a more realistic scenario. In the mixed workload, our lock-free search algo-

rithm shines. In the experiments, each thread alternates between three insert queries and seven

search queries. The lock-free implementations of CoW and In-place gains up to 9.4x higher

throughputs (338 txn/sec vs. 36 txn/sec), respectively, when the number of concurrent threads

is 80. This is because a write transaction is blocked if any read transaction holds a shared read

lock on the node that the write transaction wants to update. Since our workload runs multiple

threads that submit queries in a batch, the blocked write transaction also blocks subsequent

read transactions in the same thread. Therefore, the shared lock implementations do not scale

with a larger number of concurrent threads. Although shared lock implementations show com-

parable performance when the workload is read-only or write-only transactions, the shared lock

implementations suffer from lock contention when read and write transactions are mixed. The

throughput of the shared lock implementation obtained with 100 threads (36 txn/sec) is similar

to when we run only two threads for read-only transactions (32 txn/sec).

Note that these experiments not only evaluate the concurrency but also show the instant

recoverability of FBR-tree. In the experiments, search queries concurrently access partially

updated inconsistent tree nodes and return correct results. That is, even if a system crashes and

partially updated inconsistent tree nodes are stored in persistent memory, the search algorithm

of FBR-tree can return correct search results, i.e., it guarantees recoverability. We run a large

number of search queries while write transactions, which make various tree nodes transiently

inconsistent, are often suspended by the OS. If concurrent read transactions can construct a

consistent view of index even if there exist some transient inconsistent tree nodes, recovery

is not even necessary and the system can instantly recover. Using Optane DCPM, we also

performed physical power-off tests and verified that partially updated FBR-tree nodes do not

affect the invariants of index.

5.3 PM Latency Effect

Although Intel’s Optane DCPM is on the market, it is not the only emerging byte-addressable

persistent memory technology, but other emerging byte-addressable PM technologies, such as

STT-MRAM [3] and PCM technologies [2] are expected to offer a large performance spectrum.

For example, it has been reported that STT-MRAM can be optimized to be even faster than

DRAM [55]. Therefore, we use Quartz, a DRAM-based PM latency emulator [56,57] to vary the

PM latency when measuring the performance of FBR-tree. We note that Quartz has been used

in numerous previous studies [15, 16, 21, 22, 24, 25, 48, 58, 58, 59]. Quartz models PM latency by

inserting stall cycles at the boundaries of a small time interval called epoch. In our experiments,

the minimum and maximum epochs are set to 5 and 10 nsec, respectively. We assume that PM

bandwidth is the same as that of DRAM because Quartz does not allow us to emulate latency

25

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

DRAM 300ns 500ns 700nsIn
se

rt
io

n
 t

im
e

(u
se

c)

Write latency

In-place (traversal)
CoW (traversal)

In-place (clflush)
CoW (clflush)

(a) Write Latency Insert Time

 0

 2

 4

 6

 8

 10

 12

DRAM 240/300ns 360/500ns 360/700nsIn
se

rt
io

n
 t

im
e

(u
se

c)

Read/Write latency

In-place (traversal)
CoW (traversal)

In-place (clflush)
CoW (clflush)

(b) Read/Write Latency Insert Time

 0

 1

 2

 3

 4

 5

 6

 7

DRAM 300ns 500ns 700ns

S
ea

rc
h
 t

im
e

(u
se

c)

Read latency

In-place
CoW

(c) Read Latency Search Time

Figure 11: Insertion Time with Varying PM Latency (AVG. of 5 Runs)

and bandwidth simultaneously.

In the experiments shown in Figure 11, we insert 80 million polylines in batches and break-

down the insertion time spent on each query as the read and write latencies of PM vary.

(traversal) denotes the tree traversal time, which includes the MBR computations and LLC

misses caused by node visits, and clflush denotes the time to update PM, i.e, the overhead of

store, mfence, and clflush instructions. In Figure 11(a), we set the read latency of PM to that

of DRAM but increase the write latency. Therefore, tree traversal times are unaffected by PM

write latency; however, the cacheline flush overhead increases as PM write latency is increased.

In-place calls fewer cacheline flushes than CoW; thus, the performance gap between In-place

and CoW is widened up to 9% due to the difference in flush overhead.

In the experiments shown in Figure 11(b), we vary PM read latency using Quartz in addi-

tion to PM write latency. The read latency of the local node memory in our testbed machine is

approximately 100 nsec. The average insertion time increases as we increase both PM latencies.

Interestingly, insertion performance is more sensitive to PM write latency than read latency due

to the CPU cache effects and because comparing MBRs in the multidimensional index requires

a large number of CPU cycles.

In the experiments shown in Figure 11(c), we generate synthetic range queries in uniform

distribution and submit 10,000 queries in a batch. The average selection ratio of the range

26

queries is set to 1.9%. Note that we do not show the results of other selection ratios because

no critical differences are observed. As we increase the read latency of PM, the query latency

also increases; however, this does not result in a difference in the relative performance of the

two split methods.

5.4 Case Study: Indexing HDF-EOS Datasets

To help in accessing large scientific datasets, various self-describing scientific data file formats,

such as NetCDF [60] and HDF [61], have been developed. Self-describing scientific data formats

allow applications to navigate through the file efficiently by providing semantic information

about the dataset stored in the file and by allowing for direct access to particular data points

using the semantic information. HDF-EOS is an extension of HDF library designed for NASA’s

Earth Observing System Data and Information System (EOSDIS). HDF-EOS allows for the

construction of satellite specific data structures, called grids, swaths, and points [62].

HDF-EOS provides the defboxregion() and extractregion() functions, which allows a

user to specify a query range and to read data points from the query region of interest. For

example, if a scientist looks for sensor data, for example, “find the tropopause pressure of the

ozone layer where altitude > 200 km and zenith temperature > 30”, defboxregion() scans

semantic metadata in HDF files and extractregion() returns data points of the region. Note

that HDF-EOS library does not use spatial indexing structures but performs linear scanning.

To improve the performance of range query on HDF-EOS datasets, several studies [63–65] have

developed spatial indexing techniques for HDF files. In particular, HDF5-FastQuery [65] was

shown to outperform HDF-EOS range query by a factor of two [65].

In the experiments shown in Figure 12(a), we measure and compare the performance of

FBR-tree against the standard HDF-EOS range query functions, i.e., linear scanning. For this

experiment, we used HDF-EOS L1B solar event transmission datasets collected from SAGE

(Stratospheric Aerosol and Gas Experiment) III/ISS instrument mounted on the International

Space Station. SAGE III instrument measures the attenuation of solar radiation to understand

the Earth’s atmosphere and ozone depletion. The dataset consists of total 3,216,200 altitude-

based profiles, and the total dataset size is approximately 6 GBytes. We varied the number of

indexed altitude-based profiles in SAGE and measured the average range query execution time.

Because we do not run insert query for this experiment, we do not show the performance of the

shared-lock implementation. We see from Figure 12(a) that the average query execution time

of FBR-tree is consistently three orders of magnitude faster than that of HDF-EOS range query

function, i.e., 4.9∼48.7 msec vs 1.3∼12.2 sec).

SAGE III/ISS creates one HDF file per a solar event, such as solar occultation. For each

event, 200 altitude-based profiles are created. If we employ the shared-lock implementation of

FBR-tree, concurrent search queries will be temporarily blocked to insert new profiles into the

27

 1

 10

 100

 1000

 10000

 5
4
0
0
0
0

 1
.1

x
1
0

6

 1
.6

x
1
0

6

 2
.2

x
1
0

6

 2
.7

x
1
0

6

 3
.2

x
1
0

6

A
V

G
 Q

u
er

y
 E

x
ec

.
T

im
e(

m
s)

Number of Indexed Altitude-based Profiles

FBR-tree HDF5

(a) Time to read selected regions of dataset

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

P
(X

 <
 x

)

Latency (msec)

Lock-free Shared Lock

(b) Tail latency of range queries when a solar event

occurs

 0.01

 0.1

 1

 10

1:1K 4:1K 16:1K 64:1K 256:1K 1K:1K

T
h
ro

u
g
h
p
u
t

(q
u
er

y
 /

 s
)

Ratio (insert : search)

Lock-free Shared Lock

(c) Throughput for range query

Figure 12: Range Query Performance with SAGE III/ISS HDF-EOS Dataset

index whenever a new solar event occurs. For the experiments shown in Figure 12(b), we gener-

ated query inter-arrival patterns using Poisson distribution where the λ rate is set to the average

query processing throughput of FBR-tree. We measured the latency of range queries while one

million range queries arrive in Poisson distribution and one write thread simultaneously inserts

a single solar event (200 profiles) into the FBR-tree, i.e., the insert/search ratio is 2:98.

We see from Figure 12(b) that approximately 30% of range queries suffer from the lock con-

tention when the shared-lock implementation is used. In contrast, the lock-free implementation

keeps the 99th percentile tail latency three orders of magnitude smaller than that of the shared-

lock implementation. Note that we observe a small number of queries have very high latency

even if the lock-free search algorithm is used. This is because the range queries happen to access

tree nodes that are being updated; thus, they rollback the previous sub-tree traversal, reread the

parent node, and visit the child nodes again, which increases the tree traversal time significantly.

In the experiments shown in Figure 12(c), we ran 64 concurrent threads with varying the

ratios of search and insert transactions. When the insert query accounts for only 0.1% of total

transactions (1:1K), the throughput of lock-free search is an order of magnitude higher than that

of the shared-lock implementation. Note that the performance gap widens as the percentage of

write transactions increases.

28

VI Conclusion

In this study, we have designed and implemented Failure-atomic Byte-addressable R-tree

(FBR-tree) to obtain the most benefit from byte-addressability and the high-performance of PM.

We carefully control the order of store and cacheline flush instructions and prevent single store

instructions from making the FBR-tree inconsistent. Our performance study demonstrates that

the FBR-tree reduces legacy logging overhead. In addition, the lock-free range query algorithm

shows up to 9.4 times higher query processing throughput than the shared lock-based crabbing

concurrency protocol. We also show that our FBR-tree on PM improves the performance of

range query on HDF datasets by three orders of magnitude against the standard HDF-EOS

range query functions.

29

References

[1] Intel, “Intel and Micron produce breakthrough memory technology,” 2018,

https://newsroom.intel.com/news-releases/intel-and- micron-produce-breakthrough-

memory-technology.

[2] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,

and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE, vol. 98, no. 12, pp.

2201–2227, 2010.

[3] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects,” AAPPS

bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[4] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High performance database logging

using storage class memory,” in Proceedings of the 27th International Conference on Data

Engineering (ICDE), 2011, pp. 1221–1231.

[5] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory updates via

JUSTDO logging,” in Proceedings of the 21st International Conference on Architectural

Support for Programming Languages (ASPLOS)), 2016.

[6] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance transactions

for persistent memories,” in Proceedings of the 21st International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS), 2016, pp.

399–411.

[7] A. Rudoff, “Programming models for emerging non-volatile memory technologies,” ;login,

vol. 38, no. 3, pp. 40–45, June 2013.

[8] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical study of file systems

on NVM,” in Proceedings of the 31st International Conference on Massive Stroage Systems

(MSST), 2015.

[9] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger, “Metadata efficiency in

versioning file systems,” in Proceedings of the 2nd USENIX conference on File and Storage

Technologies (FAST), 2003, pp. 43–58.

30

[10] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Consistent and durable

data structures for non-volatile byte-addressable memory,” in 9th USENIX conference on

File and Storage Technologies (FAST), 2011.

[11] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid volatile/non-volatile

main memories,” in Proceedings of the 14th USENIX Conference on File and Storage Tech-

nologies (FAST), 2016.

[12] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the performance gap

between systems with and without persistence support,” in Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2013, pp. 421–432.

[13] S. Chen and Q. Jin, “Persistent B+-trees in non-volatile main memory,” Proceedings of the

VLDB Endowment (PVLDB), vol. 8, no. 7, pp. 786–797, 2015.

[14] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C. Lee, D. Burger, and D. Coetzee,

“Better I/O through byte-addressable, persistent memory,” in Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (SOSP), 2009.

[15] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in transaction systems,”

Proceedings of the VLDB Endowment, vol. 8, no. 4, 2014.

[16] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “NVWAL: Exploiting NVRAM in

write-ahead logging,” in 21st International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), 2016.

[17] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and journaling layers with

non-volatile memory,” in Proceedings of the 11th USENIX conference on File and Storage

Technologies (FAST), 2013.

[18] G. Oh, S. Kim, S.-W. Lee, and B. Moon, “SQLite optimization with phase change memory

for mobile applications,” Proceedings of the VLDB Endowment (PVLDB), vol. 8, no. 12,

pp. 1454–1465, 2015.

[19] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-volatile main memory,”

in Proceedings of the 11th European Conference on Computer Systems (EuroSys 16), 2016.

[20] Y. Zhang and S. Swanson, “A study of application performance with non-volatile main

memory,” in Proceedings of the 31st International Conference on Massive Stroage Systems

(MSST), 2015.

[21] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-atomic slotted paging for

persistent memory,” in Proceedings of the 22nd International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2017.

31

[22] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT: Write optimal radix tree

for persistent memory storage systems,” in Proceedings of the 15th USENIX conference on

File and Storage Technologies (FAST), 2017.

[23] J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong, “NV-Tree: reducing consistency const

for NVM-based single level systems,” in Proceedings of the 13th USENIX conference on File

and Storage Technologies (FAST), 2015.

[24] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable Transient Inconsistency in Byte-

Addressable Persistent B+-Trees,” in Proceedings of the 11th USENIX Conference on File

and Storage (FAST), 2018.

[25] M. Nam, H. Cha, Y. ri Choi, S. H. Noh, and B. Nam, “Write-optimized dynamic hashing

for persistent memory,” in 17th USENIX Conference on File and Storage Technologies

(FAST 19). Boston, MA: USENIX Association, 2019, pp. 31–44. [Online]. Available:

https://www.usenix.org/conference/fast19/presentation/nam

[26] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile memory systems,” in

Proceedings of the 33st International Conference on Massive Storage Systems and Technol-

ogy (MSST), 2017.

[27] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hashing index scheme

for persistent memory,” in Proceedings of the 13th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 18), Carlsbad, CA, 2018.

[28] M. Gowanlock and H. Casanova, “Indexing of spatiotemporal trajectories for efficient dis-

tance threshold similarity searches on the GPU,” in 28th IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2015.

[29] B. Nam and A. Sussman, “A comparative study of spatial indexing techniques for multidi-

mensional scientific datasets,” in Proceedings of 16th International Conference on Scientific

and Statistical Database Management (SSDBM), Jun. 2004.

[30] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of flock patterns in spatio-

temporal data,” in Proceedings of the 17th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, ser. GIS ’09. New York, NY, USA: ACM,

2009, pp. 286–295.

[31] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,” in Pro-

ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’07. New York, NY, USA: ACM, 2007, pp. 330–339.

[32] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery of convoys in

trajectory databases,” Proc. VLDB Endow., vol. 1, no. 1, pp. 1068–1080, Aug. 2008.

32

[33] Z. Li, J. Han, M. Ji, L.-A. Tang, Y. Yu, B. Ding, J.-G. Lee, and R. Kays, “MoveMine: Mining

moving object data for discovery of animal movement patterns,” ACM Trans. Intell. Syst.

Technol., vol. 2, no. 4, pp. 37:1–37:32, Jul. 2011.

[34] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive storage system for

very large trajectory data sets,” in 2010 IEEE 26th International Conference on Data En-

gineering (ICDE 2010), March 2010, pp. 109–120.

[35] B. Nam, H. Andrade, and A. Sussman, “Multiple range query optimization with distributed

cache indexing,” in Proceedings of the ACM/IEEE SC2006 Conference, 2006.

[36] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, “Efficient execution of multiple query work-

loads in data analysis applications,” in Proceedings of the ACM/IEEE SC2001 Conference,

Nov. 2001.

[37] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz, “Querying very large multi-

dimensional datasets in ADR,” in Proceedings of the ACM/IEEE SC1999 Conference, 1999.

[38] S. Goil and A. N. Choudhary, “High performance multidimensional analysis and data min-

ing,” in ACM/IEEE Conference on Supercomputing (SC), 1998, p. 21.

[39] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki, “Ac-

celerating range queries for brain simulations,” in 28th International Conference on Data

Engineering (ICDE), 2012.

[40] X. Chen, Y. Wang, E. Schoenfeld, M. M. Saltz, J. H. Saltz, and F. Wang, “Spatio-temporal

analysis for New York state SPARCS data,” in Summit on Clinical Research Informatics,

CRI, 2017.

[41] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceedings of

1984 ACM SIGMOD International Conference on Management of Data (SIGMOD), 1984.

[42] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe, and S. Loebman, “Scalable

clustering algorithm for N-body simulations in a shared-nothing cluster,” in Scientific and

Statistical Database Management, 22nd International Conference, SSDBM 2010, Heidel-

berg, Germany, June 30 - July 2, 2010. Proceedings, 2010, pp. 132–150.

[43] D. Morozov and T. Peterka, “Efficient delaunay tessellation through K-D tree decompo-

sition,” in Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC, 2016, pp. 728–738.

[44] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for GPU execution of

tree traversals,” in International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2013, pp. 10:1–10:12.

33

[45] V. Pascucci and R. J. Frank, “Global static indexing for real-time exploration of very large

regular grids,” in Proceedings of the 2001 ACM/IEEE conference on Supercomputing (SC),

2001.

[46] M. S. Warren, “2HOT: an improved parallel hashed Oct-tree N-body algorithm for cos-

mological simulation,” in International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC), 2013.

[47] T. Kurc, U. Catalyurek, X. Zhang, J. Saltz, M. Peszynska, R. Martino, M. Wheeler, A. Suss-

man, C. Hansen, M. Sen, R. Seifoullaev, P. Stoffa, C. Torres-Verdin, and M. Parashar, “A

simulation and data analysis system for large scale, data-driven oil reservoir simulation

studies,” Concurrency and Computation: Practice and Experience, 2005.

[48] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree: A hybrid SCM-

DRAM persistent and concurrent B-tree for storage class memory,” in Proceedings of 2016

ACM SIGMOD International Conference on Management of Data (SIGMOD), 2016.

[49] T. Wang, J. Levandoski, and P.-A. Larson, “Easy lock-free indexing in non-volatile memory,”

in IEEE 34th International Conference on Data Engineering (ICDE), 2018.

[50] Intel, “PMDK: Persistent memory development kit,” 2018, https://github.com/pmem/pmdk.

[51] H. E. Lab, “Memory Driven Computing.” 2018, https://www.labs.hpe.com/next-next/mdc.

[52] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13, no. 1,

pp. 124–149, Jan. 1991. [Online]. Available: http://doi.acm.org/10.1145/114005.102808

[53] A. Kogan and E. Petrank, “A method for creating fast wait-free data structures,” in 17th

ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (PPOPP),

2012, pp. 141–150.

[54] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts. McGraw-Hill,

2005.

[55] Y. Jin, M. Shihab, and M. Jung, “Area, power, and latency considerations of stt-mram to

substitute for main memory,” in Proceedings of The Memory Forum, 2014.

[56] H. E. Lab, “Quartz,” 2018, https://github.com/HewlettPackard/quartz.

[57] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A lightweight performance emu-

lator for persistent memory software,” in 15th Annual Middleware Conference (Middleware

’15), 2015.

[58] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent memory,” in

16th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2011.

34

[59] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage & recovery methods

for non-volatile memory database systems,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. ACM, 2015, pp. 707–722.

[60] R. Rew, G. Davis, and S. Emmerson, “NetCDF User’s Guide for C,” 1997,

http://www.unidata.ucar.edu/packages /netcdf/cguide.pdf.

[61] M. Folk, “A white paper: HDF as an archive format: Issues and recommendations,” January

1998, http://hdf.ncsa. uiuc.edu/archive/hdfasarchivefmt.htm.

[62] Larry Klein, “An HDF-EOS and data formatting primer,” March 2001,

http://edhs1.gsfc.nasa.gov/waisdata/sdp/pdf/wp1750102.pdf.

[63] B. Nam and A. Sussman, “Improving access to multi-dimensional self-describing scientific

datasets,” in Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid (CCGrid), May 2003.

[64] J. Chou, K. Wu, O. Rubel, M. Howison, J. Q. Prabhat, B. Austin, E. W. Bethel, R. D. Ryne,

and A. Shoshani, “Parallel index and query for large scale data analysis,” in Proceedings of

the ACM/IEEE SC2011 Conference, 2011.

[65] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel, “HDF5-FastQuery,” in Proceed-

ings of 18th International Conference on Scientific and Statistical Database Management

(SSDBM), 2006.

35

	I Introduction
	II Challenges in Design of Indexing Trees for Persistent Memory
	III Design and Implementation of FBR-tree for PM
	3.1 Node Structure
	3.2 Failure-Atomic Insertion
	3.3 Failure-Atomic Deletion
	3.4 Failure-Atomic Page Split
	3.5 Failure-Atomic Node Merge

	IV Lock-Free Search
	V Evaluation
	5.1 Node Size: Single vs. Multi-word Bitmap
	5.2 Concurrency and Recoverability
	5.3 PM Latency Effect
	5.4 Case Study: Indexing HDF-EOS Datasets

	VI Conclusion
	VII References

<startpage>10
I Introduction 1
II Challenges in Design of Indexing Trees for Persistent Memory 4
III Design and Implementation of FBR-tree for PM 5
 3.1 Node Structure 5
 3.2 Failure-Atomic Insertion 6
 3.3 Failure-Atomic Deletion 9
 3.4 Failure-Atomic Page Split 10
 3.5 Failure-Atomic Node Merge 14
IV Lock-Free Search 16
V Evaluation 21
 5.1 Node Size: Single vs. Multi-word Bitmap 21
 5.2 Concurrency and Recoverability 23
 5.3 PM Latency Effect 25
 5.4 Case Study: Indexing HDF-EOS Datasets 27
VI Conclusion 29
VII References 30
</body>

