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Abstract 
 

Advances of technology have made a revolution that interconnects industrial devices and fuses the 

boundaries of digital, physical and biological spaces. These technologies such as cloud computing, 3D 

printing technology, big data, internet of things (IOT), artificial intelligence (AI), and maturity of system 

integrations have been improved every year, changing our daily life quickly in intelligent and 

convenient ways. In this days, these explosions of technology, changing the way we live and think, is 

referred to 4th industrial revolution. As we know, every industry is affected by the new waves of 

technologies, digitalization and connectivity, and the biomedical or medical field is no exception. 

Healthcare fields have benefited mostly from recent technical improvements, revolutionizing the 

medical systems in many terms in cost-effective ways. Particularly, “digital medicine” has been recently 

came into the limelight as one of the uprising fields. In digital medicine, traditional medical devices and 

diagnostic programs have become miniaturized, digitalized, and automated. As taking advantages of 

digital medicine, specific fields related to digital pathology, point-of-care (POC) diagnostics, and 

application of deep learning or machine learning technologies have shown the great potentials not only 

in biomedical academia but also in the revenues of their markets. It allows to connect devices, hospital 

equipment, and to accelerate efficiencies in health service such as diagnosis, and to reduce the cost of 

services. Moreover, interconnection between advanced technologies has been improved the access of 

healthcare to the places where hospital or medical services are limited. Furthermore, artificial 

intelligence has shown promising results related to disease screening especially using medical images.  

Although fields in digital medicine are prospering, still there are limitations that needs to be 

overcome in order to provide further advanced health services to patients in the various situations. In 

digital pathology, improvements of microscopic technologies, internets, and storage capabilities have 

reduced the time-consuming processes. The simple transformation of microscopic image to digital have 

successfully alternated many limitations in the analogue histopathology workflow to efficient and cost 

saving ways. However, tissue staining is currently referred as one of the bottleneck that makes workflow 

still lengthy, labor-intensive, and costly. In the POC diagnostic fields, various digitalized portable 

smartphone-based diagnostic devices have been introduced as alternatives to conventional medical 

services. These devices have provided the quality assurance of diagnostics by taking advantages of 

sharing, and quantitative analysis of digital information. However, most of these works have been 

focused on replacing diagnostic process which mostly done in laboratory settings. As medical imaging 

devices and trained clinicians or practitioners are limited, there are also high demands on clinical 

imaging-based diagnostics in developing countries. 

In this thesis, computational microscope using patterned NIR illumination was developed for 

label-free quantitative differential phase tissue imaging to bypass the staining process of the pathology 

workflow. This system overcame the limitations found in the conventional quantitative differential 
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phase contrast in a LED array microscope, allowing to captured light scattering and absorbing specimen 

while maintaining weak object approximation. Moreover, portable endoscope system was developed 

integrating the additive production technologies (3D printing), ICT, and optics for POC diagnostics. 

This innovative POC endoscope demonstrated comparable imaging capability to that of commercialized 

clinical endoscope system. Furthermore, deep learning and machine learning models have been trained 

and applied to each devices, respectively. Generative adversarial network (GAN) was applied to our 

NIR-based QPI system to virtually stain the label-free QPI which look comparable to image that is 

captured from bright field microscope using labeled tissue. Lastly, POC automated cervical cancer 

screening system was developed utilizing smartphone-based endoscope system as well as training the 

machine learning algorithm. 3-5% of acetic acid was applied to the suspicious lesion and its reaction 

was captured before and after application using smartphone endoscope. This screening system enables 

to extract the features of cancers and informs the possibility of cancer from endoscopic images. 
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Chapter 1. Introduction 

 

1.1 Digital medicine 

 

Recently, various innovative technologies such as cloud computing, 3D printing technology, big data, 

internet of things (IOT), artificial intelligence (AI), and system integrations have been rising along with 

markets, making the manufacturing and production chain faster, smarter, ubiquitous, and autonomous. 

Furthermore, it changes our daily life by offering intelligent functionalities and technologies related to 

our livings and works, which couldn’t achieve before. In this days, these technical explosion, changing 

the way we live and think, is referred to 4th industrial revolution [1, 2]. Brief history of the industrial 

revolutions is described in Figure 1.1. This term “4th industrial revolution” was initially announced at 

the World Economic Forum in 2016, which has been released as a technological revolution that fuses 

the boundaries of digital, physical, and biological spaces based on the 3rd industrial revolution (“digital 

revolution”) [3]. As mentioned in the forums, its unique characteristics of connectivity and intelligence 

would transform many conventional technologies into interconnected and more intelligent. 

Every industry is affected by the new waves of technologies, digitalization and connectivity, and 

the biomedical or medical field is no exception. According to a survey conducted by The Economist, 

healthcare was expected as the highest to benefit from the 4th industrial revolution. Such technologies 

of IoT, cloud computing, big data, digitalization, additive manufacturing, and artificial intelligence has 

offered the great promises to the field of medicine [4]. Among the medical application fields, “digital 

medicine” has been highlighted as one of the uprising field that earns the benefits in speed, sharing, 

connection, and performances from 4th industrial revolution. Conventional/analogue medical devices 

and diagnostic programs have become miniaturized, digitalized, and automated, suggesting the 

technical revolution in the field of medicine [5, 6]. Particularly, digital pathology, point-of-care (POC) 

diagnostics, and application of deep learning or machine learning technologies have shown the great 

potentials not only in academia but also in the revenues of their markets. It allows to connect devices, 

hospital equipment, and to accelerate efficiencies in health service such as diagnosis, and to reduce the 

cost of services. Moreover, interconnection between advanced technologies has been improved the 

access of healthcare to the places where hospital or medical services are limited [7, 8]. Recently, 

artificial intelligence has shown promising results related to disease screening especially using medical 

images [9].  
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Figure 1.1 Brief illustration of industrial revolutions [2] 

 

 

 

 

1.2 Digital pathology 

 

As a result of technical advances many innovative optical device has been introduced in the field of 

pathology. Some of these devices, in this days, have been settled as a part of hospital system, 

significantly giving benefits and efficiencies as improved medical services to patients. Particularly, the 

introduction of whole-slide imaging (WSI) had brought a major impact in the medical fields, opened a 

new era of digital pathology [10]. Analogue pathology, inspecting the specimens under conventional 

microscopes, had changed to digitalized pathology, acquiring the images in digital manner that has been 

transformational and engendered numerous clinical, educational, and research applications. The 

capacity to rapidly capture the large field-of-view of pathology slide has become feasible as a result of 

technical advances in optical imaging technologies [11]. Today, WSI scanners performs in automatic 

ways that takes images less than 1 minute per whole slide. This imaging system produces high-

resolution images, replicating the glass slides in digital [12]. Equally dramatic improvements of internet 

infrastructures and cloud data technologies that derived from 4th industrial revolution have made 

possible for sharing and storing the large WSI datasets in current hospital’s pathology system. As a 

result, traditional workflow has become efficient, relatively less time-consuming, and simple which 

makes the whole pathological diagnostic process less complicated and improved as shown in Figure 

1.3. Now with digital pathology process, pathologist doesn’t need to inspect each specimens and make 

notes for final conclusion. Computer software analysis and sharing images electronically with doctors 

would offer supportive information which improves the diagnosis accuracy [11]. Moreover, digital 

pathology system would also benefit to save the costs, estimating to save at $12.4 million for the 

laboratories or institutions that had 219,000 orders per year [13]. Therefore, digital pathology has 

developed into a thriving field as well as their revenue are growing quickly in the markets. According 

to survey conducted by Mordor Intelligence, global digital pathology market was valued at $516 million 

and expected to reach $1,054 million by 2024 [14].  
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Figure 1.2 Digital pathology imaging process 

 

Although intelligent workflow of digital pathology process may improve quality and efficiency 

as well as streamline, and harmonize the processes, there are still bottleneck that delays the whole 

process along with cost and labor issues [15, 16]. Staining is very essential and efficient process in 

pathology workflow that labels the molecular constituents of tissues and cells with chemical reactions 

to visualize the transparent specimens under bright field microscope. However, this process requires 

multiple time-sensitive steps to follow, uses various kinds of chemical reagents depending on the 

characteristics of specimen, hence, takes high labors, times, and costs [17]. For example, for the 

histochemical staining process, average time of staining procedure of a tissue specimen was spent 

around ~ 1 hour for H&E, and 2-4 hours for Masson’s Trichrome, and Jones stain. Estimated cost for 

each staining process, including the labors and material costs, was ~$5-10 and >$15-40 for H&E, and  

 

 

 

Figure 1.3 Comparison of traditional and digital pathology workflow 
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Masson’s Trichrome and Jones stain, respectively [16]. As we can expect, if staining method could be 

totally bypassed or shrunk, digital pathology workflow could be further capable to eliminate the delays, 

leading to saving additional time and cost as well. 

 

1.3 Portable medical devices for point-of-care diagnostics 

 

During the last few years, point-of-care (POC) diagnostic devices have benefited from the rapid 

advancement of technologies that derived from 4th industrial revolution. Leveraging advances in IOT, 

additive manufacturing technologies, and wireless telecommunications, low-cost, portable medical 

devices have the potential to improve screening and detection of disease at the POC in the settings in 

both low- and high-resource countries [7, 8]. Similarly, recent state-of-the-art smartphones including 

the technologies such as high-resolution camera, computing power, high definition of display, 

ubiquitous connective technologies, have been introduced as a candidate that could alternate the 

computing devices in the conventional medical devices. Adapting with other engineering components, 

current systems could be further miniaturized as well as provide simple, cost-effective, and 

corresponding functionalities for improving diagnosis quality and treatment at the POC [7, 18, 19]. 

In the developing countries, medical resources and treatments are highly demanded. There is a 

shortage of trained healthcare workers in low-resource settings or developing countries. Hence, patients 

may have to travel long distances to receive medical services unfortunately. However, frontline health 

care is often served by community healthcare providers in low-resource settings which lacks electricity,  

 

Figure 1.4 Recent POC microscope devices. a-b) Smartphone based microscope system adapting optical 

components before camera. c) Lens-free stand-alone microscope systems d) Lens-free smartphone-based 

microscope. . 
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water, chemicals, and access to laboratory apparatus for screening. It is feasible that real-time POC such 

as telemedicine could be conducted with compact, low-cost medical devices that can be connected with 

to expert through internet infrastructures [7]. Therefore, POC markets grow fast, and faster than the 

average of the in vitro diagnostics industry, which is one of largest market in diagnostic fields. In 2018, 

sales of POC testing reached $22.3 billion, increasing 7.5% from $20.7 billion in 2017 [20]. 

Recently, many smartphone based POC devices in a compact form factor have been introduced 

and provided promising performances related to biophysical, biochemical, or biological components or 

properties from biological samples. Many devices in the markets offers efficient measurements related 

to primary cares such as glucose, urine, blood pressure in remote settings or out of clinical office by 

applying connective devices to smartphone and make analysis. Moreover, integration of optical 

techniques offers an additional means for imaging biological properties or biomarkers, providing 

spatially resolved information across cell or tissue samples or specimens, as well as providing in vivo 

screening and diagnostic capabilities. However, these POC imaging technologies are mostly focused 

microscopy (fluorescence, bright field) and flow-based system (lab on a chip cytometry, microfluidic 

channels, lens free system) [7, 21]. Currently, in the low-resource settings, there are still great amount 

of demands in such fields related to medical imaging, which are accessible by other medical imaging 

tools.  

 

 
Figure 1.5 Smartphone based POC devices in bioanalytical sciences. a) POC fluorescence- and 

magnetophoresis-based cytometry b) Device for colorimetric assay. c) Smartphone-imaged microfluidic biochip 

for measuring CD64 expression from whole blood. d) Smartphone based fluorescence device and optofluidic 

fluorescent imaging cytometer.  
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Mostly these diagnostic imaging demands may be performed with devices that are more bulky, 

expensive than conventional microscope or flow cytometry systems. For example, endoscope system 

plays essential role diagnosing various diseases in real-time which are not access by human eye or other 

surface measurements. Although this routine endoscopy shows promising performances in high-

resource settings, it is mostly difficult to operate in the developing countries where infrastructure, and 

expert physicians or nurse practitioners are deficient. In this context, we believe that there are still many 

application of medical imaging fields including cancer screening, primary care, telemedicine that 

require state-of-the-art POC devices in the developing countries. 

 

1.4 Artificial intelligence in biomedical fields 

 

Recently Moore's Law has been broken as technologies of graphic processing unit (GPU) improved 

dramatically every year. This directly influenced many engineering felids, allowing heavy 

computational process with improved speed [22]. Not only in electronic, but also fields of artificial 

intelligence have been improved significantly, enabled to perform the heavy task in these days. 

Particularly, a subset of artificially intelligence called deep learning has been improved and started to 

provide promising outcome in various fields. The increased computational speed has expanded the  

capability of deep learning model to design complex models of neural networks. Thus, this new waves 

in artificial intelligence have also made many influence in biomedical engineering fields, especially 

related to medical imaging and pathology [9]. From 2015, publications of papers related to artificial 

intelligence using deep learning for medical imaging has been increased. In 2016, numbers of 

publication have been increased more than four times from previous years.  

 

Figure 1.6.  The number of papers published from 2012 to 2017 in bio-medical image analysis community 

with deep learning approach applications. Figure adapted from ref. [9] 
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Deep learning technique in bio-medical engineering 

In biomedical engineering fields, the post image processing after taking an image using observation 

tools, such as MRI, CT, and microscopes, is crucial to extract desired information from taken images 

for intended purposes. Initially from the 1970s and the 1990s, those techniques were developed as an 

application of low-level processing based on pixel values, for example, the edge and line detector filters, 

and mathematical models. After 1990s, supervised techniques, where data is used for training a system 

for a specific task, were becoming majority in post processing. The most popular example is the 

statistical classifiers for detection and diagnosis purposes. This machine learning or pattern recognition 

approach is still very powerful and forms the basis of image analysis techniques, however, it requires 

extracting features or labeling by human, so called handcrafted features as the reference so that 

machines can learn from given data to determine the optimal decision boundary in the high-dimensional 

feature space [9] 

Recent explosive development of advanced concepts and techniques in the deep learning 

community are dramatically changing the landscape of bio-medical image processing applications and 

taking over previous commercial and traditional rule-based and mathematical model-based image 

processing algorithms. The successful image analysis with deep learning approach lies on many 

contributions from different fields, however, the convolutional neural networks (CNNs) is at the center. 

CNNs consist of many layers which transform their input with convolution filters, and it learn the 

features that optimally represent the data for a given task during the training. Although the concept of 

CNN had been released in early 1980s [23] and initial successes of real-world application to medical 

image analysis, which detecting lung nodule using CNN, were released in 1995 [24], the attention of 

bio-medical community to CNN were not stimulated until the contribution of AlexNet [25] in 2012 to 

the ImageNet challenge in 2012, because of the inefficient training of deep networks and limited 

computing power by that time. 

 

 

 

Figure 1. 7 Example of computer assisted diagnosis application using deep learning. The developed module 

detecting specious region in whole histopathogy slice image and grading the level of patient. Figure adapted from 

reference [26] 
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Figure 1. 8 Example of the cell segmentation using deep convolution neural network architecture. The U-

net in reference [27] detect the boundary of cell in the image and segment. Figure adapted from ref. [27] 

 

Applications of deep learning to bio-medical image processing/analysis divided into several 

subcategories which are the image classification, the semantic segmentation, the noise reduction, the 

image generation and enhancement etc. All these applications can be formulated based on CNN, 

however, the details in training and validation procedure, for example, the type of loss function, the 

structure of network, the quantitative metric for validate and comparison between the output and the 

reference, should be carefully designed depends on the purpose of desired task. In general, the image 

classification and the segmentation are the classification problem, which distinguishing a given image 

or subarea of given image into one of classes, and thus these jobs require the labeled answer for 

supervising the network during the train. The classifier network based on CNN learns and extract the 

features from the data that helpful for distinguishing task during the training through the back 

propagation of loss to minimize the error from the output layer to the input layer. Examples of 

classification problem in biomedical image analysis are the segmentation of cell or colon grands [27-

29], the nucleus detection and classification [30, 31], and computer assisted diagnosis [26]. 

 

 

Figure 1. 9 Conceptual description of learning process in the generative adversarial networks. Through the 

training process distribution of generated data converges to real data distribution by adversarial learning process. 

Figure modified from ref. [32] 
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Figure 1. 10 Super-resolution of the florescence microscope image using deep learning architecture which 

consist of CNN based on GAN and virtual staining of label-free image. Figure adapted from ref. [16, 33] 

 

In terms of probabilistic perspective, the classification problem addresses a discriminative 

model: a model of conditional probability of the target Y, given an observation X, P(Y|X=x), while the 

problems such as the noise reduction, the resolution enhancement, or the virtual staining in bio-medical 

image processing are application of generative models. Generative problem addresses a model of the 

conditional probability of the observation X, given a target Y, P(X|Y=y). In general, generative model 

is much more difficult compare to a discriminative model, that generating data that fall close to their  

real counterparts in the data space, thus, it has to model the distribution throughout the data space. The 

breakthrough of generative model approach introduced in 2014 by Ian Goodfellow with his concept, 

the generative adversarial network (GAN) [32]. GAN is composed with two neural networks, a 

generator, G(z), for generating a data x from input or noise z, and a discriminator, D(x), for evaluating 

the difference in real and generated data. The key idea in GAN is the adversarial learning that a generator 

network learns toward generating more realistic data while a discriminator learns toward distinguishing 

better between real and synthesized. As the results of this adversarial learning process, a generator could 

be trained as much as it can generate realistic data, since the distribution of generated data converges to 

the real data distribution. Many of application in biomedical image processing based on GAN published 

recently, including the noise reduction [34], the super resolution [33, 35], and the virtual staining [16]. 

These applications occupied the concept of adversarial learning and built the generator and 

discriminator based on CNN. 
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1.5 Research motivation & approaches 

 

Research motivation 

As technologies has been improved every years, many fields of healthcare took the advantages, solving 

various demands which was not achievable in previous works. One of the promising field is digital 

medicine which transforms analogue clinical system to digital, improving healthcare services in terms 

of performance quality, cost-effectiveness, and speed. Moreover, advanced technologies affect in 

positive ways especially to the tissue diagnosis process, point-of-care diagnosis, and artificial 

intelligence. Integration of various engineering techniques leads to eliminate the delays in traditional 

pathology analysis process, to miniaturize the conventional diagnostic laboratory devices, to enhance 

the computational power which allows to perform complicate learning models for biomedical fields. 

However, there are still limitations or opportunities to overcome in terms of hardware and software wise 

to provide stability, cost-effectiveness, and quick process for quality improvement of the healthcare 

service  

 
Figure 1.11 Motivation points of thesis related to digital medicine. a) Limitations in current histopathology 
workflow. Staining procedure still takes long time and requires delicate laborious steps. b) Limitations in 

conventional medical device as POC. Many demands of imaging-based diagnosis are existing in low-resource 

setting. But these conventional devices are not appropriate. c) Advances of artificial intelligence are offering 

promising outcome that benefits the healthcare in many ways. This technologies could be applied to the fields in 

a-b), making devices intelligence and autonomous. 
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Although introduction of digital pathology shrunk the total process of workflow, some sub-

process requires lengthy steps and costs which makes pathology process still lengthy. For example, in 

order to acquire images from transparent tissue, chemical staining method is inevitable. However, this 

method requires time-sensitive steps and long processes, which leads to increase of costs as shown in 

Figure 1.6a. Therefore, we believe that implementation of label-free imaging device could address this 

problem, bypassing the staining process which leads to less cost, time in total pathology workflow.  

Currently, most of POC research and markets has been mainly focused on biophysical signal 

and microscope applications. These devices have offered promising performances in low-resource 

settings with portability that could alternate the primary care devices or diagnostic process that is based 

on laboratory settings. Recently portable optical devices for POC medical imaging have been introduced. 

As taking advantages of internet infrastructures, cloud storage, improved computational powers, POC 

medical imaging devices could demonstrate tele-medicine, and automated analysis in the low-resource 

settings. However, in developing countries, there are still many demands of diagnostic fields related to 

real-time medical imaging. Especially, such imaging-based diagnosis for cervical cancer screening are 

currently limited due to heavy, and expensive limitations of conventional devices. Even though, portable 

devices are ready, it is true that trained clinicians and practitioners are limited to interpret the images. 

Lastly, as result of technical explosions, artificial intelligence has shown great potentials in 

various biomedical applications. As computational power increase, deep learning networks are now 

capable to solve very deep, complicated, and non-linearized medical imaging analysis. Recently, 

machine learnings and deep neural networks allows to classify the diseases with high accuracy by 

finding features from various types of medical images. Deep learning technologies, nowadays, shows 

promising outcome in automated disease segmentations from radiology images and generative models 

were technically matured enough to transform and elaborate images to different images that could not 

perceptually differentiate between them. Therefore, recent artificial intelligence has become smarter 

and more stable. We believe that these techniques could be applied to digital pathology as well as POC 

device.   
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Research approaches 

The research aim in this study is developing the optical devices to provide benefits in the fields of digital 

medicine by addressing the limitations mentioned above. Moreover, the machine learning and deep 

learning technologies has shown great potentials, hence, they were applied to the devices for each fields, 

providing more mature solutions to the problems. 

 

Label-free imaging for digital pathology 

In this thesis, label-free imaging device was developed utilizing one of the computational microscopes. 

This microscope system was implemented in the simple conventional bright field configuration, only 

replacing the illumination part with LED matrix. For this system, partially coherent LED matrix was 

utilized for patterning the illumination and to provide contrasts to the transparent object for visualization. 

With assumption of use of slowly varying phase specimen, complex field of object illumination was 

linearized, and phase of object was retrieved quantitatively (quantitative phase imaging; QPI) by 

computing simple deconvolution process using measured phase shifted images (differential phase 

contrast; DPC). Prior to label-free tissue imaging QPI device, in this thesis, multi-contrast imaging 

system was developed in a single microscope configuration, offering bright field, dark field, differential 

phase contrast, and quantitative phase contrast simultaneously. Furthermore, we have addressed the 

limitation in conventional DPC-based QPI system (illumination in visible range) by utilizing NIR 

illumination and developing its customized apparatus. Therefore, this device allows to provide QPI 

regardless to scattering and absorptions of light which enables to demonstrate not only label-free thick 

tissue imaging but also acquiring QPI of chromatic stained specimens. Therefore, we expected our 

label-free imaging computational microscope would skip the staining process, resulting in 

improvements of the digital pathology workflow. 

 

Smartphone-based endoscope for point-of-care diagnostics 

Second, herein, portable endoscope system was developed utilizing smartphone that addresses problems 

of cost, size, and connectivity as POC diagnostics. To provide corresponding performance on 

smartphone, magnifying lens system was developed in small form and homebuilt software was 

developed control imaging parameters as well as rotate the images that were flipped from designed lens 

system. This system provides optical magnification up to ~3x and allows to reach up to ~12x with 

digital zoom function in camera. Pilot study of proposed endoscope system was conducted in the 

Otolaryngology, capturing the human subjects. We compare the imaging capability of smartphone-

based endoscope system to conventional clinical endoscope system.  
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Application of deep learning-based virtual staining method for digital pathology 

Third, although proposed NIR based QPI system successfully demonstrated label free tissue imaging, 

quantitative phase information could be only visualized in monochromatic manner. Hence, even though 

label free tissue imaging is capable, it is somewhat difficult to apply in real world application in digital 

histopathology. In order to overcome this limitations, one of the state-of-the-art deep learning 

techniques named generative adversarial network (GAN) was applied to our system to generate the 

virtually staining image which look comparable to image that is captured from bright field microscope 

using labeled tissue. Basically, GAN transforms the label free QPI image to histochemical stained tissue 

image. In this study, utilizing NIR based QPI system engendered many advantages to virtual staining 

methods. It enables to train the GAN model very quickly since stained samples imaging was available 

as phase contrast, which eliminates additional image registration methods or any image compensation 

algorithms. Moreover, partially coherence illumination which used in our system allows to achieve 

better resolutions, creating more stable and accurate model outcome which look similar to brightfield 

stained image. Throughout this approach, costly, lengthy, and laborious tissue staining methods could 

be fully bypassed while providing equivalent outcome as tissue staining method. 

 

Application of machine learning technology for automated cancer screening method 

Lastly, POC automated cervical cancer screening system was developed utilizing smartphone-based 

endoscope system as well as training the machine learning algorithm. This system offers non-invasive, 

non-contact imaging method with high resolution imaging capability in digitalized format. To train the 

classification model, we took endoscopic images from patients in clinic before and after application of 

acetic acid on lesion and conduct biopsy to achieve golden standard results. Then, image processing 

methods was performed to derive multiple precancerous features from endoscopic images. With these 

features, machine learning algorithm was trained and validated. As a result, higher overall accuracy of 

machine learning model classifying normal and abnormal patients was shown compared to that of 

physicians. This cervical cancer screening system for POC diagnostics is very promising, which allows 

to provide quality assured digital images. Moreover, machine learning-based classification results may  

assist those health care workers who are minimally trained in developing countries.  
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Chapter 2. Development of computational microscope for label-free digital 

imaging 

 

2.1 Development of RGB matrix based multi-contrast microscope 

 

2.1.1 Introduction 

Optical microscopes are the most common devices used to visualize the label-free biological specimens 

[36]. Among the functional modalities, bright field, dark field, and phase contrast imaging were the 

most common method for visualizing the transparent specimens in non-staining manner. Using each of 

these contrast microscopes may offer complementary information about the specimens, however, it is 

not available to acquire multiple contrast images simultaneously in single microscope configuration. 

Each contrast modality requires different optical path with hardware configurations such as annulus 

ring in condenser lenses, polarization apparatus, and specialized objective [37]. Moreover, some optical 

elements for contrast images may difficult to afford or to install that accompany by expensive price of 

optical elements and cumbersome or time-consuming task. 

Recently, programmable LED matrix was utilized as an illumination with post-processing 

algorithms to provide diverse imaging capabilities [37-40]. Matrix of LED, which is controllable with 

micro controller unit (MCU), could provide the pattern for illumination in diverse form. With intention 

of giving oblique angles from illumination to specimen, BF, DF, DPC can be realized in a single 

configuration [39]. BF images could be achieved by turning on the central part of LEDs in matrix. DF 

contrast could be obtained through illuminating LEDs with angles outside of the numerical aperture 

(NA) of the objectives. Moreover, illuminating the specimens with asymmetric circular shape would 

offer differential phase contrast images (DPC). In DPC, two images from complementary illumination 

angles are needed to recover the phase through simple post-processing algorithm. The result of DPC is 

qualitative similar to differential interference contrast (DIC) image which transform the invisible 

sample phases into measurable intensity, emphasizing the structural information and variations of 

densities of specimens [41, 42]. Both sequential illumination of different patterns and simultaneous 

illumination using all patterns with different color combinations enabled real-time multi-contrast 

imaging [37, 43]. 

Quantitative phase contrast imaging (QPI) is one of the significant contrast modalities that can 

be additionally realized through computation algorithm using the LED-based multi-contrast 

microscopes. Contrary to qualitative information given by Zernike phase contrast or DIC/DPC, QPI 

offers quantitative information of specimens relate to the optical path length from intensity 

measurements. Among diverse methods of QPI, interferometry and holography are the common that 

uses coherent illumination and reference beam. However, these methods are mostly expensive, sensitive 

to optical alignments, speckle noises, and vibration of the system [44-46]. Alternatively, partially 
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coherent illuminated QPI systems such as transport-of-intensity equation (TIE) [47-49], Fourier 

ptychography (FP) [50-52], and DPC-based approaches [37-40] have been introduced to overcome the 

limitations found in coherent illumination-based QPI approaches. Utilizing the partial coherence 

illumination in QPI makes the system having imaging resolution up to incoherent resolution limit (2x 

better than coherent diffraction), better optical sectioning, and reduction of speckle noises. Especially, 

DPC-based QPI approach presented advantage of less imaging number needs for phase recovery 

compare to others approaches. With four images with asymmetric illuminations in opposite directions 

and assumption based linearized model from weakly scattering object, complex optical models from 

qualitatively measurements of DPC could be simplified to recover the phase in quantitative ways [37-

40]. 

In this section, LED matrix-based multi-contrast microscope is introduced as preliminary 

research. Here, all RGB colors were assigned for each LED pattern to perform the single-shot multi-

contrast imaging [37, 43]. Inversion model of weak object transfer function (WOTF) [40], which 

explains the connection between illumination and pupils for image formation of quasi-transparent object, 

was derived to quantify the phase information from intensity-based images. Instead capturing the four 

series of images, only two images from vertical and horizontal directions were captured, hence, 

improving the imaging speed. Prior to image acquisition, influence of the illumination shape or 

coherence parameter to the QPI was studied through simulations and experiment. Moreover, we 

denoised the residual noise amplifications from QPI by combining Tikhonov and total variation (TV) 

regularization at deconvolution process [53]. To evaluate the multi-contrast modalities, quasi-

transparent biological specimens were utilized in this section.  

 

2.1.2 Single-shot BF, DF, DPC image reconstruction 

 

Figure 2.1 Multi-contrast microscope using RGB color patterns in LED matrix. From single shot mixed color 

image, each colors representing different contrast images. With simple computations, DPC and BF could be 

realized. 
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Here, we controlled each source on the LED matrix to light up the half circle asymmetric patterns to 

provide phase shifting illumination scheme. For DF imaging, LEDs located out of the objective NA 

were programmed to illuminate the specimen. However, all patterns were assembled by assigning the 

individual colors to each pattern to integrate all contrast images in a single illumination. For most of 

color camera sensors, to separately measure the color intensities, R, G, B color filters (or Bayer filter) 

are employed. Therefore, if each pattern on LED matrix purely contains R, G, B colors, multiple contrast 

images could be acquired from color camera with single-shot image. Due to leakage or crosstalk 

between each color pixels, color wavelength used for half circle should be separated to avoid the 

interference, hence, blue and red color was assigned [37]. Then, green was assigned the outer side of 

objective NA to provide DF images. 

As shown in Figure 2.1, multiplexed contrast image could be acquired by separating each color 

from raw data. With simple operators such as add, subtract, and divide, BF and DPC could be generated. 

Bright field could be acquired from 𝐼𝐵𝐹 = 𝐼𝑟𝑒𝑑 + 𝐼𝑏𝑙𝑢𝑒, where 𝐼𝑟𝑒𝑑 , 𝐼𝑏𝑙𝑢𝑒  denotes image from red half 

circle, and blue half circle, respectively. 𝐼𝑔𝑟𝑒𝑒𝑛  could be utilized to visualize the DF image without 

additional computations. 𝐼𝐷𝑃𝐶 =
𝐼𝑟𝑒𝑑−𝐼𝑏𝑙𝑢𝑒

𝐼𝐵𝐹
  was computed to generate the DPC image which transfer 

the invisible phase into measurable intensity by shifting the sample’s spectrum in Fourier domain [54]. 

Other than these contrast images, phases could be recovered in quantitative ways by utilizing measured 

phase information from DPC. Compare to DPC, QPI allows better contrast in image, and further 

opportunity for data analysis. DPC uses linearized forward model or weak object transfer function 

(WOTF) to describe measurable phase intensity that was acquired from sample’s complex-field. 

Solving the forward model through the inverse problem could derive phase in quantitative value.  

 

2.1.3 Weak object transfer function (WOTF) 

 

Consider a weak scattering object with complex transmission function t(r) = 𝑒−𝜇(𝑟)+𝑖𝜙(𝑟)  [40], 

where 𝜇 denotes the absorption of the sample and 𝜙 characterizes the phase with r= (x, y) spatial 

coordinates. Applying the weak phase approximation allows complex transmission function can be 

simplify as t(r) ≈ 1 + −𝜇(𝑟) + 𝑖𝜙(𝑟) by solving the Taylor series [55]. For partially coherent which 

consists of multi-angle spatially incoherent illuminations, the images were formed by superimposing 

all intensity spectra corresponding to each coherent illumination or point source. Therefore, the intensity 

is initially analyzed at the camera regarding to single coherent illumination. The intensity captured of 

the transmitted complex wave-front in camera plane is [38, 40]: 

 

I(r) = |ℱ{ℱ [√𝑆(𝑢)𝑒𝑖2𝜋𝑢𝑟 ∙ t(r)] ∙ 𝑃(𝑢)}𝑠|
2
                    (2.1) 
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where ℱdenotes the Fourier transfer function, u spatial frequency coordinates in Fourier domain. Input 

field after light from single point source passes the sample can be achieved by the product of 

illumination S(u) and complex transmission function t(r). In general, illumination from each point 

source is approximated by a uniform plane wave at the sample, resulting overall illumination could be 

written in √𝑆(𝑢)𝑒𝑖2𝜋𝑢𝑟  . After light passes the objective, filed is filtered from circular pupil at the 

Fourier plane before reaching the camera plane. P(u) represents the pupil function which is defined as 

p(u) = circ(u/ρ𝑜), where ρ𝑜 = 𝑁𝐴𝑜𝑏𝑗/𝜆 serves as low-pass filter from objective [56] and circ(ψ) 

is defined as: 

circ(ψ) =  {
0,          |ψ| > 1

1,          |ψ| ≤ 1
                            (2.2) 

 

At the camera, field intensity of 2D image is then could be written as taking integral of each intensity 

of each point source [38, 40]: 

 

  I(r) = ∬ |ℱ{ℱ [√𝑆(𝑢)𝑒𝑖2𝜋𝑢𝑟 ∙ t(r)] ∙ 𝑃(𝑢)}𝑣|
2
𝑑2𝑢                 (2.3) 

 

Furthermore, approximation assumption could simplify the intensity in to 3 terms, including 

background term, absorption contrast term, and phase contrast term [38, 40]. Then, we took Fourier 

transform of Eq. (2.3) to produce spectrum of intensity Ĩ(u): 

 

Ĩ(u) = Bδ(u) − 𝐻𝑎𝑏 ∙ �̃�(𝑢) + 𝑖𝐻𝑝ℎ ∙ �̃�(𝑢),                   (2.4) 

 

where 𝑖 is imaginary unit; B, background term, 𝐻𝑎𝑏, absorption transfer function, 𝐻𝑝ℎ , phase transfer 

function (PTF or WOTF). Express of B, 𝐻𝑎𝑏, 𝐻𝑝ℎ  are given by 

 

B = ∬𝑆(𝑢′)|𝑃(𝑢′)|2 𝑑2𝑢′,                           (2.5) 

 

𝐻𝑎𝑏 = ∬𝑆(𝑢′)𝑃∗(𝑢′) 𝑃(𝑢′ + 𝑢)𝑑2𝑢′ + ∬𝑆(𝑢′)𝑃(𝑢′) 𝑃∗(𝑢′ − 𝑢)𝑑2𝑢′,        (2.6) 

 

𝐻𝑝ℎ = ∬𝑆(𝑢′)𝑃∗(𝑢′) 𝑃(𝑢′ + 𝑢)𝑑2𝑢′ − ∬𝑆(𝑢′)𝑃(𝑢′) 𝑃∗(𝑢′ − 𝑢)𝑑2𝑢′,        (2.7) 

 

where 𝑆(𝑢′), and  𝑃(𝑢′) denotes intensity distribution of illumination source and pupil function of 

the objective lens in Fourier space, respectively. Ideally, 𝑃(𝑢′)  is low-pass filter with a cutoff 

frequency of 
𝑁𝐴𝑜𝑏𝑗

λ
  (coherent diffraction limit). Eq. (2.6) and (2.7) is general expression, allowing 
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application to any illumination patterns and pupil functions [38, 40]. For DPC image 𝐼𝐷𝑃𝐶   along 

specific direction of phase gradient, two images from complementary illumination S(u) were considered 

for calculation 

 

I𝑙𝑟
𝐷𝑃𝐶 =

𝐼𝑙−𝐼𝑟

𝐼𝑙+𝐼𝑟
 ,                               (2.8) 

 

where 𝐼𝑙 and 𝐼𝑟  present the image acquired from left- and right-half circle (could be blue and red half 

circle or gradient amplitude pattern or annulus pattern). To facilitate further analysis of phase transfer 

function, Fourier transform of numerator and denominator from Eq. (2.8) was derived by substituting 

Eq. (2.4) [38]  

 

 ℱ(𝐼𝑙 − 𝐼𝑟) =  [𝐻𝑙
𝑝ℎ

− 𝐻𝑟
𝑝ℎ

] ∙ 𝑖�̃�(𝑢)                     (2.9) 

 

ℱ(𝐼𝑙 + 𝐼𝑟) =  [𝐵𝑙 + 𝐵𝑟] ∙ δ(u) − [𝐻𝑙
𝑎𝑏 + 𝐻𝑙

𝑎𝑏] ∙ �̃�(𝑢)+[𝐻𝑙
𝑝ℎ + 𝐻𝑟

𝑝ℎ] ∙ 𝑖�̃�(𝑢).     (2.10) 

 

In the aberration-free system, ideally DPC image doesn’t contain any absorption information, leading 

𝐻𝑎𝑏 = 0 . Moreover, symmetrically designed illumination patterns on the corresponding axis would 

make phase term, 𝐻𝑙
𝑝ℎ

= −𝐻𝑟
𝑝ℎ

 , and background term 𝐵𝑙 = 𝐵𝑟 . Thus, Eq. (2.9) and (2.10) can be 

rewritten as ℱ(𝐼𝑙 − 𝐼𝑟) = 2𝑖�̃�(𝑢) ∙ 𝐻𝑝ℎ   and ℱ(𝐼𝑙 + 𝐼𝑟) = 2𝐵 . Finally, Fourier spectrum of DPC 

image can be defined as 

 

Ĩ𝑙𝑟
𝐷𝑃𝐶 =

𝐻𝑝ℎ

𝐵
∙ 𝑖�̃�(𝑢),                           (2.11) 

 

where background B can be approximated by sum of two images or brightfield image. Throughout this 

model, forward linear model such as A=Bx to has been established and the quantitative phase 

information can be calculated from it by solving phase retrieve inverse problem [38, 40, 53, 54, 56]. 

Furthermore, phase transfer function model will be used to analyze the relationship between coherence 

parameter of illumination and difference of spatial pattern. These methods were summarized in Figure 

2.2. 

 

2.1.4 Quantitative phase reconstruction from DPC 

 

For reconstruction of phase from Eq. (2.11), inverse problem could be solved by simple deconvolution 

of the multi-axis DPC images with phase transfer function [38, 40, 53, 54, 56]. However, calculation of 

the optical transfer function 𝐻𝑝ℎ  in Eq. (2.7) would result in zero at frequencies along the axis of 
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asymmetry and over the bandwidth of the spectrum, providing an amplified noise information when 

direct deconvolution has been computed. Therefore, least squares method with regularization term was 

utilized to solve our forward model [38, 40, 53, 54, 56]: 

 

min∑ |𝐼𝐷𝑃𝐶,𝑖(𝑢) − �̃�𝑖(𝑢) ∙ �̃�(𝑢)|𝑖
2
+  𝛾|�̃�(𝑢)|

2
,                (2.12) 

 

where 𝑖 denotes the number of DPC measurements, which is 𝑖 = 1, 2 for 2-axis DPC images; �̃�𝑖(𝑢) 

denotes 
𝐻𝑝ℎ

𝐵
  for each DPC measurement; 𝛾  denotes a Tikhonov regularization term to avoid 

singularity. Therefore, inverse problem can be solved  

 

𝜙(𝑟) = ℱ−1 {
∑ �̃�𝑖(𝑢) ∙ 𝐼𝐷𝑃𝐶,𝑖(𝑢)𝑖

∑ |�̃�𝑖(𝑢)|2+𝑖 𝛾
}                       (2.13) 

 

here ℱ−1 corresponds to inverse Fourier transform. We compared the difference of the phase transfer 

functions referring to shape of illumination masks such as gradient amplitude, conventional half circle, 

and annulus circle using synthetic intensity of the phase transfer function for ∑ |�̃�𝑖(𝑢)|
2

𝑖  in multi-axes.  

 

Figure 2.2 Summarization of quantitative phase reconstruction. 
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2.1.5 System configuration 

 

Figure 2.3 illustrates the schematic of multi-contrast microscope, which was built on custom inverted 

microscope. For the custom microscope, off-the-shelf optic components were utilized. Mirror reflected 

the light in 90 degree and 0.5x tube lens was employed in this system to shrink down the overall 

dimension, providing the portability to the system. Instead using condensers, array of LED (Adafruit, 

32x32 RGB LED matrix panel) was adopted to the system. Matrix had 4 mm spacing between LEDs 

and was placed 70 mm above the sample where illumination could be expected as planewave on the 

sample. Each LED in the matrix panel was controlled by MCU board (Arduino, Arduino UNO) to 

provide the patterns that illuminate the sample in a given angle. In this study, LEDs were not 

synchronized through sending trigger signals with the color camera (Thorlabs, CS505MU), instead 

controlled the exposure time to 32 ms to eliminate the rolling shutter effect. Using color calibration 

algorithm given by manufacturer, intensity of each red, green, blue was balanced from flat microscope 

slide glass illuminated by pattern shown in Figure 2.3. This calibration makes camera equally sensitive 

to each color, making each color image similar to condition of single-color illumination. All image was  

 
 

Figure 2.3 System configuration of single-shot multi-contrast microscopy.  

 

captured using full sensor (2448 x 2048) with 12-bit ADC resolution. With this configurations, 1-axis 

single-shot multi-contrast image could be acquired within ~ 30 fps, which could be reduced in half in 

ideal case when 2-axial images are captured for reconstruction of QPI. 
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2.1.6 Effect of illumination patterns  

 

 
 

Figure 2.4 Relationship between illumination and phases in freqeuncy spectrum. Point source located near 

(a) NA of object, (b) NA/2 of object, and (c) center. PTF is difference of convolution and corss-correlation 

between illumination source and pupil function. 

 

In DPC-based QPI, PTF or WOTF play as crucial role that directly matters to phase visibility in intensity 

form. Particularly, illumination characteristics and pattern are the key that affects the frequency 

responses in PTF. Therefore, understanding PTF and relationship of illumination patterns are significant 

to realize the quantitative phase imaging. In this section, we explored the effect on PTC through tuning 

the illumination patterns by simulation according to Eq. (2.10). 

S(u) or illumination was assigned as single point source, making it equivalent to single LED 

illumination in real setup, and adjusted its location in order to analyze the phenomena in PTF. In Figure 

2.4, we explored the PTF that related to single point source placed in various location within the 

objective NA. Since WOTF can be extracted by subtraction between cross-correlation function and 

convolution of pupil and source, we illustrate correlations and its subtraction at the side of each 

illumination images. Figure 2.4a illustrates the effect of PTF when point source is located near objective 

NA (coherence parameter σ =
𝑁𝐴𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑁𝐴𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
≈ 1 [40]). For this case, no overlaps were found, resulting 

all phases has been shifted without distortions. Radius of intensity spectrum is corresponding to NA of 

object and summation of both would make 2 times of NA. This explains why system with incoherent 

illumination has resolution two times better than that of system using coherent illumination. If point 

source moves toward center with low oblique angle σ = 0.5, as shown in Figure 2.4b, PTF start to have 

overlapping area where it could be found near axis. As point source illuminates at the center σ ~0, no 
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phase responses were found. In Figure 2.4d, we described the PTF under multiple illuminations. 

Furthermore, effect of illumination patterns was tested to real microscope setup using unstained 

cervix cells as shown in Figure 2.5. We captured DPCs and reconstructed the phase according to σ 

which was tuned from 0.3 to 1.3 by changing the radius of asymmetric half circle patterns. At the low 

coherence parameter, diffraction from cells were shown in BF image, but no contrast was found in DPC 

images. Low and high frequency response is lost in this scenario. Therefore, QPI showed background 

amplified images with corrupted phase information. When coherence parameter σ > 1.0, contrast has 

been enhanced in DPC images as well as in QPI reconstruction. Moreover, depth sectioning was 

enhanced while artifacts were reduced (cancelling the diffracted images behind the focus). Interestingly, 

σ = 0.9 illumination provided structural information in DPC, but signal to noise ratio was still low 

compare the that of σ > 1.0.  Throughout this experiment, we now understood that coherence 

parameter should always be larger than 1.0 that illuminates the specimen from high angles in order to 

fully reconstruct the QPI without any artifacts.    

 

2.1.7 Result & Discussion 

Phase calibration using microbeads 

Tikhonov’s regularization term 𝛾  is generally introduced to stabilize the deconvolution process in 

DPC-based QPI. Thus, optimizing the regularization 𝛾 is significant for accurate recovery of the phase 

along with noise reduction [40, 57]. By capturing the silica microspheres with a size of 5 μm (Sigma 

Aldrich, 44054) immersed in 86-89% glycerol solution (Sigma Aldrich, 49781) between microscope 

cover glass and cover glass, we optimized the regularization parameter to correlate the recovered phase 

to ideal phase delay. Two DPC imaging in the vertical and horizontal direction were performed using 

color assigned illumination pattern and QPI was performed to retrieve phase in quantitative manner. 

10x/0.25NA objective lens was utilized for this experiment. The refractive index of microsphere and 

glycerol was found as 𝑛𝑠 = 1.46  and 𝑛𝑔 = 1.45 , respectively. In this case, the ideal phase delay 

induced by specimen could be estimated as 𝛥𝜑 =
2𝜋

𝜆
(𝑛𝑠 − 𝑛𝑔)𝑇 = 0.593 rad, where T was 5 μm , 

and wavelength (𝜆) of 530 nm was given by the average of RGB [37]. Here, both DF and QPI were 

shown in Figure 2.6. Compare to DF, microspheres were all correctly matched each other, and no 

eliminated structures were found in QPI. For this system, regulation parameter 𝛾 was 5x10−2.3 was 

utilized. The phase information measured along the white solid line crossing the microsphere is shown  

as purple solid line in the graph. Our measured phase delay was 0.597, which corresponds to less than 

1% of phase difference from ideal phase delay. However, tuning regulation parameter 𝛾 to 1 makes 

system uncalibrated and makes phase large errors as shown in purple dash line in the graph. One should 

know that there could be variations in measurements due to uncertainties in size, refractive index of 

microspheres, and aberration in optics [37, 57]. 
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Noise reduction for QPI using regularization method 

Tikhonov’s regularization (Tik) method introduced in deconvolution process guarantees the 

stability in the reconstructed images, suppressing the noises from low-frequencies and over incoherent 

diffraction limits. However, noises were not fully removed and were still visualized across whole FOV 

in the QPI. This may be caused by low-sampling frequency in the imaging system which correlates to 

the physical size of pixels in camera sensors. According to Nyquist-Shannon sampling theorem, the 

image pixel should be half smaller than the size of object which we wish to visualize. If we think this 

in frequency domain, it corresponds that maximum sampling frequency should be at least two times 

higher than obtained frequency. Maximum sampling frequency could be provided by Ϝ𝑐𝑎𝑚 =

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

2∗𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒
, where magnification is magnification of system, and pixel size of imaging sensor. In 

order to provide phase information within the incoherent diffracted limits in Fourier spectrum, we need 

to satisfy the Nyquist criteria condition Ϝ𝑐𝑎𝑚 > Ϝ𝑃𝑇𝐹 , where Ϝ𝑃𝑇𝐹  denotes frequencies inside of 2 ∗

𝑁𝐴𝑜𝑏𝑗/λ  [38]. Using 40x/0.55NA objectives, pixel size of 3.5 μm in CCD and 530 nm of wavelength 

for the system, Ϝ𝑐𝑎𝑚 = 0.006 > Ϝ𝑃𝑇𝐹 = 0.002 was satisfied. Although, small size of pixel increases 

the SNR from limited illumination throughput. Furthermore, sampling frequency computed by small 

pixel size are more sensitive to noises, picking up more details from the object frequency. Therefore, 

noises after deconvolution process were not clearly eliminated. To make our deconvolution stable and  

 
 

Figure 2.5 Effects of spatial coherence parameter 𝛔  to the imaging system. Larger coherence parameter 

provide stabilized phase contrast as well as qunatitative phase estimation. 
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Figure 2.6 Phase measurement accuracy using single-shot multi-contrast illumination pattern. DF is 

provided to compare the structural deformations or missings from QPI. Phase delay is measured from distribution 

of line crossing the center of micorsphere.  

 

 

robust to noises, we utilized hybrid regularization method based on total variation (TV) regularization 

and Tikhonov’s regularization . TV-regularization is well known signal processing method that has great 

ability to eliminate noises while preserving the geometry of object. Here, we empirically selected 0.022 

for TV-regularization term and performed 20 iteration using alternating direction method of multipliers 

for noise reduction [53]. To test out the processing, this time, we captured fibroblast cells using our 

imaging system. Top row of Figure 2.7 presents the QPI using Tikhonov regularization method only. 

Amplified noises could be found in the retrieved phase image by looking at the magnified images. 

However, application of hybrid regularization method had significantly reduced the noises from the 

image. In addition, no distortions or undesired reconstruction of objects in terms of geometrical shape 

was were not found in TV-Tik regularization result. Therefore, overall image looks smoother with 

hybrid method. At the bottom of the Figure 2.7, we compared QPI to negative phase image captured by 

conventional Zernike phase contrast microscope. Reconstructed QPI demonstrates correlated 

geometrical information compare to that from conventional phase microscope, while offers more details 

in cell constituents. 

 

 

 



25 
 

 

 

 

 

 
 

Figure 2.7 Result of noise reduction in QPI using live fibroblast cells. 
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Single-shot multi-contrast imaging of biological specimens 

 

 
 

Figure 2.8 Result of multi-contrat microscope uisng cheek cells. BF, DF, QPC, and QPI was reconstructed with 

single microscope setup. 10x/0.25 NA objective was utilized for this imaging. 

 

Multi-contrast imaging capability was evaluated using various biological specimens. First, we acquired 

images from human epithelial cheek cells. Since cheek cells are transparent with refractive index similar 

to that of surrounding medium, it is very quick and useful sample for evaluating the multi-contrast 

imaging. Therefore, it is very difficult to see the details through bright field image presented in the top 

left corner of Figure 2.8. On the other hand, dark field image clearly visualized the contrast that arises 

from the scatterings at the cell boundaries. Because light is illuminated outside of the numerical aperture 

of objective lens, there are no signals at the background, hence, visualized only black. DPC of horizontal 

where black small features were found in bright field image. Solving inverse problem using horizontal 

and vertical DPC measurements, quantitative phase image was obtained. Bottom right of Figure 2.8 

presents QPI of cheek cell. In QPI, cellular constituents were clearly visualized with great contrast. 

We also captured the transparent small animals to perform in-vivo imaging. Wild-type 

Caenorhabditis elegans (C. elegans) was utilized for this case. C. elegans was immersed in microscope 

immersion oil on the top of the slide glass to suppress its motions. As shown in Figure 2.9, some 

contrasts were found in bright field, dark field, and DPC images, but not much details were presented. 
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However, QPI provided significantly higher contrast compare among other imaging modalities. 

Anatomical structure of C. elegans was clearly discerned in QPI. 

 

2.1.8. Conclusion 

Throughout this study, multi-contrast imaging was evaluated and presented the great imaging capability 

that offers complementary information of specimens in the single microscope setup. Advantage of this 

system is according to its simplicity and cost-effectiveness which only requires color LED matrix 

implementation on the illumination part. Assigning the colors on the illumination pattern that 

corresponds to each color channel of imaging sensor allowed single exposure for acquiring multiple 

contrast modalities. Using regularized devolution method with two-axis qualitative phase contrast 

images, noise suppressed quantitative phase was successfully recovered. Once quantitative phase was 

calibrated through correlating to the ideal phase delay by capturing the microsphere, our system offered 

stable performance in the various range of magnifications. On the other hand, few issues were found to 

be considered for using simultaneous multi-contrast imaging system. Although objectives were 

designed to correct the chromatic aberrations, minor deviations in the structures of object for each image 

channel. Due to this reason, slightly unfocused or blurred image would be presented in QPI which is 

sensitive to focus misalignment, thickness of specimen, and higher magnification. Another issue in this 

system was difference in sensitivity of chromatic absorption. This may critically affect DPC/QPI, which 

may strictly limit the specimen to totally translucent specimens. 

 

 

 
 
Figure 2.9 Result of multi-contrat microscope uisng c.elegans. 40x/0.55 NA objective was utilized for this 

imaging. 
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2.2 Development of QPI system using diffuser based NIR illumination 

 

2.2.1 Introduction 

 

Phase imaging has become a valuable tool in biomedical fields. Phase of specimens is somewhat 

difficult to acquire from intensity-based images or conventional bright-field microscopy, hence, some 

imaging modalities, such as Zernike phase contrast, differential interference contrast, have been 

provided to translate the phase information into measurable intensity [40]. However, these two classical 

methods provide information of the phase qualitatively, leading to difficulties in data interpretations or 

further analysis [58]. In recent years, quantitative phase imaging (QPI) technique has been introduced 

as alternative method that recovers the optical path length or phase of specimen from intensity 

measurements in quantitative manner [37, 40, 53]. Label-free imaging is one of the great advantages of 

QPI, allowing variety of applications to visualize the quasi-transparent specimens without any damages 

of photo-bleaching and phototoxicity from labeling [17].  

During the last decades, various QPI approaches such as interferometric microscopy, digital 

holography (DH), transport-of-intensity equation (TIE), Fourier ptychography (FP), and differential 

phase contrast (DPC) have been developed [37, 40, 53]. Each of these techniques is based on different 

principles for imaging to recover phase of biological samples in quantitative manner. DH or 

interferometric approaches, in general, uses coherent light source, making the system expensive, 

sensitive to misalignments, speckle noises, and vibration [54, 56]. Alternative to coherent illumination 

system, TIE had been introduced as a well-established non-interferometric phase retrieval approach that 

uses partial coherent illumination. TIE is 2D second-order elliptical partial differential equation that 

uses multi-axial defocused images and inverse method-based Poisson solver to recover phases of object. 

TIE is fully compatible method with bright-field microscope configuration and allows resolution up to 

the incoherent resolution limit [54, 59]. FP is another QPI technique to retrieve the complex field of an 

object using multiangle coherent illumination in microscopic imaging. Using the low-resolution images 

captured from each different incident angle of illumination, the bandwidth of the Fourier spectrum can 

be expanded with an iterative phase retrieval algorithm. Without any mechanical scanning, FP allows 

to provide large field-of-view (FOV) with enhanced resolution in either amplitude or phase image  [51, 

52, 54]. Among others, DPC approach-based QPI, however, uses only four images from asymmetric 

partial coherent illumination patterns and provides promising non-interferometric performance with 

better system stability. Due to illumination properties, DPC approach offers twice better lateral 

resolution limit (
2𝑁𝐴𝑜𝑏𝑗

λ
), better optical sectioning, and less speckle noise [52, 54]. In addition, the first-

order derivative response to phase in DPC based QPI system has less sensitivity to frequency noise [54, 

56]. By utilizing the weak object transfer function, complex field of weakly scattering specimen can be 

simplified and further able to be separated into phase and amplitude in the transfer function. Through a 
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simple deconvolution method with regularization term, phase could be quantified from multi-axes DPC 

measurements [37, 40, 53]. 

Typically, illumination patterns in DPC based QPI system has been designed with a half-circle 

[40], which was later expanded to annulus [54], sector-form [60], radial [57], and gradient amplitude 

[56]. These patterns were implemented using various methods including physical amplitude masks, 

programmable LCD or LED matrix [61], and spatial light modulator (SLM) [62]. Moreover, there were 

efforts to utilize partially coherent multi-color patterns to improve the imaging speed and reduce the 

complexity of system [37, 60]. Although these methods in DPC successfully have been quantified the 

phase, application of QPI is mostly restricted to live cell imaging which resulted from the utilization of 

weak-object approximation. Moreover, absorption is another factor of limiting application field. Highly 

absorbing object causes phase error while recovering the phase information through calculating the 

DPC images from complementary pattern with asymmetric illumination sources [40]. In order to solve 

the issue, shifting the illumination wavelength to near-infrared spectrum (NIR) would allow to assume 

the highly absorbing sample as weakly scattering object as using the visible spectrum [17, 63]. However, 

not only there are no off-the-shelf NIR based programmable LED matrix to afford but also developing 

NIR-based LED matrix is labor-intensive task and expensive. In addition, using NIR illumination for 

LCD based pattern is not appropriate because LCDs are commonly designed for visible lights, leading 

to the phase vanishing from illumination leakage. Using physical amplitude mask with NIR illumination 

may be available, yet, still it requires condenser lens which is still expensive and cumbersome to align 

the optics. Therefore, applications in thick tissues or stained object are not appropriated and have been 

avoided to capture with conventional DPC based QPI system.  

In this study, a new approach of DPC microscopy is proposed by using diffuser based NIR 

illumination with single LED source. Our novel approach to the DPC incorporates diffuser with physical 

patterns made out of 3D printed material to generate the scattering effect which converts the coherent 

characteristics of single point source from to partial coherent. Without adapting expensive apparatus to 

the system, partial coherent illumination condition was maintained, which enhances the lateral 

resolution up to incoherent limit. Moreover, utilizing NIR illumination may lower the scattering, 

avoiding absorption and attenuation of the transmitted light from the thick specimens or highly 

absorbing samples. Therefore, weak-object approximation was still valid for computing the phase from 

2-axis DPC measurements. Herein, various illumination patterns were realized in our illumination 

configuration and performances were explored and studied. In addition, proposing QPI was evaluated 

and experimentally demonstrated using stained cervix cells and stained mouse brain tissue. 

 

2.2.2 System configuration 

 

Figure 2.10 shows a schematic of the proposed QPI system setup, consisting of single NIR LED with 
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center wavelength of 780 nm (Thorlabs, M780L3), series of optical diffusers (Thorlabs, DG20-120-

MD, DG20-220-MD) as illumination apparatus. At the filter for generating the illumination pattern, 

customized shapes of ABS block were made utilizing 3D printer in this study. This 3D printed object 

efficiently blocks the illumination on the non-opened area, hence, offering the desired shape without 

any TFT/LCD panels or programmable circuits for DPC acquisition. In order to capture the image, 

customized microscope was employed, incorporating 10x objective (Olympus, PlanN10X) with 0.25 

numerical aperture (NA), infinity-corrected tube lens (Thorlabs, ITL200). All the data was collected by 

a 16-bits sCMOS (Andor, Zyla 4.2 Plus, 2048×2048 pixels, 6.5μm pixel pitch). 3D printed filter was 

manually rotated at 0,90,180,270 degrees for capturing the 2-axis DPC images with condition of short 

exposure time of 30 ms.  

 

 
 
Figure 2.10. System schematic of quantitative phase imaging system diffuser based gradient NIR 

illumination. Asymmetric patterns were generated from the physical filter with single NIR (𝛌𝒄 =780 nm) 

illumination source. Diffuser is placed before sample to create scatterings that act similar to partial coherent light 

source. Patterned filter was developed by printing 3D models that intentionally designed in prior. For this system, 

customized infinity-corrected invert type of microscope was developed. L1: collimator lens; F; 3D printed filter; 

D: diffusers; S: sample; Obj: objective; L2; tube lens.  

 

 

2.2.3 Gradient source calculation 

Principle of the system is following the 2.1.3 Weak object transfer function (WOTF) section. For the 

gradient amplitude patterns, gradient mask was applied to the partially coherent illumination. We 

redefine the S(u) as following: 

 

S(u) = A(u) ∙ circ(ψ)                             (2.14) 
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where A(u) is amplitude mask that corresponds to following: 

 

A(u) = [

α(n)

α(n)
⋮
𝑚

]  𝒯(𝑘),    (α(n) =
(s∙n−1024)

1024
)                     (2.15) 

 

α(n) with slope s is a linear function to create a gradient slope by stacking α(n) in 2D matrix form; 

n, m denotes pixels (if we use 2048x2048) in u𝑥 , u𝑦, repectively. Moreover, 𝒯(𝑘) is a transformation 

function for 2D matrix which rotates amplitude mask in four different directions to capture, and it is 

define here: 

 

𝒯(𝑘) = [
cos(𝑘) − sin(𝑘)

sin(𝑘) cos(𝑘)
] [

𝑢𝑥

𝑢𝑦
]     (𝑘 =  0,180,90,270)              (2.16) 

 

For gradient annulus pattern, we adjust the circ(ψ) function as following: 

circ(ψ) =  {
0,     |ψ| < 0.9, |ψ| > 1

1,            0.9 ≤ |ψ| ≤ 1
                            (2.17) 

 

 

 

2.2.4 Partially coherent NIR-Illumination based on diffuser implementation 

 

 
 

Figure 2.11 Schematic of diffuser based NIR illumination. Filtered light from point LED source passes the 

diffuser and randomly scatters with gradient effect due to near Lambertian (more similar to elliptical shape). 
Captured background image and its 3D surface plot clearly shows gradient amplitude, where white arrows denote 

gradient directions. 

 

Series of diffusers in illumination apparatus randomly scatters the light that offers spatially less coherent 

illuminations with multiple oblique angles. To provide the phase shift to the specimen, we applied 3D 

printed physical patterns between diffuser and LED to create the patterns on the sample. From this 

apparatus, intensity of the patterned illumination will gradually decrease toward the center of the image 

as shown in Figure 2.11. In general cases, speckle noises were caused when highly spatial coherence 
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light such as laser passes the diffuser. However, typical LED sources have low coherence volume which 

is the product of coherence length and area. Coherence photon from different coherence volume cannot 

interfere each other; hence, LED would provide speckle patterns [64, 65]. Therefore, we utilized single 

LED source with characteristics of low temporally and spatially coherence to generate the low speckle 

noises after light traveled diffusers. To evaluate the effect of diffuser based partially coherent 

illumination, background images were captured without any sample placements using both with and 

without application of diffuser on the illumination apparatus. Herein, RGB LED-matrix was also 

applied for further comparative evaluation of the diffuser effect in background. Haralick’s feature based 

on gray-level co-occurrence matrices (GLCM) was also computed to measure the texture of the noise 

in quantitative and statistical ways. Utilizing the probability of GLCM elements, texture statistics such 

as contrast, correlation, energy, and homogeneity can be calculated [66, 67]. Figure 2.12 illustrate how 

GLCM could be measured form gray scale image and equations are described as well.  

Evaluation of effect applying the diffuser to provide partially coherence illumination using 

single LED source was compared in qualitative and quantitative manners. In qualitative manner, we 

captured images under different illumination conditions and cropped the original image consist of 2048 

x 2048 pixels to 760 x 760 pixels to see details as shown in Figure 2.13. Intuitively, fine speckle noises 

were found in the background of diffuser based NIR illumination which minimally elevated the noises 

compare to that without diffusers (Figure 2.13e). Compare to images obtained using R,G,B LED-matrix, 

 
 

Figure 2.12 Illustration of Haralcik’s texture feature calculation. From gray level image, pixel combinations 

were counted only considering the neighbor pixels on the right and marked in GLCM matrix. After marking all 

the combinations in GLCM from grayscale image, each element is divided by sum of all elements in GLCM to 

create the probability of combinations in matrix form (normalized GLCM). Using GLCM, texture features can be 

calculated.  

 

higher SNR was expected using NIR-based illumination and clear qualitative background was able to 

observe. Due to spherical shape of illumination in each point source of RGB LED-matrix, intensity 

across the entire image in Figure 2.13(a-c) was found inhomogeneous [40]. Moreover, 3D surface plot 

was demonstrated to provide intuitive perception of noise in Figure 2.14. In quantitative ways, contrast, 

correlation, and homogeneity was calculated and described in Figure 2.14f. Background using NIR 
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shows significantly low contrast, higher correlation and homogeneity compare to these from RGB LED-

matrix. These were expected that contrast in Haralick’s texture features corresponds to variations 

between neighbor pixels. Usually constant image shows 0 in contrast; hence, higher values can be 

expected where noises were localized. Correlation is value that measures the mutual relationship or 

linear dependency between pixels range in -1 to 1 where NaN for constant image. In addition, 

Homogeneity provides extent of smoothness of gray level distribution of the image. Both correlation 

and homogeneity are expected to be high when there is low noise ratio (NIR backgrounds) as shown in 

Figure 2.14f. Comparatively, NIR with diffuser shows significantly low noises in quantitative 

measurements but it shows difference from NIR without diffuser application. However, these noises are 

found to be very small which can be neglected to capture DPC images. Furthermore, noises in NIR 

background is not expect for speckle noises patterns. 

 

 

 

Figure 2.13 Background comparison using different illuminations. All images were cropped at corresponding 

position in 760 x 760 pixels from original 2048 x 2048 images. Background was captured using partially coherent 

(a) blue LED, (b) green LED, (c) red LED, (d) single NIR LED with diffuser employed, and (e) NIR LED without 

any diffuser attached (low coherence parameter). 
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Figure 2.14 Surface plot under different illuminations and quantitative measurement of the background. 

3D surface plot of computed from backgrounds from Fig. 2.4. Partially coherent (a) blue LED, (b) green LED, (c) 

red LED, (d) single NIR LED with diffuser employed, and (e) NIR LED without diffuser was visualized intuitively 

showing the noises. (f) Graph illustrates the Haralick’s texture features which was calculated form (a-d). 

 

 

2.2.5 Comparison of different diffuser-based illumination patterns on phase transfer 

function and DPC images 
 

Validation of illumination patterns 

Due to random vectors with phase variations caused by scattering effect, diffuser provide partially 

coherent illumination. When 1/2 of illumination is blocked before the light reaches the diffuser, light 

wave starts to diffract at the edge of the illumination stop or mask which creates diverging wave. The 

waves behind the stops contains less intensity compare to that of waves from opened areas. From this 

effects, gradient amplitude patterns can be generated for our system. If we block the middle part of 

illumination with size less than NA from gradient amplitude, gradient annulus patterns can be generated. 
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Figure 2.15 Illustration of illumination apparatus with beam path and measurements from illumination 

patterns. (a) Image describing the scattering characteristics of employed diffuser in terms of intensity and angle. 

(b) Intensity measurements of diffuser surface for each illumination pattern. 

 

In order to validate this scenario from our microscope system, we capture the surface intensity of the 

diffuser. Normalizing the line profile crossing the center of the image, intensity variation of each the 

illumination pattern was evaluated as shown in Figure 2.15b. Compare to conventional half asymmetric 

pattern, intensity profile of gradient amplitude on the second column of the Figure 2.15b has shown the 

gradual increment after the middle of the diffuser surface which allows to create gradient amplitude 

illumination pattern. In addition, annulus pattern has shown highest intensity peak on the edge of the 

line profile. Throughout this measurement we can validated that illumination patterns are able to be 

designed and realized on real optical system through 3D printed objects. 

 

Effect on PTF according to illumination patterns 

In DPC based QPI system, illumination pattern is significant that induces different spatial frequency 

shifts in terms of phase. Different patterns are directly corresponding to transfers of the qualitative phase 

to measurable intensity with different contrast. Thus, exploring the efficient illumination pattern for 

transferring the isotropic phases over the broad frequency spectrum would be essential, resulting in 

enhanced resolution and visibility on the quantitatively retrieved phase image. Relationship between 

illumination and transferred phase in frequency spectrum could be studied through eq. 2.10. Since we 

are using wavelength of low scattering and absorbing characteristic, weak object transfer function is 
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still available for stained or thick samples. 

Four different patterns such as half asymmetric [40], gradient amplitude [56], gradient annulus 

[54], and sectors [60] were designed and assigned for S(u) as shown in Figure 2.16. Furthermore, two 

different superimposing methods corresponds to different PTF axis was further analyzed. Most of the 

conventional DPC based QPI system captures complementary four images from asymmetric 

illuminations to compensate frequency loss mostly found on the central axis regions of PTF [40, 56]. 

However, 1/3 sector of the circle for illumination pattern only requires three images that can generate 

PTF of 3-axis covering the whole frequency spectrum after superimposition [60]. Similar to sector 

illumination pattern, we believe deign of gradient annulus pattern that covers the 1/3 of the circle will 

also available to offer 3-axis of PTF with advantages of using annulus pattern and reduced number of 

image acquisition. In Figure 2.16, intensity summation of half circle PTF shows phase losses on the low 

frequency regions and damping area on each corner. Gradient amplitude also requires 2-axis to cover 

whole frequency spectrum, however, shows better stability and accuracy with isotropic intensity in the 

intensity summation of PTF. Annulus pattern provides the best performances of retrieving the whole 

frequency spectrum within the incoherent diffracted limit, especially in low frequency regions. For 

capturing the three images with sectors, this avoids damping regions that was shown in the conventional 

half illumination, yet, still low frequency information is missing, and anisotropic phase transfer are 

shown in both low and high frequency regions. 3-axis gradient annulus pattern has advantage of 

reducing the number of image while offering the same phase transfer effect using four images with 

same pattern. Among the PTF models based on the illumination pattern, gradient annulus for either 2 

or 3-axis was the optimal for effectively transferring the phase in terms of stability and accuracy within 

incoherent diffraction limits of spectrum. Comparing the line plot of PTF of half asymmetric circle, 

gradient amplitude and sectors, gradient annulus offers better transferring performances in high 

frequency region using all incoherent diffraction limit. Moreover, gradient annulus pattern provides the 

highest gradient (slope) within coherent region (
𝑁𝐴𝑜𝑏𝑗

λ
), meaning better transfer of the phase in the low 

frequency regions. 
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Figure 2.16 Comparison of different illumination patterns on phase transfer function (PTF) model and 

intensity sum of every PTF axis. Four patterns (Half, Gradient amplitude, Gradient annulus, sectors) were 

designed and two different superimposing methods (2-axis or 3-axis) were simulated.  

 



38 
 

 
 

Figure 2.17 Deviations between illumination patterns in frequency spectrum. 

 
 



39 
 

In Figure 2.17, we further analyzed the deviations between different illumination patterns. It is 

clearly visualized that conventional half asymmetric and sector patterns have lowest phase transferred 

accuracy and stability after deviation from other patterns. Phase gradient amplitude shows smother and 

broader phase responses compare to half circle, but still limitations are remained in the low frequency. 

For annulus patterns, both 2-axis and 3-axis methods offers equivalent frequency responses, resulting 

no difference between their PTF summations. Moreover, annulus patterns show the best overall 

frequency responses. Particularly, annulus pattern delivers more information in high frequencies, 

compare to gradient amplitude which demonstrates the isotropic phase transfers. 

 

2.2.6 Result & Discussion 

 

Phase measurements by different illumination patterns 

In order to verify the expected performances of PTF models above, we retrieved the phase quantitatively 

by capturing constituents of phase resolution target (Benchmark Technology, Quantitative phase 

microscopy target). Phase target contains both USAF 1951 resolution target and star target for validating 

the resolution and performance for QPI system. Moreover, phase target consists of 7 equivalent targets 

with different height that increases with interval of 50 nm. Each target with different height was utilized 

for phase calibration by optimizing the regularization term γ to correlate measured phase to calculated 

phase from ϕ =
2π

𝜆
𝑑(𝑛1 − 𝑛2) , where 𝜆  is illumination wavelength, (𝑛1 − 𝑛2)  is deviation of 

refractive index of object to surrounding, d is thickness of the object. The target is constructed with 

acrylate polymer (n=1.52) on the glass and each height is 56.8 nm, 109.9 nm, 168.2 nm, 215.6 nm, 

272.2 nm, 328.4 nm, and 387.4 nm, respectively. Fig 2.9 summarizes the calibrated phases according 

to each height of target captured by each illumination patterns. Ideal phase was computed from real 

measurement of height and wavelength of 780 nm. First to seventh target has ideal phase (rad) of 0.237, 

0.460, 0.704, 0.903, 1.140, 1.376, and 1.623, respectively. Since DPC based QPI system linearized the 

complex transmission function using Taylor-expansion, predicted phase was assumed by taking natural  

 

 
 

Figure 2.18 Quantitative phase measurement of each illumination pattern on the variations of target 

thickness. 
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log of weak object approximation on phase term, resulting in real phase and retrieved phase are related 

to ln (1 + iϕ)  [68]. Therefore, we found that phase measurements from all patterns were found 

slightly lower than ideal phase. Error of phases above 1.0 radian starts to increase which is considered 

inaccurate in DPC-based QPI system. From Figure 2.18, our system was validated for capturing the 

weak scattering or slowly varying phase samples such as biological cells. While observing the retrieved 

phase, we adjusted regularization term to correlate retrieved phase to ideal phase. The gradient annulus 

was optimized with more general regularizations which values are much higher than that of half and 

gradient amplitude patterns. 

In addition, star shaped object was captured from same quantitative phase microscope target and 

compared the performance relate to illumination patterns. Figure 2.19 demonstrates the resolution and 

frequency response in phase depending on the illumination patterns. Captured target height was 

approximately 150 nm. Target was found invisible when ordinary brightfield illumination was given. 

Utilizing the annulus pattern here also provides best performances as expected from PTF modeling. We 

validated that annulus pattern resolves better structure in the middle part of the star target though 

structure from half circle pattern was not well defined. Structure of phase target captured from gradient 

amplitude pattern was not as blurry as that from half circle pattern, however, slightly blurred areas were 

still visible in the central rings. For 3-axis annulus pattern, resolution and frequency response are similar 

to those of 2-axis annulus pattern, though comparatively higher intensities were distributed along the 

illumination axis. Additional quantitative analysis was demonstrated in Figure 2.20 using half and , 

gradient amplitude, 2 and 3-aix annulus patterns. Annulus pattern offers significantly higher contrast in 

high frequency response compare to other patterns. Furthermore, the annulus pattern results in less 

information loss on the line plot obtained in the low frequency range. In order to demonstrate the 

annulus pattern, we captured biological epithelial cells in Figure 2.21 and compared with half 

asymmetric pattern. Qualitatively, QPI retrieved from annulus pattern presents smoother image and 

better contrast across the FOV. Fourier transform of  

 
Figure 2.19 Quantitative phase images of star targets (unable to visualize with BF) for characterizing the 

performance of each illumination patterns. 
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Figure 2.20 Comparison of QPI performance quantitatively 

 

 

measured DPC clearly illustrate higher frequency distribution and area from annulus pattern which 

follows characteristics of PTF. 

 

System characteristics using diffuser-based illuminations 

Although use of NIR wavelength allows to maintain weak object assumption, at the same time, light 

itself has low scattering coefficient which may not provide sufficient expansion of illumination after 

transmitting diffuser. Thus, this could limit the coherent parameter less than 1 (σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 < 1) , 

breaking phase shift effect in DPC. In our NIR-based QPI system, number of implemented diffuser and 

distance between sample to diffuser were main parameters for determining σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 .  

In general DPC imaging system, increasing illumination NA or size of active LED diameter 

could increase σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 . However, for this system, extent of scattering is the crucial factor to expand 

the light as well as to generate partial coherence illumination. Depending on number of diffusers for 

implementation, frequency response was different. Figure 2.22 presents relationship between frequency 

response and number of diffusers that was implemented to expand the illumination. Here we employed 

annulus pattern which is more sensitive to extent of σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒  . Upper row of the Figure 2.22 

demonstrates Fourier transform of QPI image using cervical epithelial cells. Numerical value of grits 

indicates a particle size on the diffuser ground surface. Higher value employs smaller or fine particle 

and lower value incorporates larger or coarse particle in diffuser. Frequency response were found low  
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Figure 2.21 Representative QPI of cervix epitheial cells acquired by half and annulus pattern 

 

especially bound in lower are for single diffuser implementation setup. 120- and 220-grit shows similar 

frequency response with average intensity value of 136.02, and 138.60, respectively. Use of 1500-grit 

illustrates lowest frequency response with average of 128.7. If we coupled 120- and 220- grit diffuser 

with distance 10 mm space, higher scattering effect were found, which enhances the frequency response. 

Average intensity found in Fourier spectrum of QPI was 142.22. Furthermore, line plot cross-sectioning 

the spectrum of QPI of combination diffuser configuration quantitatively indicates the highest 

performance compare to those from single diffuser implementation setup. Throughout this experiment, 

we concluded that using double diffuser was optimal and expressed the best frequency response which 

indicates the best σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 . 

We believe that distance between surface of diffuser to sample is another key parameter that 

generates the partial coherence illumination with scattering characteristics in our configuration. Figure 

2.23 illustrates the phase retrieval performance according to distance between sample and diffuser. LED, 

 

 

Figure 2.22 Analysis of QPI frequency response depending on implementation of diffusers. 
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Figure 2.23 Analysis of the performance of QPI according to distance between sample and diffuser (or 

𝛔𝒄𝒐𝒉𝒆𝒓𝒆𝒏𝒄𝒆). 
 

pattern, and diffuser parts in our illumination apparatus was bounded in single aluminum rail which can 

be moved at the same time whenever image was captured. Total 7 DPC images for vertical axis were 

captured from 5 to 75 mm from the interval of 10 mm using half pattern. QPI was also generated to 

highlight the difference between images. Here, we fixed all parameters in QPI algorithm to find out 

how phase recovery has been changed depends on the variation of real σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 . Moreover, gradient 

indicating the phase contrast was analyzed by taking line plot of DPC background. Throughout this 

experiment, we found closer the sample to diffuser creates better gradient illumination, resulting in 

higher QPI performance. As shown in Figure 2.23, contrast of both QPI and DPC has been decreased 

and phase starts to break as distance increases. Since we utilized the half asymmetric circle pattern, 

gradient angle was not steep but still decreasing slope could be determined as distance increases. This 

indicates that intensity of scattered light from large oblique angle vanishes at the sample, eliminating 

the phase shifts from light near the NA𝑖𝑙𝑙𝑢𝑚 = ~NA𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒. In addition, increasing the distance could 

be interpreted as decreasing the illumination NA from NA =
D

2w
, where D is illumination area, which 

is fixed in this setup; w is working distance from illumination to sample. Therefore, we concluded that 

increasing distance between diffuser and sample are found inversely relate to σ𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒  in this optical 

configuration.  

 

NIR QPI using stained cervical cancer cells 

To evaluate the performance of QPI system using diffuser based NIR illumination, stained cervical 

cancer cell images were captured and compared to that from visible wavelength-based QPI system. 

Furthermore, we identified the cervical cancer cells by comparing the color-based images. In Figure 

2.24, RGB-coded single-shot QPI, single wavelength QPIs, and NIR-based QPI system were utilized 

to capture normal cervical epithelial cells. We also captured bright field color image using incoherent 
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white light source (Thorlabs, HPLS245). In this study, asymmetric half circle pattern and 10x objective 

was utilized for all imaging sessions. In RGB-coded single-shot QPI system, corrupted quantitative 

phase images were shown. As shown in top-down or vertical-directional DPC (TD-DPC) image, 

gradient illuminations were lost. We believe this was caused by different absorptions depending on 

wavelength. Therefore, different absorption makes each complementary image in different aspect, 

rejecting the weak-object assumption. Moreover, any phase shift was not found from RGB-coded DPC 

result when we analyzed in FFT of DPC image. On the other hand, blue, green and red LED based QPI 

was computed without corruption of phases but still phase errors were existed which depends of the 

wavelength absorption. At the places where cells stained with different colors were overlapped, QPI 

using visible wavelength could not recover the phase, which made structures invisible. However, using 

NIR wavelength avoids absorptions and phase was transferred thoroughly as we can found in FFT of 

DPC image. FFT of NIR-based DPC illustrates much higher frequency responses and follows much 

similar shape to PTF. In quantitative phase recovered image, NIR wavelength provided clear structural 

visibility as well as reduced phase errors at the area where multiple cells with different chromatic stains 

were located.  

In addition, high grade of CIN was utilized for NIR based QPI and its image was compared to 

that from green wavelength QPI. As shown in Figure 2.25, similar to normal cervix cell QPI, structures 

of cell clusters are well distinguished, providing more feasibility of NIR QPI system for absorbable 

specimen in various situation. Investigating the morphological information of cell is one of the essential 

factors for abnormal cell identifications, which is equally important as the chromatic information of 

abnormal cells. Through QPI system, structural information is provided from phase contrast, hence, 

abnormal cervix cells are distinguishable in label free manner. In most cases, abnormal cells have high 

nucleus to cytoplasm ratio. Here, abnormal cells, marked with yellow arrows, were confirmed with 

physicians, and validated the result from patient’s medical report. 

 

NIR QPI using H&E stained thick tissue 

With our innovative QPI system, we also validate to perform the QPI using H&E stained tissue. In this 

section, 5 μm thick mouse brain slice was H&E stained to provide as thick specimen with highly 

scattering and absorbing materials. Annulus pattern was applied for imaging to enhance the resolution 

and phase contrast. Brain that we captured mostly contains putamen and cortex which are known as 

grey matters. Refractive index (RI) of these regions were average between 1.361 to 1.369 found in [69]. 

With this numerical information, we can derive phase deviation within 5 μm thick brain corresponds to 

0.322 rad, making our QPI system suitable for tissue application as well. As shown in Figure 2.26, NIR  
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Figure 2.24 Comparison of QPI by wavelength capturing chromatic stained cervical cells. Images were 

taken using all red/gree/blue, blue, green, red, and NIR illuminations with half asymmetric cirlce pattern. 

Performance was analuzed from DPC and FFT of DPC images. 

 

 

Figure 2.25 Demonstration of QPI using diffuser-bsaed illumination for CIN2+ sample. Images were capured 

by NIR and visible illuminations to compare the reuslt. Yellow arrow denotes suspicious abnormal cells. 
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QPI successfully recovered the phase contrast in quantitative method. In the amplitude of NIR image, 

chromatic absorption was not appeared, which can be assumed that lights are passing the unstained 

tissue with low scatterings. Compare to H&E staining images as shown in Figure 2.26(a,b), NIR QPI 

shows comparable structural information. QPI shows more sharper image texture which makes image 

somewhat volumetric. 

 

 
 

Figure 2.26 Demonstration of H&E stained mouse brain tissue using NIR-QPI system. (a-b) Magnified 

images for NIR QPI, NIR BF and color BF image comparison. 
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2.2.7 Conclusion  

Throughout this study, utilization of our simple NIR illumination device successfully retrieved phases 

from thick and highly absorbing materials without any manipulations in QPI algorithm. Great advantage 

of using this method was that weak object transfer function was still available along with partial 

coherence illumination characteristics, resulting in simplification of complex field of object in optical 

system. In addition, using single LED source was another feature what makes our system fascinating. 

Although LED itself provides partial coherent illumination, illumination as point source would be 

considered as spatially coherent illumination which does not have phase response. Increasing only beam 

size would not provide solution for this situation. Increasing illumination area while affording spatially 

incoherent coherence condition with oblique illumination angle was our key tasks for phase stability 

and accuracy. With multiple diffuser implementation, randomly scattering on the surface of diffuser 

creates phase variations in the light propagation, which creates incoherent conditions while giving 

uniformity in illumination distribution. As light passes the physical mask, phase gradient was generated 

and use of single LED with this configuration could provide DPC images. Since multiple LEDs are not 

required anymore, not only NIR wavelength but also various illumination spectrum could be applied. 

This could offer advantages cost issue, provides possibility to develop QPI system in compact platform. 

However, although speckle noises were not crucially in NIR wavelength, scattering phenomena from 

diffusers could induce noises on the image in other wavelength, especially in visible range. We believe 

that, to the best of our knowledge, this work was the first method for not only imaging the tissue but 

also using only single point source illumination in DPC-based QPI system. 
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Chapter 3. Development of mobile medical device for point-of-care digital 

medicine 

 

3.1 Smartphone-based endoscope for advanced point-of-care diagnostics 

3.1.1 Introduction 

 

Over the past decade, endoscope has become an essential medical instrument that enables physicians to 

access the internal organs with magnified visualization. The endoscopy was mainly purposed to 

investigate the unusual symptoms of the interior of the body, but now it has been utilized in various 

medical procedures, not only diagnosis, but also staging of diseases, biopsy, local therapy and minimally 

invasive surgery [70-72]. Endoscope has been applied in numerous fields including gastroenterology, 

orthopedics, urology, obstetrics/gynecology, otolaryngology, neurology, and anesthesiology [73-75]. 

Currently, endoscope system incorporates advanced technologies to provide the enhanced diagnosis by 

offering the high-definition, fast, quantitative and wide viewing images [76]. Despite the multiple 

benefits of using endoscope, the routine endoscopic procedures are usually confined inside clinics . 

Moreover, most of the endoscope system itself is not suitable for remote consultation and point-of-care 

diagnosis at developing areas or low-resource settings [77, 78]. 

Recently, there have been efforts to integrate smartphones into various medical devices [73, 79-

86]. Thanks to the recent advances in mobile computing electronics, smartphones’ performance is now 

comparable to personal computers while also featuring the state-of-the-art engineering components 

such as micro sensors, high-resolution camera, powerful CPU, GPU, and high-speed data 

communication chips [79, 86]. The infrastructure of mobile data communications has now become fast 

and ubiquitous, which can efficiently deliver the data between remote sites. Thus, the technical 

integration between ICT and medical device has opened the new opportunity for the next-generation 

diagnostic protocols through telemedicine and big medical data analysis.  

In this study, we introduce a new complete smartphone-based endoscope system and evaluate 

its feasibility for clinical applications. Smartphone was already applied to the endoscopic devices, but 

previous works showed the only proof of concept while not considering its diagnostic value as well as 

the user interface. Furthermore, previously developed smartphone endoscope devices utilized the built-

in camera software in the smartphone that only provides limited functionalities for the endoscopic 

imaging [76, 87]. Here, we developed a smart-phone based endoscope system combined with the home-

built hardware, software as well as a head-mounted display (HMD). The performance of developed new 

endoscopic device was compared with one from the commercial endoscope system. 

 

3.1.2 Endoscope system using smartphone 

 

We developed a low-cost and portable endoscope based on a smartphone as illustrated in Figure 1. Our 
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system comprised 6 pieces of components aligning in series, including a conventional endoscopic probe, 

compact light source, customized adapter, magnifying relay-lens, packaging holder, and smartphone. 

Both holder and adapter were designed by three-dimensional (3D) modeling software (Solid Works) 

reflecting the actual dimensions of the smartphone and the endoscope eyepiece. The endoscopic probe 

can be detached from the adapter, which is compatible to most of the commercial rigid and flexible 

endoscopes. For delivering light to the interiors of body cavities, a portable light source (Medit, SPARK) 

was attached to the illumination port of an endoscopic probe. The smartphone holder was built for a 

specific smartphone model (Samsung Electronics, Galaxy S5) and made by a 3D printer (Stratasys, 

Objet260 Connex2) with the spatial precision of ±16 μm. For the magnification of endoscopic image, 

we customized the lens system that was located between the eyepiece of endoscope probe and 

smartphone camera. The customized lens system enabled the manual focus by employing the zoom 

housing (Thorlabs Inc, SM1NR05) to correspond to the different endoscopic probe. Off-the-shelf lenses 

were designed and selected by the optics designing software (ZEMAX LLC, Optic Studio) as shown in 

Figure 3.2. A smartphone camera–mimicking lens (L3) was simulated with 4.8 mm, f/2.2 as a constant 

parameter, which was set to infinite-focus. To deliver the image to the camera, we utilized 2 achromatic 

lenses (L1, L2) to reduce the chromatic aberrations while sustaining the portability as well as cost-

effectiveness. Thus, tradeoff between length of the lens system and magnification was optimized. We 

assembled the achromatic lens and the aspherized achromatic lens with 40 mm and 14 mm focal lengths, 

respectively, to achieve approximately 3× optical magnification, which could be further enhanced up to 

12× magnification approximately via software-based digital zoom. The final image was captured by the 

complementary metal–oxide–semiconductor sensor of the smartphone with specifications of 16.0-

megapixels, MP (5312 × 2988 pixels), 1/2.6 inches (1.12 μm pixel size), incorporating 4.8 mm focal 

length and f/2.2 optical lens.  

For replacement of the conventional display and enhancement of the portability, a newly 

designed commercialized HMD module (Green Optics Co., GO Glass) was employed in our system 

(Figure 3.1d).  The operation of HMD is based on the Android OS which allows seeing the live 

endoscopic images through the glasses with 50% transparency, 45-degree sight angle, and 114 x 22 x 

14 mm viewing optics. In addition, HMD is able to project the images which uses resolution of XGA 

(1024 x 768) in front of the eyes. HMD was interfaced wirelessly with smartphone via a mirror casting 

technology and displayed the endoscope images to clinicians. As shown in Figure 3.1c, a clinician 

would attach either rigid or flexible endoscope probe to the system and wear a HMD on the head while 

manipulating the smartphone-based endoscope system. 
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Figure 3.1 Smartphone-based endoscope system setup. Smartphone-based endoscope system setup. (a) 

Schematic of smartphone-based endoscope system. A photography of (b) rigid type endoscopic system, (c) flexible 

type endoscopic system, (d) android based HMD, and (e) the smartphone-based endoscope system vs clinical 

endoscope system. 

 
 

 

 
 

Figure 3.2 Beam path of smartphone-based endoscope system. Schematic of assembled lens system in 

smartphone-based endoscope system. 
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3.1.3 Designing for lens system 

 
Figure 3.3 Image simulation and distortion analysis according to designed lens system with different 

combinations.  

 

In order to find the appropriate combination of the lenses to magnify the endoscopic image, several 

lenses were designed through Zemax lens designing software. First, diverging angle of ray from the 

endoscope eyepiece was found through matching the image ratio (image area/sensor area) between 

empiric and simulation data. We utilized the otoscope of 0°, Ø4, 50 mm length. Largest diverging angle 

was found 4 degree that has beam diameter of ~2 mm. Then used the off-the-shelf lens data to design 

the simulations by combining them all together. Here, smartphone lens was designed referring to 

specifications given in the patent [43]. The biggest concern while selecting the lenses was development 

cost, total length of lens system, and lens aberrations. For manipulation convenience, we decided to not 

over 100 mm for the total length including the thickness of endoscope coupler. Therefore, first lens (L1) 

should be lower than 50 mm to have spaces for assembly parts. With a survey, we decide to use 

achromatic lens having f=40 mm, Ø25.4 mm for L1. We chose Ø25.4 mm lens and only utilized small 

portion of lenses in the central parts which have very low influences from spherical, comma aberration. 

Therefore, we focused to choose the L2 lens through analysis outcome of lens simulation. For candidate 

for L2, achromatic having lens f=14 mm, Ø12.5 mm and aspherized achromatic lens having f=14 mm, 

Ø12.7 mm were compared. Figure 3.3 illustrates the analysis result of designed lens system with 

different off-the-shelf lens combinations. Total length of lens system excluding the smartphone lens 

module was designed ~93.5 mm. Analysis was performed on the ray including 4 degree of divergence  
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Figure 3.4 Simulation of lens system. Achromatic lens (L1) having f=40 mm, Ø25.4 mm and aspherized 

achromatic lens (L2) having f=14 mm, Ø12.7 mm were utilized. Smartphone lens (SM) was simulated to deliver 

the image to complementary metal-oxide semiconductor sensor. Spot diagram, field curvature, distortion, and 

details of SM are presented. 

 

angle to see more closely about the aberrations. If we use only smartphone lens and attach to endoscope 

eyepiece, simulated image looked uniformly focused without a rotations and marks were fitted well in 

diffraction grid, which mean no aberrations were found in this situation. However, combinations using 

achromatic and aspherized achromatic lens both reverts the image 180 degree in image simulations. 

Moreover, achromatic lens shows aberrations at the edge of the image. Distortions were found critically 

at the edges. On the other hand, L2 with aspherized achromatic lens showed uniformly focused over 

whole FOV and no distortion was found. Using this simulation analysis, Figure 3.3 shows the final 

outcome of the lens simulation. Low filed curvature errors, and low astigmatism could be estimated 

from this combination by looking at the field curvature graph. Especially, ray angle below 6 degree (up 

to 3rd grid in vertical axis) shows low field curvature with error less than ~5 %, and distortion as well. 

To evaluate the simulation outcome, we simply compared magnification results as shown in Figure 3.5. 

From simulation, vertical length of the image focused on the sCMOS using only smartphone and lens 

system adaptation was found 0.28 mm and 0.83 mm, respectively, which gives around 3X in 

magnification. For empirical data, endoscope was attached, and images were captured using both 

without and with lens system. Similar to simulation, empirical data also showed magnification of 3X 

when image proportion ratio in horizontal direction was compared. 
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Figure 3.5 Evaluation of the lens system by comparing the magnification results from simulation and real 

endoscopic image. 

 

3.1.4 User interface software development 

 

We developed a JAVA-based Android software for a simple and intuitive user interface which allows 

an operator to control essential imaging parameters such as display brightness, image resolution, digital 

zoom, and focusing adjustment (Figure 3.66a). We also added multiple user-friendly features. For 

example, user can be set for either left- or right-handed operation for easier control of the display 

parameters during endoscope manipulation. Displayed endoscopic images are automatically flipped for 

better  coordination between the endoscope movement and the display orientation. Furthermore, 

captured images and videos can be visualized in comprehensive gallery mode (Figure 3.6b). For 

convenient operation of system, the software was also enabled for simultaneous wireless casting on 

HMD. 

 

3.1.5 In-vivo imaging protocol at otolaryngology 

 

In accordance with a protocol approved by the institutional review board of the Kyungpook National 

University Hospital, the smartphone-based endoscope system was tested in human subjects. Each 

imaging session was conducted immediately after subjects’ routine endoscopic examinations at an ENT 
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(ear, nose, and throat) doctor’s office in Kyungpook National University Hospital. Routine endoscope 

procedures performed in the ENT departments were followed while utilizing our system as well. Before 

performing the endoscopy, the system was adjusted to get a fine focus for clear images through software 

and optics. Then, endoscope probe was wiped with a disinfectant to avoid the cross-contamination 

between patients. The whole procedure took less than a minute, thus avoiding undue burden on 

volunteers. Volunteer patients were verbally introduced to the risks and goals of this research study and 

agreed to participate and released the right to their endoscopic data to be used for the publication. For 

this research, 50 patients aged 20 or older were asked for participation, and of these, 30 volunteers 

agreed to participate in this research. As this was an initial pilot clinical study, we did not attempt to 

achieve statistical significance in data.  

As it is shown in Figure 3.1, each human subject was imaged using both smartphone-based 

endoscope and commercial endoscope system that comprised a charge-coupled device camera head 

(Stryker, 1188HD), light source (Stryker, X8000), and information management system (Stryker, SDC 

ULTRA). Various types of endoscope probes such as 0°, Ø4, 50 mm length rigid otoscope (Medstar, 

Otoscope), 0°, Ø4, 175 mm sinuscope (Medsatar, Sinuscope), 70°, and Ø3.4, 300 mm flexible 

endoscope (Olympus, ENF-P4) were utilized. 

Then, we chose several clear representative endoscopic pictures, including the healthy and 

diseased models corresponding to each endoscopic probe. The entire process was observed via the 

smartphone’s liquid crystal display screen as well as the HMD in real time. In addition, the images from 

the commercial endoscope system were captured and archived via a computer for additional analysis. 

Thereafter, all captured images were cropped for resizing to better visualize the image for the 

manuscript. Moreover, the brightness and light contrast were manually adjusted for each image to 

enhance the visibility. No other image process was implemented in this study. 

 

 
 

Figure 3.6 Android based software for the smartphone-based endoscope system. (a) Main capturing screen, 

(b) Gallery mode of the software 

 
 

 



55 
 

 

Figure 3.7 Result of the smartphone-based endoscope evaluation. At 20 mm away from the target, the USAF 

resolution was captured with (a) smartphone-based endoscope without lens, (b) with customized lens, and (c) 
commercial endoscope system. (d) At the corresponding distance, field-of-view was measured by capturing the 

ruler with (d) smartphone-based endoscope without lens, (e) with customized lens, and (f) commercial endoscope 

system. (g) Graph of the measured resolution and (h) field-of-view according to the working distance. 

 

3.1.6 Result & Discussion 

 
System characterization 

To evaluate the imaging performance of our system, the US Air Force resolution target was imaged as 

shown in left side of the Figure 3.77 [76, 88]. Three different images were acquired and compared with 

smartphone-based endoscope with/without lens and the clinical version of commercial endoscope 

system. The distance between the end of endoscope probe and resolution target was 20 mm, which was 

sufficient to preserve the optical field-of-view (FOV).  

Image captured by the smartphone-based endoscope without lens showed the lowest imaging 

capability in terms of resolution. It was able to resolve 4.0-line pairs per millimeter (lp/mm), which 

corresponds to 250.0 μm. When custom lens system was applied, the imaging performance improved 

and was able to resolve 5.66 lp/mm (corresponds to 176.7 μm). The clinical version of endoscope 

system showed the highest imaging performance among the 3 systems by resolving 6.35 lp/mm 

(corresponds to 157.5 μm).  

In addition, a ruler was captured to identify the FOV as shown in Figure 3.77. Similar to the 

resolution measurement, images were captured at 20 mm of working distance using our device 

with/without lens and the clinical version of endoscope system. Measurements of resolution and FOV 
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at the working distance between 5 mm and 30 mm can be seen in right side of the Figure 3.77, 

respectively. They show that the smartphone-based endoscope with lens has imaging capability similar 

to that of a clinical endoscope system. Moreover, it can be ascertained that the features of the lens 

system did not critically influence the FOV. 

 

HMD based endoscopy performance 

Routine endoscopic procedure can be sometimes cumbersome the clinician due to mismatched eye-

hand coordination. Manipulating the endoscope probe while observing the monitor forces a divergence 

between site of manipulating hand and field-of-view, which requires extensive training. Moreover, 

clinicians easily experienced the ocular strain from endoscopic procedures. To overcome above 

addressed issues, HMD has been applied to endoscopic procedures [88-91].  

We tested the feasibility of endoscopic diagnosis using our device that includes a see-through 

type of HMD. Images were acquired with 3264 x 2176 (8MP), ISO 100, lowest exposure (-4) settings 

using the smartphone-based endoscope in routine endoscope procedure. Android-based HMD controller 

successfully duplicated the screen of the smartphone; hence, images can be seen through the viewing 

optics in the HMD. Clinician was able to detect the lesions in front of the eyes and successfully 

manipulated the endoscopic probe. Moreover, through this system setting, clinician had a benefit of 

observing the endoscopic image simultaneously at the manipulation site reducing the spatial 

disorientation. HMD during endoscopic procedure has been shown a potential of improvement on the 

eye-hand coordination. Clinician had impression that diagnosis time had been reduced compare to 

observing through the monitor. Especially, it was found that the manipulation time for flexible 

endoscope probe was significantly reduced when clinician wore HMD. 

 

In-vivo human subject imaging 

The smartphone-based endoscope was tested in a routine otolaryngology examination to evaluate its 

clinical value and performance. The images of human subjects were captured and compared with a 

clinical endoscope system. Our device used 3264 × 2176 (8MP) image resolution at the automatic ISO 

mode (ISO 100), and the lowest exposure (−4) setting to suppress the saturation of light and to achieve 

clear images. For the clinical endoscope system, the 1280 × 1024 (1.3MP) was used for camera 

resolution settings. The images were obtained at the same location with the corresponding probes that 

were utilized in the commercial system. 

Images captured with the smartphone-based endoscope are shown in the columns on the left 

side, whereas images acquired from the clinical endoscope system are shown in the columns on the 

right under each subcategory of endoscopic probes (Figure 3.88). To examine different areas in 

otolaryngology, different types of endoscope probes were applied. Images of tympanic membranes were 

captured using the otoscope probe (the 1st two columns in Figure 3.8). Images from both systems clearly 
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showed the structures of the tympanic membrane compared with that of the normal patient. For nasal 

examination, a sinuscope was applied (2nd and 3rd coulmns in Figure 3.88). Several images were 

captured during the endoscopic examination to observe the feasibility of our system. Among the nasal 

endoscopic images, both systems particularly highlighted the nasal polyps of patient with chronic 

rhinosinusitis (g, h). The flexible endoscope was also applied to examine the larynx (the last two 

columns in Figure 3.88). Flexible endoscope was inserted first through the nose and then through 

nasopharynx to reach the larynx of the patients. Some images obtained by the fiber-optic endoscope 

probe displayed the pixelation throughout the entire FOV affecting the image quality and limiting the 

spatial resolution by undersampling because of core-to-core spacing between fibers [92]. Despite the 

pixelation, the smartphone-based endoscope still provided sufficient contrast and image quality for 

detecting the lesions. The smartphone system showed an acceptable level of clarity for an ENT specialist 

to distinguish the healthy and the diseased or damaged tissue regions through the 

 

 

 

 

 

Figure 3.8 Result of human in-vivo imaging at Otolaryngology. Otoscope, sinuscope, and flexible endoscope 

were utilized. The corresponding sites were captured with smartphone-based endoscope and commercial 

endoscope system in clinical settings. (a, b) normal tympanic membrane. (c, d) postoperative state of 

tympanomastoiedectomy. (e, f) chronic otitis media, central large perforation. (g, h) normal middle turbinate. (i, 

j) chronic rhinosinusitis with nasal polyp. (k,l) normal nasal vestibule. (m,n) normal vocal cord. (o,p) normal 

larynx. (q,r) postoperative state of thyroid cancer surgery in larynx. 
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Table 3.1 Cost of smartphone-based endoscope system 

 

Components Price (USD) 

Lens system (two off-the-shelf lenses, adjustable lens tube, additional lens 

components) 
~$ 400 

3D printing parts (smartphone case, adapter, coupler, etc.) ~$ 50 

External light source ~$ 300 

Miscellaneous components (spring, screws, battery, etc.) ~$ 30 

Smartphone (Samsung Galaxy S5 16GB) ~$ 200 

Total ~$980 

 

Discussion 

In this study, we demonstrated the use of a novel endoscope system based on a smartphone in clinical 

applications. The benefits of various aspects of our device have been observed throughout the study. 

Our device was fabricated in a compact form factor, so it can be used as a carry-on or standalone medical 

device in a clinical environment. Furthermore, significant safety guards or chemical protection were 

not necessary for this device. However, additional precaution was taken by wiping the probe with an 

antiseptic fluid to avoid the cross-contamination. The 3D printed case offered the robustness as well as 

the reliability with familiar coupling mechanism compared with that of the conventional system for 

endoscope probe. It was much simpler to set up the device for endoscopic diagnostics. The use of 

smartphone for endoscopy further simplified the system by providing the state-of-the-art sensors and 

hardware, thereby eliminating the need for expensive ancillary devices [79, 86]. In addition, 

cumbersome image processing or device control algorithm was unnecessary for endoscopic diagnosis 

with smartphone. Thus, the smartphone-based endoscope significantly reduced the overall cost 

compared with the price of conventional endoscope system equipped with essential apparatuses. The 

average price of the conventional system, with our survey from three major endoscope companies, was 

over US $ 50,000, whereas our system only costs under US $1000, including the smartphone (Samsung 

Galaxy S5) and the endoscopic probe. Even the additional cost related to commercial product delivery 

were taken into account, making the estimated price substantially lower for the smartphone-based 

system. Table 1 clearly presents the prices of components in our smartphone-based endoscope system.  

 Unlike other devices available in the market, the smartphone-based endoscope presented in 

this study provides a full endoscopic capability with a potentially customizable endoscope platform. 

Rather than simply capturing endoscope images with enhanced mobility, our system has shown a 

possibility to provide more advanced imaging modalities with various contents to the field applications. 

It can be easily modified for various needs in every aspect (optics, 3D printed cases, and light source) 

or made compatible with various accessories to the system for expanding the functionalities. We 

demonstrated the HMD as an example of a seamless integration of an accessory for endoscopy 

procedure. The integration of the next-generation wearable display such as an HMD can provide several 
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advantages to the smartphone-based endoscope system. An HMD allows clinicians to monitor digital 

information that is superimposed over the real-world view, thereby eliminating the need to view a 

monitor away from the patient and reducing the discomfort in the working position. Furthermore, the 

HMD completely rendered the smartphone-based endoscope system more portable and compact. 

However, some clinicians have experienced dizziness when they utilized an HMD for a long time 

because of ghost images caused by inherent structure of HMD design (static distance between optical 

windows). We anticipate that the future model of HMD will address these limitations and provide more 

advantages in our system. 

The results shown in this study demonstrate the potential of the smartphone-based endoscopy 

for various clinical applications outside the conventional ones. In particular, the HMD-integrated 

system may offer more benefits outside the clinic. Faster diagnostics may be enabled with fascinating 

ease and safety, with considerable reduction in mismatch of the eye-hand coordination through HMD. 

The linkage between biosensors and HMD-integrated smartphone-based endoscope system could be 

beneficial for endoscopic surgeries. The extremely low price of the system could make it a cost-effective 

education tool for endoscope training. Furthermore, ubiquitous telecommunication infrastructure 

enables smartphone-based endoscope to be useful even in medical emergencies in the ambulance or 

field hospitals. It is still difficult to arrange an emergency operation in a timely manner. For this reason, 

sending the diagnosed endoscopic images to specialists while transporting the patient could shorten the 

delays and help manage urgent situations more efficiently using the smartphone-based endoscope.  

Throughout the experiments, the great potential of the integration of smartphone technologies 

with medical devices has been observed because of the tremendous reduction in costs while sustaining 

health benefits for the patients. Many literatures have described them as the most prospective devices 

for the next-generation POC diagnostics [21, 86, 93-95].The smartphone-based medical devices may 

complement the quality of the services such as medical and health informatics. Moreover, recently 

developed mobile-picture archiving and communication system allows to connect remote locations to 

the central patient database in a secure fashion [96-98]. Now, real-time on-site diagnostics are available 

with a secure transmission of personal and sensitive medical data in a format specific to the health care 

industry [98]. These mobile devices show the possibilities of providing assistance to the patients in their 

medical records to improve coordination among health care providers who use telecommunication 

technologies such as short message service, calls, and Internet-based video links [21, 86, 94]. With 

advances in technologies, many devices tested in the laboratory settings have been translated to 

clinically or commercially available products [21, 86, 93-95]. The smartphone-based medical devices, 

especially for imaging device such as endoscope, will soon be utilized in the surgical settings for 

providing reliable results. 
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3.1.7 Conclusion 

Recent advances in smartphone technology have enabled the realization of cost-effective, portable 

medical devices. In this study, we introduced an endoscope system using a smartphone as an imaging 

sensor and display suitable for the POC diagnostics and offering the unique advantages such as mobility 

and flexibility. Experimental results showed that our device could potentially provide sufficient imaging 

performance as a diagnostic tool in a wide range of nonclinical settings and ultimately, in some clinical 

settings. In particular, our device would be a very useful tool for health providers in low-resource 

settings and at remote locations with limited health care service. 
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Chapter 4. Application of artificial intelligence in digital medicine 
 

Artificial intelligence (AI) is designed to mimic the human brain in terms of decision making and 

learning, so with the computing power to learn the complex tasks in days, it is possible to create AIs 

that could surpass human in certain tasks [99, 100]. Hence, AI has been popularly contributed in various 

fields such as image processing, natural language process, robotics, image analytics etc. As technologies 

has been advanced, AI has recently become more powerful which allows enhanced AI technologies to 

handle sophisticated task that needed more computational process, resulting in increasing possibility of 

wider application fields [99-102]. In recent days, use of AI has become significantly promising 

especially in the medical fields such as medical image processing, computer-aided diagnosis, image 

interpretation, and image segmentation/registration [102]. Particularly, among the AI methods, 

conventional machine learning and state-of-the-art deep learning techniques such as convolutional 

neural network (CNN) were widely utilized and shown outstanding performance with large amount of 

medical imaging data in various applications. With advantages shown in AI, in the coming future, we 

believe that AI could help make the digital pathology more robust, more producible, and also help in 

providing more quantitative data. This will allow pathologists to make more accurate and consistent 

diagnoses with advantage in cost-effective and less time-consumption. 

In this chapter, machine learning and deep learning from AI technique were applied to the 

developed medical imaging devices which were introduced in the previous chapters. With conventional 

machine learning methods, disease was predicted and classified from given feature data which was 

derived from image processing algorithms. For machine learning methods, most common three 

classification models such as supportive vector machine (SVM), k-nearest neighbor (KNN), and 

decision tree (DT), were trained in the study. For deep learning technique, instead of disease 

classification, data elaboration was performed to multiplex the information, offering cost-effective and  

 
Table 4. 1 Comparison of machine learning and deep learning 
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quick medical images. Through application of one of the deep learning techniques called generative 

adversarial network (GAN), the input image data is generated as if it were taken from other imaging 

modality. Further details would be explained in the subchapters. 

 

4.1 Machine Learning Technology 

 

Currently, machine learning is the most common approach of AI. It builds mathematical algorithms 

from given data and automatically classify and predict diseases to offer aid healthcare related workers 

for decision making in uncertain conditions. Mostly, machine learning methods such as KNN, SVM 

and, DT have been used and shown robust performance in classification problems [99]. The KNN that 

represents the non-parametric model used for both classification and regression is one of the most 

popular and intuitive supervised machine learning algorithms. The SVM, which was introduced in late 

1990s, is a discriminative model that formally separates the attribute space with hyperplane. The DT is 

one of the simplest machine learning models that splits the data in a shape of tree trying lower the data 

entropy [99, 100]. All these models require to tune hyperparameters with different characteristics for 

each model for the best performance. More details will be discussed in following sub-sections. 

 

4.1.1 K-nearest neighbor 

 

The KNN is known as lazy learner or instance-based learner where it memorizes all training data sets 

instead learning discriminative functions. Thus, it is fast and not much computations were required in 

prediction. It computes the similarity of the k numbers of neighbor data from the new cases to make a  

 

 
Figure 4. 1 Explanation of KNN 
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prediction as shown Figure 4. 1. In the graph, when k=3, three nearest data from green (new input) are 

chosen and predict the class of green by calculating the majority labels (voting) of selected neighbors. 

Therefore, green can be predicted as class B for both K=3, and K=5. In KNN, nearest neighbor data are 

measured by a distance function. For continuous variables, a common distance functions are defined as 

following [103]. 

 

Euclidean distance: √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑘

𝑖=1  

 

Manhattan: ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖=1  

 

Minkowski: (∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑞𝑘

𝑖=1  )
1/𝑞

 

 

 

 

4.1.2 Supportive vector machine 

 

SVM classifies the data using a boundary known as the hyperplane that is driven by mathematical 

algorithm as shown in Figure 4. 2. A good separation is achieved by the boundary that maximizes the 

margin between the two classes. The data points that define the hyperplane are the supportive vectors. 

Suppose there is a vector w that is normal to hyperplane. Then, distance between sample to hyperplane 

could be determined by projecting the position vector of the sample on to the vector w. If position vector  

 

 
Figure 4. 2 Explanation of SVM 
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is a positive, the proceeding decision function (�⃗⃗� ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏) would return ≥ 1. On the other hand, if 

vector is negative, the proceeding decision function would return ≤ 1. By introducing an additional 

variable 𝑦𝑖 = {
+1 𝑓𝑜𝑟 + 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
−1 𝑓𝑜𝑟 − 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 , the proceeding decision function could be simplified by 

multiplying them [104, 105].  

 

𝑦𝑖(�⃗⃗� ∙ 𝑥𝑖⃗⃗  ⃗ + 𝑏) ≥ 1 

 

The objective of SVM is to maximize the margin of the hyperplane, which could be defined as 

𝑚𝑎𝑥
2

‖𝑤‖2
𝑜𝑟 𝑚𝑖𝑛

1

2
‖𝑤‖2

2 [104, 105]. Using quadratic programming for objective function, w and b 

could be solvable in proceeding decision function. In a perfect SVM model, ideally hyperplane would 

separate the classes clearly into distinct groups. However, perfect separation cannot be expected in real 

cases or models may separate in many cases which causes misclassification. In order to minimize the 

misclassification errors, cost is introduced in here. Cost is parameter that controls the margin size and 

training errors which decides how much error should the model will accept to generate the hyperplane. 

However, cost has tradeoff between margin size and error as shown in Figure 4. 3. The more penalty 

SVM gets when it makes misclassification which makes margin narrow and involves fewer supportive 

vectors. Furthermore, sometimes data could not be perfectly separated by linear boundary. Nonlinear 

boundaries which is known as kernel function could be applied and increase the training accuracy. Using 

different order of degree and shape in kernel function would give more dramatic and various shape of 

the hyperplane as shown in Figure 4. 4. Similar to cost, gamma in kernel also functions as parameter 

that penalize the model. The higher the gamma more influence the feature data points will have on the 

decision boundary as shown in Figure 4. 4 [104, 105].  

 

 
Figure 4. 3 SVM hyperplane analysis according to cost parameter. 
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Figure 4. 4 Explanation of kernel function in SVM 

 

4.1.3 Decision tree 

 

 

Decision tree (DT) breaks down a data into smaller subsets and creates the classification or regression 

models that looks similar to form  of a tree structure. The greatest advantage of decision tree is t hat 

results can be visually analyzed through tree diagram. When DT splits the data, conditions (ex. patient 

age > 30?) were given to the features to grow two or more branches. DT stops growing when the model 

reached the maximum depth that user set as training condition. To decide the conditions of splitting, DT 

calculates the entropy of the data which is level of disorder . In addition,  DT tries to earn the highest 

information gain to decide the splitting from different attributes, which is decrease in entropy after a 

data set is split on an attribute. Other than information gain, Gini Index is also another choice to decide 

the splitting in every branch. Following equations are entropy and information gain:  

 

Entropy (one attribute): 𝐸(𝑠) = ∑ −𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑐
𝑖=1 ,  

 

Entropy (two attributes): 𝐸(𝑇, 𝑋) = ∑ 𝑃(𝑐)𝐸(𝑐)𝑐∈𝑋  

 

Information Gain: Gain(T, X) = E(T) − E(T, X) 

 

where 𝑝𝑖  denotes probability of Ii, P(c) denotes c as one attribute. Gini Index is defined as following: 

 

Gini Index: Gini = 1 − ∑ (𝑝𝑖)
2𝑐

𝑖=1  
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4.1.4 Deep Learning 

Artificial neural networks with multiple hidden layers between input and output layer was introduced 

in 1980s which learns features and classify automatically [100]. This network was structured similar to 

human nerve system and offers performance to solve complex problems (non-linear problems). The 

general architecture of neural network is illustrated in Figure 4. 5. Each neuron in the network adds up 

the input data and applies the activation functions to the summed data, and finally provides an output 

that can propagate to the next layer. Therefore, adding more hidden layer in neural network allows to 

handle more complex problems as hidden layer deals with more non-linear relationships [100, 102]. 

With more large number of layers in the model, deep network can make intelligent predictions in 

complex problem by memorizing all the possible combinations of nodes after training with a sufficiently 

large data set.  

Recently, deep learning has been shown significant impact in medical imaging fields. For 

medical imaging applications, various types of deep learning algorithms are utilized such as convolution 

neural network (CNN), deep neural network (DNN), recurrent neural network (RNN), deep autoencoder 

(dA), etc. Among them, CNN is showing a promising performance in digital image recognition, analysis, 

and classification problems. CNN takes an input image, assign importance to various features in the 

image and differentiate one from other. CNN generally have architecture similar to Figure 4. 6. CNN 

composes two part, one with feature learning and another with classification. In the feature learning, 

CNN consist of convolution filter layer, non-linear activation function, which is rectified linear unit 

(ReLU), and pooling layer. When input passes through sets of convolution, ReLU, and pooling layers 

in series, the output will be activations that represent higher level features. Convolution layer functions 

as image filter by shifting the small patches on the whole FOV. It extracts features such as edges, shapes 

of objects from the input image through the matrix calculation. ReLU takes low computation, lack of 

gradient vanishing problems, hence, now it’s been common or could be said default function that 

activates the data for all positive values. Pooling layer were used after ReLU layer, reducing the 

dimension of the activation map. Pooling is significant in CNN which reduces computational cost by  
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Figure 4. 5 Illustration of neural network architecture 

 
 

Figure 4. 6 General convolution neural network architecture 

 

 

reducing number of parameters to learn. In the classification part, the fully connected layer connects all 

the neurons in one layer to all the neurons in the other layer. In principle, it is the same as the traditional 

artificial neural network. The flattened matrix goes through fully connected layers to classify the images 

[101]. The way this fully connected layer works is that it looks at the output of the previous layer and 

determines which features most correlate to a particular class. By training the model, it determines the 

weight of feature and make a relationship to its feature to each class. 

Excellent success of CNN was shown demonstrating its great performance at the ImageNet 

Large Scale Visual Recognition Competition (ILSVRC) [106] as shown in graph in Figure 4. 7. Use of 

CNN  
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Figure 4. 7 Result of CNN models in the image classification challenge. 

 

along with graphic processing units (GPU) has significantly dropped the error rate of image 

classification performance from 25% down to approximately 10%. This CNN model was called 

AlexNet developed by group from the University of Toronto. Since after AlexNet, continuous 

improvements were achieved in deep learning society. In 2015, ImageNet winner, ResNet, overcome 

human-level accuracy (5%) with error rate below 3% [102]. This CNN model was developed very 

deeply with 152 convolution layers avoiding gradient vanishing problem which was shown usually in 

deep layered training networks. Through these results are contributing to the wide range of application, 

some combining with other DNN models for various objectives.  
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4.2 In-silico tissue staining using NIR-based computational phase microscopy and deep 

learning technique 

 

4.2.1 Introduction 

 

Histological analysis of tissue is essential and has been widely utilized for diagnosing abnormalities 

[17]. It is known as golden standard for visualizing the structural details of tissue sections. In order to 

explore the tissue to find the abnormal features, laborious multiple procedures are required such as 

fixation, embedding, sectioning, and staining, which make patients to pay large amount of money and 

to wait for long time to get results [15-17]. However, without any labeling, pathological details are 

difficult to identify from the tissues under conventional brightfield (BF) microscope system. There are 

several imaging systems visualizing the tissue in label-free methods such as confocal, multi-photon, 

autofluorescence, holographic quantitative phase imaging microscopes. Although label-free imaging 

system offers structural information of tissues, these systems visualize image intensities in 

monochromatic [16, 17]. Due to these reason, pathologists who were familiar with chromatic stained 

images, need new training session to learn interpreting the monochromatic images. Moreover, many 

algorithms and automatic interpreting software were developed for color histology images, which 

inherently is not appropriate for label-free monochromatic images [15]. 

Deep learning has recently been successfully provided promising results in various fields such 

related to data-driven approach and solving inverse problems in optics [15, 107-109]. Recently, label 

free imaging system integrated with deep learning technique has been demonstrated, offering the virtual 

staining which successfully transforms the gray-scale image similar to H&E stained images [15, 16]. 

Along with quantitative analysis, virtually stained tissue image was difficult to perceptually differentiate 

from real bright field stained tissue images. However, there are still some issues that could be 

contributed to improve the virtual staining method in terms of simplicity and robustness of deep learning 

training. Both studies [15, 16] commonly have challenges in data preparation for matching label-free 

tissue sample and their corresponding bright-field images after histology staining process as shown in 

Figure 4. 1b. Some tissue constituents could be loss or deformed which will mislead the loss function 

in training deep learning process [110]. Moreover, images captured with different imaging modalities 

require complicated image registration algorithm to match the orientation and location of structural 

features [15, 16]. In addition, holographic quantitative phase imaging system itself is limited by speckle 

noises by using coherent illumination [15]. Hence, additional noise reduction network or algorithm is 

still required to enhance the visibility of the phase contrast. 

Here we introduce “In-silico QPI” providing training material for virtual staining “directly” 

from the stained tissue section. Quantitative phase imaging (QPI) system was configured by simply 

alternating the illumination apparatus to programmable near infrared (NIR) LED matrix. Due to use of  
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Figure 4. 8 In-silico tissue staining flow work. (a) Compare to histology assay procedure, label-free histology 

procedure with deep learning model allows to bypass the conventional histology staining process. (b) Our 
innovative method simply captures only stained tissue section for both brightfield and QPI. This allows to train 

deep learning model without taking bright field image of tissue after staining procedure and without applying 

complicated image registration process.  

 

 

partially coherent illumination, our phase image allows 2x better imaging performance in terms of 

resolution and speckle noise-free imaging compare to that of other coherent QPI systems [40]. Thus, 

additional algorithm or ancillary methods were not required for noise reductions. After acquiring the 

structural information through quantitative phase images, we trained generative adversarial network 

(GAN) [111] and conventional neural network (CNN) [101] to transform the gray scaled phase to RGB 

color that corresponds to conventional golden standard. In order to avoid tissue deformations after 

staining process, we provide both QPI and bright field images utilizing already stained tissue. We 

believe this method may improve performance as well as robustness in training, eliminating the 

additional complex image registration methods. Therefore, we applied near-infrared (NIR) illumination 

to effectively acquire both color and phase images by avoiding the scattering and absorptions from 

stained tissue. With our DPC-based QPI system, now, not only transparent tissue but also stained tissue 

could be visualized in quantitative phase contrast, which was not available in previous systems. To 

evaluate the NIR effect in QPI, we further analyzed QPI by acquiring the stained tissues in various 
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thickness and different wavelength of light. To the best of our knowledge, it is the first-time not only 

visualizing tissue images in DPC based QPI system but also utilizing this system to perform in-silico 

tissue staining using deep learning technique. We believe this technique provides great advantage for 

clinical application especially in label-free imaging, cost-effectiveness and quick diagnosis through 

bypassing the cumbersome staining process in histology screening. 

 

 

Figure 4. 9 Quantitative phase imaging using NIR LED array. (a) Optical configuration for the direct in-silico 

histology staining. Near-infrared (NIR)-/White-LED array is installed on the conventional inverted microscope 

setup. (b) Incoherent light emission of 850nm wavelength is from NIR-LED array (red line) and no 

hematoxylin/eosin absorption is shown. (c) QPI is carried out by illuminating NIR in four patterns, i.e. P1 to P4 

in NIR-LED array patterns, which forms four transfer functions accordingly. Four patterned illuminated images 

are processed to create a quantitative phase image. (d) Brightfield image with NIR, QPI with NIR, and brightfield 

image with white LED illumination at a hematoxylin and eosin (H&E) stained kidney section. Scale bar: 100 μm 

or 50 μm for inset images. 

 

 

4.2.2 Quantitative phase imaging 

 

NIR-QPI system setup 

Quantitative phase imaging (QPI) was carried out using the differential phase contrast microscopy (DPC) 

technique. An NIR LED matrix (LED Lamp Board Vo.1; Curiosis, Inc., South Korea) was installed on 
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a conventional inverted microscope body (Olympus, Japan). The NIR LED matrix is configured with a 

center wavelength at 850 nm and is specially designed to control all LEDs simultaneously by avoiding 

the rolling shutter effect. The distance between LEDs is 2.0 mm avoiding wave front interferences. 10× 

0.25 NA achromatic finite-conjugate objective (#33-437; Edmund Optics, U.S.A) was configured to the 

system. Images were acquired using a color CMOS camera (CS505MU; Thorlabs, U.S.A.) without 

color filters. The acquisition system was controlled using a custom written software in MATLAB 

(Mathworks Inc. U.S.A.). 

Near infrared (NIR) quantitative phase imaging (QPI) microscopy is essentially the same of the 

conventional brightfield microscope configured with NIR/white LED array illumination (Figure. 4.9a). 

The QPI images or brightfield stained section images are acquired by alternating the illumination color 

or pattern from a specimen. Thereby, no further registration is needed for the further deep learning 

analysis. The NIR-LEDs are configured at the center wavelength of 850 nm, which gives the least 

attenuation/absorption and the maximum quantum efficiency for the tissue imaging. In addition, there 

is no absorption from the staining of hematoxylin and eosin (H&E) at 850 nm (Figure. 4.9b) which 

brings an identical QPI image regardless of the staining (Figure. 4.12). We bring four NIR-LED 

illumination patterns which are a torus shape by helical cuts (inner illumination NA was 0.85) at 120 

degrees and are centrically rotated by 120 degrees (Figure. 2c; NIR-LED array patterns). Four optical 

transfer functions (Figure. 4.9c; Transfer functions) form four images shown in Figure. 4.9c; patterned 

illuminated images P1 to P4. The phase information is recovered from these four patterned illuminated 

images. Figure. 4.9d shows an example of kidney section imaged by plane NIR illumination (NIR-BF), 

by four patterned illumination followed by the phase recovery (NIR-QPI), and by plane white-light 

illumination (White-BF). NIR-BF shows nearly nothing because of zero absorption/scattering by NIR, 

and NIR-QPI brings detailed phase features of the tissue which are well correlated with H&E staining 

in White-BF. 

 

Quantitative phase recovery 

Using NIR illumination may consider thick, absorbing H&E stained tissue as transparent specimen. 

This allows a weak object approximation with complex transmission function t(r) ≈ 1 + −μ(r) +

iϕ(r), where 𝜇 denotes the absorption of the sample and 𝜙(r) characterizes the phase [38, 40]. Under 

partially coherent illumination, the image intensity in Fourier plane can be still expressed as [40] 

 

Ĩ(u) = Bδ(u) − 𝐻𝑎𝑏 ∙ �̃�(𝑢) + 𝑖𝐻𝑝ℎ ∙ �̃�(𝑢)                      (1) 

 

where 𝑢 is spatial frequency coordinates, B is background term, 𝐻𝑎𝑏 is absorption transfer function, 

𝐻𝑝ℎ   is phase transfer function (PTF or WOTF), �̃�(𝑢), and �̃�(𝑢)  denotes absorption and phase, 
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respectively. Express of B, 𝐻𝑎𝑏, 𝐻𝑝ℎ  are given by [40] 

 

B = ∬𝑆(𝑢′)|𝑃(𝑢′)|2 𝑑2𝑢′,                            (2) 

 

𝐻𝑎𝑏 = ∬𝑆(𝑢′)𝑃∗(𝑢′) 𝑃(𝑢′ + 𝑢)𝑑2𝑢′ + ∬𝑆(𝑢′)𝑃(𝑢′) 𝑃∗(𝑢′ − 𝑢)𝑑2𝑢′,          (3) 

 

𝐻𝑝ℎ = ∬𝑆(𝑢′)𝑃∗(𝑢′) 𝑃(𝑢′ + 𝑢)𝑑2𝑢′ − ∬𝑆(𝑢′)𝑃(𝑢′) 𝑃∗(𝑢′ − 𝑢)𝑑2𝑢′,          (4) 

 

where 𝑢′  denotes for spatial frequency coordinate of the tilted illumination, 𝑆(𝑢′),  and 𝑃(𝑢′) 

denotes for illumination and pupil functions, respectively [38, 40]. To transform phase into measurable 

intensity or to acquire DPC images, annulus pattern was illuminated on the specimen and captured four 

phase shifted images. The DPC image then could be calculated by measured images from following 

equations [38, 40, 54] 

 

I1
𝐷𝑃𝐶 =

𝐼𝑚1−𝐼𝑚2

(𝐼𝑚1+𝐼𝑚2)
,  I2

𝐷𝑃𝐶 =
𝐼𝑚3−𝐼𝑚4

(𝐼𝑚3+𝐼𝑚4)
.                      (5) 

 

where 𝐼𝑚𝑛 is image captured from nth pattern. Since B1 = B2, background terms were eliminated in 

numerator term of DPC measurements. In the aberration-free system, ideally DPC image doesn’t 

contain any absorption information, leading 𝐻𝑎𝑏 = 0. Moreover, exact same illumination patterns on 

the corresponding axis would make phase term, 𝐻1
𝑝ℎ = −𝐻2

𝑝ℎ[38]. Thus, nth DPC equation could be 

simplified in linear form as Ĩ𝑛
𝐷𝑃𝐶 =

𝐻𝑝ℎ

𝐵
∙ 𝑖�̃�(𝑢). With all four DPC images, quantitative phase could be 

retrieved by simple deconvolution process with Tikhonov’s regularization term 𝛾 [40].  

 

𝜙(𝑟) = ℱ−1 {
∑ �̃�𝑖(𝑢) ∙ 𝐼𝐷𝑃𝐶,𝑖(𝑢)𝑖

∑ |�̃�𝑖(𝑢)|2+𝑖 𝛾
} ∗ 𝛼, (i = 1,2)                   (6) 

 

For this study,  𝛼 , and 𝛾  was empirically set to 0.58, and ~ 0.08, respectively, from calibration 

experiment using phase resolution target (Benchmark Technology, Quantitative phase microscopy 

target). 

 

4.2.3 Sample preparation and imaging 

 

In order to avoid deformations found mostly after tissue staining, here, QPI and bright field imaging 

was achieved using corresponding stained tissue sample. All the samples that were used in this study 

were prepared by the Ulsan National Institute of Science and Technology Central Research Facility 
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(UCRF) at UNIST. All animals were sacrificed, and organs were harvested under accordance with a 

protocol approved by UNIST Institutional Animal Care and Use Committee (IACUC). In this 

experiment, coronal section of brain, and kidney were acquired for QPI imaging. For the tissue 

preparation, 10-week old Balb/c wild type male mouse was utilized. After harvesting brain and kidney 

from mouse, these tissues underwent through a formalin infiltration process. Then, dehydrated tissues 

were fixed in paraffin, making paraffin-embedding blocks. These paraffin blocks were sectioned along 

the coronal plane with a thickness of 5 μm using a microtome (RM2255, Leica Microsystems). To 

compare the NIR performance according to thickness, kidney tissue was sliced for 2, 5, 8, 11 μm 

thickness. Prior to staining process, tissue sections were completely deparaffinized using Xylene and a 

series of graded ethanol solutions on a standard glass slide. Following the deparaffinization, tissue is 

stained by hematoxylin and eosin dye through conventional staining protocol, then tissue specimen was 

sealed with coverslip. In prior to training process, using stained tissue presents several advantages. 

Cumbersome and complicated image registration algorithm is not mandatory since image can be 

captured in a single platform. In addition, avoiding deformation in tissue may improve the training 

performances in deep learning. 

Following the tissue staining process, the specimen was imaged using a NIR-QPI microscope 

system to visualize quantitative phase information. Since our microscope system is implemented on the 

conventional bright field microscope configuration by alternating only illumination parts with LED 

matrix, bright field image could be acquired in same microscope by changing the illumination apparatus. 

No additional sample preparation process is needed. Both QPI and bright field H&E image was captured 

using 10x/0.25NA objectives.  

 

4.2.4 Data processing methods 

 

Data pre-processing for deep learning  

A set of cropped images from acquired data was created for training and testing of in-silico staining 

model. Regions of interest (ROIs) in 100 × 100 pixels were found in each 2448 x 2048 pixels image 

producing 48,800 ROIs per image. We found 1,200 additional ROIs from random position to make a 

total 50,000 ROIs per Image. Images from four tissue sites were used for training and validation as 8:2 

ratio, i.e. total 200,000 ROIs of 160,000 ROIs for training, and 40,000 ROIs for validation. We used 

additional images from 6 brain tissue sites or 16 kidney tissue sites for testing our results (Figure 4. 17 

and Figure 4. 18). All the computation for data preparation were performed using a custom written 

software in MATLAB (Mathworks Inc., U.S.A.). 

 

Image registration for evaluation of NIR-based QPI system 

In this study, simple image registration algorithm was applied to evaluate the effect of phase on stained 



75 
 

and unstrained tissue QPI according while according to illumination wavelength variations. In order to 

find the phase deviations between quantitative phase images captured by different illumination 

wavelengths on stained and unstained tissues, here, we utilized M-estimator Sample Consensus (MSAC) 

algorithm [112] to register two QPI data set correctly. In addition, affine-based speeded-up robust 

features (SURF) was applied to detect the features between images. Figure 4. 10 simply illustrates the 

image registration process. Moreover, this phase deviation analysis based on image registration method 

was applied for each sliced thicknesses (3, 5, 8, 11 μm thick tissues).  

 

 

Figure 4. 10 Illustration of registration methods for analysis of effects on phase deviations between stained 

and unstained tissues according to illumination wavelength variations 

 
 

4.2.5 GAN architecture and training 

 

In-silico tissue staining with generative adversarial network 

In-silico staining using GAN is a set of deep neural networks (DNNs) to transform the monochromatic 

quantitative phase information to color-based BF histological stained images. Here, in-silico stating 

model follows the SR-GAN approach [113]. Figure 4. 11 illustrates the architecture of in-silico staining 

model using GAN structures. In-silico GAN is composed three DNNs of a generator network (Figure 

4. 11a), a discriminator networks (Figure 4. 11b), and a feature extraction network (Figure 4. 11c). The 

generator networks are structured in residual module by stacking a convolution layer, an activation layer 

with parametric ReLU (PReLU), batch normalization layer with a momentum 0.5, a convolution layer, 

and a batch normalization layer followed by an elementwise summation of input and output. The 
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residual module is repeated sixteen times followed by the other residual connection from the beginning 

of the residual module. These skip connections easy the training process at such a very deep neural 

network, avoiding the gradient vanishing problems and extracting more details in features. The 

discriminator network is a convolutional neural network to classify generated image or bright field color 

H&E stained tissue image (Figure 4.9c). As shown in Figure 4. 11b, it is composed of series of 

convolution layers, activation layers with LReLU at the slope 0.2, and batch normalization at a 

momentum 0.5 followed by a fully connected layer, an activation layer with LReLU at the slope 0.2, a 

fully connected layer in size 2, and an activation layer with Sigmoid. We took a part of pre-trained 

VGG19 network [114] to ImageNet database [106] as a feature extraction network (Figure 4. 11c). The 

feature extraction networks are composed of the convolution layers, activation layers of ReLU, and 

max-pooling layers of the VGG19. All layers in the feature extraction network set to inference only (no 

further training performed).  

In-silico GAN uses a generative adversarial network architecture [111, 113] to create a 

chromatic stained tissue images with the same statistical features as labeling image 𝐼𝐻&𝐸  on top of the 

monochromatic QPI tissue image data 𝐼𝑄𝑃𝐼  . Let in-silico GAN has a generator network 𝐺𝜃𝐺
  in 

parameters 𝜃𝐺 creating intermediate data 𝐺𝜃𝐺
(𝐼𝑄𝑃𝐼), we optimize the generator network 𝐺𝜃�̂�

 [113]:  

 

𝜃�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝐺  

1

𝑁
∑  𝑙𝑔 (𝐼𝑛

𝐻&𝐸 , 𝐺𝜃𝐺
(𝐼𝑄𝑃𝐼))

𝑁

𝑛=1

,                                            (7) 

 

with 𝑁 training images, 𝑛 = 1,… ,𝑁, and the generator loss function 𝑙𝑔 defined [113] 

 

𝑙𝑔 =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (𝜙𝑖,𝑗(𝐼

𝐻&𝐸)𝑥,𝑦 − 𝜙𝑖,𝑗 (𝐺𝜃𝐺
(𝐼𝑄𝑃𝐼))

𝑥,𝑦
)
2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1 + 10−3 ∑ − log (𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝑄𝑃𝐼)))𝑁
𝑛 ,   (8) 

 

where 𝜙𝑖,𝑗   denotes the 𝑗th  convolution in 𝑖th  activation layer output from the feature extraction 

network and 𝐷𝜃𝐷
  denotes a discriminator network parametrized in 𝜃𝐷  distinguishing between 

generator output 𝐺𝜃𝐺
(𝐼𝑄𝑃𝐼) and label data 𝐼𝐻&𝐸 . We optimize the discriminator network 𝐷𝜃𝐷

 along 

with the generator network 𝐺𝜃𝐺
 at each epoch by solving the adversarial problem [113]:  

 

min
θG

max
𝜃𝐷

𝔼𝐼𝐻&𝐸~𝑝(𝐼𝐻&𝐸)[log𝐷𝜃𝐷
(𝐼𝐻&𝐸)] + 𝔼𝐼𝑄𝑃𝐼~𝑝𝐺(𝐼𝑄𝑃𝐼) [log (1 − 𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝑄𝑃𝐼)))]     (9) 

 

In the in-silico GAN architecture, both the generator and discriminator network are optimized 

using an adaptive moment estimation (Adam) optimizer [115] with learning rates of 1×10-4, exponential 
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decay rates β1 = 0.9 and β2 = 0.999, and a fuzz factor ε = 1×10-8. These parameters were chosen 

empirically for the best performance. The discriminator network 𝐷𝜃𝐷
 sets the loss function of binary 

cross-entropy 𝑙𝑑 [113]:  

 

𝑙𝑑 = −
1

𝑁
∑ 𝑦𝑖 × log (𝐷𝜃𝐷

(𝐼𝑖)) + (1 − 𝑦𝑖) × log (1 − 𝐷𝜃𝐷
(𝐼𝑖))

𝑁
𝑖=1 ,          (10) 

 

where 𝑦𝑖 denotes the 𝑖th label of an image 𝐼𝑖, 𝑖 = 1,… ,𝑁. We took a part of pre-trained VGG19 for 

the feature extraction network and no further training was involved as mentioned above. The generator 

network and the discriminator network were trained alternatively in an adversarial manner over 

iterations. The in-silico GAN was trained for 500 epochs. 

 
 

Figure 4. 11 Architecture of in-silico staining algorithm using GAN structure. In-silico staining is carried out 

using four deep neural networks (DNNs), i.e. (a) generator network, (b) discriminator network, (c) feature 

extraction network. (a) The generator network performs in-silico staining from input image (NIR-QPI). (b) The 

discriminator network evaluates the difference of the stained image (White-BF) and the generated image. (c) 

Image features are extracted using ImageNet pre-trained VGG19 network in (c). The outcome of (b) and (c) are 

used to train (a) in adversarial manner. (d) Generative adversarial network (GAN) losses over training. Two models 

were trained, i.e. In-silico BF to in-silico staining of NIR-brightfield image (NIR-BF), or In-silico QPI to in-silico 

staining of NIR-QPI image. 

 

Image quality assessment 

To evaluate the performance of the QPI-based in-silico staining, we further trained and analyzed GAN 

model by applying different contrast images such as bright field stained tissue image (ground truth, GT), 

NIR bright field, low-passed QPI, fully reconstructed QPI images. We calculated three full-reference 
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quality measurements of the mean-squared error (MSE), peak signal-to-noise ratio (pSNR), and 

structural similarity (SSIM) index between stained section image 𝑆𝐻&𝐸  versus the in-silico image 𝑆𝐼𝑆  

from GAN scan [15, 16]: 

 

𝑀𝑆𝐸(𝑆𝐻&𝐸 , 𝑆𝐼𝑆) =
1

𝑁
∑ (𝑆𝑖

𝐻&𝐸 − 𝑆𝑖
𝐼𝑆)

2𝑁
𝑖=1 ,                        (11) 

 

𝑝𝑆𝑁𝑅(𝑆𝐻&𝐸 , 𝑆𝐼𝑆) =  10 × log10 (
𝑝𝑘2

𝑀𝑆𝐸(𝑆𝐻&𝐸,𝑆𝐼𝑆)
),                    (12) 

 

𝑆𝑆𝐼𝑀(𝑆𝐻&𝐸 , 𝑆𝐼𝑆) =
(2𝜇𝐻&𝐸𝜇𝐼𝑆+𝐶1)(2𝜎𝐻&𝐸,𝐼𝑆+𝐶2)

(𝜇𝐻&𝐸
2 +𝜇𝐼𝑆

2 +𝐶1)(𝜎𝐻&𝐸
2 +𝜎𝐼𝑆

2 +𝐶2)
,                     (13) 

 

 

where both 𝑆𝐻&𝐸  and 𝑆𝐼𝑆  has the same image size 𝑁 with pixel 𝑖 = 1,… ,𝑁, 𝑝𝑘 denotes image bit 

depth, i.e. 8 bit, 𝑝𝑘  = 255, and 𝜇𝐺𝑇 , 𝜇𝑅 , 𝜎𝐺𝑇 , 𝜎𝑅 , or 𝜎𝐺𝑇,𝑅  denote the local means 𝜇 , standard 

deviations 𝜎  or cross-covariance 𝜎𝐻&𝐸,𝐼𝑆  of image 𝑆𝐻&𝐸   or 𝑆𝐼𝑆  . MSE, pSNR, or SSIM were 

calculated using MATLAB functions, Immse, psnr, or ssim subsequently.  

 

4.2.6 Implementation details 

 
Table 4. 2 Training details for the in-silico staining of QPI images using GAN 

 

Patch size Batch size # of training images # of validation images 
Training 

time (h) 
# of epochs 

100 x 100 16 16,000 4,000 ~ 72 < 500 

 

Training details of deep neural network structures and parameters related to image patch size, number 

of training and validation images, and conditions are available in Table 4. 2. GAN was implemented 

using Keras version 2.2.4 front-end with tensorflow-gpu version 1.13.1 back-end running on Python 

version 3.7.3. Python libraries of tqdm version 4.31.1, numpy version 1.16.2, scipy version 1.2.1, scikit-

image 0.14.2, h5py version 2.8.0, matplotlib version 3.0.3, os, and argparse were used. GAN algorithm 

was implemented on a desktop computer configured with a Core i7-7800X CPU at 3.5GHz (Intel), 128 

GB of RAM, and a Titan V GPU (Nvidia) running a Windows 10 operating system (Microsoft). GAN 

was trained or inference using a GPU disabling the auto mixed-precision setting or a CPU. Data 

preprocessing and analysis were carried out using MATLAB R2019a (MathWorks). Furthermore, all 

image hardware was synchronized and controlled automatically by MATLAB (Mathworks, Inc., 

MATLAB). 
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4.2.7 Results & Discussion 

 

Effect of NIR illumination in quantitative phase imaging 

In order to evaluate the influence of NIR illumination for tissue quantitative phase imaging, kidney of 

mouse tissue sliced into 2, 5, 8, 11 μm thick were imaged with different types of illumination wavelength. 

Specifically, center wavelength of 480 nm, 530 nm, 650 nm, and 850 nm illumination was utilized for 

this imaging session. Depending on the light absorptions and scattering which may vary with 

wavelength of illumination and thickness of the tissue, we analyzed the phase variations (∆ϕ(r)) and 

scattering coefficient (μs). The scattering coefficient was quantitatively extract using the measured 

phase information according to the scattering-phase theorem. In general, light attenuation is measured 

with respect to the depth of sample and converted to a scattering coefficient based on the Beer-Lambert 

law. However, the scattering-phase theorem can be applied for computation of the scattering coefficient 

utilizing only a 2D phase information in the following manner [116]: 

 

μ𝑠 =
〈∆𝜙2(𝑟)〉𝑟

𝐿
,                                 (14) 

 

where ∆ϕ(r) indicates spatial variance in phase image and L is thickness of the tissue. Here, L should 

be 2, 5, 8, 11 μm. The calculation was proceeded within window size of 512 x 512 pixels. According to 

the scattering-phase theorem, the scattering coefficient is directly influence by the phase variance, 

which means that scattering will present at the high phase fluctuation. In addition, phase measurements 

were demonstrated using very thin tissue slices, hence, the single scattering regime can be expected in 

this experiment. Therefore, dispersion and absorption were not significant for this experiment, 

especially for 850 nm illumination wavelength.  

Figure 4. 12 illustrates the quantitative analysis of QPI that was captured by various illumination 

colors according to tissue thickness. As thickness increase, overall measured phase has been increased 

which follows the phase equation ∆ϕ =
2π

𝜆𝑐
∆𝑛𝐿 [116], where ∆𝑛, and L denotes variation of refractive 

index, and thickness, respectively. Furthermore, phase measurement was inversely proportion to 

illumination wavelength, which also follows the phase equation. Throughout this experiment, higher 

phases were measured in stained kidney tissue using visible wavelength illumination for the all 

thicknesses. Presence of high absorption in the specimen would yield phase error in computation 

(absorption information would be eliminated for DPC calculation, assuming to have highest phase  
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Figure 4. 12 Analysis of DPC driven QPI of mouse kidney tissue before and after H&E staining  

 

 
 

 
 

Figure 4. 13 Phase variation measurements on various illumination wavelength and tissue thickness using 

mouse kidney tissue before and after staining 
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presence), and structural information could be hidden in the DPC-based QPI system. However, minimal 

phase difference was shown between unstained and stained tissue when illumination wavelength of 850 

nm (NIR). It is expected that absorption and scattering is minimally affecting the stained tissue in 

quantitative phase measurements when thickness is under ~10 μm. Figure 4. 13 graphically presents the 

average of phase variation measurements according to Figure 4. 12. 

Furthermore, scattering coefficient was analyzed for thickness and illumination wavelength. 

Figure 4. 14 describes the average of scattering coefficient calculated in the image FOV according to 

scattering-phase theorem. Scatterings were highly presenting at low illumination wavelength as well as 

use of thicker specimens. Hence, wavelength of 480 nm showed highest while 850 nm showed the 

lowest scattering coefficients for all tissue thickness. In terms of thickness, 11 μm thick kidney tissue 

demonstrated the highest scattering coefficient for unstained kidney tissue. In the stained tissue imaging, 

trend of the scattering coefficient graph exactly follows the light absorption spectrum presented in  

 

 
 

Figure 4. 14 Scattering coefficient on various illumination wavelength and tissue thickness using mouse 

kidney tissue before and after staining 

 

 

Figure 4. 9a. High absorptions were presented for wavelength of 530 nm which also presents highest 

scattering coefficient. Similar to values found in the unstained tissue, lowest scattering coefficient was 

found when wavelength of 850 nm was utilized for stained tissue imaging. In addition, not much 

variations were found between stained and unstained tissue measured at 850 nm. Throughout this 

experiment, using NIR-illumination for QPI image illustrates and confirmed that stained tissue is 

available for data acquisition for the in-silico GAN training. Chromatic staining was found to be less 

affective to QPI imaging when NIR illumination was employed. One should note that staining tissue 

was only utilized for training/testing the GAN framework in this study to neglect the registration process 

and avoid tissue deformation from chemical staining process. 
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In-silico staining of tissue specimens 

After validation of NIR-QPI system for stained tissue, we demonstrated the in-silico GAN models using 

coronally sectioned kidney and brain tissues. Following the training session, we blindly tested out the 

inference of trained networks by applying the fresh quantitatively retrieved phase image data sets which 

were not exposed during the training process. Figure 4. 15 illustrates the outcome for the in-silico GAN 

of phase image of mouse kidney tissue. These result demonstrates successful color conversion from 

QPI to bright-field equivalent image through trained GAN framework. Compare to bright field H&E 

kidney tissue image, colors of in-silico stained image were assigned correctly according to pathological 

constituents such as cell nuclei, proximal tubules, and glomerulus. Additional results of in-silico 

staining of QPI is illustrated in Figure 4. 16 for mouse brain tissue (also stained in H&E). For qualitative 

assessment, brain tissue seems to have less difference between in-silico and bright field images. This 

means that better training performance could be expected for GAN framework using brain tissue, which 

can be assume from less structural complexity compare to kidney tissue.  

 

 

 
 

Figure 4. 15 In-silico staining of mouse kidney tissue using GAN frameworks 
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Figure 4. 16 In-silico staining of mouse brain tissue using GAN frameworks 

 

 

Quantitative analysis of network output image quality 

Similarity between the stained section images and the in-silico images were quantitatively and 

qualitatively evaluated for kidney and brain sections in Figure 4. 17 and Figure 4. 18, subsequently. 

Four images of the histological stained images by white light brightfield microscopy (white-BF), NIR-

BF images, and NIR-QPI images were obtained from the tissue sections. NIR-BF and NIR-QPI images 

were in-silico stained using the trained generator networks. Figure 4. 17a shows the kidney section 

images of NIR-BF and NIR-QPI, and their in-silico stained images of In-silico BF and In-silico QPI, 

subsequently, with the corresponding stained tissue section image (white-BF). The In-silico QPI and 

the stained images are visually well matched even at the detailed podocyte structures shown in Fig. 6b. 

In-silico BF describes pinkish colors of convoluted tubule structures, yet the cellular morphologies are 

crumbled, especially, the podocyte cannot be recognized (Figure 4. 17b; In-silico BF). The cross-section 

intensity along the yellow dotted line in Figure 4. 17nwere plotted in Figure 4. 17c. The intensity from 

In-silico QPI and the stained image (white-BF) lines together, yet, In-silico BF intensity is apart. 

Correlation coefficients were calculated for the cross-section intensity measurements from in-silico 

stained image and the stained image (Figure 4. 17d). The very strong correlation (>0.9) appears for In-

silico QPI and the weak correlation (<0.4) are for In-silico BF. Figure 4. 17e shows full referenced 

image quality measures of mean square error (MSE), peak signal-to-noise ratio (pSNR), structure 
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similarity (SSIM) from 19 tissue sections, and blind mean opinion scores (MOS) testing asked to the 

six trained histopathologists (Table 4. 3). In-silico QPI gives less MSE, higher pSNR, and better SSIM 

than In-silico BF. Six histopathologists could not differentiate the stained image (white-BF) to the In-

silico QPI with good score (>3), and In-silico BF scored poor image quality (<2). Figure 4. 18 shows 

the same analysis with the brain tissue section. In-silico BF shows a very different morphology to the 

stained tissue section, yet In-silico QPI gives the exact same structure of the stained tissue section (Figs. 

Figure 4. 18 a and Figure 4. 18 b). The cross-section intensities along the dotted yellow lines from Fig. 

7b and their correlation coefficients were analyzed (Figure 4. 18 c and Figure 4. 18 d). The In-silico 

QPI and the stained images are perfectly matched; however, the In-silico BF and the stained images are 

not matched and are anti-correlated. The image quality was evaluated using MSE, pSNR, and SSIM 

from 10 brain sections in addition to blind MOS testing from the six histopathologists (Figure 4. 18 and 

Table 4. 3). Similar to the kidney section case, In-silico QPI gives less MSE, higher pSNR, and better 

SSIM than In-silico BF. Again, six histopathologists could not differentiate the stained image (white-

BF) to the In-silico QPI with good score (>3), and In-silico BF scored poor image quality (<2). 

 

Discussion 

We demonstrated the in-silico staining of quantitative phase contrast images using a generative 

adversarial network framework. Monochromatic information from QPI has been successfully 

transformed to chromatic images which corresponds to bright field H&E stained tissue or golden 

standard. Significance of this study could be describable to improvement of the conventional virtual 

staining methods. Using a stained tissue from the QPI acquisition for DNN input eliminates the 

complicated image alignment/registration algorithm and neglects the random loss or deformation of 

tissue constituents that typically happens during the staining process, making the training/learning 

procedure of DNN very simple and less times consuming. With a NIR-based QPI system, in-silico 

staining method could be potentially expanded using different stained tissue with various chemical dyes  

such as Masson’s Trichrome, Jones stain, Toluidine Blue, Luxol Fast Blue, and etc [117], which usually 

have light absorption spectrum within the visible range. Following the training the network, stained 

tissue is not necessary anymore. The new stain-free quantitative phase images from unstained tissues 

(only kidney and brain) are available for the pretrained network to generate virtually stained images. 

Following the training process demonstrated here, any type of tissue is available for in-silico staining. 

Therefore, in-silico tissue staining method that we proposed in this study enables to bypass the 

cumbersome chromatic staining process in conventional histological procedure. This allows saving 

time, labor, and cost of the staining method, providing great benefits to the real clinic applications. To 

the best of our knowledge, it is the first time demonstrating the tissue as well as absorbing specimen 

acquisitions using DPC driven quantitative phase imaging method. Conventionally DPC imaging 

microscope [38, 40, 54] has shown great potentials in live cell imaging. Changing shape of the  
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Figure 4. 17 In-silico staining from NIR-BF image NIR-BF or NIR-QPI image for a kidney section. (a, b) 

Images of NIR-BF or NIR-QPI followed by in-silico stained image of each (In-silico BF or In-silico QPI, 

subsequently) with a correspond stained kidney section image (White-BF). Yellow boxed regions are shown in 

(b). (c, d) Intensity profile along yellow dotted line in (b) are shown and the correlation coefficient between In-

silico stained images (In-silico BF or In-silico QPI) and the stained section image (white-BF). (e) Quantitative 

analysis of image similarity between In-silico stained images (In-silico BF or In-silico QPI) and the stained section 
image (white-BF) by mean square error (MSE), peak signal to noise ratio (pSNR), structure similarity (SSIM), or 

mean opinion score (MOS) from six histopathologists. Scale bar: 100 μm. 
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Figure 4. 18 In-silico staining from NIR-BF image NIR-BF or NIR-QPI image for a brain section. (a, b) 

Images of NIR-BF or NIR-QPI followed by in-silico stained image of each (In-silico BF or In-silico QPI, 

subsequently) with a correspond stained brain section image (White-BF). Yellow boxed regions are shown in (b). 

(c, d) Intensity profile along yellow dotted line in (b) are shown and the correlation coefficient between In-silico 

stained images (In-silico BF or In-silico QPI) and the stained section image (white-BF). (e) Quantitative analysis 
of image similarity between In-silico stained images (In-silico BF or In-silico QPI) and the stained section image 

(white-BF) by mean square error (MSE), peak signal to noise ratio (pSNR), structure similarity (SSIM), or mean 

opinion score (MOS) from six histopathologists. Scale bar: 100 μm. 
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Table 4. 3 Blind mean opinion score (MOS) testing for In-silico and H&E histological staining for kidney 

and brain sections. 

 

  Kidney           Brain           

Tissue # P1 P2 P3 P4 P5 P6 Avg. P1 P2 P3 P4 P5 P6 Avg. 

1 (HS) 5 4 5 5 5 5 4.8 2 4 3 5 5 5 4.0 

1 (In-silico QPI) 5 4 4 4 5 5 4.5 3 4 4 4 4 3 3.7 

1 (In-silico BF) 4 4 4 2 3 5 3.7 1 1 2 1 1 1 1.2 

2 (HS) 4 2 4 4 5 4 3.8 2 4 3 3 5 4 3.5 

2 (In-silico QPI) 4 2 4 3 4 5 3.7 5 4 4 4 4 5 4.3 

2 (In-silico BF) 1 1 4 1 2 2 1.8 1 1 2 1 1 1 1.2 

3 (HS) 3 2 3 4 4 3 3.2 4 5 4 4 5 5 4.5 

3 (In-silico QPI) 3 2 3 4 3 4 3.2 5 4 4 4 4 5 4.3 

3 (In-silico BF) 1 1 4 1 2 2 1.8 1 1 2 1 1 1 1.2 

4 (HS) 4 3 3 3 4 3 3.3 4 4 3 3 5 5 4.0 

4 (In-silico QPI) 3 1 3 4 3 3 2.8 3 4 3 3 4 5 3.7 

4 (In-silico BF) 2 1 4 1 2 3 2.2 1 1 2 1 1 1 1.2 

5 (HS) 4 2 4 4 4 4 3.7 4 4 3 2 4 5 3.7 

5 (In-silico QPI) 4 2 4 4 3 4 3.5 4 4 4 4 3 5 4.0 

5 (In-silico BF) 3 2 3 3 2 4 2.8 1 1 2 1 1 1 1.2 

6 (HS) 4 4 3 4 3 3 3.5 3 3 4 4 4 5 3.8 

6 (In-silico QPI) 3 1 3 4 2 4 2.8 3 4 4 3 3 4 3.5 

6 (In-silico BF) 2 1 4 2 2 2 2.2 3 2 3 1 2 3 2.3 

7 (HS) 5 5 5 5 4 4 4.7 3 3 4 5 4 5 4.0 

7 (In-silico QPI) 4 1 5 5 2 4 3.5 4 4 4 3 3 4 3.7 

7 (In-silico BF) 4 1 4 2 2 3 2.7 1 1 2 1 1 1 1.2 

8 (HS) 3 4 4 3 4 3 3.5 4 3 4 5 4 5 4.2 

8 (In-silico QPI) 2 2 4 2 2 3 2.5 4 3 4 4 3 5 3.8 

8 (In-silico BF) 1 2 3 1 2 2 1.8 1 1 2 1 1 1 1.2 

9 (HS) 4 2 3 3 4 2 3.0 4 4 4 4 4 5 4.2 

9 (In-silico QPI) 2 3 3 2 3 2 2.5 3 4 4 4 3 4 3.7 

9 (In-silico BF) 2 2 3 1 2 2 2.0 1 1 2 1 1 1 1.2 

10 (HS) 5 3 4 5 5 5 4.5 4 5 4 5 4 5 4.5 

10 (In-silico QPI) 5 3 4 4 4 4 4.0 3 4 4 3 3 5 3.7 

10 (In-silico BF) 2 3 3 1 1 2 2.0 2 3 3 2 3 3 2.7 

Average (HS) 4.1 3.1 3.8 4 4.2 3.6 3.8 3.4 3.9 3.6 4 4.4 4.9 4.0 

Average (In-silico QPI) 3.5 2.1 3.7 3.6 3.1 3.8 3.3 3.7 3.9 3.9 3.6 3.4 4.5 3.8 

Average (In-silico BF) 2.2 1.8 3.6 1.5 2 2.7 2.3 1.3 1.3 2.2 1.1 1.3 1.4 1.4 

 

 

illumination benefits the imaging system, providing different contrast images including quantitative 

phase contrast in a single platform [37]. However, application of DPC imaging microscope was mostly 

limited to transparent cell imaging due to use of weak object approximation [40]. When object have 
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high absorption and scattering properties to the light, phase collapse is possible due to contradiction of 

linearized forward problem that is computed from weak object transfer function. Moreover, structural 

information may invisible in QPI, according to the light vanishing from absorption properties. Herein, 

patterned NIR illumination in the QPI system provides the potentials to expend the application field of 

the DPC driven QPI system. It enables to acquire not only thick tissue but also chromatic stained 

specimen, avoiding the absorption and scattering properties of H&E staining as shown in Figure 4. 9a. 

Therefore, stained tissue could be assumed as transparent specimen or slowly varying phase object 

(weak object approximation) that allows to maintain the quantitative phase retrieval principle, 

linearizing the complex field of the object. Currently, we have applied our system to paraffin embedded 

tissue sections. However, other fixation methods such as frozen tissue sections are applicable to in-

silico tissue staining method with our NIR-based QPI approach. 

Although virtually staining method is applicable with other QPI modalities such as 

interferometric microscopy, digital holography (DH), transport-of-intensity equation (TIE), Fourier 

ptychography (FP), we believe that our approach employing the DPC-based QPI system has advantages 

over other QPI systems. DH or interferometric approaches, in general, uses coherent light source, 

making the system expensive, sensitive to misalignments, speckle noises, and vibration [19, 21]. 

Alternative to coherent illumination system, TIE and FP are partially coherent illumination-based QPI 

techniques that quantitatively retrieve the phase from complex field of an object. However, these 

methods require multiple image acquisitions or iterative post-processing methods, which generally take 

time-consuming processes. Among others, DPC approach-based QPI, however, doesn’t require any 

cumbersome optical alignments or expensive apparatus, rather simply alternates the illumination source 

to LED matrix [40]. In this study, it requires four images from partial coherent illumination patterns and 

provides promising non-interferometric performance. Due to illumination properties (partially coherent 

illumination), DPC approach offers twice better lateral resolution limit (
2NA𝑜𝑏𝑗

λ
 ), better optical 

sectioning, and speckle or diffraction-free imaging compare to coherent illumination-based QPI systems 

[17, 19]. This means that DPC-based approach incorporates two times better frequency information 

than that of coherent illumination-based QPI systems, which have could possibly influence the training 

of DNN in terms of computation performance and errors in loss functions. In addition, the first-order 

derivative response to phase in DPC based QPI system has less sensitivity to frequency noise compare 

to TIE approach [19, 21]. Therefore, additional noise reduction algorithm or post-process is unnecessary 

with DPC-based QPI system, which also allows simplifying the training method of DNNs. With tissue 

imaging capability and training as demonstrated in this study, relatively fast imaging speed of DPC-

based QPI system provides the potential to perform on-site histopathology at the operation room where 

urgent golden standard results are required. 

One of the challenges commonly facing for the DNN training/learning is data preparation. To 
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train the DNNs, great numbers of data is required to reduce the overfitting or bias problems [118]. 

Although data augmentation methods have been widely utilized showing stable training efficiencies, 

certain numbers of raw data are still required. Moreover, it is true that using larger number of raw data 

is much better than using larger number of artificially generated data from limited resources in terms of 

training/validation performance. However, it is very time-consuming, laborious, and complicated 

process to capture images over 100 for both before and after staining when different imaging modalities 

are utilized for each imaging sessions. One quick and simple way to overcome this problem is using 

already existing histology slide resources along with proposed approach in this study. Most of hospitals 

incorporates histopathology storages with enormous numbers of patient’s stained histology slide. As 

following the proposed approach in this study, abundant resource of stained tissue slides could be 

utilized for data preparation with reduced data preparation time, complexity, and labors. In addition, 

more robust training networks could be expected along with data augmentation strategy. 

One of the limitation that our approach incorporate is resolution reduction caused by use of NIR 

compare to use of visible light source. In addition, our NIR-based QPI is not aberration free system, 

which is susceptible to aberrations like all imaging systems. Resolution of the quantitative phase is 

sensitive to defocus of the image, where the field curvature blurs the image along the edges of the FoV. 

Fortunately, resolution reductions are overcome through our approach using SR-GAN as training 

framework of in-silico staining. This network model trains to generate stained tissue image by following 

the feature distributions of label images [111]. Thus, as shown in correlation coefficient in result, 

resolution of outcome has been enhanced following the resolution of the label image that captured by 

visible illumination source. Furthermore, aberrations can be computationally corrected by a 

deconvolution process while retrieving quantitative phase of object, from raw images captured by 

different source patterns. Without pre-calibration process, joint estimation of the sample complex-field 

and the spatially varying aberration recovers system pupil aberration, quantitative phase, and absorption 

of the specimen which influence to SNR and resolution [53].  

 

4.2.8 Conclusion 

To summarize, our proposed in-silico tissue staining method successfully demonstrate the 

transformation of stain-free quantitative phase image to colorful bright field H&E stained image. The 

use of NIR illumination for the QPI enables to capture light absorbing and scattering tissue, which 

shows minimal influence according to chromatic dyes. This approach offers the simple and fast training 

for virtual staining networks by acquiring both QPI and bright field label images after staining process. 

We believe that our proposed approach could also provide an innovative method for bypassing the 

cumbersome and costly conventional staining process in pathological diagnostic workflow.  
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4.3 Quantitative Screening of Cervical Cancers for Low-resource Settings: Pilot Study of 

Smartphone-based Endoscopic VIA using Machine Learning Technique 

 

4.3.1 Introduction 

 

According to the International Agency for Research on Cancer (IARC) and GLOBOCAN 2018, cervical 

cancer (CC) is the 4th most frequent cancer in women worldwide[119]. Approximately 90% of the 

global cervical cancer deaths in 2015 occurred in the low- and middle-income countries [120]. Although 

CC is regarded as highly preventable and curable cancer, CC is still one of the leading causes of 

mortality in low-resource settings and developing countries due to the lack of sustainable screening 

programs and limited infrastructures [121, 122]. CCs can be readily managed when it is found in the 

precancerous stages through routine screening method such as the cytology-based test.  Most popular 

and affordable method for CC screening in low resource countries is to use visual inspection with acetic 

acid (VIA). Since VIA offers relatively simple, cost-effective visual feedback, it can even provide 

treatments on the same day of a screening visit [121-124]. In VIA, topical application of 4–5% acetic 

acid to the cervix transforms abnormal squamous epithelium to dense white color while normal 

epithelium presents light pink color. Despite its simplicity, VIA provides sufficient sensitivity and 

specificity to identify the cancerous lesion, hence, has been widely promoted and recommended as an 

alternative to the conventional cytology test (i.e. Pap smear) [121-125]. Nonetheless, visual inspection 

methods are found to be subjective, and the range of diagnostic performance varies widely, with 

significantly better results being obtained by physicians than by nurses [125]. Unfortunately, in many 

developing countries, trained physicians interpreting the VIA correctly may not be readily available 

[121, 123, 125]. 

Digital images of the cervix after application of acetic acid (D-VIA) or digital cervicography 

have been significantly important for improving quality control. It is a very efficient way of minimizing 

interpreters’ subjectivity by capturing higher resolution images for post screening analysis [126-130]. 

Moreover, digital images can be transmitted or shared through internet with long-distance experts thus 

closing the gap in human resources [127]. Recent advances in smartphone technologies have opened 

new possibilities for cervical screening in low-resource settings, overcoming colposcopy’s limitations 

such as the bulkiness, high-cost, electricity dependency and constant maintenance need [131-137]. The 

smartphone is highly integrated platform that includes various functionalities, easy accessibility, user-

friendly interface, ubiquitous internet, and communication technologies [86]. Particularly, high-

definition camera in a smartphone has made great impact on the practice of medicine by offering cost-

effective, rapid, and non-invasive imaging capabilities [86, 138-141]. Smartphone-based cervical 

screening has been proven feasible and validated for quality assurance in low resource settings [131-

137]. Smartphone-based D-VIA have been demonstrated for higher diagnostic accuracy and reduction 
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of the variability of detection rate. Although digital images are very effective in various ways [121], 

implementation of remote expert consultation is still challenging due to the lack of reliable broadband 

connections in remote areas [134]. On the other hand, automated interpretation of data and classification 

of cervical images for instant diagnostic conclusions will enable on-site treatments to be delivered 

without delays [142-146]. To date, various image processing and interpretation methods have been 

successfully applied to VIA using such features as aceto-whitening, blood vessel formation, and texture 

of the surface [143-145]. Prior works have shown that automated classification of VIA can perform as 

well as experts’ qualitative assessment of colposcopic images [142, 146]. In addition, auxiliary 

processing methods such as elimination of speculum reflection (SR) and determination of region of 

interest (ROI) can further improve the overall performances of image processing outcomes [145]. 

Automated quantification of VIA based on modern image processing and machine learning techniques 

could be a very promising platform for cervical screening in low resource settings. However, the fully 

automated diagnostic performance using smartphone-based cervical images have not been introduced, 

despite a clear need and potential. 

In this study, we demonstrate the new quantitative CC screening technique by implementing 

machine learning algorithm for smartphone based-endoscope VIA. Our method can provide digital 

images as well as automated diagnostic classification for comprehensive and intuitive feedback to a 

clinician. We have evaluated the diagnostic performance of the system through quantitative comparison 

to the gold standard of cytology and physicians’ interpretation of the digital images. This approach 

would extend the cervical cancer screening to remote populations who do not have access to 

experienced colposcopists. 

 

4.3.2 Smartphone-based endoscope system 

 

We developed a miniaturized endoscope system by assembling the endoscopic probe and smartphone 

with customized ancillary components as reported previously [141]. The smartphone-based endoscope 

system and its components are illustrated in Figure 4. 19a. The system is composed of 3 major 

components. (1) Customized coupler for universal attachment of endoscopic probes and (2) smartphone 

case were generated from 3D printer (Stratasys, Objet260 Connex2). Magnification is achieved by (3) 

an optical adapter, which is placed between endoscopic probe and smartphone camera, as shown in 

Figure a1. Incorporating achromatic and aspherized achromatic lens having 40 mm, 14 mm focal 

lengths, (Figure 4. 19b) respectively, we obtained ~3x optical magnification. The image can be further 

magnified up to ~12x with smartphone’s digital zoom feature. A portable light source (Medit, SPARK) 

was attached to the illumination port of an endoscopic probe. Images are acquired with the home-built 

android application that features control functions such as compensation of the rotated images caused 

by lens, camera controls including zoom, iso, white-balance, resolution size, and exposure adjustments, 
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and saving files.  

Optical elements of the adapter significantly improved the cervix image captured with smartphone 

camera alone. Images of central part of USAF resolution target was captured with/without smartphone 

endoscope (Figure 4. 19c). The device was placed at 150 mm, 300 mm away from the target, where 

prior smartphone-based VIA [132-134, 137] and routine colposcopy [147] are conducted. For 

endoscope system, we placed the distal end of probe at 20 mm away from the target where whole ecto-

cervix was well defined in the field-of-view. As shown in the Figure 1c, smartphone-based endoscopy 

achieved the best resolution from line-plot representing group 2, element 4 in resolution target. 

 

 
Figure 4. 19 Schematic of the system. (a) 3D modeling of the smartphone-based endoscope system. (b) Optics 

of the customized zoom lens. (c) Images of the resolution target taken by without any optics adapter and our 

system, respectively and group 2, element 4 from each image was described as line plot. 

 

4.3.3 Image acquisition from clinic 

 

In accordance with a protocol approved by the Ulsan University Hospital Institutional Review Board 

(IRB), we collected smartphone-based VIA images using endoscope in human subjects. In Ulsan 

University Hospital, VIA was routinely performed to visualize the margin before loop electrosurgical 

excision procedure (LEEP). Therefore, each imaging session was conducted prior to the LEEP at an 

operating room. A rigid endoscopic probe (Medstar, Otoscope, 0°, Ø4, and 50 mm length) was inserted 

inside a subject’s vagina where speculum had already been placed. Since the endoscope is thin, 

smartphone-based endoscopic VIA imaging was performed in non-invasive and non-contact manner. 

All patients who underwent LEEP had already been found suspicious for having cervical intraepithelial 

neoplasia (CIN2+) through prior cytology-based test and colposcopy. Typical procedure in this study 
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took less than 5 minutes without causing undue burden on volunteers and delay of the treatment: first 1 

minute was used for taking images before application of acetic acid, next 1-2 minute for applying of 3-

5% of acetic acid, then another 1 minute for waiting, and last 1 minute for taking VIA images. Figure 

2a-b shows the representative image of smartphone-based endoscopic VIA. For patients who underwent 

LEEP, 12 tissue sections were collected at each clock position from the excised ectocervix. For this 

study, physicians labeled the CIN grades in colors as shown in the center of Figure 4. 20c-e. Total 20 

patients aged 20 or older participated in this study. Among them, 5 volunteers were normal (CIN1-), 

and 15 were confirmed abnormal (CIN1+) from gold standard cytology test. Normal cervix status of 

the 5 subjects were verified as such by cytology test and colposcopy, and therefore no LEEP was 

performed and no tissue was collected from them.  

All the captured images including before and after application of the acetic acid were sent out 

to expert physicians for reviewing the smartphone-based endoscopic VIA. Total of four experts with 

professional experience ranging from 12 to 20 years participated while they were kept blind to the 

results of the machine learning and the cytology. Physicians’ interpretation was based on only VIA 

features without any additional information given to them. During the image reviews, physicians 

labeled the directional information of tissue region that contained suspicious abnormal features (Figure 

4. 20c-e). In this study, tissues including normal and CIN1 were considered to be normal and CIN2+ 

were considered to be abnormal because only CIN2+ requires treatment [142]. 

 

 
 

Figure 4. 20 Smartphone-based endoscopic cervicogram. (a) Cervicogram of before acetic acid application. (b) 

Cervicogram of after acetic acid application. (c) VIA- patient (d-e) VIA+ patients with predictions from best 

among four physicians. Prediction labeled the precancerous regions with colors at each clock position. 
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4.3.4 Pre-image processing 

 

Images from smartphone-based endoscopic VIA contains unnecessary features such as vaginal walls, 

speculum, and specular reflections of light as commonly found in typical cervicograms [145, 146]. As 

these features may affect overall classification accuracy, we performed multi-step image processing to 

reduce their influence on data analysis (See Figure 4. 21a). 

First, we determined and removed the specular reflections around the ecto-cervix area. Typical 

specular reflections appear white and saturated on the image. We primarily converted color space of the 

input image containing R, G, B to Hue, Saturation, Value (HSV). Saturation was used to identify the 

reflection with gradient computation in both x and y directions that quantitatively provide extent of 

directional gradient between adjacent pixels. Areas with specular reflection yield a dramatic change of 

intensity value from the neighboring pixels leading to abnormally high gradient magnitudes. Therefore, 

with proper threshold for gradients, area of specular reflections can be identified and then a binary mask 

can be applied to remove the reflections from the original image. In addition, removed pixels are then 

filled with colors by using the bicubic interpolation method. This method will minimally influence on 

the color distribution and provides numerical pixel information similar to that of adjacent pixels where 

high probability of similar color being expected. 

Next, ROI was defined to segment the major cervix region. The major cervix region in images 

of both before and after application of acetic acid contains high red-channel values. For ROI detection, 

red-channel image was transferred to grayscale and separated into multilevel binary images. In here, 8- 

 

 

Figure 4. 21 Block diagram of image processing and classification. (a) Pre-image processing method, (b) 

Feature analysis and classification. 
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bit grayscale of red channel image was sliced into 8 planes ranging from the least significant bit 0 to 

the most significant bit 7. Most of 7th and 8th bit-planes present the major ecto-cervix regions, and hence 

we used these features to generate the mask for ROI segmentation. Due to the slight differences of 

cervix images between pre- and post-acetic acid application, we performed ‘AND’ operator to segment 

the overlapping regions. 

Prior to VIA features extraction and classification, image pairs for pre- and post- acetic acid 

application had to be properly registered. As shown in Figure 4. 22, we manually provided three points 

as fiducials on each image to locate center of cervix (red dot), and both end of the cervical OS (2 black 

dots). Utilizing the center point, we correctly registered the center of cervix for every image pairs. In 

addition, we drew a line penetrating the other two points and found the angle of the line from each 

image. We made this line to be horizontal by rotating images with respect to the given central point. 

Moreover, we cropped the images into 12 pieces as sectioned in histology. In this image processing 

methods, we used total 20 image pairs acquired from volunteers as initial input (ni=40) and obtained 

240 pieces of images that have directional information for both before (ncb=240) and after (nca=240) 

acetic acid application. All detailed procedures with representative images for each step could be found 

in Figure 4. 22. 

 

Figure 4. 22 Image pre-processing procedures with representative images. 
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4.3.5 Feature analysis and selection 

 

After pre-processing of images, VIA features were analyzed to identify the images containing the 

suspicious lesions. To extract the abnormal features, we inspected RGB color intensity, values in 

extended color space, and Haralick’s texture features [67]. Application of the acetic acid on squamous 

epithelial areas coagulates the cellular protein and dehydrates the cytoplasm. Images of VIA- cervix, 

hence, generally showed the light pink or very thin white appearances due to reflection of light from 

the underlying stroma. On the other hand, VIA+ tissues which is rich in cellular proteins were presented 

with thick white features blocking the colors of the stroma. Due to this reason, VIA+ incorporates larger 

thick-white areas in images which would exhibit more green and blue intensities in color space [142, 

148]. Herein, we computed the green-to-red and blue-to-red intensity ratio and found the separation 

between histogram distributions of pre- and post-acetic acid application images. This approach would 

properly quantify changes in green and blue intensities independent of device variation and level of 

illumination. The differences of histogram distribution of average(𝐷𝑎𝑣𝑒), green-to-red (𝐷𝐺/𝑅),blue-to-

red (𝐷𝐵/𝑅) , and average histogram difference of green-to-red and blue-to-red (𝐷𝑎𝑣𝑒)  can then be 

defined as: 

 

𝐷𝐺/𝑅 = 𝐼(𝑚𝑜𝑑𝑒)𝐺
𝑅
𝑃𝑜𝑠𝑡

 − 𝐼(𝑚𝑜𝑑𝑒)𝐺
𝑅
𝑃𝑟𝑒

 

𝐷𝐵/𝑅 = 𝐼(𝑚𝑜𝑑𝑒)𝐵
𝑅
𝑃𝑜𝑠𝑡

 − 𝐼(𝑚𝑜𝑑𝑒)𝐵
𝑅
𝑃𝑟𝑒

 

 

𝐷𝑎𝑣𝑒 =
𝐷𝐺/𝑅 + 𝐷𝐵/𝑅  

2
 

 

where I(mode) is intensity level or index at mode in histogram. Standard deviations (SD) of green and 

blue channels are another important extracted feature. Aceto-white features with higher green and blue 

channel intensities also exhibited higher standard deviations. It means more green and blue intensities 

are widely distributed in the histogram. In addition, different color space was utilized to find the features 

of VIA. CIE*Lab color space was computed to achieve perceptual uniform colors space which is useful 

to quantitatively distinguish colors of image. The great advantage of CIE*Lab is that it is independent 

of device and illumination [142]. In this study, major color included on cervix was defined calculating 

the average of a* channels from each post-acetic application. Due to abnormal vascular formation such 

as mosaicism and punctation, visualization of uneven surface of the ecto-cervix was another contrasting 

feature. Computation of Haralick’s texture feature using gray-level co-occurrence matrix (GLCM) may 

quantify the spatial variation of gray intensity values related to the texture of an image. GLCM measures 

the probability distributions of different combinations of pixel values. Utilizing the GLCM, several 
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statistical information such as contrast, correlation, energy, and homogeneity can be derived 

quantitatively to exhibit the texture of image [149, 150]. Here, the GLCM was calculated in four 

different angles (0°, 45°, 90°, 135°) with inter pixel distance of 5 for difference of S channel (HSV color 

space) from pre- to post-acetic acid images. Different angles would measure the features of interest in 

every direction. Therefore, all four GLCMs were summed before texture calculation. In this study, we 

specifically utilized the correlation statistics which provides the extent of correlation between a pixel to 

its neighbor pixel over the whole image [114]. The correlation statistics exhibited a significant 

difference on the VIA+/- images, yet other texture statistics had shown very small difference down to 

third and fourth decimal points. Therefore, five VIA features were analyzed and selected as potentially 

useful for diagnostic classification: (1) Average difference of green/blue-to-red histogram index, (2) SD 

of green channel and (3) SD of blue channel from post-acetic acid images, (4) average value of a* 

channel , and (5) correlation values of Haralick’s texture features from S channel information. 

 

4.3.6 Classification training and validation 

Using selected features of VIA as predictors, we interpreted the tissue abnormality of a localized region 

for the classification. Machine learning techniques are widely used and successfully supervised for VIA 

classification [141, 142, 145, 146]. In this work, we examined and selected an appropriate classifier by 

analyzing three different classifying methods. We designed K-nearest neighbor (KNN) with 5 neighbors 

based on Euclidian distance, supportive vector machine (SVM) with 4th degree of polynomial kernel 

function (cost=3, gamma=2.2), and decision tree (DT) with limit of maximum 10 nodes based on Gini's 

diversity split criterion. These parameters or known as hyperparameters in each classifying method 

were optimized through grid-search technique. All predictors were standardized using their 

corresponding weighted means and weighted standard deviations [146]. 

For data separation, we randomized the order of the images and used half (ntraining=120) for 

training classifiers. Other half of data, an untrained image set (ntesting=120), was used for testing set 

after the optimization of classification models. While in training, classifiers are validated using k-fold 

cross validation (k=10) with histopathology labels as the ground truth to avoid overfitting problem. In 

this method, data is evenly divided into k subsamples. Other k-1 subsamples are then used as training 

dataset and then held-out or excluded subsample are used for validation. Algorithm were repeated k 

times with each of subsamples being utilized only once as the validating data and performance accuracy 

were calculated by averaging the results from each k-folds. Receiver operating characteristic (ROC) 

curves with area under the curve (AUC), accuracy, sensitivity, and specificity of each trained classifier 

were computed and compared for selecting the best classifiers. Throughout the classifiers, each image 

was interpreted to either VIA+ or VIA-. Classification process is illustrated in Figure 4. 21b. 
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4.3.7 Result & Discussion 

 

Direct evaluation of Smartphone-based endoscopic VIA 

To determine the feasibility of the smartphone-based endoscope system for VIA application, four 

physicians participated and reviewed the image sets (n=20). On these 20 cases, both clinically normal 

and LSIL were designated as ‘normal’ and HSIL was designated as ‘abnormal’, resulting 8 normal and 

12 abnormal for this study. The diagnostic performance assessed by pathologists is summarized in Table 

4. 4. Sensitivity ranged from 33.3% to 83.3% and specificity was 100% for four physicians. Accuracy 

of the assessment ranged from 60.0% with kappa 0.286 (p=0.068) to 90.0% with kappa 0.800 

(p=0.00023). Overall, average accuracy of 77.5% with kappa 0.571 (p<0.0001) was observed for the 

evaluation of the system.   

  
Table 4. 4 Sensitivity, specificity, and cohen’s kappa value, P-value for smartphone-based endoscopic VIA 

among all observers (n=20)  

 
 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Kappa 

(κ) 

P-value 

Physician 1 0.75 100.0 85.0 0.706 0.001 

Physician 2 33.3 100.0 60.0 0.286 0.068 

Physician 3 83.3 100.0 90.0 0.800 0.000239 

Physician 4 58.3 100.0 75.0 0.528 0.007 

Average 62.5 100.0 77.5 0.571 < 0.0001 

 
 

Result of image processing 

Figure 4 shows the representative images from each image processing step. Specular reflections on the 

surface of the cervix are removed while preserving visually natural or smooth features. All areas of 

specular reflection with saturated intensity are correctly localized for all 20 image pairs including both 

pre- and post-acetic acid application images. Intensity threshold of 60% for specular reflection removal 

was most effective as the reflections on the ecto-cervix regions were identified clearly while minimally 

affecting general backgrounds. This was feasible because more reflection intensity was obtained in the 

focal plane compared to that of the unfocused regions. Next, major cervical region was selected as the 

ROI and was segmented by applying 7th and 8th bit-plane of the red channel image as primary mask. 

Although most of the artifacts such as unfocused background and speculum were successfully 

eliminated, some image still contained portions of vaginal wall. These results are likely found when 

cervix and virginal wall adjoined each other, or strong intensities were appeared on the virginal area by 

reflections. Through semi-automated registration algorithm, images were centered, aligned and rotated 

as shown in the fourth column of Figure 4. 23. Additional segmentation was conducted using overlapped 
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regions of pre- and post-acetic acid application images as secondary ROI mask. Furthermore, ROI 

images were sliced based on clock positions as they were collected for the histopathology. Each slice 

was then used to calculate color distribution histogram, CIELab, and HSV-based Haralick’s texture 

features for VIA. 

 

 

 
 
Figure 4. 23 Result of image processing result. 

 
 

Feature extraction 

In Figure 4. 24(a1, a5), representative images of sliced image are shown for VIA- and VIA+, 

respectively. Figure 4. 24(a2, a6) represents a* channel image using post-acetic acid images. Due to 

aceto-whitening areas, VIA+ showed significantly lower average values in a* channel from CIE*Lab 

color space, which represents lower for green and higher for magenta colors. Especially, lower values 

are localized on the area where aceto-white exist. In Figure 5(a3, a7), the images of difference of 

saturation channel from pre- to post-acetic acid application are shown. Higher values of saturation were 

obtained in aceto-whitening regions with VIA+ relative to those with VIA- where no aceto-whitening 

regions exist. Using images in in Figure 4. 24(a3, a7), correlation values were computed from Haralick’s 

texture feature and visualized in Figure 4. 24(b3,a6). Contrary to expectation, higher correlation was 

found in VIA+ compare to that of VIA- (0-1, usually 1 for higher correlation); however, significant 

difference was observed with good trend for distinguishing the feature.  

Among the 5 different features, representative data for green-to-red ratio was illustrated in 

Figure 4. 24b-c. There was relatively small effect of acetic acid application observed in green-to-red 

ratio in the VIA- images. The histogram of the green-to-red ratio in VIA- shows little changes between 

pre- and post-acetic acid application in terms of distribution and mode. However, the green-to-red ratio 

increased for VIA+ following application of acetic acid, as shown in the histogram in Figure 4c. 

Following application of acetic acid, distribution of green intensity histogram broadened along with 

increased intensity. Collecting all the statistical data, we derived the average difference of intensity level 
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in green/blue-to-red ratio, values of a* channels following application of acetic acid. In addition, 

standard deviation of green and blue intensity and correlation of Haralick’s texture feature were 

calculated from the images after application of acetic acid. Figure 4. 24d summarizes these features 

with all predictors in abnormal tissues having greater values than those from normal tissues except a* 

values. 

 

 
Figure 4. 24 Result of feature extraction. (a) Extracted VIA features from sliced VIA-/VIA+ images, showing 

graphical information in different color spaces. In addition, correlation map was calculated form Haralick’s texture 

feature. (b,c)  Representative histogram of green-to-red ratio in VIA-/VIA+. (d) Summarization of selected 

features as predictors for classifying model. 

 

 

Classification comparison 

Using all the extracted values from 120 sliced image sets, three different types of machine learning 

classifiers were trained and analyzed. As shown in Figure 4. 25a, KNN yielded the best performance in 

accuracy of 80.0% with sensitivity of 71.88%, specificity of 82.95%, and kappa of 0.517. The second 

most accurate classifier was SVM with accuracy of 78.33%, sensitivity of 62.50%, specificity of 

84.09%, and kappa of 0.457. DT had the least accuracy for smartphone-based endoscopic VIA with 

accuracy of 73.33%, sensitivity of 65.63%, specificity of 76.14%, and kappa of 0.380. In the ROC curve 

shown in the Figure 4. 25b, KNN, SVM, and DT showed AUC of 0.852, 0.770, and 0.746, respectively. 

Figure 4. 25c illustrates the result of prediction scores from each classification on k-fold validation, 

indicating the probability of an image belonging to either the negative or positive class. From the box 

plot, separations of scores of abnormal and normal data were clearly distinguishable in KNN model 
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compared to that of DT and SVM. Most of abnormal data were distributed over 0.5 but those of normal 

data were shown under 0.5 in KNN and DT model. In SVM model, normal and abnormal data were 

separated positive and negative, respectively. As the best performing classifier in our study, KNN model 

was selected for evaluating the diagnostic accuracy of VIA. Confusion matrix of KNN in test set is 

illustrated in Figure 4. 25d. 

 

 

 

Figure 4. 25 Comparison & selection of classification model. (a) Graph of training performance comparing the 

VIA results from each classifier. (b) ROC curves comparing the VIA+ performances. (c) Box plots of prediction 

scores for each classifying method. (d) Confusion map of testing for KNN model. 

 
 

Analysis of the KNN classification for Smartphone-based endoscopic VIA 

Figure 4. 26 illustrates result of the classification with smartphone-based endoscopic VIA images for 

10 patients that was used for testing set. Using all prediction results from testing data, locations of 

abnormal tissue were visualized as segmented annulus outside of each endoscopic image. Red and blue 

segment of annulus indicate VIA+ and VIA- at each clock position, respectively. Out of 120 slice images, 

32 were determined positive, 88 negative according to the histopathology. As shown in Figure 4. 26a, 

all results of the gold standard for each patient are denoted as color lines inside the annulus and are 

aligned along each clock position as a line. Red, green, and blue lines denote abnormal tissues with 

HSIL (CIN2+), LSIL (CIN1), and normal, respectively. When KNN result is confirmed correctly as 

VIA+ by the golden standard, segments were labeled yellow on the perimeter of the annulus for each 

patient. Total 23 sliced regions were matched correctly for VIA+. Moreover, patient was estimated to 

have HSIL lesion if there is at least one VIA+ segment included among 12 locations. Out of total 10 
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patients, 7 patients were predicted to have HSIL through KNN prediction. Among the them, 6 patients 

were correctly estimated as VIA+ (true positive, TP). Among the 4 patients confirmed as VIA-, KNN 

identified 3 patients correctly (true negative, TN). However, there was no false negative predicted from 

KNN for 10 patients. Figure 4. 26b shows agreement between classification algorithm and individual 

physician’s interpretation for each clock position. Classification algorithm shows moderate overall 

agreement ranging from 70.83% to 75.0%. For binary classification of patients, algorithm provides 

more accurate interpretations as shown in Figure 4. 26c. Algorithm yielded accuracy of 90.0% and 

average accuracy of physician achieved accuracy of 68.0% for 10 patients. 

 
 

 
Figure 4. 26 Analysis of KNN for smartphone-based endoscopic VIA. (a) Visualization of KNN classifying 

result for 10 patients with VIA+/VIA-. Lines inside of annulus ring indicates the results of golden standard for 

each clock position. Annulus ring presents the result of KNN classification according to each clock position. Outer 
yellow mark represents the position where both golden standard and prediction results are matched. (b) Graph 

presenting the agreement of KNN to each physician. (c) Graph comparing the screening performance for 10 

patients interpreted by KNN and physicians. 

 

Discussion  

The findings of this study suggested that the novel smartphone-based approach for VIA with 

endoscopy and machine learning technique could potentially be a useful tool for screening cervical 

cancer in the low-and-middle income countries. Smartphone-based endoscope system is simple and 

robust that screening could be performed outside of the office without cost, mobility, and electricity 

limitations. Here, moderate overall agreement (kappa 0.571) was achieved between interpretation of 

smartphone-based endoscopic cervicogram by physicians and histopathologic result. With support of 

machine learning and image processing technique, diagnostic performance was elevated for classifying 
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the VIA- or VIA+ patient. We had explored three different types of classifiers and selected KNN 

algorithm for this study due to its best performance of showing AUC of 0.8516 in classification among 

them. Both hardware and machine learned algorithm based on golden standard, over performed the 

conventional VIA. This was possible because our approach increased the sampling numbers of 

prediction for each patients as what was conventionally done in golden standard. In clinical point of 

view, finding abnormality out of normal tissue is critical, especially in low-resource settings. In addition, 

locations of abnormal tissue were identified and visualized at each clock position for each patient. With 

intuitive, perceptual color labels, VIA providers may easily understand where aceto-whitening has 

appeared and its degree of the abnormality. Had our algorithm been used to determine treatment 

pathway, the data would effectively assist the VIA providers with correct decision making.  

To the best of our knowledge, this is the first smartphone-based endoscopic VIA work. 

Smartphone-based endoscopic approach provides some advantages over other smartphone-based VIA 

studies [131-137, 151, 152]. Many studies on diagnostic performances of smartphone VIA and have 

shown promising results with sufficient accuracies [131-137]. These methods mostly utilized the tripod 

or other hardware supports to obtain pictures, which poses challenges of limited space for maneuvering 

during the procedure. Recently, portable colposcope device with unique tampon form factor called 

pocket colposcope have been introduced with high concordance to clinical colposcope. Similar to our 

approach, pocket colposcope enables to capture images inside of the vagina. However, pocket 

colposcope requires wire-connection to smartphone as an accessory form with limited hardware 

variation availability [151, 152]. Here, using endoscopic probes within a speculum offers non-contact, 

non-invasive imaging capability, minimizing the cross-contamination risk between patients. Our 

endoscopic probe enhances resolution of the images and can achieve more details of mosaicism, 

punctation, and aceto-white regions. This could substantially improve the diagnostic accuracy as well 

as quality control of VIA. Moreover, various type of endoscopic probes brings flexibility to the system. 

Furthermore, smartphone-based endoscope is based on off-the-shelf optics to magnify the images while 

reducing the SNR by avoiding high digital zoom. Simple modification of optical components can enable 

additional functional imaging such as fluorescence, polarization, and multi-spectral imaging, and thus 

can further improve the visualization of the abnormal tissue [140, 153, 154]. Furthermore, manipulation 

of the endoscopic device inside of the vagina is very intuitive and easy compared to that of conventional 

approaches manipulating outside of the vagina. Hence, neither tripods nor stands are required for 

acquiring stable images, which in turn enhances the speed of imaging session.  

Image processing algorithms have been developed to minimize external source of errors such as 

deviations of illumination power, imaging position, variations of device, specular reflections, and ROI 

of cervix. Especially method of ROI segmentation is unique as it uses bit-plane separation and finding 

overlapped regions to eliminate the insufficient information in smartphone-based endoscopic 

cervicograms. In addition, VIA features were mostly extracted based on statistical calculation of 
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histograms rather than just acquiring the quantitative pixel information from the raw images. This may 

minimize the dependencies on imaging environment and make image calculation confined to each 

image but still afford similar values of computation result when finding features. Extending the RGB 

images to other color space also provides benefits for calculation. Saturation value from HSV color 

space affords extent of purity of the hue data which results in more intuitive perceptual values between 

pre- and post-acetic acid application. Moreover, saturation value is separated from brightness (value), 

hence, it is illumination invariant. Empirically, using image of difference of pre- and post-acetic acid 

images in saturation channel for GLCM showed higher significant difference in correlation values 

between VIA- and VIA+. CIE*Lab color space is also very useful for finding device or illumination-

independent quantitative color measurements. CIE*Lab also separates the luminance component (L*) 

from the color which makes color information less sensitive to illumination [146]. 

Even though our novel CC screening technique using smartphone based-endoscope VIA and 

machine learning demonstrated a positive outcome as pilot study, much improvement is needed before 

it can reach its practical potential. First, accuracy of our algorithm classifying the patients was calculated 

using small number of samples.  No false negative data was predicted within small number of samples. 

We believe increasing sampling size could additively provide more number of sliced data for training 

and testing classifiers which possibly learn more of new cases that eventually leads to much reliable 

classification results. Therefore, overall estimation could be different with larger data set, however, it 

will still provide better performance compare to subjective estimation from physicians. Second, our 

approach for ROI segmentation aimed to precisely distinguish the ectocervix area from the images; 

however, there are still some portion of vaginal walls left that led to miss-classification. Moreover, 

location and area of cervix are substantially different in each image. For this reason, image processing 

algorithm for registering images of pre- and post-acetic acid application was done with manually 

providing positions of center and each distal end of cervical OS. Through image standardization by 

providing the visual guides in software, deviation of positioning and working distance can be minimized 

and further improve the ROI segmentation performance in an automated processing algorithm. Lastly, 

our image processing-based classification algorithm still was performed on a computer, limiting 

practical uses in developing countries in its current form. Due to the computational intensity, the current 

algorithm cannot be operated as a standalone in a smartphone. Recently, android based machine learning 

as well as image processing techniques have been introduced in various fields, using SVM, KNN, DT, 

and Deep Convolutional Neural Networks (CNN). As these functions are now available on mobile 

phones [155-158], we will embed the android based machine learning techniques to implement our 

algorithm on a smartphone alone. 
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4.3.8 Conclusion 

In conclusion, we explored the smartphone-based endoscopic VIA and predicted the cervicogram as 

normal/abnormal using machine learning technique. Herein, histopathology results, acquired at each 

clock position on the excised cervical tissue, were provided as ground truth for classifications. VIA 

features were then extracted after image processing and utilized for training the classifiers. 120 sliced 

images obtained from cervicogram at each clock position were utilized and three classifiers such as 

KNN, DT, SVM were compared. Approach using KNN showed the best performance with accuracy of 

80.0%, AUC of 0.852, specificity of 82.95%, and sensitivity of 71.88%, respectively. Prediction values 

were visualized with intuitive color labels, indicating the normal/abnormal tissue, at each clock position 

for each patient. Calculating the overlapped abnormal tissues between golden standard and predicted 

value, our KNN model for classifying the VIA-/VIA+ patients overperformed the interpretation results 

by physicians. Taken together, these results suggest that the smartphone-based endoscopic VIA and 

analysis based on the machine learning techniques would be a valuable tool for screening VIA in low-

resource settings. Moreover, this approach can potentially minimize human subjectivity and be 

particularly useful in areas where experts or tele-consultations are unavailable. 
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Chapter 5. General conclusion and future perspectives 
 

 

5.1 General conclusion of thesis 

In conclusion, throughout this thesis, two major approaches have been introduced to overcome the 

limitations that was found in fields related to digital medicines, particularly in digital histopathology, 

and point-of-care diagnostics. Developments of quantitative differential phase contrast imaging using 

partially coherent illumination based computational microscope and smartphone-based endoscope 

system allows to label-free imaging as well as POC real-time medical imaging diagnosis, respectively. 

Furthermore, application of artificial intelligence technologies for phase microscope as well as POC 

device supports the proposed devices in data generation and analysis, which potentially alternate the 

diagnostic work flows as cost-effective and short, and experts were minimally required.  

In chapter 2, utilization of our simple NIR illumination device successfully retrieved phases 

from thick and highly absorbing materials without any manipulations in QPI algorithm. Great advantage 

of using this method was maintaining the weak object transfer function for simplifying the complex 

field of object in optical system. In addition, using single LED source was another feature what makes 

our system fascinating. Although LED itself provides partial coherent illumination, single illumination 

would be considered as coherent illumination in spatial domain. Increasing only beam size would not 

provide solution for this situation. Spatially incoherent coherence condition is the main idea to make 

phase stable. With multiple diffuser implementation, randomly scattering on the surface of diffuser 

creates phase variations, that leads to incoherent conditions. As light passes the physical mask, phase 

gradient was generated and use of single LED with this configuration could provide DPC images. Since 

multiple LEDs are not required anymore, not only NIR wavelength but also various illumination 

spectrum could be applied. This could also offer advantages cost issue, provides possibility to develop 

QPI system in compact platform. We believe that, to the best of our knowledge, this work was the first 

method for not only imaging the tissue but also using only single point source illumination in DPC-

based QPI system. Moreover, utilizing our approach would deliver label-free tissue imaging which 

could skip the staining process in digital pathology workflow.   

Recent advances in technology such as 3D printing, smartphone, IOT have enabled the 

realization of cost-effective, portable point-of-care medical imaging devices. In this chapter 3, 

smartphone-based endoscope system demonstrated the feasibility as a stand-alone endoscope through 

clinical application. The unique advantages such as mobility and flexibility made system suitable for 

the point-of-care diagnostics. Throughout experiment, our device had shown sufficient imaging 

performance as a diagnostic tool. We believe this device could be applied in a wide range of nonclinical 

settings and ultimately, in some clinical settings. In particular, our device would be a very useful tool 

for health providers in low-resource settings and at remote locations with limited health care service. 

In first part of chapter 4, proposed in-silico tissue staining method successfully transforms the 



107 
 

stain-free quantitative phase image to bright field H&E stained image. The use of NIR illumination for 

the QPI enables to capture light absorbing and scattering tissue. This approach offers the simple and 

fast training for virtual staining networks by acquiring both QPI and bright field label images after 

staining process. In addition, our QPI system outperforms other phase imaging contrasts in terms of in-

silico GAN framework performance as well as simplicity. We believe that our proposed approach could 

also provide an innovative method for bypassing the cumbersome and costly conventional staining 

process in pathological diagnostic workflow. 

In second part of chapter 4, we explored the smartphone-based endoscopic VIA and 

discriminated the cervicogram as normal/abnormal using machine learning technique. Herein, 

histopathology results, acquired at each clock position on the excised cervical tissue, were provided as 

ground truth for classifications. VIA features were then extracted after image processing and utilized 

for training the classifiers. 120 sliced images obtained from cervicogram at each clock position were 

utilized and three classifiers such as KNN, DT, SVM were compared. Approach using KNN showed 

the best training performance with accuracy. To validate the trained model, we used the other 120 sliced 

images and achieved accuracy 80%. Prediction values were visualized with intuitive color labels, 

indicating the normal/abnormal tissue, at each clock position of lesions. The overall accuracy of KNN 

model for classifying the VIA-/VIA+ patients was 90%, which was better than average image 

interpretation by physicians. Taken together, these results suggest that the smartphone-based endoscopic 

VIA and analysis based on the machine learning techniques would be a valuable tool for screening VIA 

in low-resource settings. Fully automated algorithm can potentially minimize human subjectivity and 

be particularly useful in areas where experts or tele-consultations are unavailable. 

 

5.2 Future perspectives 

In this section, we demonstrated QPI system and portable POC devices from the perspectives of 

improvement in healthcare to provide advanced medical services to patients. We believe there are 

possibilities improving the proposed devices in portability, cost issue, and expansion of functions. 

Moreover, the result from this device have shown great potentials to implements to other devices in the 

various application fields. Particularly, there are many promising imaging modalities introduced in 

biomedical fields which could be a potential candidates for integration. 

 

Smartphone-based QPI system for POC diagnosis 

From this thesis, we have developed label-free quantitative phase microscopy for tissue imaging. The 

principle behind this device was started from generating the differential phase contrast image by 

implementing patterned illumination sources in a simple bright field microscope setup [39, 40]. This 

means that differential phase contrast imaging could be realized in any type and size of digital bright 

field microscope configuration which compose of objective, tube lens, can camera. Recently, many 
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portable brightfield microscope system have been introduced for POC [7]. Most of them implemented 

on the smartphone, taking advantages of high-resolution imaging capabilities, portability, user friendly 

interface, easy accessibility, and internet infrastructures. In addition, using reversed smartphone camera 

module as objective in smartphone-based microscope system even make the system simpler and results 

in an aberration free system as well [159]. Applying all of these technologies, we believe the proposed 

QPI system, especially RGB patterned one, could be applied and single-shot portable QPI system could 

be realized for POC diagnosis. In fact, there are two mobile-based QPI systems were introduced using 

RGB LEDs and customized dome shape LEDs, respectively [43, 160]. However, quantitative phase 

contrast images were not provided in these existing methods. 

Figure 5.1 illustrates the concept of smartphone-based QPI system for POC diagnostics and 

multi-contrast images that was captured from real smartphone-based QPI system. This smartphone 

utilizes reversed smartphone lens to implement the microscope system, offering optical magnification 

~5X. Moreover, RGB pattern shown in Chapter 2.1was applied to provide a multi-contrast images from 

smartphone. DPC image was successfully realized which leads to QPI as shown in Figure 5.1c. This 

system was developed in android platform and homebuilt software that enables to control the imaging 

session as well as offers real-time DPC imaging capabilities as shown in Figure 5.2b. From this simple 

implementation and experiments, we have found the possibilities as well as its stability of smartphone-

based QPI system as POC diagnosis device. 

 

 
Figure 5.1 Smartphone-based QPI system for POC diagnostics 
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Figure 5.2 Development of QPI software in Android platform. a) Image capture screen. b) Real-time DPC 

computation screen imaging cells.   

 

Utilizing portable QPI system, there are many possible applications in biomedical fields. Taking 

advantage of portability, we believe this system could be applied to cell imaging in low-resource settings. 

Particularly, visualizing the morphological information of cellular constituents could be useful for 

imaging disease cells that has difference between normal and abnormal. One of the candidate that we 

think about is cervical cancer cells. Nucleus to cytoplasm ratio mostly changes in cervical cell when 

there are abnormalities related to cancer [161]. Therefore, with image processing and machine learning 

technique, cervical cancer cells could be classified from smartphone-based QPI at the on-site (Figure 

5.3a). If this method is performed before colposcope procedure as we proposed in Chapter 4.3, we 

believe that diagnosis accuracy could be improved significantly in POC cervical cancer screening. 

Recently, deep learning methods have been implemented on smartphone and showed many 

possible applications in fields of biomedical [9]. As smartphone-based QPI system allows to capture 

transparent cells, label-free quantitative phase contrast tissue imaging would be possible as well. With  

 

 
Figure 5. 3 Future perspective of POC-QPI system implemented on smartphone. a) automated cervical cancer 

cell screening. b) In-silico tissue staining from label free smartphone-QPI.  
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possibilities of deep learning in smartphone, already trained GAN models could be executable in 

smartphone, possibly realizing the in-silico tissue staining method as introduced in Chapter 4.2 as 
shown in Figure 5.3b. 

 

 

Development of label-free whole slide scanner for digital histopathology 

 
 

Figure 5.4 Development of portable high-throughput DPC-based QPI system. a) Real image of portable 

system connected to laptop. b) Simple schematic of proposed system. Reconstruction of large field-of-view (c) 

QPI and (d) color bright field image from a single platform.  

 

 

In this thesis, QPI system was utilized for only fixed field-of-view. Since QPI system available to 

implement on simple conventional microscope system, the system could be transformed for high-

throughput images using motorized stages. Large field-of-view QPI could be realized performing image 

processing method that stitches the QPI captured in different positions as stage moves as shown in 

Figure 5.4. This approach could be integrated with whole slide scanner and provide high-throughput 

QPI by just alternating the illumination source to LED matrix.  

In chapter 4.2, in-silico staining approach using QPI system have shown great potentials to 

bypass staining process in digital pathology workflow. Although training the in-silico GAN framework 

took more than two days with our QPI image sets, in-silico staining using already trained network takes 

< 1 second for 100 x 100 image. This corresponds to ~7 minutes per whole field of view to virtually 

stain the QPI. With higher computational process device, it could shrink down less than ~3 minutes. 

This fast inference time means that our in-silico staining network can be also integrated with a QPI-

based whole slide scanner and provide virtual slide image based on the label-free tissue imaging. If in-

silico staining methods is strictly evaluated in clinic, we believe that this GAN integrated QPI whole 

slide scanner device would make paradigm shift in digital histopathology workflow.  
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Development of phase contrast optical projection tomography for small animal imaging 

In biomedical fields, there are many imaging tools such as optical coherence tomography, confocal 

microscopy, ultrasound imaging, MRI, and CT that could provide cross-sectional images of the 

specimen [162, 163]. Among them optical projection tomography (OPT) has been introduced as 

promising optical instrument which allows to provide similar image of CT but in higher resolution [162]. 

OPT offers not only 2D cross sectional but 3D reconstructed images of specimen. Because OPT follows 

corresponding principle and light measuring method to CT reconstruction, most of OPT images are 

restricted to bright-field or fluorescence imaging. Therefore, totally transparent specimens are not 

appropriate to capture OPT images. 

In this thesis, QPI demonstrated visualizing transparent specimens such as cells, and elegans by 

transforming the phase in intensity through illumination. It is very useful tool to image any kinds of 

transparent specimens. In addition, its simple implementation method may allow to integrate with other 

optical imaging modalities. Thus, we tested out to integrate the DPC-based QPI to conventional OPT 

system to provide new contrast which was not shown in other works. Since OPT uses visible ranged 

illumination, TFT liquid crystal display (LCD) was employed as programmable physical pattern and 

placed between illumination and specimen as shown in Figure 5.5. The illumination apparatus in this 

method follows similar concept shown in Chapter 2.2. Diffuser was utilized right after LCD pattern to 

provide partially coherent illumination in OPT system. At each angle, four images illuminated by four 

patterns were captured. This would allow to provide both bright field and phase contrast images for 

each angle as shown in Figure 5.6. After the OPT reconstruction, cross-sectional phase images could be 

obtained. Figure 5.6 illustrates that phase contrast cross-sectional image contains information which 

could not seen in bright field reconstructed cross-sectional images.  

 

 
Figure 5.5  Development of phase contrast optical projection tomography. a) Schematic of phase contrast 

OPT, b) LCD for pattern filter, c) real image of the system. 
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Figure 5.6 QPI reconstruction using LCD patterned illumination in OPT. a) Bright field, and phase contrast 

images are available in this OPT system.  
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