
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Doctoral Thesis 

 

 

 

Establishment and Application of Diamond Detector 

Analysis System 
 

 

 

 

 

 

 

 

 

 

 

Chidong Kong 

 

Department of Nuclear Engineering 

 

 

 

Graduate School of UNIST 

 

2020 

 



Establishment and Application of Diamond Detector 

Analysis System 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chidong Kong 

 

 

 

 

 

 

 

 

Department of Nuclear Engineering 

 

 

 

Graduate School of UNIST 



Establishment and Application of Diamond Detector 

Analysis System 
 

 

 

 

 

 

 

 

A thesis/dissertation 

submitted to the Graduate School of UNIST 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

Chidong Kong 

 

 

 

January 7, 2020 

Approved by 

 

________________________ 

Advisor 

Deokjung Lee 



Establishment and Application of Diamond Detector 

Analysis System 
 

 

 

Chidong Kong 

 

 

This certifies that the thesis/dissertation of Chidong Kong is approved. 

 

January 7, 2020 

 

                    

 

                      ___________________________ 

                      Advisor: Deokjung Lee 

 
 

                     ___________________________ 

                     Dong-Seong SOHN 

 
 

                     ___________________________ 

                     Eisung Yoon 

 
 

                    ___________________________ 

                     Chang Je Park 

 
 

                    ___________________________ 

                     Hyun Chul Lee 

                          



Contents 

 

 

Abstract .................................................................................................................................................. 1 

I. Introduction ................................................................................................................................... 3 

I.1. Background ................................................................................................................................... 3 

I.2. Objective of Thesis ....................................................................................................................... 5 

II. Experimental Facility for Validation .......................................................................................... 7 

II.1. Water tank CARROUSEL........................................................................................................... 7 

II.2. Zero-power CROCUS research reactor ....................................................................................... 9 

II.3. NEUTRON detection system .................................................................................................... 11 

II.4. Diamond detector ...................................................................................................................... 12 

III. Preliminary Analysis and Code Validation/Verification ...................................................... 14 

III.1. Ionization profile in the diamond crystal ................................................................................. 14 

III.2. Code-to-code comparison for diamond response in a mixed radiation field ........................... 18 

III.3. Modeling the neutron response of BF3 and 3He detectors........................................................ 21 

III.4. Modeling of gamma ray response of a sodium iodide detector ............................................... 35 

III.5. Preliminary conclusions ........................................................................................................... 40 

IV. Establishment of Diamond Detector Analysis System .......................................................... 41 

IV.1. Modeling of the neutron and prompt gamma sources in CROCUS ........................................ 41 

IV.2. Modeling of the delayed gamma sources in CROCUS ........................................................... 45 

IV.3. Normalization of the flux ......................................................................................................... 51 

V. Application of Diamond Detector Analysis System ................................................................. 55 

V.1. Pulse energy spectrum .............................................................................................................. 57 

V.2. Scatter plot ................................................................................................................................ 64 

VI. Assessment of Model Performance against Experimental Data .......................................... 71 

VII. Conclusions and Perspectives.................................................................................................. 73 

References ............................................................................................................................................ 75 

Acknowledgment ................................................................................................................................. 78 

Curriculum Vitae ................................................................................................................................ 80 

 

  



List of Figures 
 

Fig. I-1. Scatter plot of signals acquired from a diamond detector in the CROCUS research reactor 

sorted by width at 12.5% of the maximum and by energy  4 

Fig. II-1. Water tank CARROUSEL (left), CARROUSEL plotted by GEANT4 (right)  8 

Fig. II-2. Configuration of zero power CROCUS research reactor  10 

Fig. II-3. Configuration of sCVD diamond detector  13 

Fig. III-1. Real example of charge collection pulse from the diamond detector 16 

Fig. III-2. Simulated energy deposition spectrum with 14.3 MeV neutron source 19 

Fig. III-3. Principle of wall effect  23 

Fig. III-4. Energy deposition in BF3 and 3He detectors (Radius = 1 cm and Height = 20 cm)  26 

Fig. III-5. Energy deposition in BF3 and 3He detectors (Radius = 3 cm and Height = 20 cm)  28 

Fig. III-6. Energy deposition of alpha and 7Li in BF3 detector (Radius = 1 cm and Height = 20 cm) 

 29 

Fig. III-7. Energy deposition of proton and triton in 3He detector (Radius = 3 cm and Height = 20 cm) 

 30 

Fig. III-8. Stopping power of alpha and 7Li in BF3 detector  31 

Fig. III-9. Stopping power of proton and triton in 3He detector  32 

Fig. III-10. MCNP6 modeling and experimental results for BF3 detector  33 

Fig. III-11. MCNP6 modeling and experimental results for 3He detector  34 

Fig. III-12. Gamma-ray detection problem (left: x-z plot, right: x-y plot)  36 

Fig. III-13. Deposited energy spectrum in the NaI detector by gamma rays from 60Co source  38 

Fig. IV-1. Neutron/prompt gamma/delayed gamma spectra calculated by SERPENT2  42 

Fig. IV-2. Delayed gamma source as a function of the irradiation time  46 

Fig. IV-3. Delayed gamma source spectrum of UO2 pin at center  48 

Fig. IV-4. Delayed gamma source spectrum of U-metal pin next to the diamond detector  49 

Fig. V-1. Neutron and gamma contributions for GEANT4 pulse energy spectrum  56 

Fig. V-2. Deposited energy from GEANT4 simulation  58 

Fig. V-3. Distance from the cathode through GEANT4 simulation  63 

Fig. V-4. Example of pulse shapes for each interaction generated from GEANT4  66 

Fig. V-5. Scatter plot (deposited energy vs. calculation width) from GEANT4  68 

Fig. VI-1. Pulse energy spectrum comparison with the measured data  72 

 

  



List of Tables 
 

Table IV-1. Calculation results in CROCUS neutron/gamma transport 53 

Table V-1. Fraction of neutron interactions from the GEANT4 simulations  61 

 

 



1 

 

Abstract 

 

In this study, a diamond detector in a mixed neutron-photon field of the CROCUS 

research reactor at École Polytechnique Fédérale de Lausanne (EPFL) is modeled. Simulations 

are carried out to analyze pulses from the diamond detector in more detail, which induce a 

novel discovery. Through a code-to-code comparison, the Monte Carlo codes SERPENT 

v2.1.29 and GEANT4 v10.04.p02 are selected for the CROCUS whole core calculation and 

the detailed physics modeling in the diamond crystal, respectively. The neutron and prompt 

gamma ray contributions to the detector are modeled by a two-step procedure 

(SERPENT2/GEANT4), and the simulation of the delayed gamma ray contribution is carried 

out by a three-step procedure (SERPENT2/STREAM-SNF/GEANT4). The simulations show 

that the fraction of the gamma-to-neutron fluxes in the diamond detector is approximately 

91.4%, and that of the delayed-to-prompt gamma fluxes is approximately 47.2%. 

 

By using the flux spectra calculated at the location of the detector, the physics of particle 

interactions with the diamond crystal is investigated. The contributions of the neutrons and 

gamma rays to the diamond detector signal amount to approximately 27% and 73%, 

respectively. The energies and positions of the particles contributing to the detector signal as 

tallied in GEANT4 are employed to reconstruct numerical pulses and create a scatter plot. In 

the scatter plot, pulses are arranged according to the energy for each calculation width, which 

is defined as the width at 0% of the maximum amplitude. The proton recoil plot shows two 

bands, one due to protons impacting the anode and the other by protons impacting the cathode, 

thus showing that protons do not have sufficient energy to penetrate the diamond crystal and 

have the same probability of interacting with the anode and cathode. This tendency also appears 

as a high-energy tail in a pulse energy spectrum consisting of the number of pulses according 
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to the energy distribution. Meanwhile, neutron scattering collisions have a homogeneous 

distribution in the crystal. Hence, a structure with a higher count at the ballistic center region 

(BCR) is observed and is probably related to the amplitude of the BCR pulses being higher. 

Thus, it is possible to observe better pulses resulting from the energy depositions at the BCR. 

 

Finally, the modeling performance is assessed by comparing the calculated results with 

the experimental data. In the pulse energy spectrum, a curve produced by the simulations 

matches with that produced by the measurements. The slope of the curves between 1 MeV and 

2 MeV is mainly produced by gamma interactions. The high-energy tail is produced by neutron 

interactions, especially, the proton recoil. The lithium converter reactions in the diamond 

detector account for 14.31% and 15.13% beyond 1.34 MeV for the measurement and 

simulation, respectively, showing consistency. 

 

Key words: Physical interaction, diamond crystal, diamond detector, Monte Carlo code, 

CROCUS, delayed gamma, particle interaction. 
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I. Introduction 

 

I.1. Background 

 

Diamond detectors are considered suitable for use in nuclear reactors owing to their fast 

response time, strong durability against radiation, and capability to acquire a wide energy 

spectrum from 0 to 14 MeV, with the additional advantage that gamma rays and thermal/fast 

neutrons are measurable and distinguishable [1,2]. In previous studies, measurements were 

performed using a diamond detector in the CROCUS research reactor to analyze the properties 

(type and energy) of the particles incident on the detector [3] using different pulsed patterns 

[2]. However, these experimental studies were limited to qualitative output because the 

contributions of the fast neutrons could not be distinguished at the time. 

 

For example, Fig. 1 shows a scatter plot of the signals acquired from a diamond detector 

in the CROCUS reactor. In Fig. 1, “cps” is counts per second and is indicated by a log scale. 

The signals are sorted by width at 12.5% of the maximum and by energy. Horizontal structures 

at widths of 5, 7, and 10 ns can be observed as reported by Hursin et al. [3]. The 7 and 10 ns 

structures represent the drift of electrons and holes generated by interactions near the anode 

and cathode, respectively. The 5 ns structure represents the drift of the secondary ions generated 

by the scattering of gamma rays and fast neutrons in the diamond crystal. For this 5 ns structure, 

the effects of the gamma rays and those of the fast neutrons are difficult to distinguish because 

of the deformation of the fast-neutron-induced pulse shape caused by the resistor-capacitor (RC) 

constant. 
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Fig. I-1. Scatter plot of signals acquired from a diamond detector in the CROCUS research 

reactor sorted by width at 12.5% of the maximum and by energy. 
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I.2. Objective of Thesis 

 

This study aims to understand the effect of a mixed field of neutrons and gamma rays 

on the response of a diamond detector located in the CROCUS reactor through modeling. 

Several simulations are performed to tackle the analysis of the several different contributions 

to the detector signal. The contributions of the neutrons and prompt gamma rays are determined 

by a two-step procedure: (1) SERPENT2 neutron-photon simulation [4] of the whole CROCUS 

core (“global” simulations) to obtain the CROCUS neutron and prompt gamma spectra at the 

locations of interest, and (2) GEANT4 simulation [5] of the diamond detector (“local” 

simulations using the fluxes calculated during the global simulation as input) to simulate the 

detailed transport of diverse particles (i.e., neutrons, gamma rays, electrons, heavy ions, etc.) 

at the level of the detector. For the contribution from the delayed activation gamma, an 

additional step with the STREAM-SNF code [6,7] is added in the two-step procedure 

previously described, resulting in a SERPENT2/STREAM-SNF/GEANT4 three-step 

procedure [4-7]. The SERPENT2 code is chosen for the global simulations to take advantage 

of the fast calculation speed in terms of a burnup calculation. The GEANT4 code is chosen for 

local simulation to take advantage of its detailed charged particle transport physics, especially 

heavy ion interactions that are not simulated by SERPENT2. Because SERPENT2 does not 

provide a gamma source rate, the STREAM-SNF code is adopted for the source-term 

calculation. 

 

The remainder of this paper is organized as follows. Chapter II describes the 

experimental facilities in École Polytechnique Fédérale de Lausanne (EPFL), that is, the 

CROCUS research reactor, NEUTRON detection system, and diamond detector. Chapter III 

shows the preliminary analysis and code verification results. In this chapter, charged pulses are 
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shown as an example. Chapter IV details the modeling of the neutron, the prompt and delayed 

gamma ray contributions to the signal of the diamond detector in a mixed CROCUS neutron-

photon field. Chapter V presents a phenomenological assessment of the particle interaction 

physics in the diamond detector with a pulse energy spectrum and a scatter plot, and it 

investigates the contributions of the gamma rays, and fast and thermal neutrons to the detector 

signal. Neutron count signals depending on the energy and position of the incident particles are 

also shown. Chapter VI compares the calculated detector results with the experimental data 

acquired in CROCUS. Finally, Chapter VII describes the conclusions derived from the results 

and discusses perspectives for further study. 
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II. Experimental Facility for Validation 

 

II.1. Water tank CARROUSEL 

 

A water tank CARROUSEL comprises a Pu-Be neutron source at the center and a BF3 

detector or 3He detector besides the neutron source. 

 

Fig. II-1 shows the water tank. The radius of the water tank is 75.3 cm, and the height 

is 160 cm. The distance between the neutron source and the detector is 50 cm. 
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Fig. II-1. Water tank CARROUSEL (left), CARROUSEL plotted by GEANT4 (right). 

 

 

BF3 or 3He detector 

Pu-Be neutron source 
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II.2. Zero-power CROCUS research reactor 

 

CROCUS is a zero-power research reactor with maximum power of 100 W (regulatory 

limit). The CROCUS reactor comprises two zones: a central region with 2% enriched UO2 fuel 

surrounded by a region with 1% enriched U-metal fuel. The diameter and height of the 

CROCUS active core are 58 cm and 100 cm, respectively. Fig. II-2 shows the experimental 

configuration of CROCUS with the location of the diamond detector. 

 

During the experiment, the diamond detector was installed in the guide tube of the 

south–east control rod as shown in Fig. II-2. In the top view of Fig. II-2, the green area between 

the U-metal fuel and water is a cadmium layer consisting of natural cadmium. The orange 

region below and above the core in the front view is air consisting of nitrogen (~79%) and 

oxygen (~21%). The dark blue region is a support material consisting of natural aluminum. The 

axial position of the diamond detector in the core is fixed at 50 cm from the upper grid plate 

marked with dark blue in the front view, that is, the diamond detector is centered on the axial 

mid-plane of the active core where the neutron flux is maximum in the axial direction. The 

CROCUS fuel is considered always fresh because of the low power [8]. 
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Fig. II-2. Configuration of zero power CROCUS research reactor. 
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II.3. NEUTRON detection system 

 

The NEUTRON detection system is composed of a CIVIDEC C2 Broadband Amplifier, 

a ROSY AX106 readout system, and the single-crystal chemical vapor deposition (sCVD) 

diamond detector. 

 

Signals are transferred to the readout system from the sCVD diamond detector. The 

readout system analyzes the detector signals with a sampling rate of 5 giga-samples/s, eight-

bit ADC resolution, and a bandwidth of 250 MHz. The amplitude, full width at half maximum 

(FWHM), and energies of the pulses are recorded online by the readout system. 
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II.4. Diamond detector 

 

Fig. II-3 shows the geometry of the sCVD diamond detector employed in CROCUS. 

The diamond detector comprises four parts: (1) a 6LiF converter, (2) a polyethylene collimator 

and a holder, (3) an anode and a cathode, and (4) the diamond crystal. In Fig. II-3, the 6LiF 

converter, diamond crystal, collimator, and holder are box-shaped. The dimensions of the 6LiF 

converter, diamond crystal, and collimator and holder are 0.4 cm × 0.4 cm × 1.8 μm, 0.4 cm × 

0.4 cm × 500 μm, and 2 cm × 2 cm × 1.6 mm, respectively. There is a circular air hole with a 

radius of 0.15 cm between the 6LiF converter and diamond crystal. Across the diamond crystal, 

a voltage of 400 V is applied to collect the electrons and holes generated by ionization in the 

diamond crystal. The purpose of the 6LiF converter is to convert incident thermal neutrons into 

alpha and triton particles through a (n,α) reaction with the 6Li atoms (large cross section in the 

thermal domain, about 940 barns for neutrons of 0.0253 eV energy), whereas most fast neutrons 

pass through the 6LiF converter without interactions. The alpha and triton particles produced 

in the converter then interact with the diamond instantly after passing the air gap, thus 

producing rectangular pulses, whereas the fast neutrons interacting in the diamond crystal 

produce step-like pulses. 
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Fig. II-3. Configuration of sCVD diamond detector. 
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III. Preliminary Analysis and Code Validation/Verification 

 

In Chapter III, the three Monte Carlo codes, MCNP6, SERPENT v2.1.29 and GEANT4 

[4,5,9], are compared with each other for code verification and validation. 

 

III.1. Ionization profile in the diamond crystal 

 

Before discussing the preliminary results of the diamond detector modeling, this section 

describes the characteristics of the diamond detector with real charge collection pulse examples. 

When ionization occurs in the diamond crystal, an electron-hole pair is created, and the electron 

moves to the anode and the hole moves to the cathode. The ballistic center (BCR) of the 

diamond crystal is defined as the location where the drift time of the electron to the anode and 

of the hole to the cathode is equal. For example, if the velocity of the electrons in the crystal is 

40 μm/ns and the velocity of the holes is 60 μm/ns, the BCR will be located 200 μm from the 

anode and 300 μm from the cathode for a 500-μm thick diamond crystal. According to the 

Shockley–Ramo theorem, different signal shapes are produced depending on the ionization 

profile in the diamond detector [1,2]: 

– A rectangular signal shape is produced when an alpha or a triton particle causes a point-

like ionization at the cathode. These particles are generated by the interaction between 

a thermal neutron and a 6Li atom of the lithium converter. The alpha or triton particle 

produced in the converter interacts with the diamond crystal instantly after passing the 

air gap, thus producing a rectangular pulse. Since the hole drift time at the cathode 

vicinity is too short to be detected, this pulse represents only electron drift. 

– A rectangular signal shape is produced when a point-like ionization occurs at the BCR 

of the diamond crystal. 
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– A step-like signal shape is produced when a point-like ionization occurs in the diamond 

crystal elsewhere other than the BCR. The electron and hole generated by ionization 

produce rectangular pulses each, with the amplitude inversely proportional to their 

respective drift time owing to charge conservation. Consequently, the final current 

signal is the superposition of the two rectangular pulses. Depending on where the 

ionization occurs, the effect of the electron or of the hole may be greater than the other. 

In actual measurements, step-like pulses can appear rectangular when the ionization 

occurs near the electrodes because of the effect of RC time. 

– A triangular signal is produced when an ionizing particle (for instance, a Compton 

electron) travels in the diamond crystal. This particle causes secondary ionizations 

homogeneously as it moves to the anode and triangular pulses result from the free 

charge carriers that are continuously absorbed into the electrodes while the remaining 

charges are moving. In other words, the triangular pulses are generated by the 

superposition of many drifts of homogeneous secondary products (i.e., electrons and 

holes). Fig. III-1 shows an example of the charge collection pulses.  
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Fig. III-1. Real example of charge collection pulse from the diamond detector. 
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A charge collection pulse means the electrical signal generated by the drifts of electrons 

and holes with zero seconds when a reaction occurs inside the diamond crystal. When the RC 

time constant of the electron chain can be ignored, the rectangular pulses produced from the 

BCR can theoretically be distinguished from the triangular pulses produced by the gamma 

interactions. This distinction is difficult in practice as illustrated in Fig. III-1, which show that 

the rectangular pulse generated at the BCR looks similar to the triangular pulse caused by the 

effect of the RC constant. The rectangular pulse is not perfect owing to the space charge effect. 
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III.2. Code-to-code comparison for diamond response in a mixed radiation 

field 

 

The code-to-code comparison for diamond response was performed to determine which 

code is suitable for the physics modeling in the diamond crystal. In 2016, Weiss et al. [1] 

published the energy deposition spectrum in a diamond crystal irradiated with a 14.3 MeV 

neutron source as calculated with GEANT4 v09.06.p02. This calculation is reproduced in this 

paper with GEANT4 v09.06.p02, a newer version of GEANT4 (GEANT4 v10.04.p02) and 

MCNP6 [9]. The calculated results are compared in Fig. III-2. 
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Fig. III-2. Simulated energy deposition spectrum in the diamond crystal irradiated with 

a 14.3 MeV neutron source. 
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The GEANT4 v09.06.p02 results presented in Fig. III-2 are consistent with the results 

presented in Weiss et al. [1]. GEANT4 v10.04.p02 and GEANT4 v09.06.p02 use different 

neutron libraries (v10 uses G4NDL4.5 and v09 uses G4NDL4.2) that model the neutron 

inelastic scattering contribution differently, thus causing the results to be different between v09 

and v10. SERPENT v2.1.29 does not have a function for tracking heavy ions and electrons and 

a tally capacity of energies deposited by neutrons; thereby it is considered not suitable for 

various interactions in the diamond crystal. (The function for tallying energies deposited by 

neutrons has been added to SERPENT v2.1.31.) MCNP6 is the Monte Carlo code known as a 

tracking function of more particles than SERPENT2. However, in the MCNP6 results, all the 

inelastic responses above 4 MeV, i.e., 12C(n,n+2α)α, 12C(n,α)9Be, 13C(n,α)10Be, are missing 

because MCNP6 cannot transport particles with mass greater than α particles [10]. This is a 

severe limitation for the detailed simulation of the neutron response in the diamond crystal 

because it neglects, for instance, the contribution from 9Be ions generated from the reaction 

12C(n,α)9Be from neutrons of energies of 7.2 MeV or greater. 

 

 
12 12 * 8

12 9 * 8

' 2 ,

' 2 .

n C n C Be

n C Be n Be

 

 

+ → + → + →

+ → + → + →
 (1) 

 

Eq. (1) shows how three alpha particles are produced by 12C(n,n+2α)α reactions [11]. 

In Eq. (1), n corresponds to a neutron, n’ indicates a neutron that lost energy due to an inelastic 

collision, and * indicates an excited state. GEANT4 deals with these reactions using a multi-

step breakup model ported from the NRESP7.1 Monte Carlo code developed by Physikalisch-

Technische Bundesanstalt (PTB) [12]. SERPENT2 and MCNP6 have a limitation in handling 

these reactions because they cannot transport particles beyond the mass number of the α particle.   
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III.3. Modeling the neutron response of BF3 and 3He detectors 

 

A BF3 detector detects neutrons in the principle shown in Eq. (2). 

 

 

10 4 7 *

10 4 7

 (1.47 MeV)  (0.84 MeV)    (94% of the total reactions),

 (1.78 MeV)  (1.02 MeV)      (  6% of the total reactions).

n B He Li

n B He Li

+ → +

+ → +
 (2) 

 

In Eq. (2), thermal neutrons are absorbed to a 10B atom of BF3 gas particles and emit 

4He (alpha) and 7Li particles. At this point, the energy of the neutrons is negligible, and the 

energies of 4He and 7Li particles are already set. With a 94% probability, the 4He and 7Li 

particles have energies of 1.47 MeV and 0.84 MeV, respectively, and with a 6% probability, 

they have energies of 1.78 MeV and 1.02 MeV, respectively. The 4He and 7Li particles pass 

through and transmit their energy to the BF3 gas medium. 

 

However, if the (n,10B) reaction takes place in a border of the BF3 gas medium, one of 

the emitted particles cannot fully transmit its energy to the medium. Because the 4He or 7Li 

particle transmit only part of its energy to the medium, the total energy deposited in the medium 

is smaller than the emitted one. This phenomenon is called the wall effect. 

 

For example, as shown in Fig. III-3, suppose the (n,10B) reaction produces two particles 

(7Li with energy of 0.84 MeV and 4He with energy of 1.47 MeV) at the border of a detector. 

Assume that the 7Li particle faces toward the center of the detector, while the 4He particle faces 

outside the detector, the 7Li particle transmits its full energy to the medium, whereas the 4He 

particle transmits only 0.2 MeV out of 1.47 MeV to the medium. Subsequently, the total energy 

recorded by the detector is 1.04 MeV, not 2.31 MeV. In this manner, some reactions have 
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energies between the maximum and minimum emission energies. (For the BF3 detector, the 

maximum energy is 2.31 MeV and the minimum is 0.84 MeV.) 

 

Similarly, the same principle can be applied to a 3He detector. 

 

 3 1 3 (0.57 MeV)  (0.2 MeV)      (100% of the total reactions).n He H H+ → +  (3) 

 

In Eq. (3), thermal neutrons are absorbed to a 3He atom and emit 1H and 3H particles. 

At this point, the energy of the neutrons is negligible, and the 1H and 3H particles have energies 

of 0.57 MeV and 0.2 MeV, respectively. The 1H and 3H particles pass through and transmit 

their energy to the 3He gas medium. One of them transmits only part of its energy to the medium 

when the (n,3He) reaction occurs in the border. The total energy deposited in the medium has a 

uniform distribution between the maximum and minimum emission energies. (For the 3He 

detector, the maximum energy is 0.77 MeV and the minimum is 0.2 MeV.) 
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Fig. III-3. Principle of wall effect. 
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Before modeling the water tank CARROUSEL, a virtual detector with a radius of 1 cm 

and height of 20 cm is made by MCNP6 and GEANT4, respectively [4,5]. Fig. III-4 shows the 

energy deposited in the BF3 and 3He detectors. The case “n(E)=0.0253 eV” indicates that only 

neutrons with an energy of 0.0253 eV are inserted into the detectors. Similarly, the case 

“n(E)=PWR Spectrum” means that neutrons that have a typical pressurized water reactor (PWR) 

spectrum are inserted into the detectors. 

 

In Fig. III-4, MCNP6 and GEANT4 provide the same results. Fig. III-4 shows that the 

orange and blue lines match well. First, the orange and blue lines show a step-like shape, which 

is seen as the count increasing one step from 0.84 MeV and another step from 1.47 MeV. This 

is a superposition of the uniform distribution at 0.84 ~ 2.31 MeV with the uniform distribution 

at 1.47 ~ 2.31 MeV. The uniform distribution at 0.84 ~ 2.31 MeV is formed because of the 

emission of the 4He particles, and that at 1.47 ~ 2.31 MeV is generated because of the emission 

of the 7Li particles. 

 

By comparing the blue and yellow lines, the effect of the neutron spectrum on the wall 

effect can be identified. The overall shape of the yellow line is the same as that of the blue line; 

however, its magnitude is much smaller. This is because thermal neutrons react with 10B atoms 

more actively. In contrast, reactions releasing more an energy more than 2.8 MeV are found in 

the yellow line. These reactions are from collisions between the fast neutrons and 10B atoms, 

which means that the additional energy over 2.8 MeV comes from high-energy neutrons. 

 

The sky-blue and red lines also matched well. The step-like shape of the wall effect is 

not clearly seen, which is caused by the short radius of the 3He detector. Unlike the 4He and 7Li 

particles, the 1H and 3H particles are emitted with less energy. This means the mean-free path 
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of the 1H and 3H particles is longer than that of the 4He and 7Li particles. For the BF3 detector, 

the 4He and 7Li particles born near the center of the detector transmit their full energy to the 

medium. However, for 3He detector, the 1H and 3H particles born near the center of the detector 

have a higher possibility not to transmit their full energy even though the location of the 

reaction is same. In terms of the neutron energy spectrum, the same tendency as that of the BF3 

detector is observed. 
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Fig. III-4. Energy deposition in BF3 and 3He detectors (Radius = 1 cm and Height = 20 cm).
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Fig. III-5 shows the energy deposited in large BF3 and 3He detectors with radius of 3 

cm. The same trends are observed as those in Fig. III-5. One noticeable change is the fact that 

the wall effect shape in the 3He detector is changed to a stair shape. This is because the mean-

free path of the 1H and 3H particles is smaller than the diameter of the detector.  
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Fig. III-5. Energy deposition in BF3 and 3He detectors (Radius = 3 cm and Height = 20 cm).   
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Fig. III-6. Energy deposition of alpha and 7Li in BF3 detector (Radius = 1 cm and Height = 20 cm).   
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Fig. III-7. Energy deposition of proton and triton in 3He detector (Radius = 3 cm and Height = 20 cm). 
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Fig. III-8. Stopping power of alpha and 7Li in BF3 detector.  
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Fig. III-9. Stopping power of proton and triton in 3He detector.  
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Fig. III-10. MCNP6 modeling and experimental results for BF3
 detector. 



34 

 

 

 

Fig. III-11. MCNP6 modeling and experimental results for 3He detector. 
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III.4. Modeling of gamma ray response of a sodium iodide detector 

 

The gamma spectrum was also validated. Fig. III-12 shows a gamma-ray detection 

problem composed of an NaI detector (green color), a 60Co gamma ray source (white dot), lead 

(blue color), and air (red color). The NaI detector is a 4-cm high cylinder and has a 2.85 cm 

radius with a density of 3.67 g/cm3. The air is composed of 21% oxygen and 79% nitrogen. 
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Fig. III-12. Gamma-ray detection problem (left: x-z plot, right: x-y plot). 

 

  



37 

 

Fig. III-13 shows the deposited energy spectrum in the NaI detector from the gamma 

rays emitted by the 60Co source as calculated by SERPENT2, MCNP6, and GEANT4 

v10.04.p02. The SERPENT2 calculation is a photon transport mode with 1 billion photon 

histories. The MCPLIB12 photon library and SERPENT–internal auxiliary photon data files 

are adopted for the SERPENT2 simulations [13]. The MCNP6 calculation is a photon–electron 

transport mode with 1 billion photon histories. The MCPLIB12 and e103 electron library are 

used for photon and electron transport, respectively [14]. 
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Fig. III-13. Deposited energy spectrum in the NaI detector by gamma rays from 60Co source. 
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SERPENT2, MCNP6 and GEANT4 calculations correspond well with the 

measurement data in Fig. III-13. The 1.17 and 1.33 MeV peaks from 60Co decays are visible, 

as well as the corresponding Compton edges at 0.96 and 1.12 MeV. Because SERPENT v2.1.29 

does not have a peak energy expansion feature, the tallied counts were extended through a 

MATLAB post-processing script. The SERPENT2 and MCPN6 results are closer to the 

measurements than those of GEANT4, especially for the 75 keV x-ray fluorescence peak and 

the 209 keV back-scattering peak. The three reasons why the GEANT4 results are further away 

from the measurements than those of SERPENT2 and MCNP6 are as follows: 

 

First, a reflective boundary condition is applied for the sphere surface in SERPENT2 

and MCNP6, whereas a leakage boundary condition is applied in GEANT4. This difference 

explains why the back-scattering peaks below 0.5 MeV do not appear in the GEANT4 results. 

For the GEANT4 simulation, it is difficult to set a reflective boundary condition for the sphere 

surface. Second, the reflectivity of the lead was set to 0.9 in the GEANT4 simulations, which 

is different from the experimental configuration. Third and finally, the physics to simulate X-

ray fluorescence was turned off in GEANT4 during the calculations. 
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III.5. Preliminary conclusions 

 

Based on the characteristics of the SERPENT2, MCNP6 and GEANT4 codes in terms 

of neutron and photon physics, the SERPENT2 code is employed to determine the neutron and 

gamma source spectrum at the location of the diamond detector in CROCUS (global 

simulation), whereas GEANT4 will be used for the detailed simulation of the response of the 

diamond detector (local simulation). The latest version of GEANT4 is used in this study. 

 

The reason why SERPENT2 is selected instead of MCNP6 is that SERPENT2 has the 

same capacity for neutron-photon coupled simulations as MCNP6, while SERPENT2 has faster 

calculation performance, especially concerning the depletion calculation function. 
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IV. Establishment of Diamond Detector Analysis System 

 

In Chapter IV, the modeling of the neutron and prompt gamma ray contributions and 

that of the delayed gamma ray contribution are introduced. 

 

IV.1. Modeling of the neutron and prompt gamma sources in CROCUS 

 

Fig. IV-1 shows the neutron/prompt gamma/delayed gamma spectra generated by 

SERPENT2 at the location of the diamond detector in CROCUS. 
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Fig. IV-1. Neutron/prompt gamma/delayed gamma spectra calculated by SERPENT2. 
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For the neutron and prompt gamma spectra calculation, criticality calculations in 

neutron–photon transport mode are carried out using the SERPENT2 full-core model of 

CROCUS. The ENDF/B-VII.0 neutron library with S(α,β) data at 293.6 K and the MCPLIB12 

photon library are employed. 500 active cycles of 2 million histories are run and 100 inactive 

cycles are discarded before the start of the active cycle. The full-core simulation accounts for 

the production of prompt gamma photons from fission reactions, radiative captures, and 

inelastic scattering. 

 

In Fig. 7, the neutron spectrum was normalized to have an area of 1, and the prompt 

gamma spectrum was normalized to have an area of the neutron-to-prompt-gamma spectrum 

ratio (~0.62) because the ratio between the prompt gamma and neutron fluxes tallied by 

SERPENT2 is 0.62. For the neutron spectrum, CROCUS shows a typical light water reactor 

spectrum. For the prompt and delayed gamma spectra, two or three peaks are observed: the 

electron-positron pair annihilations at 0.511 MeV, the radiative capture peak on hydrogen in 

the water at 2.223 MeV, and the radiative capture peak of aluminum in the cladding at 7.724 

MeV [15-17]. 

 

For the neutron and prompt gamma spectra calculation, a two-step approach is 

employed. First, CROCUS full-core simulation (so-called “global” simulation) is carried out 

by SERPENT2 to determine the neutron and prompt gamma source at the location of the 

diamond detector. Subsequently, detailed results for the diamond detector problem are obtained 

by GEANT4 (so-called “local” simulation). For the global simulation, criticality calculations 

in the neutron-photon transport mode are carried out using the SERPENT2 full-core model of 

CROCUS. The ENDF/B-VII.0 neutron library with S(α,β) data at 293.6 K, and the MCPLIB12 

photon library are employed. 500 active cycles of 2 million histories are run and 100 inactive 
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cycles are discarded before the start of the active cycle. The full-core simulation accounts for 

the production of prompt gamma photons from fission reactions, radiative captures, and 

inelastic scattering. The modeling method of the delayed gamma spectrum calculation is 

described in the next section in detail. 
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IV.2. Modeling of the delayed gamma sources in CROCUS 

 

The calculation method for obtaining the delayed fission gamma spectrum at the 

location of the diamond detector is as follows. 

 

First, a SERPENT2 depletion calculation of the full CROCUS core is performed. The 

irradiation time in the experiment (~160 min) is divided into four sub-steps of 40 min in the 

SERPENT2 simulation. The power of the reactor is set equal to 26 W to set an environment 

similar to that of the experiment. The number of fuel depletion cells is equal to 2560 (512 fuel 

cell × 5 plane sub-divided along z-axis). This depletion calculation makes it possible to obtain 

the depleted fuel compositions at 0, 40, 80, 120, and 160 min after the beginning of the 

irradiation. A total of 1334 nuclides are used for the SERPENT2 depletion calculation. The 

delayed activation gamma sources corresponding to the depleted fuel compositions are 

determined for each fuel pin with a STREAM-SNF gamma-source-term calculation. 

 

The strengths of the delayed fission gamma source in the UO2 pin and U-metal pin next 

to the diamond detector at 0, 40, 80, 120, and 160 min are displayed in Fig. IV-2. The 

corresponding normalized spectra are shown in Fig. IV-3 and Fig. IV-4, respectively. 
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Fig. IV-2. Delayed gamma source strength as a function of the irradiation time. 
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The delayed gamma source is normalized along time as follows. 

 

 
( ) ( ) ( ) ( ) , ,0 , ,1 , ,1 , ,2 , ,2 , ,3 , ,3 , ,4

,

20
,

160

i j i j i j i j i j i j i j i j

i j

S S S S S S S S
S

 + + + + + + +
=  (4) 

 

where Si,j,k is the source (gammas per second), for fuel pin index i, energy group index j, and 

time step index k, calculated by STREAM-SNF, and 
,i jS  is the average source. The numerator 

on the right-side term is the same as the area under the lines in Fig. IV-2. 
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Fig. IV-3. Delayed gamma source spectrum of UO2 pin in the center of CROCUS. 
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Fig. IV-4. Delayed gamma source spectrum in a U-metal pin next to the diamond detector. 
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As Figs. IV-3 and IV-4 show that the spectrum differences over the irradiation time are 

small except for 0-burnup, the four delayed gamma sources are averaged over time, which 

results in one gamma source for each pin in CROCUS. The pin-wise delayed gamma source is 

inserted to each pin in the SERPENT2 input file. The gamma spectrum is tallied at the location 

of the diamond detector from the SERPENT2 photon transport calculation with the pin-wise 

source. By using this delayed gamma spectrum at the location of the diamond detector, 

GEANT4 simulation is performed to obtain detailed delayed gamma results. 

 

  



51 

 

IV.3. Normalization of the flux 

 

The neutron and prompt gamma fluxes per neutron source are obtained from a 

SERPENT2 criticality calculation and normalized to the CROCUS reactor power during 

irradiation according to Eq. (5). 
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where   is either the neutron flux or the prompt gamma flux, the particle is either the neutron 

or prompt gamma, P is the power of CROCUS in W,  is the average number of neutrons 

emitted by a fission in CROCUS, wf is the energy emitted by a fission in CROCUS, keff is the 

multiplication factor of CROCUS, and tallied  is the neutron or prompt gamma flux per neutron 

source as tallied by a detector function in SERPENT2 [18]. 

 

Meanwhile, the delayed gamma flux was normalized as follows. 
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=              

   (6) 

 

where 
,i jS  is the average source previously described in Eq. (4). Eq. (6) presents a different 

normalization scheme from Eq. (5) because the source particle in Eq. (6) is gamma, and not 

neutron like in Eq. (5). 
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Table VI-1 summarizes the calculation results of the neutron, prompt gamma, and 

delayed gamma transport. 
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Table VI-1. Calculation results in CROCUS neutron/gamma transport. 

Parameter Value 

[W]P  26 

neutron

fission

 
 
 

 2.43 

MeV

fission
fw
 
 
 

 193.4834 

effk  1.00187 ± 0.00002 

2

neutron

cm s
neutron

 
  

 1.61 × 109 ± 2.26 × 106 

, 2

photon

cm s
g prompt

 
  

 1.00 × 109 ± 4.11 × 106 

( )( )
,

all fuel pins energy group

photon

s
i j

i j

S
 

   
       

   6.47 × 1012 

, 2

photon

cm s
g delayed

 
  

 4.71 × 108 ± 2.17 × 106 

,

,

g delayed

g prompt




 47.2% ± 0.4% 

, ,gamma g prompt g delayed

neutron neutron

  

 

+
=  91.4% ± 0.5% 
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In Table 1, the wf value was from the ENDF file (mf=1, mt=458 for 235U) [19]. The 

delayed-to-prompt gamma fraction is 47.2%, and the gamma-to-neutron fraction is 91.4%. The 

delayed gamma-rays occur mainly because of the beta decay of 239U atoms (~7% of the total 

gamma emission). 
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V. Application of Diamond Detector Analysis System 

 

Chapter V analyzes the particle interaction results further using GEANT4 v10.04.p02, 

especially focusing on the relationship between the deposited energy and the charge collection 

pulse width [20]. 

 

The gamma contributions (approximately 73% of the neutron + gamma contributions 

in the energy range of over 0.75 MeV as Fig. V-1 shows) are not considered in Sections V.1 

and V.2. 
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Fig. V-1. Neutron and gamma contributions for GEANT4 pulse energy spectrum. 
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V.1. Pulse energy spectrum 

 

Fig. V-2 shows the deposited energies through each type of interaction with the 

diamond crystal. In Fig. V-2, “Neutron inelastic scattering” means that a neutron directly 

causes an inelastic scattering with a carbon atom of the diamond detector. “Neutron elastic 

scattering” means that a neutron directly causes an elastic scattering with a carbon atom of the 

diamond detector. “LiF converter” is the response in which the energy is deposited by an alpha 

or triton produced by the reaction between 6Li particles and thermal neutrons. “Proton recoil” 

means that the energy is deposited in the diamond crystal by a proton ejected from the 

polyethylene collimator or the holder by a neutron collision. “Else” refers to other reactions by 

the electrons, mainly a multiple Coulomb scattering. “Neutron” refers to the sum of all cases. 
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Fig. V-2. Deposited energy from GEANT4 simulation. 
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In the measurements, an amplitude trigger was set to 15 mV. Because the pulse caused 

by the thermal neutron interactions is rectangular, the threshold energy set by the voltage of 15 

mV is calculated as 

 

 
15 mV 10 ns

1.34 MeV,
112 pVs/MeV


  (7) 

 

using a conversion factor of 112 pVs/MeV. The conversion factor is set to match the roughly 

estimated tritium peak from the 241Am source experiment to a well-known value (i.e., ~2.553 

MeV) [3]. Similarly, the pulse shape caused by the gamma interactions is triangular, which 

gives 

 

 
15 mV 10 ns 1 2

0.67 MeV,
112 pVs/MeV

 
  (8) 

 

assuming a drift time of 10 ns for the charged particles. The threshold energy for fast neutron 

scattering collisions at the BCR is 

 

 
15 mV 4.13 ns

0.55 MeV,
112 pVs/MeV


  (9) 

 

with a drift time of 4.13 ns for the charged particles. Because Fig. V-2 presents the neutron 

simulation results, a threshold energy of 1.34 MeV was used in Fig. V-2. 

 

Fig. V-2 shows that the energy absorbed by the LiF converter response forms a tritium 

peak at 2.5 MeV. An alpha peak of 1 MeV does not appear on the graph owing to the cutoff 
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below the thermal neutron threshold energy (i.e., 1.34 MeV). The elastic, inelastic, and else 

reactions are at low energies. Proton recoil has a tail that extends to high energy. This shows 

that the high-energy rectangular pulses are produced by proton recoil. The fraction of each 

interaction in Fig. V-2 is listed in Table V-1. 
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Table V-1. Fraction of neutron interactions from the GEANT4 simulations. 

Interaction Fraction [%] 

Neutron 100 

Neutron inelastic scattering 0.17 ± 0.01 

Neutron elastic scattering 9.34 ± 0.11 

LiF converter 80.88 ± 0.80 

Proton recoil 8.93 ± 0.10 

Else 0.68 ± 0.03 
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In Table V-1, it is observed that the LiF converter reaction accounts for the largest 

percentage at 80.88%. The neutron elastic scattering is next at 9.34%. Another 8.93% of the 

total interactions is due to protons. “8.93% ± 0.10%” means that the amount of proton recoil 

belongs to the interval between 8.83% and 9.03% with 68% probability. The statistical 

uncertainties were derived from 1,400 parallel calculations. 

 

Fig. V-3 shows the distance from the cathode to a position that each interaction occurs. 

The pink line in Fig. V-3 shows that the LiF reaction can be seen mostly in the vicinity of the 

cathode. This is because tritium or alpha particles produced by the 6Li(n,3H)4He reaction react 

quickly to the diamond sensor and lose energy. The black line in Fig. V-3 shows that the protons 

do not have sufficient energy to cross the diamond crystal. They release their full energies near 

the electrodes with the same probability of interacting at the anode and cathode. The other 

responses are distributed evenly over distance. 
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Fig. V-3. Distance from the cathode through GEANT4 simulation. 
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V.2. Scatter plot 

 

A scatter plot in this study is a single view of the absorbed energy spectrum for each 

width. Here, the width is set at a constant position relative to the maximum amplitude of each 

pulse. For example, the width in Fig. I-1 was set at 12.5% of the maximum amplitude. Scatter 

plots are interesting because they provide pulse width and energy at the same time; however, 

they are limited in detailed analysis for experimental results. This raises the need for 

simulations. 

 

To draw a scatter plot using the simulation results, the width and energy of the pulses 

should be determined first. The energy and position in Figs. V-2 and V-3 are directly provided 

by GEANT4. The pulses are produced from them as follows: 

(1) Through the GEANT4 simulations, the deposited energy and location of each 

reaction are extracted and summarized. 

(2) With a bias voltage of 400 V, the electron drift velocity is around 50 μm/ns and the 

hole velocity around 70 μm/ns. A voltage of 400 V was applied in the measurements 

of this study. 

(3) The drift times are calculated by dividing the distance from the electrodes by the 

velocity of the charged particles in step (2). 

(4) The energies are converted to areas in pVs (voltage in mV multiplied by time in ns) 

by multiplying with the conversion factor 112 pVs/MeV. 

(5) The areas are divided equally because the energies produced by an electron and a 

hole are similar. 

(6) The areas of the electron and hole are divided by the drift times in step (3). The 

voltages are then obtained. 
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(7) The voltages of the electron and hole are summed up. 

(8) If an ionization reaction occurs near the electrodes, the drift time will be very small, 

and the voltage will become too high. 

(9) In actual measurements, because the high voltage is not recorded in the pulse signal, 

the pulse is recorded as rectangular regarding the reactions occurring at the vicinity 

of the electrodes. This means that the high voltage is considered zero. 

(10) The voltage obtained in step (7) or (9) is used to determine if it exceeds the 

threshold voltage of 15 mV. 

(11) If exceeded, the greater of the two drift times is considered a charge collection 

pulse width. This charged collection pulse width (at 0% of the maximum by energy 

obtained in this manner) is defined as a calculation width. 

 

Fig. V-4 shows an example of pulse shapes for each interaction generated from 

GEANT4. 
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Fig. V-4. Example of pulse shapes for each interaction generated from GEANT4. 
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In Fig. V-4, the pulse from the gamma interaction is triangular, that from inelastic 

scattering collision is a step-shape, and pulses from the LiF converter, proton recoil, and elastic 

scattering collision are rectangular. The energy of the pulse from the LiF converter response is 

2.5 MeV that is the tritium peak. The energy of the pulse from the proton recoil reaction is 4 

MeV, showing consistency with the results in Fig. V-2. It is observed that neutron inelastic 

scattering occurred 100 μm away from the anode, whereas neutron elastic scattering occurred 

at the BCR. 

 

Fig. V-5 shows a scatter plot between the deposited energy and the calculation width 

generated by GEANT4. The energy and calculation width were calculated by the above 

procedures.
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Fig. V-5. Scatter plot (deposited energy vs. calculation width) from GEANT4. 
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In Fig. V-5, only energy deposition greater than 1.34 MeV is counted. For the elastic 

scattering reactions, because the responses occur overall inside the diamond sensor, the 

calculation width is evenly distributed between 4 and 10 ns. As mentioned, with the voltage of 

400 V, the electron drift velocity is approximately 50 μm/ns, and the hole velocity is 

approximately 70 μm/ns. While both the hole and electron drift velocities contribute to the 

signals observed between 4 and 7 ns, only the electron drift contributes to the calculation width 

between 7 and 10 ns. 

 

In the case of the proton recoil response, two bands appear, one by protons impacting 

the anode and the other by protons impacting the cathode. Protons entering the cathode produce 

electrons and holes, of which only electrons contribute to the generation of pulses because the 

hole drift time is too short to be captured. Protons entering the anode also produce both 

electrons and holes, of which only holes contribute to the generation of pulses. Owing to the 

velocity difference between the electrons and holes, bands are formed at different widths, one 

at 7 ns and the other at 10 ns. 

 

When a neutron reacts to the LiF converter, a pair of an alpha and a triton is created, 

one of which is then reactive at the cathode when it enters the diamond sensor. Because the 

alpha and triton always reacts only on the cathode side, only electron drifts contribute to the 

generation of the pulses of 10 ns at all times. 

 

In “All reactions” of Fig. V-5, a small ridge around 5 ns is observed. This ridge appears 

because of the pulses resulting from energy deposition near the BCR, because a large amount 

of elastic scattering is recorded around the BCR owing to the larger amplitude for the same 

energy deposition, even though the probability of the elastic scattering is homogeneous in the 
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crystal as shown in Fig. V-3. 
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VI. Assessment of Model Performance against Experimental Data 

 

Fig. VI-1 shows the energy spectra from the GEANT4 calculations using the MCNP6-

generated neutron, prompt gamma, and delayed gamma spectra in Fig. IV-1. The energy for 

the measurements in Fig. VI-1 was obtained by converting an area using a conversion factor 

of 112 pVs/MeV. Fig. VI-1 shows only the results that exceed the gamma threshold energy 

(0.67 MeV) for both the simulation and experiment. 

 

In Fig. VI-1, the green and red lines indicate energy deposited by neutron and gamma 

interactions from the GEANT4 simulation, respectively, the black line is the total deposited 

energy as the sum of the green and red lines, and the blue line indicates the measured data 

combining the effects of the neutrons and gamma rays. These lines were normalized so that the 

blue and black lines overlapped at the threshold energy of 1.34 MeV. Both the green and blue 

lines show the triton peak at 2.553 MeV, which is caused by a thermal neutron interaction with 

6Li particles. 

 

The GEANT4 results show that 27% of the total responses are neutron effects and 73% 

are gamma–ray effects. The slope of the curves between 1 MeV and 2 MeV are mainly 

produced by gamma interactions. The high energy tail is produced by neutron interactions, 

especially, the proton recoil. The brown line shows the measured rectangular pulses, and the 

pink line shows the 6Li converter responses from the GEANT4 simulation. The 6Li reactions 

account for 14.31% and 15.13% beyond 1.34 MeV for the measurements and simulations, 

respectively. 
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Fig. VI-1. Pulse energy spectrum comparison with the measured data. 
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VII. Conclusions and Perspectives 

 

The measurement data acquired from a diamond detector in a mixed neutron-photon 

field of the CROCUS zero-power reactor was analyzed and compared with detailed Monte 

Carlo calculations in this study. Three contributions to the diamond detector response (neutron, 

prompt gamma, and delayed gamma) were calculated. The contributions of the prompt gamma 

rays and neutrons were investigated by a SERPENT2/GEANT4 two-step procedure. 

SERPENT2 full-core criticality calculations were first performed to obtain the neutron and 

prompt gamma spectra at the location of the diamond detector in CROCUS, and then GEANT4 

v.10.04.p02 fixed-source calculations were performed to simulate the transport of charged 

particles in the diamond detector alone using the previous neutron and prompt gamma spectrum 

as the source. The contribution of delayed fission gamma was investigated by a 

SERPENT2/STREAM-SNF/GEANT4 three-step procedure: a SERPENT2 full-core depletion 

calculation was first performed to obtain depleted fuel compositions during irradiation, then 

the corresponding delayed gamma source was calculated from the depleted fuel compositions 

by the STREAM-SNF source-term calculation, and finally, the delayed gamma spectrum was 

used as the source in a GEANT4 v10.04.p02 fixed-source simulation of the diamond detector 

alone. 

 

Through the presented calculation scheme, the calculated fraction of the prompt gamma 

flux over the neutron flux at the location of the detector was ~62%, and the fraction of delayed-

to-prompt gamma fluxes was ~47.2% for a 160-min irradiation at 26 W power. Using the 

spectra at the location of the diamond detector as the fixed source, the local GEANT4 

simulations of the diamond detector alone showed that the contributions of neutrons and 

gamma rays to the detector response amounted to approximately 27% and 73%, respectively. 
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With an LiF converter, both calculation and experimental results showed an approximately 15% 

consistency of the total reactions. 

 

Using the energies and positions of the particles contributing to the tallies in the 

GEANT4 simulation, numerical pulses of the diamond detector were rebuilt and used to 

determine a calculation width at 0% of the maximum amplitude. A scatter plot was derived 

accordingly and the analysis of the scatter plot revealed two bands caused by the proton recoil: 

one band from protons impacting the anode and the other from protons impacting the cathode. 

The effect of these proton recoils was also shown as a high-energy tail in a pulse energy 

spectrum. 

 

Meanwhile, neutron scattering (both elastic and inelastic) collisions were distributed 

evenly over the distance from the electrodes in the diamond crystal. Hence, the structure 

observed with a higher count rate at the BCR is probably related to the amplitude of the BCR 

pulses being higher, and thereby it is possible to see the pulses resulting from energy deposition 

at the BCR better. 
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