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Abstract 

 

This thesis describes a dynamical system enabling the formation of ordered structures and particle 

trapping established in non-inertial frame of reference. Lighter particles suspended in a denser 

rotating fluid filling a cylindrical tube can be localized on the axis of rotation by the axis-symmetric 

centripetal force. Such particles can self-assemble into ordered tubular structures with mild rotational 

accelerations and the types of the resulting packings are dependent on the particle’s concentration. We 

demonstrated various tubular structures of symmetries ranging from simple helix (𝐶1) to double helix, 

𝐷2𝑑, and 𝐷3𝑑. Using the fact that there exists a transient flow along the axis when the rotational rates 

are abruptly accelerated or decelerated, the structures can interconvert into each other by quickly 

changing the rotational rates. In addition, the chirality for the chiral structures can be selective when 

the system’s orientation is adjusted with respect to gravity. We also report unprecedented binary 

tubular structures by using two types of particles differing in density and/or size. On the other hand, 

when the particles confined in the axis-symmetric potential can experience confinements along the 

axis of rotation, the particles can be trapped and assemble into 3D ordered structures. We realized the 

axial confinement with disks which are fitted inside the tube and rotate slower than the surrounding 

fluids by the external magnetic field (the so-called eddy current brake), giving rise to vortices. The 

strength of the axial confinement by the vortices is inversely proportional to the speed of the disk 

relative to the fluids. When such two disks are placed near each of the both ends of the tube, the 

particles can be trapped between the disks if the rotational rates of the tube and the disks are properly 

adjusted. Depending on the relative strengths of the radial and axial confinements, the trapped 

particles can exhibit the orbiting trajectory, linear assembly, or ordered packing. Similarly, particle 

clusters can have geometries of prolate, oblate or spherical symmetric shapes. We showed various 

types of ordered packings using a few spherical particles and demonstrated various dynamic 

assemblies of cages and interlocked architectures with non-spherical particles as well as jammed 

colloidal monolith. As we obtained unusual binary tubular structures by using different types of 

particles, certain combinations of the particles can exhibit structural selectivity for polymorphic 

system. Last but not least, our system is found to undergo interesting transition behavior such as Hopf 

bifurcation and others including two limit cycles. 
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Chapter1. Introduction 

 

Dynamic self-assembly of tubular structure 

Before the study of dynamic self-assembly, static assembly is preferentially considered and many 

fascinating examples – some of which have found its application to industry and some increased our 

understanding on naturally occurring phenomena – have been demonstrated. Despite such successful 

demonstrations and findings, the study of self-assembly cannot be completed without taking account 

of assembling system in non-equilibrium state. Nature, which provides typical and important examples 

of static self-assembly and is a motivation of this field of study, also consists of many living systems 

(biological assemblies) that reside in continuously changing environment and are maintained through 

dynamical processes. Although ascending attentions have been made on dynamic self-assembly and 

there have been some progresses since 1990’s, it is still at an early stage of its development, in 

particular, for microscopic systems due to the lack of our knowledge dealing with (covering) non-

equilibrium state at microscopic scale. 

Dynamic self-assembling systems, those that function in out-of-equilibrium and require continuous 

energy supply to sustain the formed structure (1), are ubiquitous in nature and have shown that it can 

also be artificially created in unnatural system. Examples include dendritic growth in solidifying alloys 

(2), quasi-crystalline pattern in interfacial waves of fluids (3), and dynamic structures of micro- and 

milli-meter sized particles in varying magnetic field (4,5). Nature of residing away from an 

equilibrium allows the dynamical system to produce complex spatiotemporal patterns or structures that 

are not usually obtainable from static self-assembling system. Despite this high potential of creating 

diverse structures, dynamic system exhibiting highly ordered structure or rich phase behavior has not 

been extensively exploited except for a few exceptions (6), and, in particular, design of 

multicomponent dynamic self-assembling system is highly challenging. 

We chose a rotating frame of reference as a test bed (platform) for the exploration of dynamic self-

assembly. In our study, the non-inertial frame of reference is combined with buoyancy such that 

centrifugal force can localize lighter particles immersed in a denser rotating fluid onto the axis of 

rotation. Since we used cylindrical tube to accommodate the particles and fluid (the components), the 

assemblies formed by those particles result in tubular structure. Starting from a simple chain-like 

structure – all the particles fit into a single line on the axis of rotation – double and triple helical 

structures and those having symmetries of 𝐷2𝑑 and 𝐷3𝑑 have resulted (form) as the number of 

particle increases. In comparison to previous studies of the tubular structure, following characteristics 

feature in our assembling system. First, the strength of particle confinement is determined by the 

fluid’s rate of rotation. This property enables different structures to be interconverted in a process of 

acceleration or deceleration of the fluid (by accelerating or decelerating the fluid). Second, for the 
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helical structures, chirality can be selectively chosen to a certain extent by adjusting the orientation of 

the fluid’s axis of rotation with respect to gravity. 

 

3D fluidic trap and Hopf bifurcation 

Particle trapping has been successfully explored in various studies such as Brownian motion of a 

single particle (7), Bose-Einstein condensation (8), and mechanical properties of biomolecules and 

cells (9,10) and recent progress on multiple-particle manipulation can achieve plane-by-plane atom 

assembly (11). Much efforts have been made to develop robust trapping methods since the pioneering 

work of Ashkin in 1970s (12,13). Particles can be trapped and manipulated either by gradient force 

exerted by externally applied fields such as optical (14), magnetic (15), electronic (16), and acoustic 

(17) fields or by hydrodynamic effects in a microfluidic device (18,19). On the other hand, to 

overcome the limit of one trapping method, a hybrid (combined) technique has been frequently 

adopted (20,21). 

Helical vortex is frequently encountered in nature or everyday life (e.g., a whirlpool in a river, a 

tornado, and draining water in a bathtub) and also arises in many engineering designs such as a delta 

wing (22), a turbine rotor (23), and a building roof (24). Consequently, there have been continuous 

efforts to understand the properties (e.g., stability (25), helicity (26), motion (27), and velocity field 

(28)) of the helical vortex. Although it is not difficult to find some applications in which the vortices 

are harnessed to separate a solid-liquid mixture (29) and enhance heat transfer (30) and mixing in a 

combustion system (31), the intricacies of the vortex dynamics make it difficult to be exploited in a 

broad area of science and technology. 

In this work, we present 3D fluidic trapping which utilizes the helical vortices in combination with the 

centripetal acceleration to create non-contact mode trapping of particles. This work was motivated 

from the question whether it is possible to create 3D structure in our rotating system which 

demonstrated the quasi-1D dynamic self-assembly. In order to achieve the conversion from quasi-1D 

to 3D, the radially-confined assembly should experience another confinement in lateral direction. The 

additional confinement was realized by utilizing a pair of collinear vortices. Two aluminum disks 

which are fitted inside and positioned near both ends of the tube are dragged by external magnetic 

field, and subsequently rotate slower than the fluid. The difference in rotation rates of the disks and 

fluid gives rise to vortices, effectively pushing and confining particles between (particles towards the 

middle of) the two vortices. When this lateral confinement is coupled together with the centrifugal 

force, there can exist a region in which particles can be stably trapped under the properly controlled 

condition – viscosity of the fluid, rotation rate, density difference between the particle and fluid, etc. 

With a few numbers of spherical particles, we demonstrate simple molecular geometries such as 

tetrahedral, square pyramidal and octahedral shapes and so on. Moreover, using the facts that 
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confining potential of our system is harmonic with respect to radial position and the strength of the 

confinement can be regulated, we show the selective formation in a polymorphic cluster and atypical 

dynamic process of structure transformation, respectively. Our dynamic system which enables 3D 

fluidic trap and a variety of 3D assemblies therein has following 4 essential properties: ⅰ) comparing to 

other conventional trapping methods, the trap has a large basin of attraction and high trapping strength; 

ⅱ) diverse geometries of the trap (or diverse types of packings) are achievable due to adjustable 

confining forces (in radial and axial directions) controlled by fluid’s rotation rate and intensity of 

magnetic field; ⅲ) the trapping occurs due to a combination of hydrodynamic and inertial (centripetal) 

forces; ⅳ) the system shows supercritical Hopf bifurcation. 

 

1.1 Thesis structure 

The thesis is comprised of two researches (i.e., tubular structure formation and 3D fluidic trap) as 

described in the Introduction. The following two chapters delineate each of the two studies: tubular 

structure formation is depicted in Chapter 2 and 3D fluidic trap in Chapter 3. In fact, these research 

outcomes are already published in Wiley in 2017 and 2019, respectively. Since I believe that the 

published form itself describes these studies in concise and precise manner, and also includes most of 

the essential part of outcomes, I decided to reuse the article – including supporting information – as 

intact as possible in descriptions of the following chapters. Each chapter contains the license for 

reusing the published paper at the end of the chapter. The supplementary parts that need to be added in 

this dissertation will be depicted in the following sections in this chapter with appropriate subtitles. 

 

1.2 Dynamic self-assembly of tubular structure 

Experimental system 

Rotational motion of cylindrical tube was easily obtained by connecting the tube with rotating 

machine for which we used a commercial lathe (Sherline Products 4100A-DRO). Since the tube has 

the aspect ratio larger than 5 and rotates at high speed (> 3000 rpm), stable rotation can only be 

achieved by mounting another end of the tube on a ball bearing which must be precisely aligned with 

the axis of lathe (see Figure 1). 
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Figure 1. Photo of experimental configuration. Both ends of the tube are mounted on a lathe and a ball 

bearing in order to obtain stable rotational motion. The ball bearing should be aligned with the axis of 

the lathe. The ball bearing is inserted into the home-made frame which is free to move on a rail of the 

lathe. The sealing cap is fabricated vis 3D printing. 

 

Alignment of the two mounting pieces is the most essential part in experiment to obtain a good quality 

of assembled structure, in particular for microscopic particles. Increasing the moment of inertia of the 

sample is also frequently used method to remove any vibration during rotation. Another technical issue 

to be surmounted is to remove air bubbles during the sample preparation. Degassing the fluid under a 

vacuum, grinding the surface of a sealing cap and adding a surfactant are the steps we took to make an 

intact sample. Well-designed sealing cap is also important for reliable experiment. The sealing cap 

should be tightly fitted into the glass tube to endure long-time and high-speed rotation, while it also 

needs to be soft enough for an insertion into the tube. In addition, we engineered the side of the cap in 

a stepwise fashion in which bubbles penetrated during rotation can be captured between the peaks. 

One example of our cap is presented in Figure 1. 

 

Regular dispersion of a few particles in rotating fluids 

What led us to the study of structure formation in rotating frame of reference was the observation that 

a few particles being localized on the axis were evenly distributed by the vortices produced around 

them. When the rotation of the tube increases from a rest, the particles rotate slower than the 

surrounding fluids before the system establishes solid-body rotation. Due to the temporal difference of 

the rotation rates between the particles and the fluids, the vortices can arise around the particles, acting 

as repulsion between the particles. Figure 2 shows patterns of particles developed at various rotational 

rates – the evolution of the pattern formed by particles with the variation of the rotation rate. While 

there are no long-range interparticle interactions at low ω (≲ 400; a and b in the figure), there exists 

repulsion between the particles – although it is transient – at higher ω (≳ 500; c–f in the figure). The 



 

5 

 

particles can be evenly distributed due to the repulsive interactions between the particles. This ordered 

pattern was the motivation for the study of tubular structure formation. 

 

 

Figure 2. Even distances between the particles in a rotating fluid. a) Particles are simply afloat without 

any long-range interparticle interaction (ω = 50 rpm). b) Upon increase of the rotation rate (ω = 390 

rpm), the particles show a chaotic motion. There exist repulsive interactions between the particles 

enabling ordered patterns at rotation rates of (c) 770 rpm and (d) 2810 rpm. More perfect ordering can 

be achieved by decreasing and re-increasing the rotation rates – this is attributed to the transient flows 

which will be described later. With this approach, more well-ordered patterns were obtained at rotation 

rates of (e) 860 rpm and (f) 2840 rpm. 

 

Simulation study 

We experimentally proved that the parameters crucial for the structure formation were the 

concentration of the spheres in single component system, and size and number ratios of the 

components in binary component system. However, there are still many other parameters to control in 

this system; for example, the hydrodynamic force acting on the sphere is a function of the sphere’s 

volume, densities of the sphere and the liquid, the angular acceleration, and the viscosity of the fluid. 

To rigorously examine the effect of these parameters on the structure formation, we simulated the 

packings by means of discrete element method (DEM) and adopted ‘velocity Verlet’ algorithm to solve 

Newton’s equation of motion. In the simulation, we ignored the rotational motion of the sphere about 

its axis because the motion is transient and its effect, such as repulsive interactions between the 

spheres, is negligibly small in a regime of solid body rotation. Moreover, when the particles form a 

cluster, the rotation of individual particles is highly inhibited by the friction between them. On the 

other hand, in the simulation we monotonically increased the rotation rate from rest, whereas in 

experiment we generated the structures by varying the rotation rate back and forth. Despite these 

simplifications, we reproduced all of the structures that were experimentally observed in single 

component system (see Figure 3). However, the polymorphs in binary component system were not 
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obtained in the simulation; this indicates that complicated flows induced by varying the rotation rate 

play an important role for the formation of the polymorphs. 

 

 

Figure 3. Molecular Dynamic simulation results for a) – c) single component system and d) – f) 

binary component system. In single component system, the polymorphic nature is reflected; mixed 

structures of (a) 𝐶1 and 𝐷2𝑑 symmetries, (b) triple helix and glassy packing, and (c) 𝐷3𝑑 and 𝐷2𝑑 

symmetries. For binary component system, the structures with rotational symmetries of d) 4-fold, e) 5-

fold and f) 6-fold were represented. 

 

Since the hydrodynamic force applying on the sphere is a quadratic function of the rotation rate, we 

investigated the influence of the rotation rate on crystallization process. It turns out that the crystal 

exhibited a tendency that it enhanced its degree of ordering with an increasing rotation rate. Our 

system is also dependent on the rotation rate in such a way that mixed structures, which are frequent 

observations at mild rotation rates, transformed into a single structure; one of the polymorphs is 

exclusively dominant at much high rotation rate. These observations clearly indicate the dependence 

of the crystal growth (propagation of the crystal) on the strength of the confining force. However, the 

system did not show any significant changes in variation of other parameters including angular 

acceleration and viscosity. 

 

Confining potential of the rotating fluid 

When the cylinder rotates with high speed, we can assume the system to be in solid-body rotation and 

ignore gravity. In this regime the beads do not move relative to the liquid, and our system minimizes 

energy: 
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𝑉(𝜌𝑙 − 𝜌𝑝) 𝜔2 ∑ 𝑟𝑖
2

𝑖

 

Here V is the volume of the bead, 𝜌𝑙 and 𝜌𝑝 the densities of the liquid and the bead respectively, 𝜔 

the angular velocity, and 𝑟𝑖 the distance from the center of i-th bead to the cylinder axis. This is 

equivalent to minimizing ∑ 𝑟𝑖
2

𝑖  at a given concentration of the beads. 

Surprisingly, the tubular packings observed at low concentrations are the same as the packings in a 

very different problem known in the literature: the problem of maximum volume-fraction 

configurations of hard spheres confined in a cylindrical channel (32,33). There are two key 

differences between this problem and our system. Firstly, the only parameter in the hard confinement 

problem is a size ratio of the confining cylinder and the sphere. Secondly, the harmonic potential 

∑ 𝑟𝑖
2

𝑖  of our system is much softer than hard-contact potential of the confining cylinder. While 

theoretical and numerical models (34–36) predicted a numerous tubular packing at various size ratios 

of the cylinder and the sphere, very few studies have obtained those structures in experiments (37–39). 

In studies of the hard confinement problem, many numerical studies predicted the existence of various 

ordered structures at arbitrarily high concentrations, but in our system regular structures emerged only 

below a certain concentration. This discrepancy arises from the fact that the ordered structures that is 

expected to exist at high concentrations inevitably require an empty channel in the core of the structure, 

but the harmonic potential of our system does not favor the hollow core structure. This perspective is 

clearly presented in potential energy calculation in which the energy quickly increases from the point 

where hollow core structure starts to appear (cf. Figure 3c in chapter 2). 

 

Repeated acceleration and deceleration for obtaining highly ordered structure 

In this work, we have presented many examples of tubular structures with high and long-range 

ordering. It should be noted that most of the structures observed in single- and binary-component 

systems were not simply created by gradually increasing rotation rate from rest. We increased and 

decreased the rotation rate back and forth until a well-ordered structure was achieved. The improved 

ordering by the repetitive change of rotation rate can be attributed to the two facts: ⅰ) ordered structure 

is more stable than glassy packing; ⅱ) an instantaneous change of rotation rate can induce transient 

flows along the tube’s axis (cf. Figure 4 in chapter 2). When ordered and disordered packings coexist 

and are perturbed by the transient flows, it is more probable that the glassy packing is preferentially 

destroyed, and the composing particles reassemble into the coexisting ordered structure, resulting in a 

structure of long-range ordering. This way, some of the crystals easily formed within a relatively short 

time (less than 1 minute) and with a long-range ordering, while others required elaborate handling for 

its formation and/or exhibited a short-range ordering. Single component structures formed at high 

concentrations of particles and binary structures belong to the latter category. 
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Benefit from rotational motion 

Intriguing feature of our system being in rotating frame of reference is marked when it is composed of 

two different types of spheres; diverse structures including 2-, 4-, 5-, and 6-fold rotational symmetries 

were created. What makes this diversity possible can be summarized into two factors. First, identical 

components occupy “identical” space; for example, all of the small spheres are in the core, whereas all 

of the large spheres in the shell. This can be achieved (and controlled) by the sequential approach of 

the spheres toward the cylinder axis, which are dependent on the density differences between the 

spheres and the liquid. Second, the rotational frame of reference provides the spheres with pathways 

long enough that the two components can be “separated” (or “isolated”) during the crystallization 

process. To this end, the rotation rate should be increased gradually and slowly. On the other hand, 

another point to be addressed regarding the binary crystal is the range of the size ratios of the two 

components. The crystals reported in this study were formed by spheres of size ratios between 0.5 and 

1. When the size ratio is less than ~0.4, the small spheres simply entered the interstitial sites of the 

structures formed by the large spheres. 

 

1.3 3D fluidic trap and Hopf bifurcation. 

House-made experimental system. 

Our house-made system comprised components shown in Figure 4 below. The headstock was 

purchased from Sherline Products Inc. (model 4100A) and motor from Oriental Motor co., Ltd (model 

BLE2D). The motor can be operated up to 4000 r.p.m. and precisely controlled by computer. Two 

magnets are placed on motorized stages (Thorlabs Inc., model MTS50-Z8) of which each is set to be 

separately controllable in order to generate asymmetric vortex-vortex trap. One side of the tube is 

mounted on the chuck of the headstock while the other side is held by a ball bearing which is inserted 

in a frame designed to move on the rail. 
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Figure 4. Photo of experimental set-up. Inset shows aluminum disks (radius 9.9 mm, thickness 16 

mm) used in this study. The specific shape reflected technical considerations; the chamfers (1.5 mm × 

2 mm) were designed for ease of insertion of the disks inside the tube and small tips (3 mm × 3 mm) 

aided manipulation of the disks by tweezers. 

 

The aluminum disks which generate vortex flows were not fixed in lateral direction – they are free to 

move along the tube’s axis. Under the given values of rotation rate and magnetic strength, the disks 

can find equilibrium lateral positions determined by vortex-vortex interaction and the flows bounced 

back from the both end walls (also see text in Particle trapping by vortex-vortex interaction). This 

lateral movement of the disks seems to in part lend non-linear behavior to the system which 

occasionally makes the dynamics of the system complex and unpredictable. Thus, by fixing the lateral 

position of the disks, one can extract essential features of the system in a more simple and efficient 

way. 

 

Comments on the system’s variables 

In the main text of this work (Chapter 3), we used the rotation rate of the tube and the distance (d) 

between the magnet and the tube as two main parameters to vary the dynamics of the fluidic trap. 

However, more intrinsic parameter determining the system’s behavior is the relative rotation rates of 

the disk and the tube (or the rotation rate of the disk), not d, once the geometry and surface property of 

the disk are determined. Thus, more complete and thorough picture of the system can be obtained by 

recording the relative rotation rates at every solution used (i.e., at various values of viscosities) and 

studying the relations of the system’s behavior and this parameter. Using intrinsic parameters will 

increase our understanding on the system and might decrease the discrepancy between the experiment 
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and the simulation. 

 

Particle trapping by vortex-vortex interaction 

The vortices arising from the disks collide in the middle and spread radially-outward (spiral when 

viewed from the cross-section of the tube) pushing the particles away from the axis. On the other hand, 

the centripetal force, which is directed toward the axis of tube’s rotation, attempts to keep the particles 

on the axis. A balance between the centripetal force and the drag force applied by the swirling flows 

determines the dynamics of the particles and the type of the packing (see Figure 5). If the centripetal 

force is much stronger than the drag force, the particles stay on the axis forming a single line or 

disordered packing. In contrast, if the drag force is dominant, the particles move following the 

complicated flow field developed between the disks – there is no stable region for the particles to stay. 

When the two forces are comparable, the particles can form ordered packing on the axis or draw ring-

like trajectory in the colliding plane depending on the radial position at which the two forces cancel 

out. However, the dependence of the confining forces on the parameters is not simple. As seen in the 

phase diagram (Figure 2 in Chapter 3), the observation that the ordered packings are forbidden at the 

intermediate values of ω at d = 10 mm and 11 mm indicates non-linear nature of the relation. The non-

linearity arises in part from the fact that the disks are free to move along the axis. Since on both sides 

of the disks are there flows bouncing back from the tube’s cap and the colliding plane respectively, a 

balance of the forces applied by these flows determines the axial position of the disk. One last thing to 

consider in the particle trapping is the effect of the hydrodynamic forces by the assembly on the flows. 

The hydrodynamic force of the particles can be neglected for a small number of particles, but it is not 

when the particle’s number density is high, or the size of the cluster is comparable to, for example, that 

of the disk. This effect can be seen from the fact that the phase behavior slightly varies with the 

number of particles since the presence of particle alters the local flow field of the fluid. 
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Figure 5. A balance between the centripetal and drag forces. a) Confining force curves for a stable 

equilibrium point (blue curve, ω = 1500 rpm) and a limit cycle (black curve, ω = 1000 rpm). Although 

there is another point where the two forces are canceled out, it is unstable due to the divergence of the 

force field. b) Partial derivatives of force field (color map) and near-zero-force lines (white) for the 

black curve in (a). Black and red dots indicate stable and unstable equilibrium point, respectively. Here, 

the simulation result is for 100 μm particle system at d = 7 mm. 

 

The effect of the viscosity of the fluid and complexity of the vortex-vortex interaction 

In our theoretical study (see Appendix in Chapter 3), it is possible to use a fluid of low viscosity if 

other conditions, such as rotational rate, are appropriately chosen. In reality, however, we could not 

obtain a reliable particle trapping in low viscosity liquids. Although we do not clearly understand the 

reason, we surmise that the vortex-vortex interaction might be unpredictably quite intricate and never 

cannot be depicted in laminar flow regimes, even for flows at low Reynolds number. This complexity 

of the interactions increases with no doubt for flows at higher Reynolds number (or in solutions of 

lower viscosity) and is represented in Figure 6. At relatively low rotation rate (ω = 2600 rpm), the 

microscopic particles are captured in a single layer of the flow, while there happen to exist other layers 

with increasing the rotation rate. Here, the solution is water, and the similar layered structure of the 

flow is also observed for other liquids of low viscosity (≲ 2 mPa s). Consequently, our simulation 

study, which assumes the flows induced by the vortex-vortex interaction to be laminar flow, is 

considerably restricted and only applicable to approximate the behavior of the fluidic trap for small, 

trapping region. In order to get a full, precise portrait of the particle trapping, the flows should be at 

least estimated through 3D model allowing turbulent flow regimes. As a rule of thumb, the particle 

trapping could be obtained in a fluid of viscosity higher than ~2 mPa s. 

 

 

Figure 6. Complicated vortex-vortex interaction. Layered flow structure is induced by the vortex-

vortex interaction and shown by tracer particles (50 𝜇𝑚). The complexity increases with the rotation 
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rate which is noted in each figure. Here, the fluid is water and d is 2 mm. 

 

Key factors for structure determination and applicability 

The variety of the dynamic assemblies demonstrated in this work is the output of questions that how 

widely and usefully the 3D fluidic trap can be utilized and how it is different from other trapping 

methods. If technical difficulty is excluded – which is not trivial but still achievable – particles up to 

sizes of a few micrometers can be, in principle, trapped (cf. Appendix in Chapter 3), indicating that a 

study on a microscale is feasible. We also want to emphasize that there are key factors in component-

wise that regulates the type of assembly and its formation process: density difference between the 

particle and the fluid, size (or effective cross section), and moment of inertia. By combining these 

factors, we examined the applicability and utility of our trapping method. First, by mixing particles 

differing in densities, we demonstrated the selectivity in polymorphic structure: with 13 spheres which 

can theoretically assemble into many configurations (40), it was shown that particles of two different 

densities at various number ratios preferentially form one type over the possible other types of 

structures. This is one example of enhancement of the controllability over packings in our fluidic trap. 

Size variation in addition to the density variation could explore more diverse types of packings (cf. 

‘ring of Saturn’ and ‘cage’ structures in Figure 4 in Chapter 3). Lastly, interesting demonstration of 

‘Rotaxane’ structure was possible from the fact that the component rotates with an orientation that 

minimizes its moment of inertia with respect to the tube’s axis. If the parameters are properly chosen – 

for example, ω = 800 rpm and d = 8 mm – such that the vortices can induce an array of rings with an 

altered orientation, the rod can enter through the array forming the targeted structure. 

Our attempts to explore diverse packings continued to use polyhedron for building blocks – 

tetrahedron, square pyramid and cube (see Figure 7). Here, the motivation was to study shape-

determining packings and dynamic process for polyhedral helixes. Although we could detect some 

possible assemblies and their formation processes, the nature of the complexity of polyhedral packing 

and technical issue (see caption in Figure 7) prevented us from a deep study. Last thing we want to 

note is the observation of the singularity of a droplet. While a single droplet shows gradual changes as 

the lateral confinement increases, it is elongated and transformed into several threads, and finally 

broken into many small droplets. The small droplets again formed a cluster in the trapping region, and 

this behavior repeatedly continued. 
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Figure 7. Polyhedral assemblies and singularity at critical point. a) Tetrahelix and other packings 

formed by 6 tetrahedrons – the edge length is 1.5 mm. b) An ordered cluster can be formed by 

surrounding one cube with 6 square pyramids – the edge length of the polyhedrons is 2 mm. It was 

more probable that the components were randomly arranged, and the formation of ordered packing 

was infrequently detected. Here, the polyhedrons were fabricated using 3D printer. Due to limited 

resolution of the 3D printer, the polyhedrons had rough surfaces and thus large frictions between them. 

The solution was a mixture of fluorinated liquid (3M Novec 7200 Engineered Fluid) and silicone oil 

(PDMS, viscosity 10 cSt, Sigma Aldrich) in a 7/3 v/v ratio. c) A droplet showed the singularity at a 

critical point – d = 3 mm and ω = 1000 rpm. Here, oleic acid forms the droplet in fluorinated liquid 

(3M Novec 7200 Engineered Fluid). 

 

Different bifurcation behavior depending on the rotational rate 

One of the fascinating features of our system is the transition between a stable point (“stable 

equilibrium”) and an orbiting motion (“limit cycle”) which is also known as Hopf bifurcation in the 

theory of dynamical system. In particular, we proved the existence of two limit cycles using 100 μm 

particle at ω = 1800 rpm and presented the bifurcation diagram with d as a control parameter. (see 

Chapter 3 for details). It is worth noting that the bifurcation can also be very different depending on 

the rotational rate. In Figure 8, we show bifurcation diagrams for the system consisting of 100 μm 

particle at various rotational rates. As seen from the figures, the system can exhibit very different 

transition behavior among the 4 states: a stable point, one limit cycle, two limit cycles and one limit 

cycle/a stable point. 
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Figure 8. Bifurcation diagrams at various rotational rates. The system consisting of 100 μm particle 

can show different bifurcations at the rotational rates of (a) 1000 rpm, (b) 1400 rpm, (c) 1600 rpm and 

(d) 2000 rpm. 

 

1.4 Related work 

During my doctoral course, I also co-authored one paper which is another system that we achieved in 

the rotational frame of reference. The reference is: 

 

Gizynski, K.; Lee, T.; Grzybowski, B.A. Dynamic Self‐Assembly of Magnetic/Polymer Composites in 

Rotating Frames of Reference. Adv. Mater. 2017, 29, 1700614. 
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Chapter 2. Non-Equilibrium Self-Assembly of Monocomponent and 

Multicomponent Tubular Structures in Rotating Fluids 

 

2.1 Abstract 

When suspended in a denser rotating fluid, lighter particles experience a cylindrically symmetric 

confining potential that drives their crystallization into either monocomponent or unprecedented 

binary tubular packing. These assemblies form around the fluid’s axis of rotation, can be dynamically 

interconverted (upon accelerating or decelerating the fluid), can exhibit preferred chirality, and can be 

made permanent by solidifying the fluid. The assembly can be extended to fluids forming multiple 

concentric interfaces or to systems of bubbles forming both ordered and “gradient” structures within 

curable polymers. 

 

2.2 Introduction 

Packing of particles over (or inside) cylindrical domains has been studied for well over a century, 

initially in the context of leaves arranging around a plant’s stem, scales on a pine cone, or spines on a 

cactus (the so-called “phyllotaxis” (1,2)). Subsequently, such forms of “tubular” packing have also 

been observed in bacteriophage tails, bacterial flagella, and microtubules (3) as well as various 

material systems (e.g., foams (4,5), colloids (6,7), and nanoparticles (8) in templating channels, 

fullerenes in nanotubes (9,10), fibrous assemblies of Janus particles (11), chiral nanoparticles (12), or 

DNA (13)). While the packing of equally sized particles has been studied theoretically and understood 

in detail (3,14–17), it has proven difficult to a priori predict/control assembly of specific structures in 

experiment. In addition, there have been no works that would consider tubular packing in mixtures of 

particles of different sizes. Here, we describe non-equilibrium self-assembly (18,19) of ordered tubular 

structures which relies not only on molecular- or colloidal-scale particle–particle interactions (6–13) 

but also on fluidic confinement imposed by a rotating fluid (20) denser than the assembling particles. 

By adjusting the sizes and numbers of these particles, it is then possible to form monocomponent as 

well as unprecedented binary tubular assemblies ranging from those having many (𝐷4𝑑, 𝐷6ℎ, etc.) to 

very few (𝐶𝑠 ) symmetry elements. The system we describe combines four other remarkable 

characteristics: i) the strength of the confinement can be regulated by the fluid’s rate of rotation; ii) 

different tubular structures can be interconverted by accelerating or decelerating the fluid; iii) for the 

helical assemblies, it is possible to control their chirality by adjusting the orientation of the fluid’s axis 

of rotation with respect 

to gravity; and iv) the transient assemblies can be made permanent by solidifying the rotating liquid. 

The experimental results are supported by molecular dynamics simulations and, together, constitute a 

generalizable toolkit for the assembly of fibrous structures of unusual symmetries and with interesting 
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extensions to the problems of packing of nonspherical particles (21,22) or deformable entities (e.g., 

bubbles, cells) in adjustable, fluid-imposed confinements. 

Figure 1a illustrates the experimental system in which polymeric beads (density 𝜌𝑝 = 0.9–1.13 g 

cm−3 depending on the material used) are placed in a cylindrical tube (I.D. 10 mm; O.D. 15 mm; 

length, L = 75 mm) filled with an aqueous solution of agarose (≈0.25 wt%, Calbiochem Omnipur 

Agarose) and with cesium bromide added to adjust the density of the liquid to above that of the 

particular beads used (𝜌𝑙 = 1–1.2 g cm−3). The tube is sealed (so that no air bubbles remain inside) and 

mounted onto a commercial lathe (Sherline Products 4100A-DRO) for which the angular velocities 

can be adjusted up to ω = 10 000 rpm. To prevent agarose gelation, the system is kept at 60 °C. When 

the tube is stationary or rotates along its long axis only slowly (cf. below), the dynamics of the beads 

is dominated by the buoyant force directed upward, 𝑭𝐵 = (𝜌𝑝 − 𝜌𝑙)Vg, where V is bead’s volume 

and g is gravity. When ω increases, however, the beads start to experience a centripetal force directed 

toward the axis of tube’s rotation, 𝑭𝐶(𝒓) = −(𝜌𝑙 − 𝜌𝑝)Vrω2, where vector r specifies bead’s radial 

position. In other words, the rotation of the tube imposes a confining harmonic potential on the beads, 

E(r) = 1/2(𝜌𝑙 − 𝜌𝑝) Vr2ω2. As the rotation rate is increased to a few thousand rpm, centripetal 

acceleration increases to the order of 10 g, and the centripetal force localizes the beads toward the axis 

of tube’s rotation. When the number of beads is low, they can all fit into a single line on the axis of 

rotation. When however, there are significantly more beads, they form ordered cylindrical structures 

such as those shown in Figure 1b–d. Importantly, these tubular assemblies can be made permanent–

without any change in ordering—by gelating the agarose solution by letting the rotating tube cool 

down to room temperature. Examples of such solidified structures are shown in Figure 1c,d. 
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Figure 1. Experimental arrangement and examples of mono- and multicomponent tubular assemblies. 

a) Scheme of the experimental system. Directions of gravity (g) and of the buoyant force (𝑭𝐵) are 

indicated by arrows. b–d) Cartoons (b) and experimental images (c,d) of some of the structures 

assembled at/around the cylinder’s axis of rotation. The structures shown in the photographs were 

made permanent by gelating the agarose solution. In (c), the top structure is a binary assembly of 

1.588 mm polyamide shell particles and 2.381 mm polypropylene core particles; the middle structure 

comprises 2.381 mm polyamide (shell) and 1.588 mm polypropylene (core) beads; the bottom 

structure is a monocomponent assembly of 1.588 mm polypropylene beads. In (d), the top and middle 

structures are monocomponent (made of, respectively, 2.45 mm polypropylene and 1.588 mm 

polypropylene beads). The bottom structure is a binary assembly 1.588 mm polyamide (shell) and 

3.175 mm polypropylene (core) particles. Scale bars = 5 mm. 

 

2.3 Tubular structure formation of like-sized particles: experiment and simulation 

We first consider structures formed by like-sized particles – in most experiments, d = 1.588 mm 

polypropylene spheres (ρ = 0.9 g cm−3), but also 53 and 500 μm polyethylene spheres (ρ = 0.98 g 

cm−3). Figure 2a–e show structures obtained at ω = 2000–3000 rpm. when the number of the 

millimeter-sized particles (nondimensionalized by the number of spheres forming a tightly packed 

single line along the tube, 𝑛0 = L/d; also see caption in Figure 2) was increased from 1.2 to 4.0. 

These structures comprise both helical assemblies of different pitch as well as those of 𝐷2𝑑 and 𝐷3𝑑 

symmetries, all previously predicted (3,15,16,23,24) (but only few observed experimentally (6–9,11)) 

for the maximum-volume-fraction configurations of hard spheres confined in a cylindrical channel. 
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Amorphous phase begins to occur at n/𝑛0 ≈ 3.0, becomes significant at n/𝑛0 ≈ 3.8 (accompanying 

structures of 𝐷2𝑑 symmetry), and dominates above n/𝑛0 ≈ 4.5. The full ω versus n/𝑛0 phase diagram 

is shown in Figure 2f and features several regions where different types of packing can coexist within 

the tubular aggregates – in such cases, larger markers denote the dominant “polymorphs.” We note 

that structures observed for larger particles also assemble from smaller beads (500 and 53 μm, Figure 

2g,h), although achieving good quality packing requires much more experimental care, especially 

eliminating even minor off-axis precession of the tube in the lathe and careful reduction of any 

vibrations. 

 

 

Figure 2. Monocomponent tubular assemblies. a–e) Representative structures formed by 1.588 mm 

polypropylene beads immersed in a mixture of water and agarose at ω = 2000–3000 rpm. 

Experimental images are shown in the left column; 3D and cross-sectional cartoons are shown on the 

right. The vertical axis gives the number n of the spheres relative to the number 𝑛0 of spheres in a 
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tightly packed single line of length equal to that of the tube. f) A phase diagram indicating dominant 

structures at different values of ω and n/𝑛0. Structures are denoted by different markers corresponding 

to those in panels (a–e). If the assemblies are polymorphic – that is, feature regions of different 

packing – larger markers correspond to the dominant structure. At concentrations higher than n/𝑛0 ≈ 

3.0 (dotted line), the assemblies also contain noticeable fractions of amorphous phase. Images of 

structures formed by smaller, g) 500 μm and h) 53 μm (h), particles at ω = 2000–3000 rpm. 

 

To obtain further insights into the assembly process, we performed molecular dynamics simulations 

following the general methods (25,26) to describe motion of particles or bubbles in rotational flows. 

In brief, the time changes in the velocity 𝐯𝒊 of sphere i are due to several forces, 𝜌𝑝𝑉
𝑑𝒗𝒊

𝑑𝑡
= 𝐅𝐴

𝑖 +

𝐅𝐼
𝑖 + 𝐅𝐷

𝑖 + 𝐅𝑩 + 𝐅𝐿
𝑖 + 𝐅𝑖𝑗

𝑛. In this equation, 𝐅𝐴
𝑖 =  𝜌𝑙𝐶𝑀𝑉 (

𝐷𝒖𝒊

𝐷𝑡
−

𝑑𝒗𝒊

𝑑𝑡
) accounts for the motion of a 

sphere in an inviscid flow of velocity 𝐮𝒊  and with an added-mass coefficient (27) C𝑀 , 𝐅𝐼
𝑖 =

𝜌𝑙𝑉 (
𝐷𝒖𝒊

𝐷𝑡
) is the inertial force, 𝐅𝐷

𝑖 =
1

2
𝐶𝐷𝐴𝜌𝑙|𝐮𝒊 − 𝐯𝒊|(𝐮𝒊 − 𝐯𝒊) is a drag force (25) in a viscous fluid 

with 𝐶𝐷  being the drag coefficient and A the cross-sectional area of the sphere, and 𝐅𝑩  =

(𝜌𝑝 − 𝜌𝑙)𝑉𝒈 is the buoyant force. In a rotational flow, the sphere also experiences a lift force (28) 

𝐅𝐿
𝑖 = 𝜌𝑙𝐶𝐿𝑉(𝒖𝒊 − 𝒗𝒊) × (∇ × 𝒖𝒊), where C𝐿 is the lift coefficient. To capture interactions between 

polymeric, slightly deformable spheres i and j with the overlap 𝛼𝑖𝑗 = |𝒓𝑖 − 𝒓𝑗| − 𝑑, we adopted the 

“partially latching spring” model (29) with a normal contact force: 𝐅𝑖𝑗
𝑛 = K1𝛼𝑖𝑗𝒏𝑖𝑗 (𝛼𝑖𝑗 , ≥ 0, loading) 

or 𝐅𝑖𝑗
𝑛 = K2(𝛼𝑖𝑗 − 𝛼𝑜)𝒏𝑖𝑗 (𝛼𝑖𝑗 ≤ 0, unloading), where K1 and K2 are the stiffness coefficients for 

loading and unloading, respectively, 𝛼𝑜 is the value of 𝛼𝑖𝑗 where the unloading curve goes to zero, 

and 𝒏𝑖𝑗 = (𝒓𝑖 − 𝒓𝑗)/|𝒓𝑖 − 𝒓𝑗|  is the unit vector joining the centers of the two spheres. 

Hydrodynamic interactions between sparsely distributed particles were not necessary to simulate the 

tightly-packed assemblies forming for 𝑛/𝑛0 > 1. 

The simulations reproduce all experimentally observed structures (e.g., Figure 3a) including dominant 

vs minority packing (see above and also phase diagram in Figure 3d) and appearance of an amorphous 

phase at high concentrations (𝑛/𝑛0 ≳ 3.7). Figure 3b plots the fractions of ordered domains of a 

given packing (quantified by the total length of such ordered domains relative to the entire length of 

the assembly/tube, L) as a function of the normalized particle number 𝑛/𝑛0. As seen and in agreement 

with experiments, the fraction of ordered domains decreases with increasing 𝑛/𝑛0 and is the lowest 

for structures that have voids along the axis of rotation (𝐷3𝑑 , gray line and 𝐷2𝑑 , pink line). 

Interestingly, in previous theoretical studies of hard spheres packing in rigid cylinders (3,23), all large 

structures (i.e., those formed in cylinders much wider than particle diameter) featured an empty 

channel along the cylinder’s long axis. In our harmonic potential, however, such structures are 



 

23 

 

energetically very costly (cf. energies calculated in Figure 3c) which can explain why they are of less 

regular ordering and also why for even higher particle numbers, we observe mostly glassy states. 

 

 

Figure 3. Simulations of monocomponent tubular structures. a) Examples of structures simulated by 

molecular dynamics. b) Fraction of ordered assemblies of a given packing plotted as a function of 

𝑛/𝑛0 (i.e., particle number relative to the number of particles packed in a single straight line along 

tube’s axis of rotation). Cross-sectional images of structures are given by the cartoons over each curve; 

compare with Figure 2a-2e. Each data point corresponds to an average from ten independent 

simulation runs (here, for ω = 3,500 rpm., 𝐿 = 75 mm, 𝐼𝐷𝑡𝑢𝑏𝑒 = 10 mm, 𝑑 = 2 mm, 𝜌𝑙 = 1.0 g 

cm-3, 𝜌𝑝 = 0.9 g cm-3). c) Potential energy of tubular assemblies as a function of the normalized 

particle number, 𝑛/𝑛0 . The energy is in the units of ρ𝑙𝑉𝜔2  with the “zero” reference point 

corresponding to a line formed by 𝑛0 particles. Calculations were performed for 2 mm particles and 

75-mm-long tube. d) A simulated phase diagram (compare with Figure 2f) indicating dominant (large 

markers) and minority (smaller markers in parentheses) structures observed at different values of ω 

and 𝑛/𝑛0. Amorphous phase becomes appreciable at concentrations above 𝑛/𝑛0 ~ 3.7 (dotted line). 

Ten independent simulations were carried out for each condition (with 𝐿 = 50 mm, 𝐼𝐷𝑡𝑢𝑏𝑒 = 10 mm, 
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𝑑 = 1.588 mm, 𝜌𝑙 = 1.0 g cm-3, 𝜌𝑝 = 0.9 g cm-3). Rotation rate was increased from rest to a desired 

angular velocity with acceleration of 100 radians sec-2 (16 revolutions sec-2).  

 

2.4 Interconversion between structures and selective helicity 

We make two additional comments about the monocomponent assemblies. First, at least some 

structures can be interconverted by changing the rotation rate (e.g., in Figure 4a, from 𝐷2𝑑 into 𝐶1 

and from 𝐶1 to 𝐷3𝑑 by decreasing rotation rate). This phenomenon is due to the fact that upon 

changes in ω, the fluid near the tube’s surface and side walls responds first, effectively giving rise to 

transient flows along the tube’s axis (Figure 4b) (30). Depending on whether the fluid is accelerated or 

decelerated, these flows either stretch or compress the beads along the axis of rotation, resulting in the 

change in their packing. Interestingly, such transitions are fully reversible when the changes in the 

rotation rates are rapid (on the order of 100 rpm s−1) – under these circumstances, strong transient 

flows are induced and the particles are disrupted enough to fully convert to another structure. In 

contrast, when the changes in ω are slow (up to ≈ 10 rpm s−1), the transient flows at any instant of time 

are weak and the structure remains trapped/jammed. In other words, the system can exhibit bistability 

in the sense that two different types of assemblies can be prepared at the same value of ω depending 

on how this state was reached (again, via rapid or slow changes in rotational speed). 

Second, Second, when the rotating tubes were horizontal, there was no preference for the chirality of 

the helical structures that form. Lack of chiral selection was also confirmed in molecular dynamics 

simulations which we repeated 100 times, each time starting from random positions of beads. The ratio 

of right- to left-handed helices was 52:48. However, such chiral selection is observed when the tube is 

inclined. Under such conditions, the beads first localize near the side wall pointing upward (inset 

images in Figure 4c) and then, when the tube starts rotating, experience friction with respect to this 

rotating wall and ultimately form helices of preferred handedness (main images in Figure 4c,). For a 

given direction of rotation, this chirality depends on which end of the tube is raised upward and the 

enantiomeric excess – determined based on 100 independent experiments for each configuration – can 

be as high as 80% (Figure 4d). The chiral selection is also reproduced in simulations. 
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Figure 4. Phase transitions between different structures and chiral selection. a) Two experimental 

images for structural transition from 𝐷2𝑑  to 𝐶1 (at 𝑛/𝑛0 = 2.4), and from 𝐶1 to 𝐷3𝑑 (at 𝑛/𝑛0 = 

3.2) structures. In both cases, rotation rate was abruptly decreased from ~4,000 to ~1,500 rpm. so that 

the beads experienced a “compressing” force along the tube’s length. b) Transient flow of the fluid 

developed upon rapid deceleration of tube’s rotation. The flow was calculated in Comsol 5.1 (30) by 

decreasing the rotation rate from 3,000 rpm (t = 0 sec) to 1,500 rpm (t = 1 sec; shown). Blue lines trace 

the streamlines and red arrows are velocity vectors. Curved, pink arrows are qualitative and illustrate 

the overall nature of the flow. c) Formation of left-handed (upper) and right-handed (lower) helices in 

inclined rotating tubes. Here, the tube’s axis is oriented by 8 degrees with respect to gravity, and the 

rotation rate is increased from 0 to 2,500 rpm. d) Statistics of handedness of helices formed in each of 

the two orientations from (c). The proportions are estimated by analyzing 100 independent 

experiments for each condition. 

 

2.5 Binary component tubular packing: experiment and simulation 

Having characterized the monocomponent packing, we turned our attention to those comprising two 

different types of particles – such tubular structures have not been previously considered theoretically 

or observed experimentally. In these experiments, we used polypropylene (ρ = 0.9 g cm−3) and 

polyamide (ρ = 1.13 g cm−3) beads with diameters d = 1.588, 2, 2.381, or 3.175 mm and added cesium 

bromide to the agarose solution to increase the density to ρ ≈ 1.2 g cm−3. Importantly, when in a 
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rotating fluid, the lighter beads localized to the axis of rotation preferentially. In most experiments, the 

number of lighter beads was relatively small such that they could all fit onto the axis of rotation. The 

denser beads then packed as a “shell” around this “core”. Various two-component structures assembled 

in this manner are shown in Figure 5a–f. When the spheres at the core are larger than those in the shell, 

assemblies of six-fold rotational symmetries are observed at size ratios of 𝑑𝑠ℎ𝑒𝑙𝑙/𝑑𝑐𝑜𝑟𝑒 ≈ 0.50 (Figure 

5a) and 0.67 (Figure 5b); in the former case, each core sphere has 18 neighbors, in the latter, it has 12 

neighbors. When 𝑑𝑠ℎ𝑒𝑙𝑙/𝑑𝑐𝑜𝑟𝑒 > 1, structures of four-fold and five-fold symmetries assemble at size 

ratios of 1.26 (Figure 5c) and 1.50 (Figure 5d). On the other hand, the spheres of equal sizes can form 

two polymorphs shown in Figure 5e,f, both of which have one core sphere and six shell spheres in a 

unit cell (the difference in packing is further illustrated in schematic figure insets). We note that in all 

of the above examples, achieving highly organized structures is crucially dependent on increasing ω 

slowly, at rate of ≈ 10 rad s−2; if the rotational rate is increased abruptly, some of the denser spheres 

can block the approach of the lighter ones to the axis of rotation and the assemblies are disordered. 

Also, good quality structures are formed by spheres of size ratios (𝑑𝑠𝑚𝑎𝑙𝑙/𝑑𝑙𝑎𝑟𝑔𝑒) down to ≈ 0.5. 

When this size ratio is lower, the small spheres simply enter the interstitial sites between the larger 

spheres and become jammed therein. We note that simulations based on the same methodology as 

described before reproduce the formation of all of the experimentally observed structures (Figure 5g,l) 

although regular packing near the tube’s side walls is harder to achieve. 

 

 

Figure 5. Multicomponent tubular packing. a–f) Cartoons below the experimental images illustrate the 

packing. The assemblies shown are for different ratios of particle sizes (𝑑𝑠ℎ𝑒𝑙𝑙/𝑑𝑐𝑜𝑟𝑒) and particle 
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numbers (𝑛𝑐𝑜𝑟𝑒: 𝑛𝑠ℎ𝑒𝑙𝑙): a) 0.50 and 1:18, b) 0.67 and 1:12, c) 1.26 and 1:5, d) 1.50 and 1:4, e,f) 1 and 

1:6. Point groups for each structure are also given. In the cartoon insets to (e) and (f), some shell 

spheres are colored in dark-gray and orange to illustrate how these particles are “interchanged” in the 

two polymorphs. The images in g–l) are structures reproduced in simulations (ω = 3000 rpm, 𝐿𝑡𝑢𝑏𝑒 = 

75 mm, 𝑑𝑡𝑢𝑏𝑒 = 10 mm, 𝜌𝑙 = 1.16 g cm−3, 𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 1.588–3.175 mm, 𝜌𝑙𝑖𝑔ℎ𝑡−𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 0.9 g 

cm−3, 𝜌𝑑𝑒𝑛𝑠𝑒−𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 1.13 g cm−3). 

 

2.6 Further demonstrations with immiscible liquids and bubbles 

The experimental system described above can be extended to the assembly away from the axis of 

rotation. In particular, when immiscible liquids of different densities are rotated, they can form 

multilayer structures with concentric interfaces providing loci for the assembly of particles of different 

densities. The simplest, two-component system of this kind is shown in Figure 6a and comprises 

immiscible cesium bromide (𝜌1 = 1.07 g cm−3, transparent, with 0.4 wt% Tween 80 surfactant) and 

oleic acid (𝜌2 = 0.887 g cm−3 < 𝜌1, colored pink with oil red EGN dye) fluids. As in the classical 

spinning-droplet tensiometer (31), the lighter liquid is stretched and ultimately forms a cylinder along 

the axis of rotation. When 1 mm particles (green) with intermediate density 𝜌2 < 𝜌𝑐𝑜𝑙𝑙 = 1.021 g 

cm−3 < 𝜌1 are present, they are pushed onto and organize at the cylindrical interface between the two 

fluids. Figure 6b show a more complex variant comprising three immiscible, rotating fluids–

fluorinated liquid FC-40 (from 3M, 𝜌1 = 1.855 g cm−3, transparent), water with 0.4 wt% Tween 80 

surfactant (𝜌2 ≈ 1.0 g cm−3 < 𝜌1, colored orange with methyl orange), and oleic acid (𝜌3 = 0.887 g 

cm−3 < 𝜌2, colored blue with Sudan blue II). When two types of particles of appropriately chosen 

densities are present, they separate and organize onto the two fluid–fluid interfaces – in Figure 6b, 

blue, 710 μm particles of density 𝜌2 < 𝜌𝑐𝑜𝑙𝑙 = 1.13 g cm−3 < 𝜌1 localize onto the outer cylindrical 

surface, while the white, 1 mm particles of density 𝜌3 < 𝜌𝑐𝑜𝑙𝑙 = 0.96 g cm−3 < 𝜌2 localize onto the 

inner cylindrical surface (outlined by dashed red lines in the left part of the image). 

Last but not least, the “fluidic force fields” within rotating fluids can be used to control organization of 

deformable objects such as bubbles. Figure 6c has three snapshots illustrating the evolution of large air 

bubbles in poly(dimethylsiloxane) (PDMS). As the rotation rate is gradually increased from 0 to 5000 

rpm over 300 s, the bubbles evolve from spherical to almost cylindrical. In the bottom picture, the 

boundaries between the bubbles are quite thin (<100 µm) and, interestingly, all disappear 

simultaneously when rotational speed is further increased. Another sequence of snapshots, for smaller 

bubbles, is illustrated in Figure 6d. Initially, there is a radial gradient of bubble sizes. Subsequently, the 

bubbles grow in size and assemble into cylindrical structures with at least some local helical ordering 

(in the bottom image, in region enclosed by yellow dashed lines). These and other bubble assemblies 

we prepared can be solidified suggesting possible uses as lightweight materials with mechanical 
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properties deriving from the particular distribution of bubbles of different sizes. 

 

 

Figure 6. Extensions to the assembly on concentric interfaces and in ensembles of bubbles. a) Top: 

two immiscible fluids (cesium bromide solution with 0.4 wt% Tween 80 surfactant, transparent; oleic 

acid, pink) rotating at ω = 3000 rpm. Bottom: 1 mm particles (green) with intermediate density 

organize at the cylindrical interface between these two fluids (ω = 1800 rpm). b) An analogous system 

made of three immiscible fluids: fluorinated liquid FC-40 (transparent), water with 0.4 wt% Tween 80 

surfactant (orange), and oleic acid (blue). Top: fluids rotating at 1400 rpm organize into concentric 

cylinders. Bottom: two types of particles separate and organize onto the two fluid–fluid interfaces at ω 

= 4000 rpm. c) Three snapshots illustrating the evolution of large air bubbles in PDMS. d) A similar 

sequence of snapshots of air bubbles in PDMS – the difference with (c) is that the bubbles are initially 

much smaller. 

 

2.7 Summary 

In summary, we have described an experimental system in which a denser fluid imposes a confining, 

cylindrically symmetric harmonic potential on lighter objects and thus drives formation of ordered, 

tubular structures near the axis of rotation or at concentric liquid–liquid interfaces. The main virtue of 
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this system is that the strength of confinement can be adjusted by the fluid’s rate of rotation. In 

addition, lateral forces along the axis of rotation can be controlled by accelerating/decelerating the 

fluid, and we hypothesize that these forces can be further tuned by using tubes with nonuniform cross 

sections. We surmise that this modality of rotational self-assembly can prove useful in preparing 

composites (e.g., particles, bubbles, or maybe even cells in curable polymers or in gels) supporting 

radial gradients of composition and translating into a range of mechanical or optical properties of such 

fibrous structures. 
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Appendix 

 

When the rotating tubes were horizontal, we did not detect any preferred chirality of the helical 

assemblies that formed (Figure A1 a,b). Lack of chiral selection was also confirmed in molecular 

dynamics simulations (Figure A1c) which we repeated 100 times, each time starting from random 

positions of beads. The ratio of right- to left-handed helices was 52:48. 

 

 

Figure A1. Lack of chiral selection for helical assemblies in (a,b) experiments and (c) simulations.  

Experimental examples in a,b are for, respectively, 𝑛/𝑛0 = 2.9, and 𝑛/𝑛0 = 3.2. c, Simulations were 

performed for 𝑛/𝑛0 = 3.2, 𝐿 = 50 mm, 𝐼𝐷𝑡𝑢𝑏𝑒 = 10 mm, 𝑑 = 1.588 mm, 𝜌𝑙 = 1.0 g cm-3, 𝜌𝑝 = 

0.9 g cm-3. 
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Chapter 3. Dynamic Assembly of Small Parts in Vortex-Vortex Traps 

Established within a Rotating Fluid. 

 

3.1 Abstract 

Stable, purely fluidic particle traps established by vortex flows induced within a rotating fluid are 

described. The traps can manipulate various types of small parts, dynamically assembling them into 

high‐symmetry clusters, cages, interlocked architectures, jammed colloidal monoliths, or colloidal 

formations on gas bubbles. The strength and the shape of the trapping region can be controlled by the 

strengths of one or both vortices and/or by the system's global angular velocity. The system exhibits a 

range of interesting dynamical behaviors including a Hopf‐bifurcation transition between equilibrium‐

point trapping and the so‐called limit cycle in which the particles are confined to circular orbits. 

Theoretical considerations indicate that these vortex–vortex traps can be further miniaturized to 

manipulate objects with sizes down to ≈10 µm. 

 

3.2 Introduction 

The ability to trap and manipulate small objects in three dimensions—using either optical (1–3), 

magnetic (4, 5), acoustic (6), or dielectrophoretic fields (7) or microfluidic flows (8, 9)—has enabled 

applications ranging from atom‐by‐atom assembly (10), to Bose–Einstein condensation (11), to the 

manipulation of biomolecules (12, 13), colloids (14) and cells (15), to artificial insemination (16, 17), 

and more (18, 19). These methods differ in and are limited by the types and sizes of objects that can 

be manipulated—in particular, few can flexibly address and assemble larger nonmagnetic particles, 

from a tens of micrometers to millimeters, such as the components of mechanical systems or optical 

devices (20, 21), or tissue‐like assemblies (22, 23). Here, we describe trapping in this regime of sizes 

enabled by vortex flows created within a rotating frame of reference. Although vortices and vortex 

systems (24, 25) typically do not create stable points within 3D flow fields, the situation changes 

when a pair of collinear vortices is generated within a fluid that is itself set on rigid‐body rotation. 

Under these circumstances, the forces exerted by the vortices along the axis of rotation are 

accompanied by radially directed centripetal forces, in effect creating a region of strong trapping. 

Using this arrangement, we demonstrate trapping and dynamic assembly of various particle clusters, 

cages, and interlocked architectures, as well as jammed colloidal monoliths or colloidal formations on 

gas bubbles. In these experiments, the shape of the trapping region—and, consequently, the 

morphology of the assembling structures—can be controlled by adjusting the strengths of one or both 

vortices and/or the system's global angular velocity, and can switch from a stable equilibrium point to 

a limit cycle via the so‐called supercritical Hopf bifurcation. These findings illustrate how new 

modalities of dynamic self‐assembly (26) and 3D manipulation become possible upon transition from 
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static to noninertial, rotating frames of reference. 

 

3.3 Particle trapping by collinear colliding vortices 

When a lighter particle of volume V and density 𝜌𝑝 is immersed in a rotating fluid of density 𝜌𝐿 > 

𝜌𝑝 , it experiences not only an upward‐directed buoyant force 𝑭𝐵  = (𝜌𝑝  − 𝜌𝐿 )Vg, but also a 

centripetal force directed toward the axis of tube's rotation, 𝑭𝐶(r) = −(𝜌𝐿 − 𝜌𝑝)Vrω2, where ω is 

fluid's angular velocity and vector r specifies particle's radial position (Figure 1a). In other words, the 

rotation of the tube imposes a confining harmonic potential, E(r) = (𝜌𝐿 − 𝜌𝑝)Vr2ω2/2. As we have 

shown previously (27), for polymer beads inside tubes ≈1 cm in diameter, filled with various aqueous 

salt solutions and rotating at few thousand rpm, centrifugal acceleration is on the order of 10g 

(allowing us to neglect buoyancy effects in the subsequent discussion), and the beads localize along 

the fluid's axis of rotation. On the other hand, radially directed forces do not displace the beads along 

the tube's rotation axis and cannot, by themselves, create a stable trapping region in the axial direction. 

 

 

Figure 1. Experimental configuration of the vortex-vortex trapping system. a) Cross-sectional view of 

the tube housing lighter particles immersed in a denser liquid. When the tube rotates rapidly, the 

centripetal force, 𝑭𝐶, directed towards the axis of rotation dominates buoyant force, 𝑭𝐵. b) Scheme 
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of the experimental arrangement in which two aluminum disks inside of the tube are slowed down by 

externally-positioned permanent magnets (at variable distance d, see inset), effectively creating vortex 

flows in the liquid. c) Rotational velocity of the disks, ω1, scales with but is smaller than that of the 

tube, ω. Different markers correspond to different distances, d, between the disks and magnets (see 

legend). The data was measured for a mixture of water and glycerol (78:22, w/w; 𝜌𝐿 = 1.05 g cm-3
 

and viscosity, 0.002 Pa s). Dashed line traces the ω1/ω = 1 reference for which the disks are not 

retarded. d) Calculated velocity field of the flow and streamlines developed in the middle region of 

the tube. The calculations were performed in Comsol 5.1 for d = 9 mm and ω = 1500 rpm. with fluid’s 

properties used in (c) and the same velocities of both disks, ω1 ~ 925 rpm. e-g) Actual flow fields 

visualized by 10 m fluorescent tracers in 25 wt% sucrose solution (𝜌𝐿 = ~ 1.11 g cm-3). Panel (e) is 

for the case when both disks have similar angular velocities (𝜔1,𝑙𝑒𝑓𝑡 ≈ 𝜔1,𝑟𝑖𝑔ℎ𝑡), and the vortices are 

symmetric. In panel (f), distance d is smaller for the left magnet-disk pair. Consequently, the left disk 

is slowed down more than the right one (𝜔1,𝑙𝑒𝑓𝑡 < 𝜔1,𝑟𝑖𝑔ℎ𝑡) and produces a stronger vortex reaching 

further to the right, beyond the midpoint of the tube. In panel (f), the opposite is true (𝜔1,𝑙𝑒𝑓𝑡 >

𝜔1,𝑟𝑖𝑔ℎ𝑡) and the right vortex is stronger.  

 

To enable such lateral confinement, we designed a system (cf. Experimental system in Chapter 1.) in 

which two aluminum disks (radius 9.9 mm and thickness 16 mm) are fitted inside and near the two 

ends of the liquid‐filled, rotating tube ≈1 cm in diameter. A permanent neodymium bar magnet 

(BX088‐N52 from KJ Magnetics; w = h = 12.5 mm and l = 25.4 mm, magnetization along the w 

dimension = 588 mT) is placed at a distance d away from each disk (Figure 1b). The role of the 

magnets is to act as eddy‐current brakes and slow down the rotation of the aluminum disks with 

respect to the rotation of the liquid‐filled tube. Indeed, as the distance d between the disks and the 

magnets decreases, so does the disks' angular velocity, 𝜔1. For a given d, 𝜔1 increases with but is 

always smaller than the angular velocity of the tube, 𝜔 (Figure 1c). This slowed‐down rotation of the 

disks gives rise to vortex flows inside of the tube (Figure 1b, d–g). The calculated and experimental 

images of the flow field due to the vortices are illustrated in Figure 1d–g—as seen, the flow has lateral 

components directed from each disk toward the center of the tube, diverges near the tube's center, and 

returns toward the disks along the tube's walls. Importantly, because the outward flows near the mid‐

plane are opposed by the radially confining harmonic potential (cf. above), we expect that for 

appreciably high rotation rates of the tube (imposing radial confinement) and for strong enough vortex 

flows (establishing lateral confinement), the central region can trap particles lighter than the fluid. We 

note that in experiments with very small particles, it is sometimes beneficial to place additional, 

tightly fitting rings between the disks and the central region with particles (cf. Figure 2a)—this 

prevents the small particles from getting stuck in the gaps between the disks and the tube and 
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jamming the former. 

 

3.4 Ordered assembly and polymorph in 3D fluidic trap 

Examples in Figure 2 demonstrate that the system thus set up can act as a 3D fluidic trap. In Figure 

2a, six spherical beads (diameter D = 250 µm; density, 𝜌𝑃 = 0.98 g cm−3) are placed in a cylindrical 

glass tube (ID = 10 mm; OD = 15 mm; length, L = 180 mm) filled with a mixture of water and 

glycerol (78:22, w/w; 𝜌𝐿 = 1.05 g cm−3 and viscosity, 0.002 Pa s) and rotating at ω = 2200 rpm. 

When the flanking magnets are far away and the difference in the angular velocity of the tube and the 

aluminum disks is not very pronounced (i.e., 𝜔1/𝜔  ≳ 0.9), the assembly is dominated by 

radial/centripetal forces and the beads align along the axis of rotation. When, however, the magnets 

are placed closer to the disks (d ≈ 11–13 mm) and slow them down perceptibly, vortex flows emerge 

and localize the beads to the mid‐point of the tube, where they arrange into an octahedral cluster. 

Figure 2b,c shows full phase diagrams quantifying organization of n = 4 and n = 6 particles for 

various values of ω and d. The diagrams share several similarities for both n's. For instance, when d is 

small and the aluminum disks are markedly retarded, the strong vortices extend farther from the disks 

and give rise to swirling flows near mid‐plane—consequently, the particles are not trapped to a stable, 

point‐like region but exhibit orbiting trajectories in this plane (gray regions in the phase diagrams; 

also see discussion later in the text). In contrast, for large d (weak vortices) and large values of ω, the 

assemblies are dominated by centripetal forces and chain‐up along the rotation axis. Trapping to a 

stable mid‐point of the tube is observed for intermediate d and ω values—we note that for n = 4, only 

one type of a cluster (tetrahedral) is observed (green region in Figure 2b) but for n = 6, there are two 

polymorphs, octahedral and pentagonal‐pyramid clusters (in Figure 2c, green and blue regions, 

respectively). 
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Figure 2. Trapping of particle clusters and phase diagrams. a) Three predominant modes of 

organization illustrated here for six D = 250 µm particles: top) linear assembly along the axis of 

rotation; middle) particles orbiting along the tube's mid‐plane; bottom) stable particle clusters in the 

trapping region (insets show two possible polymorphs). In the photographs, notice white, tightly 

fitting plastic rings inserted into the tube to prevent the small particles from jamming the aluminum 

disks (though, if disks are made to fit the tube relatively tightly, such disks are not necessary). Phase 

diagrams for systems of b) n = 4 and c) n = 6 of 250 µm particles. Phases are denoted by different 

markers corresponding to the images in (a). The markers indicate experimental results and the color 

map is drawn by interpolating the data. Unmarked/white regions represent cases where the particles' 

dynamics cannot be easily determined/classified (e.g., when the particles collide with the disks; also 

see Appendix). 

 

Polymorphs are also observed for some other particle numbers (e.g., n = 5, 7, 9, and 10 but not for n = 

8; Figure 3a; also see Figure A1a in Appendix). Perhaps the most interesting case is for n = 13 which 

is relevant to the centuries‐old mathematical problem of the kissing number—that is, how many hard 

spheres can surround and touch a common central sphere. Although the problem dates back to 

Newton, it was only in 1953 that it was formally proven that in 3D, the maximum kissing number is 

12, with the possibility to arrange outer spheres in infinitely many configurations (28, 29). Our 
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experimental system not only realizes several such configurations but, by changing particle densities, 

allows for the selection of the most dominant polymorph. For instance, for all identical spheres (e.g., 

in Figure 3b, D = 500 µm, 𝜌𝑃 = 1.13 g cm−3, 𝜌𝐿 = 1.15 g cm−3, ω = 750–1250 rpm, d = 6–8 mm), 

the fcc‐packed structure is most frequently observed and remains stable over a relatively wide range 

of parameters (Δd ≈ 1.5 mm). An icosahedral packing is less frequent and less stable (only within Δd 

≤ 0.3 mm) and so is the modified icosahedral packing in which the two five‐sphere rings surrounding 

the three (core) spheres are slightly further apart. Interestingly, despite this small difference, the 

icosahedral and icosahedral‐like structures are readily distinguishable because they are differently 

oriented with respect to the rotation axis (since the harmonic confining potential strives to minimize 

the cluster's moment of inertia with respect to the tube's axis of rotation; Figure 3c). Now, when one 

blue particle is replaced by a lighter (𝜌𝑃 = 0.98 g cm−3) red sphere of the same size, this sphere—

experiencing largest confining force—localizes preferentially to the cluster's center and the 

icosahedral packing becomes dominant (Figure 3d), with the other two being observed only 

sporadically. When three lighter spheres are used, they align along the axis of tube's rotation, 

completely eliminating formation of the fcc structure (Figure 3e). 

 

 

Figure 3. Examples of polymorphic particle clusters. a) Clusters formed by n = 5–10 particles 

(numbers of particles are in the parentheses). Polymorphs are not observed only for n = 8. For n = 5 

and 7, the sizes of particles are 250 µm (𝜌𝑃 = 0.98 g cm-3) and the solution is a mixture of water and 

glycerol (𝜌𝐿 = 1.05 g cm-3). The ordered clusters were obtained at ω = 1500–2500 rpm. and d = 10–

13 mm. For n = 8–10, we used 1 mm particles (𝜌𝑃 = 0.98 g cm-3) and CsBr solution (𝜌𝐿 = 1.2 g cm-3) 

and obtained those clusters at ω = 3500–4500 rpm. and d = 2–4 mm. b) Polymorphs formed by n = 13 

identical D = 500 µm spheres. The structures are fcc, icosahedral, and modified icosahedral packings 
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(from left to right). Green marker indicates dominant packing. c) Cartoons of the three distinct 

packings. For each packing, the principal axis is indicated by a grey dash-dot line. The icosahedral 

and modified icosahedral packings (which look very similar but differ in the distance x between the 

outer rings of yellow-colored particles) can be distinguished by the rotation axis; “1” for the former 

and “2” for the latter. Experimental images of packings observed for systems consisting of d) 1 red 

and 12 blue spheres, and e) 3 red and 10 blue spheres. The red spheres (𝜌𝑃 = 0.98 g cm-3) are lighter 

than the blue ones (𝜌𝑃 = 1.13 g cm-3) and preferentially localize onto the axis of rotation. For 13-

sphere packings, we used a mixture of 4.1M NaCl solution and glycerol (8/2, v/v; 𝜌𝐿 = 1.15 g cm-3). 

 

3.5 Various assemblies by non-spherical particles and particles’ jamming 

A rich variety of trapped structures can be observed with components having different sizes and/or 

nonspherical shapes. For instance, smaller spheres can form centrally positioned rings around larger 

spheres (Figure 4a) or bubbles (Figure 4b). Polygonal plates can be assembled into boxes around 

spherical particles (Figure 4c,d), whereas rings can be threaded onto rods (Figure 4e). In these 

experiments, the fidelity of assembly into perfectly ordered structures decreases with the number of 

the same‐type particles present (as expected for glass‐forming systems), and is also problematic with 

plate‐like parts that tend to stack‐up (e.g., in the box structures around spheres whereby, in the 

majority of cases, not all faces are “closed”; see Figure 4c,d; for failure modes of these structures, also 

see Figure A1b–d in Appendix). Another interesting situation arises when a cluster that forms consists 

of large numbers of small particles, assuming its changing shape. Under these circumstances, the 

varying degrees of confinement can control particles' jamming. For example, in Figure 5a, the 

collection of D = 50 µm, 𝜌𝑃 = 0.98 g cm−3 particles is subject to only moderate radial confinement 

(ω = 800 rpm) and when the lateral, confining vortex flows become stronger—upon decreasing the 

distance to the magnets, d, from 20 to 9 mm—the agglomerate gradually evolves from an oblong 

ellipsoid to a roughly spherical formation. In contrast, when the vortices act on particles subject to 

stronger radial confinement, ω = 1800 rpm, they are jamming and cannot relax to the spherical shape. 

Instead, the formation changes from a dumbbell to a cylindrical shape (Figure 5b). Finally, we note 

that in these and other experiments we described, the trap can be made laterally asymmetric by using 

unequal distances of the magnets to proximal aluminum disks, thus individually adjusting vortex 

strengths. For instance, Figure 5c shows a half‐ellipsoid assembly of 50 µm particles observed when 

the confining vortex acting from one direction is much stronger than that acting from the other 

(distances to the magnets 𝑑𝑙𝑒𝑓𝑡 = 8 mm vs 𝑑𝑟𝑖𝑔ℎ𝑡 = 12 mm). Another example of an asymmetric 

shape is shown in Figure 5d illustrating time evolution and relaxation with time. 
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Figure 4. Examples of trapped structures assembled from non-identical components. a) Binary 

structures with a single chain of 13 spheres (left) and double chain of 25 spheres (right) surrounding 

one large sphere. The diameters of spheres are 250 µm for the red ones (𝜌𝑃 = 0.98 g cm-3) and 1 mm 

for the white one (𝜌𝑃 = 0.96 g cm-3). Here, mixtures of water/glycerol (78/22, w/w; 𝜌𝐿 = 1.05 g cm-3) 

and 2M NaCl/glycerol (8/2, v/v; 𝜌𝐿 = 1.1 g cm-3) were used for single- and double-chain structures, 

respectively. b) Colloids on air bubbles. 50 µm particles form a band around a centrally positioned air 

bubble in a solution of water/EG (5/5, v/v; 𝜌𝐿 = 1.06 g cm-3). As the radial confining force increases 

from ω = 2000 rpm (left) to 3000 rpm. (right), the particles are more concentrated in the band and the 

bubble becomes more elliptic. Self-assembly of c) tetrahedral and d) cubic “cages”. In (c), four 

triangular plates (edge length, a = 2 mm; 𝜌𝑃 = 1.02 g cm-3) assemble into a “box” surrounding a 

central, D = 800 µm sphere (𝜌𝑃 = 0.98 g cm-3). In the box in (d), two square plates (a = 1.88 mm, 𝜌𝑃 

= 1.02 g cm-3) are stacked so the box has one face open, exposing the inner, D = 1.6 mm sphere (𝜌𝑃 = 

0.9 g cm-3). e) An interlocked, “rotaxane” structure assembled from one rod (D = 1.5 mm, L = 6 mm, 

𝜌𝑃 = 1.02 g cm-3) and three rings (𝐷𝑖𝑛𝑛𝑒𝑟 = 2 mm, 𝐷𝑜𝑢𝑡𝑒𝑟 = 4 mm, 𝜌𝑃 = 1.02 g cm-3). The initial 

configuration of the components is essential for the formation of this assembly; the rod should not be 

placed between the rings or else disordered structures form, see also Figure A1d in Appendix. In (c)–

(e), the plates, cylinders, and rings were fabricated via 3D printing and the solution was a mixture of 

fluorinated liquid (3M Novec 7200 Engineered Fluid) and silicone oil (PDMS, viscosity 10 cSt, 

Sigma Aldrich) in a 7/3 v/v ratio and density, ~1.3 g cm-3. 
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Figure 5. Particle's jamming and asymmetric assemblies. a) Gradual transformation—from an oblong 

ellipsoid to approximately a sphere—of a formation of large numbers of small particles. The top panel 

shows a structure at large d (=20 mm) from which we studied morphological changes by sequentially 

decreasing d. Specific values of d in mm are given by white‐font numbers in parentheses. b) “Jammed” 

transformation at increased radial confinement. In contrast to (a), stronger radial confinement prevents 

the assembly from relaxing to the spherical shape, instead, the monolith evolves from a dumbbell to a 

cylinder. The experiment is for 1800 rpm, but the effects of confinement become manifest already at 

1200 rpm. c) Asymmetric assembly driven by disks rotating at different rates and creating vortices of 

different strengths. In this example, 𝜔𝑡𝑢𝑏𝑒 = 1500 rpm and 𝜔1,𝑙𝑒𝑓𝑡 < 𝜔1,𝑟𝑖𝑔ℎ𝑡. d) Time evolution of 

an asymmetric colloidal assembly (𝜔𝑡𝑢𝑏𝑒 = 1400 rpm and 𝜔1,𝑙𝑒𝑓𝑡 < 𝜔1,𝑟𝑖𝑔ℎ𝑡). The arrow indicates 

passage of time, spanning a period of about an hour. In all experiments, the particles were 50 µm in 

diameter, had a density of 0.98 g cm−3, and the solution was a mixture of fluorinated liquid (3M 

Novec 7200 Engineered Fluid) and silicone oil (PDMS, viscosity 10 cSt, Sigma Aldrich) in a 3/7 v/v 

ratio and density ≈1.08 g cm−3. All scale bars are 3 mm. 

 

3.6 Theoretical study of fluidic trap and Hopf bifurcation 

The properties of our vortex–vortex traps merit additional theoretical discussion. In general, the 

ability to trap particles derives from an interplay between centripetal forces, 𝑭𝐶 = −(𝜌𝐿 − 𝜌𝑃)𝑉𝒓𝜔2 

and the forces imparted on the particles by the vortices. A simplified yet realistic model—capturing 

most of trap's characteristics—considers the drag forces the particles experience in vortex flows, 
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𝑭𝑣𝑜𝑟𝑡 = 3𝜋𝜂𝐷𝒖 where η is viscosity of the fluid, D is particle's diameter, and u is fluid's velocity 

calculated numerically (ref. 30 and Figure 1d) for an axisymmetric geometry and with boundary 

conditions at the surfaces of the slowed‐down disks obtained from their experimentally measured 

angular velocities (see Figure 1c). With these assumptions, we consider the radial, r, and axial, z, 

components of 𝑭𝐶(𝒓) +  𝑭𝑣𝑜𝑟𝑡 to delineate the regions of trap's stability for a particle of certain 

diameter. Maps in Figure 6a are (r, z) cross‐sections near the rotating tube's center (−5 mm < r < 5 

mm, −2 mm < z < 2 mm) for D = 100 µm particles (𝜌𝑃 = 0.98 g cm−3, 𝜌𝐿 = 1.05 g cm−3, η = 0.002 

Pa s, and ω = 2000 rpm) and vortex strength decreasing from left to right (d increasing from 3 to 11 

mm). A particle is only attracted into regions where |𝑭|＝0, and 
∂𝐹𝑧

∂z
< 0 and 

∂𝐹𝑟

∂r
< 0. Since 

pinpointing locations where |𝑭|＝0 is complicated by finite precision of numerically calculated flow 

fields, we highlight contours (white) where |𝑭| is equal to some small value (say, 0.1 nN) such that 

the zero‐force, equilibrium point is contained somewhere within the contour. Blue color indicates 

regions over which 
∂𝐹𝑧

∂z
< 0 and 

∂𝐹𝑟

∂r
< 0, which makes zero‐force points there stable (if any); green 

color delineates regions where 
∂𝐹𝑧

∂z
> 0 or 

∂𝐹𝑟

∂r
> 0, so even zero‐force point in these regions would 

be unstable. At d = 3 mm, the on‐axis zero‐force point is unstable (
∂𝐹𝑟

∂r
> 0), and the only stable zero‐

force points are off the axis. Given that the model is axisymmetric, these two points correspond to a 

ring trajectory along the mid‐plane of the tube—indeed, for strong lateral confinement, we see such 

trajectories in experiment (cf. Figure 2a–c and gray regions in the phase maps therein). For d ≥ 5 mm, 

the stable equilibrium point localizes onto the axis of rotation enabling trapping and assembly of 3D 

structures. As seen, when d increases, the shape of the trap changes from an oblate spheroid (𝐹𝑧 > 𝐹𝑟), 

to a sphere (𝐹𝑧  ≈ 𝐹𝑟), to a prolate spheroid (𝐹𝑧  < 𝐹𝑟), which is again in agreement with our 

experimental observations (cf. Figure 5a). These characteristics of the trap are summarized in Figure 

6b in which the pink contour traces the region of parameter space for which the trap is approximately 

isotropic (spherical). 
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Figure 6. Theoretical studies of the vortex-vortex trap and Hopf bifurcation. a) Partial derivatives of 

force field (color map) and near-zero-force lines (white) for 100 μm particle system at ω = 2000 rpm 

and d = 3, 5, 7, 9, and 11 mm (from left to right). b) Various contours of the trapping region for 100 

μm particle as a function of ω and d. Here, letter N denotes no-particle-trapping and R indicates a ring 

trajectory in the mid-plane of the tube. Regions for an isotropic shape of the trap (pink) were 

estimated by interpolating the simulation results. Confining force curves for states of c) a limit cycle 

(d = 4.6 mm), d) two limit cycles (d = 5.2 mm), and e) a stable equilibrium (d = 6.8 mm) at the mid-

plane of the tube (z = 0) and plotted along the radial coordinate, r. The red circles indicate stable 
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equilibrium positions of a particle at given conditions. The arrows and the dotted line are inserted to 

illustrate particle trapping. Stability maps of 100 μm particle system obtained from f) theoretical 

model and g) experiment. Theoretical model predicts the existence of two limit cycles at 4.8 < d < 6.0. 

In the experiment, two limit cycles were observed only in a system of two particles; these two limit 

cycles converged into one limit cycle with a small change of distance, d (Δd = 0.2 mm). In (f) and (g), 

the arrows indicate the values of d at which data are used for (c)–(e) and (h). h) Experimental images 

for states of a limit cycle (I, d = 5.5 mm), two limit cycles (II, d = 6.1 mm), and a stable equilibrium 

(III, d = 6.7 mm). Colored region in the middle image (II) marks a smaller limit cycle. i) Basin of 

attraction for the two limit cycles. Basins of attraction for inner and outer orbits are distinguished by 

different colors. Here, the condition for calculation corresponds to that of (d). In (c)–(i), the rotational 

rate of the tube is 1800 rpm. 

 

We note that the transition between particle’s ring orbit (“limit cycle”) and a stable trapping point 

(“stable equilibrium”) upon the change in single parameter d proceeds without hysteresis (cf. Figure 

A2 in Appendix) and is a manifestation of the so-called supercritical Hopf bifurcation well known in 

the mathematical theory of dynamical systems (31). This is corroborated by Figure 6c–e plotting the 

centripetal force (directed towards the axis of rotation) and the drag force (directed away from this 

axis) at the mid-plane of the rotating tube for three different values of d and with other parameters 

held constant (D = 100 μm, 𝜔 = 1800 rpm, 𝜌𝐿 − 𝜌𝑃 = 0.06 g cm-3, η = 0.002 Pa s); the stable 

points are marked by red circles. Interestingly, the model predicts not only the Hopf bifurcation but 

also the existence of two limit cycles for intermediate values of d (Figure 6d,f). We actually verified 

this prediction experimentally for the system of polystyrene particles (D = 100 µm, 𝜌𝑃 = ~ 1.05 g 

cm-3) in 25 wt% sucrose solution (𝜌𝐿 = ~ 1.11 g cm-3) rotating at 𝜔 = 1800 rpm and d = 4.9–7.3 mm 

(Figure 6g,h). When just one particle was used, it always located to one, inner orbit. However, with 

two particles present and d ≈ 6.1 mm, the second particle occupied the larger-radius, outer orbit as 

illustrated in experimental images in Figure 6h. The relatively narrow range of parameters for which 

two orbits are occupied can be reasonably attributed to the fact that the inner-orbit limit cycle has a 

larger basin of attraction than the outer-orbit one (Figure 6i). 

 

3.7 Estimation of a lower limit of particle size in the trap 

Finally, we note that a theoretical model described in Appendix indicates that the lower limit for the 

size of a particle that can be trapped scales as 𝑅2 ≈
𝐶

𝜔2 (
(ω−ω1)

𝜔
+ 3

(ω−ω1)2

ω2 ) , where 𝐶 =

9𝐾𝜂2

4(𝜌𝐿−𝜌𝑃)𝜌𝐿𝐻2, in which 𝐻 is the distance between the aluminum disks, and 𝐾 is the dimensionless 

factor that depends on the ratio of 𝐻 and the tube’s inner diameter. Using this model, we estimate 
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that at higher rotational rates (not available in our current set-up for technical and safety reasons), the 

traps can be effective for particles with sizes down to ca. 10 µm. For example, for 𝜔 = 10,000 rpm., 

𝜔1 = 400 rpm, 𝜂 = 2.175 mPa s, 𝜌𝐿 = 1.104 g cm-3, 𝜌𝑃 = 0.98 g cm-3, ID = 10 mm, 𝐻 = 30 mm, 

one should be able to trap particles of ~6 µm radii. 

 

3.8 Summary 

In summary, we showed that by embedding vortex flows inside a rotating frame of reference, it is 

possible to realize purely fluidic 3D traps. Although theory suggests these traps can be further 

miniaturized and can potentially address singe cells or colloids, the current experimental setup is 

limited to larger particles (> tens of µm), which is the size regime relevant to the manipulation and 

assembly of small-part mechanical systems and also of certain biological specimens, such as cell 

spheroids (32) important in cell biology (and potentially benefitting from “clean,” substrate-free 

positioning subject to spatially variable forces our system readily offers). We envision that for the 

assembly of small parts, it will be important to solidify the dynamic structures that form in the trap, 

perhaps by using liquid-solder methods (33, 34). Last but not least, the traps exhibit a range of 

interesting non-linear behaviors, including bifurcations, suggesting they can be used as test-beds for 

studying various dynamical systems comprised of differently sized and/or shaped particles. 
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Appendix 

 

A.1 Transient structures and disordered assemblies. 

For n = 8, polymorphs were also observed, but they are transient; the structures are transformed into 

the stable, symmetric structure within a few seconds (Figure A1a). As complexity of the components 

increases, i.e., the particles are non-identical and its shape is polygonal or rod-like or others rather 

than sphere, glassy packing is highly dominant (Figure A1b–d). 

 

Figure A1. Transient structures for n = 8 and failure modes of ordered assemblies. a) For n = 8, 

transiently formed structures (left side of the arrow) spontaneously evolve into the stable, more 

symmetric packing shown on the right. Some examples of disordered assemblies for b) tetrahedral and 

c) hexahedral “cages”, and d) an interlocked, “rotaxane” structure. 

 

A.2 Evidence for the lack of hysteresis in Hopf bifurcation 
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Figure A2. Changes in the particle’s ring orbit upon decreasing and then increasing the value of 

parameter d. As the system transitions from a stable point to a limit cycle and then backwards, no 

hysteresis is observed. Experimental conditions are the same as in the main-text Figure 6h. 

 

A.3 Estimation of the lower size limit of trapped particles 

Even for the symmetrical case when both damped aluminum disks rotate at the same 𝜔1, the Navier-

Stokes equations for the system cannot be solved analytically (1, 2). Accordingly, we develop a semi-

analytical model to estimate the lower size limit of trapped particles—we do so by linearizing the 

numerically calculated flow near the trap’s center and by approximating the dependence of this 

linearization on relevant physical parameters. Justification of this approximation is given in section 

A.3.1 and is mostly based on fitting certain expressions to the numerical (FEM CFD) solutions of 

hydrodynamic equations. Thus obtained analytical expression of approximate flow is then used in 

sections A.3.2–A.3.3 to investigate the stability and fluctuations of small particles near the trap’s 

center, with focus primarily on deriving a lower bound on the sizes of particles that can be 

trapped/confined. 

 

A.3.1. Flow field near trap’s center. 

We show that flow field near the center of the trap can be linearized and, furthermore, that flow 

velocities in axial (𝑈𝑧) and radial (𝑈𝑟) directions are decoupled: 

𝑈𝑧 = −𝑧(𝐴𝑧 + 𝐵𝑧𝑟2) 

𝑈𝑟 = 𝐴𝑟𝑟 
(1) 

Furthermore, in the region where 𝑟 is small enough such that the term 𝐵𝑧𝑟2 can be neglected, 𝐴𝑟 

and 𝐴𝑧 must be related by 𝐴𝑧 = 2𝐴𝑟. This relation comes from the condition that near the trap’s 

center, the net axial inflow must be equal to the net radial outflow—in other words, the divergence 

∇ ⋅ 𝑼 of the flow must be zero. Taking the divergence of the flow (1) in cylindrical coordinates and 

neglecting 𝐵𝑧𝑟2 gives 

0 = ∇ ⋅ 𝑼 =
1

𝑟
⋅

𝜕(𝑟𝑈𝑟)

𝜕𝑟
+

𝜕𝑈𝑧

𝜕𝑧
=

1

𝑟
⋅

𝜕(𝐴𝑟𝑟2)

𝜕𝑟
− 𝐴𝑧 = 2𝐴𝑟 − 𝐴𝑧 

which means that 𝐴𝑧 = 2𝐴𝑟. 

We illustrate the applicability of this approximation by fitting analytical flow-field expression (1) to 

the results of FEM CFD at different experimental parameters. Figure A3a-d illustrates such fitting (in 

a small region of 0 < 𝑟 < 1 mm and −2 mm < 𝑧 < 2 mm) against numerically computed flow 

field for one set of physically realistic parameters. As seen, e.g., in Figure A3b, the proposed 

approximation is quite precise (note that all three fitted, black curves use the same values of 𝐴𝑧 and 

𝐵𝑧). 
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To study the dependence of constants 𝐴𝑧  and 𝐴𝑟  on physical parameters, we fitted (1) to 

numerically calculated flows for various angular velocities of the tube (𝜔), the aluminum disks (𝜔1), 

as well as for different viscosities (𝜂). Figure A3e shows that indeed, to a good approximation, 𝐴𝑧 =

2𝐴𝑟 and the values 𝐴𝑟/𝜂 plotted against (𝜔 − 𝜔1)/𝜔 fall on the same master curve (black), which 

can be approximated to second order of (𝜔 − 𝜔1)/𝜔 as 

𝐴𝑧 = 2𝐴𝑟 = 𝐾
𝜂

𝜌L𝐻2𝜔
((ω − ω1) + 3

(ω − ω1)2

ω
) (2) 

where 𝐻 is the distance between the rotors, 𝜌𝐿 is the liquid density, and 𝐾 is the dimensionless 

parameter that probably depends on the geometric aspect ratio of 𝐻 to the tube’s diameter (𝐷tube). 

For aspect ratio 𝐻/𝐷tube  =  3, we found that 𝐾 ≈ 69. Group 𝜂/𝜌L𝐻2𝜔 is the inverse of Reynolds 

number. We emphasize that expression (2) is not really derived, but is rather a heuristics stemming 

from dimensional analysis, inspection of some limiting cases, and fitting to numerically calculated 

flow fields. As evident from the Figure A3e, this approximation is more precise when rotors are 

rotating not much slower than the tube (i.e., (𝜔 − 𝜔1)/𝜔 ≪ 1) and becomes less accurate as rotors’ 

angular velocity 𝜔1 approaches zero (i.e. (𝜔 − 𝜔1)/𝜔 ≈ 1). 
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Figure A3. Analytical approximation of flow field in symmetric vortex trap compared to numerical 

FEM CDF calculations. a-d, Axial (a) and radial (c) components of the flow velocity computed 

numerically and plotted against radial (𝑟) and axial (𝑧) coordinates as 2D surface plots. Parameters 

used for this calculation are 𝐷tube = 10 mm, 𝐻 = 30 mm, 𝜔 = 200 rad/s, 𝜔1 = 180 rad/s, 𝜂 =

2.175 mPa ⋅ s. b) Radial profiles of axial velocity at three different values of 𝑧 (color curves) 
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compared to 𝑈𝑧 = −𝑧(𝐴𝑧 + 𝐵𝑧𝑟2) traced by black curves. Values of 𝐴𝑧 and 𝐵𝑧 are the same for 

all three profiles. d) Radial profile of radial velocity fitted by 𝑈𝑟 = 𝐴𝑟𝑟. e) Fitting parameter 2𝐴𝑟 

(filled markers), and fitting parameter 𝐴𝑧 (empty markers), both scaled by viscosity 𝜂, are plotted 

against relative difference in angular velocities (𝜔 − 𝜔1)/𝜔. Black curve represents formula (2). 

Viscosity  𝜂0 = 2.175 mPa ⋅ s. 

 

A.3.2. Effective potential for a particle in the trap. 

We will now derive the effective potential for small particle near the trap’s center under the following 

assumptions: 

1. Drag force on the particle is described by the Stokes formula: 𝑭drag = 6𝜋𝜂𝑅𝑼, where 𝜂 is 

the dynamic viscosity, 𝑅 is the particle radius, 𝑈 is the velocity of the flow relative to the 

particle. 

2. Particle size is much smaller than the characteristic scales at which flow velocity changes, and 

the particle does not affect the flow at large. Specifically, velocity of the flow in the absence 

of the particle can be used as the value of velocity in the Stokes drag formula. 

3. Particle size and its typical distance from the trap’s center are small enough such that 

approximation (1) holds. Furthermore, particle’s distance 𝑟 from the rotation axis is small 

enough such that the term 𝐵𝑧𝑟2 can be neglected in (1). 

4. Particle’s angular velocity is matched to that of the fluid at particle’s location, which is 

assumed to be constant near trap’s center. This angular velocity is assumed to be equal to the 

tube’s angular velocity 𝜔. 

Forces acting on a particle of radius 𝑅 and density smaller by Δ𝜌 relative to the surrounding liquid 

are 

𝐹𝑟 = −
4

3
𝜋𝑅3Δ𝜌ω2𝑟 + 6𝜋𝜂𝑅𝐴𝑟𝑟 (3a) 

𝐹𝑧 = −6𝜋𝜂𝑅𝐴𝑧𝑧 (3b) 

The first term in (3a) is buoyancy due to centrifugal acceleration, ω2𝑟; the second term is Stokes’ 

drag. It can be seen that these components for the force are proportional to displacements 𝑟 and 

𝑧 along respective axes. Therefore, this trapping force can be seen as a manifestation of an effective 

potential 

𝐸 =
𝑟2

2
(

4

3
𝜋𝑅3Δ𝜌ω2 − 6𝜋𝜂𝑅𝐴𝑟) +

𝑧2

2
6𝜋𝜂𝑅𝐴𝑧 (4) 

which is harmonic in each axis.  

 

A.3.3. Lower limit on the size of particle that can be trapped and confined. 
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We will be saying that “particle can be trapped” if the particle attracts to the trap’s center along both 

axes (𝑟 and 𝑧). It’s easy to see that the axial force (3b) is always directed towards the trap’s center. 

However, the radial force (3a) is directed towards the axis only if 

−
4

3
𝜋𝑅3Δ𝜌ω2 + 6𝜋𝜂𝑅𝐴𝑟 < 0  

which can be expressed as a condition for the particle’s radius 

𝑅 >
3

ω
√

𝜂𝐴𝑟

2Δ𝜌
 (5) 

If this condition is not fulfilled, the particle will be radially repelled from the axis, not attracted to it. 

For example, condition (5) produces 𝑅 > 34 μm  for parameters 𝜔 = 200 rad/s, 𝜔1 = 40 rad/

s, 𝜂 = 2.175 mPa ⋅ s, ρL = 1104 kg/m3, 𝐷tube = 10 mm, 𝐻 = 30 mm. If we increase both 𝜔 and 

𝜔1 fivefold in this example (this would correspond to 𝜔 = 10,000 r.p.m.), value of 𝐴𝑟  would 

remain the same, but smallest radius would decrease fivefold, to ca. 6 μm. 

However, even if (5) is fulfilled and the particle is attracted to the trap’s center along both axes, it is 

practically relevant to know how strongly the particle is kept at the trap’s center. To quantify this 

property, we will be saying that “particle is confined” if the typical excursions of the particle from the 

trap center do not significantly exceed the particle’s radius. This definition is not typical for other 

types of traps. In traps like optical tweezers and magneto-optical traps, potential well spans only a 

small region of space (blue curve in Figure A4b). Once the particle escapes the trap region by a 

fluctuation, it does not experience any attraction to the trap anymore and does not return, as illustrated 

by the orange trajectory in Figure A4b. The potential well depth is used to evaluate the time for which 

a particle can be trapped—the deeper the well (in relation to the thermal energy, 𝑘𝐵𝑇), the longer it 

takes for a trapped particle to escape. In contrast, in our vortex-vortex trap, the potential well can span 

large part of the vessel volume (see basins of attraction in the main-text Figure 6i). However, in this 

case the trapping force near the center can be so weak that the magnitude of particle’s Brownian 

motion in the trap exceeds particle’s size: particle is “trapped”, but not “confined” by our definitions. 

 

 

Figure A4. Difference between trapping potential in the vortex-vortex trap and other types of traps. a) 
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Potential in our vortex-vortex trap (blue) if parabolic and spans large part of the rotating tube’s 

volume (see basins of attraction in the main-text Figure 6i). Thermal energy (dashed horizontal line) 

allows the particle (orange circle) to make excursions from the center (orange dashed line), possibly 

to distances larger than particle size, but the particle never leaves the trap’s potential well. b) In other 

types of traps, potential well (blue) typically occupies only a small part of the vessel’s volume, and 

once the particle (orange circle) leaves the well, it does not feel the returning force anymore. 

 

Specifically, thermal fluctuations of particle position in potential (3) will lead to the Boltzmann 

distribution along each axis: probability densities for finding the particle at certain 𝑟 and 𝑧 locations 

are then given by  

𝑃(𝑟) = 𝑃𝑟=0 exp (−

𝑟2

2
(

4
3

𝜋𝑅3Δ𝜌ω2 − 6𝜋𝜂𝑅𝐴𝑟)

𝑘𝐵𝑇
) (6a) 

𝑃(𝑧) = 𝑃𝑧=0 exp (−

𝑧2

2
6𝜋𝜂𝑅𝐴𝑧

𝑘𝐵𝑇
) (6b) 

where 𝑃𝑟=0 and 𝑃𝑧=0 are the probability densities at 𝑟 = 0 and 𝑧 = 0, respectively, and can be 

found from normalization conditions ∫ 𝑃(𝑟)𝑑𝑟
∞

0
= 1 and ∫ 𝑃(𝑧)𝑑𝑧

∞

−∞
= 1; 𝑇 is the temperature, 

𝑘𝐵 is the Boltzmann constant. It is natural to define a particle as “confined” along a given coordinate 

if characteristic length of decay of the corresponding Boltzmann’s distribution is smaller than the 

radius of the particle: 𝑃(𝑟 = 𝑅) < 𝑃𝑟=0/𝑒 for radial direction, and 𝑃(𝑧 = 𝑅) < 𝑃𝑧=0/𝑒 for axial 

direction. This condition means that the expression in the exponent’s brackets in (6a) and (6b) must be 

less than −1 at 𝑟 = 𝑅 and 𝑧 = 𝑅, respectively: 

−

𝑅2

2 (
4
3 𝜋𝑅3Δ𝜌ω2 − 6𝜋𝜂𝑅𝐴𝑟)

𝑘𝐵𝑇
< −1 

(7a) 

−

𝑅2

2 6𝜋𝜂𝑅𝐴𝑧

𝑘𝐵𝑇
< −1 

(7b) 

These two conditions can be viewed as conditions on particle’s radius. Condition for axial 

confinement (7b) can be written in a closed form 

𝑅3 >
𝑘𝐵𝑇

3𝜋𝜂𝐴𝑧
 (8) 

Condition for radial confinement is a fifth-order polynomial inequality with respect to 𝑅, and should 

be solved numerically: 
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𝑅5 ⋅ (
2

3
⋅

𝜋ω2Δ𝜌

𝑘𝐵𝑇
 ) − 𝑅3 ⋅ (

3𝜋𝜂𝐴𝑟

𝑘𝐵𝑇
) > 1 (9) 

Note that if this inequality is fulfilled, inequality (5) is also fulfilled. 

The function 𝑓(𝑅) = 𝛼𝑅5 − 𝛽𝑅3 for 𝛼 > 0, 𝛽 > 0, 𝑅 > 0 has only one extremum at 𝑅min =

√3𝛽/5𝛼. This extremum is always a minimum and 𝑓(𝑅min) < 0. At 𝑅 > 𝑅min, the function 𝑓(𝑅) 

grows monotonically (Figure A5a shows 𝑓(𝑅) for 𝛼 = 1, 𝛽 = 1). Therefore, equation 𝑓(𝑅) = 1 

has only one root 𝑅0. Behavior of 𝑅0 for different values of 𝛼 and 𝛽 is illustrated in Figure A5b. 

The limit of 𝛼 ≫ 𝛽, which can also be expressed as ω2Δ𝜌 ≫ 𝜂𝐴𝑟, corresponds to buoyancy force 

(due to centrifugation) dominating the drag forces. At this limit, the minimal radius will be defined by 

𝑅5 >
3𝑘𝐵𝑇

2𝜋ω2Δ𝜌
 (10) 

At the opposite limit 𝛼 ≫ 𝛽, equivalent to ω2Δ𝜌 ≪ 𝜂𝐴𝑟, condition of minimal radius becomes 

roughly equivalent to the condition (5) required for the radial force to be attractive. 

 

 

Figure A5. Analysis of radial confinement condition. a) Function 𝑓(𝑅) = 𝑅5 − 𝑅3 plotted against 𝑅. 

Minimum at 𝑅 = √3/5 is marked by orange arrow. b) Positive root of the equation 𝛼𝑅5 − 𝛽𝑅3 = 1 

for different values of 𝛼 and 𝛽. At 𝛼 ≫ 𝛽 limit, the root approaches 𝑅 ≈ 𝛼−5. At the opposite 

limit 𝛼 ≪ 𝛽, root becomes approximately 𝑅 ≈ (𝛽/𝛼)1/2 . 

 

To sum up, trapping the particle requires only condition (5). Making axial displacements of the 

particle comparable to its radius requires condition (8). Making radial displacements of already 

trapped particle smaller than the radius happens automatically if ω2Δ𝜌 ≫ 𝜂𝐴𝑟, requires condition (10) 

in the opposite limit, or should be found by solving fifth order polynomial inequality (9) if neither 

limit is applicable. In all these cases, analytical approximation (2) can be used for 𝐴𝑟 and 𝐴𝑧. For 

example, particles with radius 34 μm  can be trapped using parameters 𝜔 = 200 rad/s, 𝜔1 =

40 rad/s, 𝜂 = 2.175 mPa ⋅ s, ρL = 1104 kg/m3, 𝐷tube = 10 mm, 𝐻 = 30 mm, as mentioned above. 
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Particles of this radius will be axially confined (in fact, threshold radius for axial confinement is only 

0.8 μm at these conditions), and radially confined (since ω2Δ𝜌 ≪ 𝜂𝐴𝑟 in this case; the threshold 

radius for radial confinement is 22 μm). 
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