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Abstract

Time series data is everywhere, such as stock data in finance market, the sensor data in factories,

or the temperature data in everyday life. Time series data have been studied for a long time to

analyze and predict the future behavior. While it is tractable when the sequential data behave

as stationary, it becomes difficult to model and predict non-stationary time series. Change point

detection is a problem that identify non-stationarity which has been investigated for decades

in many different names. Change point detection is a challenging problem because defining

a change point decisively and objectively is difficult in nature. In this thesis we are trying to

define and find a change point using hypothesis tests based on statistics. Specifically we focus on

structural breaks in the covariance structure of Gaussian Processes. Further we propose an online

change point detection algorithm, called Confirmatory Bayesian Online Change Point Detection,

by leveraging the devised hypothesis tests into the conventional Bayesian online change point

detection algorithm.
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Chapter I

Introduction

Time series data is everywhere, such as stock data in finance market, the sensor data in factories,

or the temperature data in everyday life. We model the time series data to analyze past events

and predict the future behavior. When sequential data is stationary, i.e., the parameters in the

underlying distribution does not change, predicting future events is feasible. Nonetheless, the

stationarity assumption cannot be guaranteed in practice. The change point detection (CPD)

problem, which intends to detect existence of changes in sequential data, is one of the funda-

mental problems in time series analysis that can be a key factor in improving the prediction of

future events.

A change point is defined as a particular position in sequential data where the underly-

ing distribution changes. Change points take critical roles in plentiful real-world applications,

including image analysis [1], speech recognition [2], climate modeling [3], and human activity

recognition [4]. In econometrics, CPD has been studied for decades in the name of structural

breaks, that essentially employ CPD on regression models to identify stability in the structure

of time series [5, 6]. As well, trend filtering determines change points with the assumption on

piece-wise linearity in the sequential data [7]. Furthermore the domain adaptation problem, or

the covariate shift in the other name, is also another field of study where CPD takes an impor-

tant role, because changes in the distribution of the test data and the training data affect to the

performance of the many machine learning models [8].

One can categorize existing CPD into hypothesis-test based-approaches or Bayesian-inference-

based approaches. Hypothesis-test-based approaches apply statistical tests to determine the

presence of changes, where the error probability is naturally defined in the framework. Hy-

pothesis tests are applied in various ways including the kernel methods such as kernel Fisher

discriminant ratio [9], two-sample tests based on the maximum mean discrepancy [10, 11], cu-

mulative sum (CUSUM) test [12,13], and likelihood ratio test [14,15].

Bayesian inference methods [16, 17] adapt the Bayesian framework to compute the distri-

bution of a possible change based on a prior belief about the occurrence of a change and the

observed sequential data. BOCPD algorithms [18–21] detect change points in an online manner
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considering the interval called run length between change points. However, with probabilistic

methods we cannot define change points decisively nor guarantee statistical error bound of a

change, which often affect the reliability of the algorithm. Furthermore aforementioned Bayesian

algorithms are highly sensitive to selected hyperparameters of underlying predictive model.

While GPs are widely used to model time series data, there is a limitation that conventional

GPs work on globally smooth functions. On the other hand GPs with change points can model

locally smooth functions [20], where many of the real-world time series data yield only locally

smooth functions rather than globally smooth functions. A number of studies have been con-

ducted on CPD in GPs. In a previous research, a likelihood ratio test is proposed based on

the null hypothesis of stationary GPs [14]. However, there is a limitation that even though the

null hypothesis is rejected one cannot assure a change if the null distribution is not legitimate.

Another work has studied to detect the changes in the mean function of GPs by proposing

likelihood ratio tests [15].

Our goal is twofold. First, we propose novel likelihood ratio tests which detect structural

breaks in the covariance of GPs. Secondly, we propose an online CPD algorithm by cooperating

the proposed likelihood ratio test which takes advantages both from the statistical test and

Bayesian framework.

The rest chapters are constructed as follows. In Chapter II, the basic concepts and related

work are explained briefly to help understanding the following chapters. In Chapter III we

propose likelihood ratio tests to define change points of covariance structural break and show that

the proposed tests theoretically guarantee designated test error bound under proper conditions.

In Chapter IV we propose an online CPD algorithm, Confirmatory BOCPD, that detects change

points with an acceptable time delay. We further show that the proposed algorithm guarantees

improved prediction performance compared to conventional algorithm. Moreover, we provide

examples to show the proposed algorithm properly conforms the parameter of BOCPD algorithm

to reduce missed detections and false alarms. We conclude with a summary of research findings

and suggestions of future work in Chapter VI.
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Chapter II

Background

2.1 CPD in the Mean of Gaussian Processes

2.1.1 Gaussian Processes

GP is a random process that is formed with a set of random variables where any finite subset of

random variables follows a multivariate Gaussian distribution. It can also be considered as a dis-

tribution of functions that the marginal distribution of (f(t1), f(t2), ..., f(tn)) given any finite set

of inputs (t1, t2, ..., tn) forms a multivariate Gaussian distribution or a multivariate Normal dis-

tribution. We can fully describe a GP with the mean function along with the covariance function.

The mean function µ(·) = E[f(·)] describes the trend of a time series data. The covariance func-

tion, on the other hand, describes how much a data point would affect with another data point.

In GPs, kernel functions are used for the covariance function as Cov(f(ti), f(tj)) = k(ti, tj). A

kernel function calculates the covariance between two data points using only input aspects. For

example, today’s stock price is affected by a stock data of yesterday more compare to a stock

data of a month ago. Both ‘kernel function’ and ‘covariance function’ will be used interchange-

ably throughout this paper. The kernel function represents distinctive aspects of the time series

data, such as periodicity, length scales, and variance. As an instance, there is a Radial Basis

Function kernel which is defined as K(t, t′) = σ2 exp(− (t−t′)2
2l2

). As the length scale hyperparam-

eter l increases, the function becomes smoother as the penalty from the distance is relaxed with

large l. Table 2.1 lists some commonly used kernel functions.

In this paper we consider sequential index t as input with the assumption that the sequence

is equi-interval. Then the data value Xt corresponding to the input t is modeled as Xt ∼
N(f(t), σ2

n) with the noise variance σ2
n. Given GP hyperparameters θm, the log likelihood of the

GP regression over the observed samples X can be computed as the likelihood of the multivariate

Gaussian distribution as follows,

log p(X|θm, σn) = −1

2
(X−µ)(Σ + σ2

nI)−1(X−µ)− 1

2
log |Σ + σ2

nI| −
n

2
log 2π

where µ and Σ denote the mean function and the covariance matrix respectively and n denotes

3



Kernel Formula

Linear klin(x, x′) = σ2
b + σ2

v(x− c)(x′ − c)
Periodic kper(x, x

′) = σ2 exp
(
−2 sin2(π|x−x′|/p)

l2

)
Squared Exponential kSE(x, x′) = σ2 exp

(
− (x−x′)2

2l2

)
Table 2.1: Various kernels and its formula.

the number of observed data.

2.1.2 Hypothesis Tests for Structural Break

Structural break refers to the abrupt change of the parameters in the underlying regression

model of time series, that can lead a large prediction error and therefore reduces reliability of

the static regression model. To check the structural stability, i.e., the time-invariance of the

regression coefficients, there have been investigated and used many methods most of which are

based on hypothesis tests.

Two hypotheses are used for the hypothesis test with the observed sequential data. One

hypothesis is the null hypothesis, H0, which assumes there is a structural break. The other

hypothesis is called the alternative hypothesis, H1, which insists there exists a structural break.

The hypothesis test is typically constructed as follows. Given the two hypotheses, the test

statistic Y is defined according to the regression model. Then test if the test statistic lies in a

probable region with a threshold R as

T = I (Y ≥ R)

with an indicator function I(·). We reject H0 when TGLRT=1, otherwise, we fail to reject H0.

ϕn(T), named as the conditional detection error probability, is defined as

ϕn(T) = P(T = 1|H0) + P(T = 0|H1). (2.1)

We call P(T = 1|H0) as Type I error or false alarm rate. P(T = 0|H1) is called Type II error

or missing detection rate. Here we introduce examples of hypothesis tests for testing structural

breaks.

Chow Test

Chow test is used for testing structural break in linear regression models. We introduce how it

works in this subsection. First, assume we have n observed samples and try to model with a

4



normal linear regression. 
y1

y2

...

yn

 =


x11 x12 · · · x1p

x21 x22 · · · x2p

· · · ·
xn1 xn2 · · · xnp




β1

β2

...

βn

+


ε1

ε2
...

εn


Suppose we have m additional observations. We want to determine whether they come from the

same regression model as the previously observed n samples.

Let’s assume that the size m of the second sample is larger than p. Then, the model of

general linear hypotheses takes the form[
y1

y2

]
=

[
X1 0

0 X2

][
β1

β2

]
+

[
ε1

ε2

]

Under the null hypothesis (H0 : β1 = β2β), we can rewrite the model as[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]

n observations and m observations come from the same regression model, we can find the

least-square estimator of β as follows.

b0 =

[(
X ′1 X ′2

)(X1

X2

)][
X ′1 X ′2

] [y1

y2

]

=
[
X ′1X1 +X ′2X2

]−1 [
X ′1 X ′2

] [y1

y2

]
= β +

[
X ′1X1 +X ′2X2

]−1 [
X ′1 X ′2

] [ε1
ε2

]
The summation of the squares of the residuals of true data and the estimated values under the

null hypothesis H0 (β1 = β2 = β) becomes∥∥∥∥∥
(
y1

y2

)
−

(
X1

X2

)
b0

∥∥∥∥∥
2

=

[(
y1

y2

)
−

(
X1

X2

)
b0

]′ [(
y1

y2

)
−

(
X1

X2

)
b0

]

=
[
ε′1 ε′2

] [
I −

(
X1

X2

)(
X ′1X1 +X ′2X2

)−1 (
X ′1 X ′2

)][ε1
ε2

]
In hear, the quadratic form has rank n+m−p. The summation over the squares of the residuals

under the alternative hypothesis Hα (β1 6= β2)∥∥∥∥∥y1 −X1b1

y2−X2b2

∥∥∥∥∥
2

= ||y1 −X1b1||2 + ||y2 −X2b2||2

= ε′1

[
I −X1(X ′1X1)−1X ′1

]
ε1 + ε′2

[
I −X2(X ′2X2)−1X ′2

]
ε2

5



The first quadratic term has the rank n− p and the second quadratic term has the rank m− p
respectively

=
[
ε′1 ε′2

] [
I −

(
I −X1(X ′1X1)−1X ′1

I −X2(X ′2X2)−1X ′2

)][
ε1

ε2

]
Hence, the quadratic form has rank n + m − 2p. We can decompose the sum of squares of the

residuals under the null hypothesis H0. First start from the identity,[
y1 −X1b0

y2 −X2b0

]
=

[
y1 −X1b1

y2 −X2b2

]
+

[
X1b1 −X1b0

X2b2 −X2b0

]

As norm of both sides are also equal, we square both sides to get∥∥∥∥∥y1 −X1b0

y2 −X2b0

∥∥∥∥∥
2

=

∥∥∥∥∥y1 −X1b1

y2 −X2b2

∥∥∥∥∥
2

+

∥∥∥∥∥X1b1 −X1b0

X2b2 −X2b0

∥∥∥∥∥
2

Since

[
y1 −X1b1

y2 −X2b2

]′ [
X1b1 −X1b0

X2b2 −X2b0

]
= 0 , we can write as

Q1 = Q2 +Q3

Since [
X ′1X1 +X ′2X2

]
b0 = X ′1y1 +X ′2y2 = X ′1X1b1 +X ′2X2b2

Following is satisfied

b2 − b0 = −(X ′2X2)−1X ′1X1(b1 − b0)

We can rewrite Q3 as ∥∥∥∥∥ X1b1 −X1b0

−X2(X ′2X2)−1X ′1X1(b1 − b0)

∥∥∥∥∥
2

=
[
b′1 − b′0

] [
X ′1 −X ′1X1(X ′2X2)−1X ′2

] [ X1

−X2(X ′2X2)−1X ′1X1

] [
b1 − b0

]
Q3 is a quadratic form in b1 − b0 and cannot have rank higher than p. We showed that the

ranks of Q1 and Q2 are n+m−p and n+m−2p respectively. As the rank of Q1 is smaller than

or equal to the summation of the rank of Q2 the rank of Q3, the rank of Q3 should be higher

than or equal to the n+m− p− (n+m− 2p) = p. Combining with the condition that the rank

of Q3 cannot be higher than p, we can say that the rank of Q3 is equal to p. Under the null

hypothesis, Q2 and Q3 independently follow χ2(m + n − 2p)σ2 and χ2(p)σ2, respectively. The

distribution of Q3 will only be affected when H0 is not the case. Thus we can test if H0 holds

or not using the ratio

F (p,m+ n− 2p) =
Q3/p

Q2/(m+ n− 2p)

=
||X1b1 −X1b0||2 + ||X2b2 −X2b0||2

||y1 −X1b1||2 + ||y2 −X2b2||2
· (m+ n− 2p)

p

6



CUSUM

CUSUM, standing for cumulative sum, tests if there exists a shift in a parameter of the probabil-

ity distribution. CUSUM test accumulates the residuals from the target value of the parameter

and detect a shift when the summation exceeds some threshold. Specifically for detecting a

mean shift in sequential data {xi}, we define

S0 = 0

S+
n = max(0, Sn−1 + xn − µ0 −K/2)

S−n = max(0, Sn−1 + xn − µ0 +K/2)

with the original mean value µ0 and the minimum jump size K. The increment in the mean can

be detected with

S+
n −min

i<n
(Si) ≥ R

and similarly the decrement in the mean can be detected with

S−n −max
i<n

(Si) ≥ R.

When there is no shift in the mean, S±n will keep decreasing or increasing by about K/2. When

there is a shift in the mean, the cumulative residual from the original mean value will start

to increase in case of positive jump and the difference from the minimum cumulative sum will

exceed the threshold. Similar procedure is applied for the case of negative jump.

2.1.3 CPD in the Mean of Gaussian Processes

When modeling a time series, there are cases that mean jumps at a point. For such cases we

need to verify if there exists such jump in mean and if there is, how much mean jumps. But

even if we say there exists a jump, how sure we can be is another question. From structural

break approach, [15] have proposed an optimal likelihood ratio test for detecting a single change

point in the mean function of a GP. In this section we briefly review some of the results in the

paper on the detection of a single jump in the mean function of a GP. We introduce a formal

statistical test to find a sudden jump in the mean function of a GP and how to measure the

certainty of the test.

We write n samples of time series data asX = {Xt}nt=1. Let t ∈ Cn ⊆ {1, ..., n} represents the
point of sudden change where Cn denotes the set of possible change point candidates. We set two

hypotheses for the likelihood ratio test given observed sequential data. The first hypothesis is the

null hypothesis, H0, which assumes there is no change of the parameters in the underlying GP

model. The alternative hypothesis, H1, assumes there is at least one change in the parameters.

The likelihood ratio test is constructed as follows. With previously defined hypotheses, the

likelihood ratio is calculated as

2L = 2(supθ∈Θ1
`(θ1)− supθ∈Θ0

`(θ0))

7



where ` is the log likelihood function and Θ0 and Θ1 are the parameter spaces of H0 and H1

respectively. The generalized likelihood ratio test (GLRT) is then defined as

TGLRT = I (2L ≥ Rn,δ)

where Rn,δ is the threshold with n, the number of data points and δ, the upper bound of the

conditional detection error, ϕn(T), as in Equation (2.1). We rejectH0 when TGLRT=1, otherwise,

we fail to reject H0. In the mean change detection problem in a GP, the null hypothesis assumes

that the samples follow a GP of zero mean, which can be written as

H0 : EX = 0.

The associative alternative hypothesis corresponding to a specific time t, in contrast, assumes

that there exists a change point of jump size b in the mean function at time t which can be

written as

H1,t : ∃ b 6= 0, EX =
b

2
ζt.

Here ζt ∈ Rn is defined with ζt(k) := sign(k − t) for t ∈ Cn. For example, with n = 5,

ζ3 = [−1,−1, 1, 1, 1]. Unifying over the set of change point candidates, the alternative hypothesis

states there exists more than or equal to one change point with a jump size b as written below,

H1 :
⋃
t∈Cn

H1,t.

With the above hypotheses, we rewrite 2L with

2L = XTΣ−1
n X −min

t∈Cn
min
b 6=0

[(
X− b

2
ζt

)T
Σ−1
n

(
X− b

2
ζt

)]

= max
t∈Cn

max
b6=0

(
−ζ

T
t (Σn)−1

4
b2 + bζTt (Σn)−1X

)
(2.2)

= max
t∈Cn

∣∣∣∣∣ (ζTt (Σn)−1X)√
ζTt (Σn)−1ζt

∣∣∣∣∣
2

. (2.3)

in which Σn represents the covariance matrix of X. From Equation (2.2) to Equation (2.3),

we take derivative in terms of b to get the maximum value. Plugging b that maximizes Equation

(2.2) in the test and rearranging it, we get the following formulation.

TGLRT = I

max
t∈Cn

∣∣∣∣∣ ζTt Σ−1X√
ζTt Σ−1ζt

∣∣∣∣∣
2

≥ Rn,δ


When we find a proper threshold Rn,δ, we can bound the conditional error probability by δ

ϕn(TGLRT ) ≤ δ under the sufficient condition on b [15]. One choice of Rn,δ that would work is

Rn,δ = 1 + 2

[
log

(
2n

δ

)
+

√
log

(
2n

δ

)]
.
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Figure 2.1: Synthetic data with a change in the mean function of a GP at the middle of 100 points

of sequential data and its likelihood ratio varying variance and lengthscale hyperparameters. For

every two rows, the upper row shows the likelihood ratio for each possible change point and the

lower row shows the corresponding synthetic data.
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Figure 2.1 shows various synthetic data of mean change of GPs sampled from Squared Expo-

nential kernel with varying hyperparameters. The synthetic data is generated to have a change

point at the middle of sequential data. The proposed threshold is ploted as a red horizontal line

in the plot likelihood ratio, which is the upper row of the every two rows. We can see that in

every cases, the likelihood ratio is maximized at the true change point, and the bound works

correctly to test changes. However, the proposed bound is too general that it only counts for

the total number of data and the desired detection error, but not the scale of the data nor the

scale of the covariance values which can affect the scale of the test statistics.

2.2 Bayesian Online CPD

In many real world applications of change point detection, an online approach is necessary to

instantly detect and utilize the change points. BOCPD [18] is one of the online change point

detection algorithm that uses Bayesian inference to update the probabilistic distribution of the

upcoming data point using the information of the change point distribution. We define a specific

term for this that counts the number of time points from the last change point, called run length.

One assumption behind the BOCPD framework is that the partitions, divided by the change

points, are independent to each other while data in a single partition are correlated one another.

The BOCPD works as follows. First let xt be the observed data at time t. The run length at

time t is written as rt. Then xt
(rt) is used to denote the observed data after the last change

point. Our goal is to compute the probabilistic distribution of the future data xt+1 given the

observed data upto t. Write it in cumulative form on rt,

P (xt+1|x1:t) =
∑
rt

P (xt+1, rt|x1:t) (2.4)

=
∑
rt

P (xt+1|rt, x1:t)P (rt|x1:t) (2.5)

=
∑
rt

P (xt+1|rt, x(rt)
t )P (rt|x1:t) (2.6)

=
∑
rt

P (xt+1|x(rt)
t )P (rt|x1:t). (2.7)

From (2.4) to (2.5), the Bayes theorem P (A,B|C) = P (A|B,C)P (B|C) is used and from

(2.5) to (2.6) and from (2.6) to (2.7), we use the assumption that xt+1 only depends on the

last rt number of data. Now expanding the second term of (2.7), which represents the poste-

rior distribution of the run length conditioned on the previous data which can be written as,

P (rt|x1:t) = P (rt, x1:t)/P (x1:t).

Then the numerator of right hand side can be expressed as marginal distribution over rt−1,

10



P (rt, x1:t) =
∑
rt−1

P (rt, rt−1, x1:t) (2.8)

=
∑
rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1) (2.9)

=
∑
rt−1

[
P (rt|rt−1, x1:t)P (xt|rt−1, x1:t−1)·

P (rt−1, x1:t−1)
]

(2.10)

=
∑
rt−1

[
P (rt|rt−1)P (xt|rt−1, x

(rt−1)
t−1 )·

P (rt−1, x1:t−1)
]
. (2.11)

Here, Bayes’ theorem is used from Equation (2.8) to Equation (2.9) and from Equation (2.9)

to Equation (2.10). From Equation (2.10) to Equation (2.11), P (rt|rt−1, x1:t) is simplified to

P (rt|rt−1) with assuming that the current run length is only depending on the run length from

the previous time step, but not the data. Watching Equation (2.8) and Equation (2.11), we

can see P (rt, x1:t) is in recursive form with time. So if we know first term and second term of

Equation (2.11), which represent prior distribution of rt given rt−1 and the predictive distribution

of xt given the data after the last change point, then we can compute the joint distribution of

run length and data recursively. Here the prior distribution of rt can be easily get as:

P (rt|rt−1) =


H(rt−1 + 1) rt = 0

1−H(rt−1 + 1) rt = rt−1 + 1

0 otherwise

(2.12)

with

H(τ) =
Pgap(g = τ)∑∞
t=τ Pgap(g = t)

. (2.13)

Here H(τ) is called the hazard function with Pgap(g) denoting the a priori distribution

of the gap between two change points. Especially, the hazard function is simplified to be a

constant function as H(τ) = 1/λ when the geometric distribution is employed for Pgap(g) with

the timescale parameter λ. Then lambda is large, the change point is less likely to be happen

and vice versa. The second term in Equation (2.11) is computed through a GP regression. The

overall conditional predictive distribution P (xt+1|x1:t) can be updated by recursive message

passing of P (rt, x1:t).

The BOCPD framework efficiently works to find changes when modeling time series wiht

GPs. However we can enhance the algorithm by relaxing some assumptions behind the BOCPD

framework. One such assumption is the constant hazard function which affects to the frequency

of change points. Another assumption is that the kernel functions or the kernel parameters are

11



fixed during the algorithm works. These assumptions make BOCPD framework to be vulnerable

to the parameters. In the following chapters, we propose an enhanced BOCPD algorithm which

overcomes the aforementioned drawbacks.
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Chapter III

Defining Changes in the Covariance

Structure of Gaussian Processes

This section presents our new hypothesis tests to detect change points in the covariance structure

of a GP.

3.1 Motivational Examples

While there have been many works concentrated on the mean change in the GPs, changes in the

covariance structure of GPs have not yet been fully investigated. In this subsection, we address

the motivational examples of covariance changes in time series analysis.

Covariance can represent various changes in time series

As we can see in Figure 3.1, covariance matrix can represent various changes in synthetic data.

Figure 3.1a shows samples from a covariance matrix of

Σbreak =

[
K 0

0 K

]

where Kij = k(ti, tj) for some covariance function k. Σbreak represents a structural break in

the covariance matrix where the process before and after the change point are independent.

Especially the change type of Figure 3.1a is similar to mean shift. In other words, changes such

like mean shift can also be represented with covariance structural breaks. Figure 3.1b shows

change of periodicity p in the Periodic covariance function

kper(ti, tj) = σ2 exp

(
−2 sin2(π|ti − tj |/p)

l2

)
.

Figure 5.1b and 5.1b show changes of variance σ and lengthscale l in the SquaredExponential

covariance function

kSE(ti, tj) = σ2 exp

(
−(ti − tj)2

2l2

)
.

13



(a) (b)

(c) (d)

Figure 3.1: Synthetic data with changes in the covariance structure. Figure 3.1a shows samples

generated from the covariance matrix with a structural break at the middle. Figure 3.1b shows

the periodicity change in the periodic covariance function. Figure 5.1b and 5.1a show the variance

and lengthscale changes in the squared exponential covariance function, respectively.

These type of changes are not only theoretical examples but also happening in the real world.

Figure 3.2 shows two real world examples of covariance changes. Figure 3.2a is Apple’s stock

movement for December 2004 to December 2007. We can see that the variance becomes larger

after March 2006. Figure 3.2b is Microsoft’s stock movement for July 1985 to July 1989. We can

see that the lengthscale, i.e., the smoothness of the time series changes after September 1987.

Detecting changes in the covariance structure is helpful for the prediction

Figure 3.3 shows that covariance structural breaks can affect the performance of a GP regression.

The left-most plot in Figure 3.3 presents the several samples generated from a GP with an

embedded covariance change at the time step 5. The second plot shows a GP regression with

GP hyperparameters learnt from the whole set of data at once. In contrast, the right-most

plot presents a GP regression whose hyperparameter changes at the change point. Figure 3.3

advocates the necessity of the research on the covariance structural break as the figure clearly

shows that nonstationary data is fitted better with the dynamic model than the time-invariant

14



(a) (b)

Figure 3.2: The figure 3.2a shows the Microsoft’s stock price movements from December 2004

to December 2007 which represents variance change. The figure 3.2a shows the Apple’s stock

price from July 1985 to July 1989 which represents length scale change.

model. A GP becomes more expressive when it becomes to model a change in the covariance

structure.

For the rest of this section, we first recall the notations to construct likelihood ratio test for

general covariance change and then move on to our thesis interest, devising likelihood ratio tests

for covariance structural break.

3.2 Problem Setting

In this section, we denote the sequential data as Xi = f(ti) with time sequence {ti} and f ∼ GP
as in Section 2.1.3. For possible set of change points, we denote with Cn where n represents the

size of the sequential data. We formulate a statistical test to detect the covariance structural

changes. First we define the null hypothesis as

H0 : Cov(Xi, Xj) = K(ti, tj)

and the alternative hypothesis as H1 =
⋃
t∈Cn H1,t,

with

H1,t : Cov(Xi, Xj) =


K(ti, tj), i, j < t

K ′(ti, tj), i, j ≥ t

K ′′(ti, tj), otherwise.

(3.1)

K, K ′ and K ′′ can be arbitrary kernel functions. We write the covariance matrix for H0 as Σ

and the covariance matrices for H1,t as Σ′t, respectively. We can rewrite the likelihood ratio 2L

as

max
t∈Cn

[
XT (Σ)−1X −XT (Σ

′
t)
−1X + ln

(
|Σ|
|Σ′t|

)]
. (3.2)
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Figure 3.3: The left-most plot shows samples from a GP with a predefined covariance structural

change. The middle plot shows the GP posterior from the GP regression with a static kernel.

The right-most plot shows the GP posterior from the GP regression with two consecutive kernels

representing the covariance structural break.

3.3 Tests for the Covariance Structural Break

In this subsection, we focus on the situation where the covariance structure breaks with two

different kernels, i.e., K ′′(i, j) = 0 in Equation (3.1). Similarly we can write hypotheses as

follows.

H0 : Cov(Xi, Xj) = K(Xi, Xj), v.s. H1 =
⋃
t∈Cn

H1,t

where specific alternative hypothesis with change point t, H1,t is defined as

H1,t : ∃ α 6= 0,Cov(Xi, Xj) =


K(Xi, Xj), i, j < t

K ′(Xi, Xj), i, j ≥ t

0, Otherwise

The covariance matrices under the null hypothesis and the alternative hypothesis can be

written as

Σ =

(
Kaa Kab

Kba Kbb

)
,Σ
′
t =

(
Kaa 0

0 K ′bb

)
.

Here, Kab is the covariance matrix between Xa and Xb where Xa := X1:t and Xb := Xt+1:n.

Kaa, Kba, Kbb are similarly defined. The likelihood ratio test is formed as

TGLRT = I (2L ≥ Rδ)

.

Lemma 3.3.1. Suppose a sequential data X = X1:n is bounded with Xt ∈ [−V, V ] for all t,

λnnV
2 ≤ XTMX ≤ λ1nV

2
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for symmetric matrix M and its eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn.

Proof. As M is a symmetric matrix, it can be decomposed as

M = QΛQT

where Q is the orthogonal matrix whose columns are eigenvectors of M and Λ is a diagonal

matrix with eigenvalues. Then

XTMX = XTQΛQTX =
∑
i

λi < X,Qi >
2 .

Using the fact λn ≤ λi ≤ λ1 for any i ∈ [1, n], it can be bouded as

λn
∑
i

< X,Qi >
2≤
∑
i

λi < X,Qi >
2≤ λ1

∑
i

< X,Qi >
2 .

As
∑

i < X,Qi >
2= XTQQTX = ‖X‖2, we can conclude

λnnV
2 ≤ XTMX ≤ λ1nV

2.

Theorem 3.3.1 (Hoeffding bound). Let Z be a random variables bounded by the interval [a, b].

Then

P (Z − E[Z] ≥ ε) ≤ exp

(
− 2ε2

(b− a)2

)
P (Z − E[Z] ≤ −ε) ≤ exp

(
− 2ε2

(b− a)2

)
for ε ≥ 0.

From Lemma 3.3.1 and Hoeffding bound, we can find the thresholds for likelihood ratio tests.

Lemma 3.3.2 (Type I Error). When the n number of sequential data follow the null hypothesis

as defined in Section 3.3 and bounded by [−V, V ], the error rate that the likelihood ratio test to

wrongly detect a change is bounded as follows.

P(2L ≥ Rn,δ,H0 |H0) ≤ δ/2,

for

Rn,δ,H0 =

(
n− Tr(Σ(Σ

′
t)
−1) + ln

(
|Σ|
|Σ′t|

))
+ (λmax + λ′max − λmin − λ′min)V 2n

√
0.5 ln(2/δ).

Proof. From the Hoeffding bound, for 2L bounded by [a, b],

P(2L− E(2L|H0) ≥ ε) ≤ exp

(
− 2ε2

(b− a)2

)
.

17



Letting right hand side as δ/2 and rewriting ε with δ,

ε = (b− a)
√

1/2 ln(2/δ).

Thus

P(2L ≥ E(2L|H0) + (b− a)
√

1/2 ln(2/δ)) ≤ δ/2.

To calculate E(2L|H0), recall that 2L = XTΣ−1X −XTΣ′−1X + ln
(
|Σ|
|Σ′|

)
.

E(XTΣ−1X −XTΣ′−1X + ln

(
|Σ|
|Σ′|

)
|H0)

= E(XTΣ−1X|H0)− E(XTΣ′−1X|H0) + ln

(
|Σ|
|Σ′|

)
= E(Tr(XTΣ−1X)|H0) + E(Tr(XTΣ−1X)|H0) + ln

(
|Σ|
|Σ′|

)
= E(Tr(XXTΣ−1)|H0) + E(Tr(XXTΣ−1)|H0) + ln

(
|Σ|
|Σ′|

)
= Tr(E(XXTΣ−1|H0)) + Tr(E(XXTΣ−1|H0)) + ln

(
|Σ|
|Σ′|

)
Here we used the fact that the XTΣ−1X is a scalar and that the trace has the cyclic property.

As X is under the null hypothesis, E(XXT ) = Σ.

Tr(E(XXTΣ−1|H0)) + Tr(E(XXTΣ−1|H0)) + ln

(
|Σ|
|Σ′|

)
= Tr(ΣΣ−1) + Tr(ΣΣ−1) + ln

(
|Σ|
|Σ′|

)
= n+ Tr(ΣΣ−1) + ln

(
|Σ|
|Σ′|

)

Now, to find the interval b−a for 2L we use Lemma 3.3.1. As the last term of 2L is constant

over X, the upper bound of 2L can be calculated from the maximum of XTΣ−1X minus the

minimum of XTΣ′−1X. The lower bound of 2L can be calculated in a similar way. Writing the

eigenvalues of Σ−1 and Σ′−1 as λ and λ′ respectively, we can summarize the error bound as

P(2L ≥ Rn,δ,H0 |H0) ≤ δ/2,

for

Rn,δ,H0 =

(
n− Tr(Σ(Σ

′
t)
−1) + ln

(
|Σ|
|Σ′t|

))
+ (λmax + λ′max − λmin − λ′min)V 2n

√
0.5 ln(2/δ).

Lemma 3.3.3 (Type II Error). When the n number of sequential data follow the alternative

hypothesis as defined in Section 3.3 and bounded by [−V, V ], the error rate that the likelihood

ratio test to wrongly detect a change is bounded as follows.

P(2L ≤ Rn,δ,H1 |H1) ≤ δ/2,
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for

Rn,δ,H0 =

(
Tr(Σ

′
t(Σ)−1)− n− ln

(
|Σ|
|Σ′t|

))
+ (λmax + λ′max − λmin − λ′min)V 2n

√
0.5 ln(2/δ).

Proof. The proof follows similar procedure as Lemma 3.3.2.

When the specific condition is met, we can bound the conditional detection error probability

as follows.

Theorem 3.3.2. For Rn,δ,H0, Rn,δ,H1 in Lemmas 3.3.2 and 3.3.3, when Rn,δ,H1 ≥ Rn,δ,H0 and

Rn,δ,H0 ≤ Rδ ≤ Rn,δ,H1, the conditional detection error probability is bounded as

ϕn(T) = P(2L ≥ Rδ|H0) + max
t∈Cn

P(2L ≤ Rδ|H1,t) ≤ δ.

Proof. When we set the threshold to be Rδ ≥ Rn,δ,H0 , I error of the test can be guaranteed to be

bounded from Lemma 3.3.2. Similarly, if we set the threshold to be Rδ ≤ Rn,δ,H1 , type II error

of the test can be guaranteed to be bounded from Lemma 3.3.3. The result directly follows.

Using Theorem 3.3.2, the statistical error probability of the proposed test can be bounded

at any rate for a covariance structural break of arbitrary kernels. In other words, the proposed

test detects covariance structural breaks statistically correctly without specifying kernel types,

if specific conditions are met.

There are three possible cases of inequalities between Rn,δ,H0 and Rn,δ,H1 . In case Rn,δ,H0 >

Rn,δ,H1 , no threshold exists that satisfying the condition Rn,δ,H0 ≤ Rδ ≤ Rn,δ,H1 . Thus it cannot

be guaranteed either type I or type II errors. In case Rn,δ,H0 = Rn,δ,H1 , only one threshold exists

which guarantees both bounded type I and type II errors. Finally, in case Rn,δ,H0 < Rn,δ,H1 ,

the thresholds between Rn,δ,H0 and Rn,δ,H1 guarantee bounded type I and type II errors. The

shaded area in Figure 3.4 shows the range of such thresholds.

Rn,δ,H0 Rn,δ,H1

ε ε

E[2L|H0] E[2L|H1]

Figure 3.4: A horizontal line representing the range of thresholds guaranteeing the bounded type

I error with the right-pointing arrow and the range of thresholds guaranteeing the bounded type

II error under the alternative hypothesis. The shaded area is the range of threshold which can

guarantee both bounded type I error and the bounded type II error.
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Chapter IV

Confirmatory Bayesian Online Change

Point Detection

In this section we propose an improved version of conventional BOCPD algorithm by leveraging

the statistical hypothesis tests. We will explain how the algorithm works and further discuss

the theoretical analysis of the algorithm.
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(b) Timescale λ = 25

Figure 4.1: Figures 4.1a and 4.1b represent the behaviors of the conventional BOCPD algorithm

and the proposed CBOCPD algorithm. The top-most plot shows the run length distribution

computed by the conventional BOCPD algorithm. And the middle plot shows the run length

distribution of the CBOCPD algorithm. The bottom plot shows the results of statistical tests

and the length scale hyperparameters where true hyperparameter is represented with black line

and the trained hyperparameter is represented with the dashed black line.

4.1 Confirmatory BOCPD

We propose an online change detection algorithm, called CBOCPD in Algorithm 1. Based

on BOCPD, CBOCPD compensates the distribution of change point by loosen the assumption

that the run length solely depends on the run length of the previous time step, not the observed
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Algorithm 1 Confirmatory BOCPD
1: m, δ ← half window size, error bound for likelihood ratio test

2: P(X0)← N (µprior, σ
2
prior)

3: for t ∈ [1, T ] do

4: Rδ,H0 ,Rδ,H1 ← thresholds for T0
GLRT ,T

1
GLRT

5: H ← Hconst

6: if m < t < T −m then

7: set window W = Xt−m:t+m

8: 2Lτ ← the likelihood ratio between H0 and H1,τ with data W

9: τ∗, 2L = argmaxτ∈CW 2Lτ , maxτ∈CW 2Lτ

10: if T1
GLRT = 1 and T0

GLRT = 1 and τ∗ = t then

11: H ← 1− δ
12: else if T1

GLRT = 0 and T0
GLRT = 0 then

13: H ← δ

14: end if

15: end if

16: π
(r)
t ← P(Xt|X(r)

t−1)

17: P(rt = rt−1+1, X1:t)←P(rt−1, X1:t−1)π
(r)
t (1−H)

18: P(rt = 0, X1:t−1)←
∑

rt−1
P(rt−1, X1:t−1)π

(r)
t H

19: P(X1:t)←
∑

rt
P(rt, X1:t)

20: P(rt|X1:t)← P(rt, X1:t)/P(X1:t)

21: P(Xt+1|X1:t)←
∑

rt
P(Xt+1|X(r)

t )P(rt|X1:t)

22: end for

data. On the contrary, we claim that the run length is also affected by the observed data. We

plug the proposed statistical test in here to adjust this constant hazard function. In Equation

(2.10), P(rt = 0|rt−1, X
(r)
t−1) is assigned based on the likelihood ratio tests which are proposed

in the prvious chapter. In Algorithm 1, the first two lines initialize the parameters m and δ,

where m indicates the half of the window size and δ indicates the designated error bound of the

likelihood ratio test. In lines 3–13, Equation (2.11) is altered with

P(rt = 0|rt−1, X
(r)
t−1) =


1− δ, T∗GLRT = 1 and τ∗ = t

δ, T∗GLRT = 0

Hconst, otherwise.

By default, we set P(rt = 0|rt−1, X
(r)
t−1) with Hconst as in conventional BOCPD. For simplicity

we denote P(rt = 0|rt−1, X
(r)
t−1) as H in the algorithm. We use two likelihood ratio tests with

thresholds defined in line 4, T0
GLRT = I

(
2L ≥ R̃δ,H0

)
and T1

GLRT = I
(

2L ≥ R̃δ,H1

)
. With the

first test, we test to reject or fail to reject the null hypothesis. In contrary, if the result of

the second test is 0, we reject the alternative hypothesis and we fail to reject the alternative
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hypothesis if the result is 1. The reason why we use two tests is that, we only know when to

‘reject’ a hypothesis but not when to ‘accept’ a hypothesis as ‘fail to reject’ does not always

infer acceptance. Thus it makes our decision stronger if the results of two tests meet. For

example if we fail to reject the null hypothesis and we reject the alternative hypothesis, we have

more confidence to say there is no change. We simplify the results by unifying T∗GLRT = 1

if T1
GLRT = 1 and T0

GLRT = 1, and similarly T∗GLRT = 0 if T1
GLRT = 0 and T0

GLRT = 0.

Theoretically, the thresholds can be computed as provided in Section 3.2. However the empirical

thresholds are used in this section since the theoretically calculated thresholds in Lemmas 3.3.2

and 3.3.3 are not tight enough to use in practice. We use the window-based approach at t with

W = Xt−m:t+m when applying the statistical likelihood ratio tests to reduce the computational

complexity and to be worked in an online manner. For every possible candidate of change points,

we compute the likelihood ratio given the candidate as in line 8. In line 9, we name τ∗ as the

time step which maximizes the likelihood ratio among the possible candidates in the window,

τ∗ = argmaxτ∈CW 2Lτ . Then 2L is the likelihood ratio at τ∗ which is used for the test statistic.

Here CW ⊆ {t−m, ..., t+m} denotes a set of possible candidates of change points in the window.

Based on the test results we modify H. If the likelihood ratio is maximized at the middle of the

window and if the likelihood ratio at that point passes the tests, we decide that the time point t

is a change point and set P(rt = 0|rt−1, X
(r)
t−1) = 1− δ, which amplifies the possibility of changes

in the BOCPD framework. On the contrary, when both tests does not passes, i.e., T∗GLRT = 0,

we take there is no change and reduce the prior of the occurrence of changes in the BOCPD

algorithm. This is the reason this algorithm is named as Confirmatory BOCPD. There is one

more condition τ∗ = t, that the likelihood is maximized at the middle of the window, is set to

prevent situations in which the same time point is detected in multiple consecutive windows.

The rest of the algorithm follows similar to the conventional BOCPD framework [18].

4.2 Theoretical Analysis of CBOCPD

In this section we discuss on the sufficient conditions for CBOCPD to provide the lower pre-

diction error than the conditional BOCPD. The prediction error in this section is defined as

the expectation of the absolute difference between the true predictive mean and the predictive

mean from BOCPD or CBOCPD algorithm at the detected change point t. We focus the pre-

diction performance at the change point as how to handle the change point highly affects to the

overall performance. We will write the expected value of Xt under BOCPD and CBOCPD as

EBO[Xt|X1:t−1] and ECBO[Xt|X1:t−1], respectively. Further we define αi = PBO(rt−1 = i|X1:t−1)

under BOCPD and βi = 1− PCBO(rt−1 = i|X1:t−1) under CBOCPD.

Under the Existence of a Change

In this section we examine a non-stationary situation in which there exist a change. We will

find conditions where CBOCPD performs at least equal to BOCPD.

22



Theorem 4.2.1. Consider BOCPD algorithm in Section 2.2 and CBOCPD algorithms in Sec-

tion 4.1 where two statistical tests T0
GLRT and T1

GLRT are used. The type II error of T0
GLRT is

denoted with δII0 and the type II error of T1
GLRT is δII1 . Suppose there is a change point at time

t with the prior mean of µ1 and suppose it satisfies

∀i ∈ [0, t− 1], 0 ≤ |E[Xt|∅]− E[Xt|Xi:t−1]| ≤ εU

and

∃i ∈ [0, t− 1], |E[Xt|∅]− E[Xt|Xi:t−1]|αi −
∑
i 6=j
|E[Xt|∅]− E[Xt|Xj:t−1]αj | = εL ≥ 0

where E[Xt|∅] = µ1 denotes the expecation of Xt given no observed data which is equal to the

prior mean. If the following inequality is satisfied

εU
εL
≤ α0

(
1 +

(1− δII0 )(1− δII1 )

δII0 δ
II
1

)
with α0, the probability that the run length not equal to zero, then the expected absolute error of

CBOCPD at t is less than or equal to the expected absolute error of BOCPD as stated below

E[|µ1 − EBO[Xt|X1:t−1]|] ≥ E[|µ1 − ECBO[Xt|X1:t−1]|].

The Theorem 4.2.1 mainly refers that the performance of CBOCPD is no worse than BOCPD

with several conditions. The first condition indicates that the the absolute prediction error

should be bounded. It is acquired from the assumption that the absolute prediction error

with an incorrect run length should be greater than 0. The second condition refers that one

conditional prediction error is greater than the weighted sum of the other conditional prediction

error over the possible run lengths. This condition is set to guarantee that the lower bound of the

prediction error of BOCPD to be strictly greater than the prediction error of CBOCPD. Lastly,

if the ratio between the upper bound and the lower bound of the absolute prediction error in

the first condition is upper bounded, then the expectation of the absolute error of CBOCPD is

less than or equal to the BOCPD.

Under the Absence of a Change

Here, we explore the case in which there does not exist a change.

Theorem 4.2.2. Consider BOCPD algorithm in Section 2.2 and CBOCPD algorithms in Sec-

tion 4.1 where two statistical tests T0
GLRT and T1

GLRT are used. The type I error of T0
GLRT is

denoted with δI0 and the type I error of T1
GLRT is δI1. Suppose there is a statistically justified non

change at time t with the prior mean of µ2 and suppose it satisfies

∀i ∈ [0, t− 1], εL ≤ |E[Xt|X1:t−1]− E[Xt|Xi:t−1]| ≤ εU ,
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and

∃i ∈ [0, t− 2], |E[Xt|X1:t−1]− E[Xt|Xi:t−1]|αi −
∑
i 6=j
|E[Xt|X1:t−1]− E[Xt|Xj:t−1]αj | = εL ≥ 0

If the following inequality is satisfied

εU
εL
≤ (1− δI0)(1− δI1) + δI0δ

I
1

βt−1(1− δI0)(1− δI1) + δI0δ
I
1

with αt−1, the probability that the run length in BOCPD not equal to t − 1, and βt−1, the

probability that the run length in CBOCPD not equal to t − 1, then the expected absolute error

of CBOCPD at t is less than or equal to the expected absolute error of BOCPD as stated below

E[|µ2 − EBO[Xt|X1:t−1]|] ≥ E[|µ2 − ECBO[Xt|X1:t−1]|].

Similar to the Thereom 4.2.1, the Theorem 4.2.2 refers that the performance of CBOCPD

is no worse than BOCPD under the situation where there is no change with several conditions.

The first condition indicates that the the absolute prediction error should be bounded. Here the

difference from condition of the Theorem 4.2.1 is that the prediction error is computed compared

to the predictive mean given all the previously observed data. This is because the predictive

mean becomes more accurate as we observe more and more data. The second condition is

similarly defined as the second condition of Theorem 4.2.1. From the last condition, if the

ratio between the upper bound and the lower bound of the absolute prediction error in the first

condition is upper bounded, then the expectation of the absolute error of CBOCPD is less than

or equal to the BOCPD.

From Theorems 4.2.1 and 4.2.2, we can say that the proposed CBOCPD algorithm performs

as well as the BOCPD algorithm in either cases where there is a change or no change.
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Chapter V

Experimental Results

5.1 Synthetic data

LEN-CHANGE VAR-CHANGE

Method NLL MSE NLL MSE

BOCPD 1.04±0.36 0.40±0.16 2.18±0.99 0.83±0.37
CBOCPD 0.51±0.19 0.44±0.21 0.71±0.16 0.43±0.11

Table 5.1: Comparison of BOCPD,and CBOCPD over NLL and MSE on synthetic datasets.

In this section we show experimental results on synthetic data. We generate synthetic data

with intentional change points in times series data. Typically we used total size of the sequen-

tial data as T = 200, with two randomly generated change points. The first change point is

randomly selected from the interval [50,80] and the second change point is randomly selected

from the interval [150, 180]. We changed two hyperparameters of Squared Exponential kernel,

variance and lengthscale respectively. Variance indicates the amplitude of variation of the re-

gression function, and lengthscale indicates the smoothness of the function. For the variance,

we changed from 1.0 to 4.0 then changed from 4.0 to 0.3. For the lengthscale, it is changed

from 3.0 to 20.0 after the first change point then reduced to 1.0 after the second change point.

Figure 5.1 shows the two examples of lengthscale change and variance change. We can see that

CBOCPD algorithm catches true change points which BOCPD algorithm missed in both cases.

We repeated the experiment for 10 times and computed the average of negative log likelihood

and the mean squared error. The result is summarized in Table 5.1.

For NLL, CBOCPD clearly shows better performance compared to BOCPD. BOCPD shows

somewhat higher performance on mean squared error, while it is hard to see as significant

considering the margin of error. Qualitatively, CBOCPD captures change points that can be

missed by BOCPD but also corrects false change points as shown in Figure 5.1. Figure 5.1

shows how BOCPD and CBOCPD works with different settings of timescale parameter. The
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Gazebo:Env1 Gazebo:Env2 Gazebo:Env3

Method NLL MSE NLL MSE NLL MSE

BOCPD 2.07±0.51 0.14±0.05 2.24±0.48 0.57±0.26 0.28±0.12 0.11±0.03
CBOCPD -0.31±0.34 0.11±0.04 0.69±0.36 0.45±0.19 -0.99±0.47 0.10±0.04

Table 5.2: The NLL and MSE results of BOCPD, and CBOCPD on the Gazebo robot simulator

with three change environments.

timescale parameter works as a prior of the probability of a change point. When timescale is

small, it is more likely that change point occurs and vice versa. Conventional BOCPD algorithm

is vulnerable to this parameter setting as we can see in the figure. When the timescale is set

too large, BOCPD algorithm misses true change points. On the other hand, when the timescale

is set too small, BOCPD algorithm alarms too much change points. CBOCPD algorithm helps

to adjust BOCPD with the improper parameter setting. In Figure 4.1a, CBOCPD captures the

first change point that BOCPD missed. In Figure 4.1a, CBOCPD reduces change points that

are false alarmed by BOCPD which are statistically confirmed non-changes.

5.2 Robot Simulation Data

We further conduct experiments on the robot simulation data. For the experimental setting, we

use Gazebo 8 for the robot simulator and Pioneer3AT robot is used through the experiments.

The robot is moved in the environments where the properties of the ground changes. We then

gathered the position data of the robot while the robot is moving. We prepared three types

of environments of the ground by modifying the height-map of the simulator. Each type of

environment is captured in Figure 5.3. In the first environment, the robot is moving from the

plane ground to the bumpy ground with many bumps. Then the robot is moving from the

bumpy ground to the more coarse bumpy ground with smaller but more dense bumps (Env2).

In the final environment the robot is moving from the second bumpy ground back to the plane

ground. For the experiments we use altitude of the robot, ‘z’-axis data, to detect the change of

the ground. Table 5.2 summarizes the results of the experiments on the Gazebo robot simulator.

The table shows that CBOCPD outperforms the conventional BOCPD in all three environments

with respect to the NLL (Negative Log Likelihood). CBOCPD also shows improved performance

in MSE While it is not as significant in Env3 as in the other environments.
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(a) Example of lengthscale change

(b) Example of variance change

Figure 5.1: The run length distribution from the CBOCPD and BOCPD algorithms on the

synthetic datasets with two changes in hyperparameters. Figure 5.1a is the case where length

scale is increasing from 3.0 to 20.0 and decreasing to 1.0. Figure 5.1b is the case where the

variance is increasing from 1.0 to 4.0 and decreasing to 0.1. Dashed black line indicates the true

change points and red line shows the most probable run length.
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(a) Plane ground to Bumpy
ground 1 (Env1)

(b) Bumpy ground 1 to Bumpy
ground 2 (Env2)

(c) Bumpy ground 2 to Plane
ground (Env3)

Figure 5.2: Gazebo robot simulation environments. In each environment the ground is changing.

In the first environment (Env1) the ground is changing ‘Plane ground’ –> ‘Bumpy ground 1’.

The second plot shows the environment (Env2), where the ground is changing ‘Bumpy ground

1‘ –> ‘Bumpy ground 2’. In the right-most plot (Env3), the environment is changing ‘Bumpy

ground 2’ –> ‘Plane ground’.
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(c) Env3

Figure 5.3: Results of BOCPD and CBOCPD on Gazebo robot simulation data. The top plot

shows the z-directional data from each environment. The result of BOCPD is placed below the

original data plot. The third plot shows the result of CBOCPD and the bottom plot shows

estimated hyperparameters.
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Chapter VI

Conclusion

We present a novel likelihood ratio tests for detecting covariance structural breaks in the co-

variance of the GP. We devise an online CPD algorithm, called Confirmatory BOCPD, which

improves BOCPD by confirming changes or non-changes with statistical hypothesis tests. Al-

though our work have shown theoretically correct threshold for tests, it is yet loose to use in

practice. It could be further reduced with more conditions if needed. In this thesis we focused

on abrupt change in the covariance structure of uni-variate time series. The future work could

investigate on the likelihood ratio test to multi-variate time series or the likelihood ratio test for

smoothly changing covariance.
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Appendix

A Proofs for Chapter IV

Proof of Theorem 4.2.1. Let’s define the gain of CBOCPD over BOCPD as

|E[xt|∅]− EBO[xt|x1:t−1]| − |E[xt|∅]− ECBO[xt|x1:t−1]|.

In the case T∗GLRT = 1, the gain is written as

|E[xt|∅]− EBO[xt|x1:t−1]| − |E[xt|∅]− E[xt|∅]|

= |E[xt|∅]− EBO[xt|x1:t−1]|

=

∣∣∣∣∣∣
t−1∑

rt−1=0

E[xt|∅]PBO(rt−1|x1:t−1)−
t−1∑

rt−1=0

E[xt|x(r)
t−1]PBO(rt−1|x1:t−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t−1∑

rt−1=1

(
E[xt|∅]− E[xt|x(r)

t−1]
)
PBO(rt−1|x1:t−1)

∣∣∣∣∣∣
≥ max

i
|E[xt|∅]− E[xt|x(i)

t−1]|αi −
∑
j 6=i
|E[xt|∅]− E[xt|x(j)

t−1]|αj

≥ |E[xt|∅]− E[xt|x(i∗)
t−1]|αi∗ −

∑
j 6=i∗
|E[xt|∅]− E[xt|x(j)

t−1]|αj

= εL > 0.

Here the last two lines are induced from the assumption that

∃i ∈ [0, t− 1], ‖E[Xt|∅]− E[Xt|Xi:t−1]|αi −
∑
i 6=j
|E[Xt|∅]− E[Xt|Xj:t−1]αj‖ = εL ≥ 0.
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In the case T∗GLRT = 0, the loss of CBOCPD is written as

|E[xt|∅]−
t−1∑

rt−1=1

E[xt|x(r)
t−1] · PCBO(rt−1|x1:t−1)|

=

∣∣∣∣∣∣
t−1∑

rt−1=1

E[xt|∅]PCBO(rt−1|x1:t−1)−
t−1∑

rt−1=1

E[xt|x(r)
t−1]PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t−1∑

rt−1=1

(
E[xt|∅]− E[xt|x(r)

t−1]
)
PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣εU
t−1∑

rt−1=1

PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣ = εU .

The equation in the last line comes from the fact that

Σt−1
rt−1

PCBO(rt−1|x1:t−1) = 1 under the CBOCPD when non-change is detected. Then, the

gain is bounded as

|E[xt|∅]− EBO[xt|x1:t−1]| − |E[xt|∅]− ECBO[xt|x1:t−1]| ≥ εL − εU .

As P(T∗GLRT = 1) = (1 − δII0 )(1 − δII1 ) and P(T∗GLRT = 0) = δII0 δ
II
1 in non-stationary case, the

expected gain is bounded from below as

E(|E[xt|∅]− EBO[xt|x1:t−1]| − |E[xt|∅]− ECBO[xt|x1:t−1]|)

≥ εL(1− δII0 )(1− δII1 ) + (εL − εU )δII0 δ
II
1 ≥ 0

where the last inequality follows the assumption. Thus we can conclude that the expected gain

is non-negative.

Proof of Theorem 4.2.2. Let’s define the gain of CBOCPD over BOCPD as

|E[xt|x1:t−1]− EBO[xt|x1:t−1]| − |E[xt|x1:t−1]− ECBO[xt|x1:t−1]|.
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The loss of BOCPD is written as

|E[xt|x1:t−1]− EBO[xt|x1:t−1]|

=

∣∣∣∣∣∣
t−1∑

rt−1=0

E[xt|x1:t−1]PBO(rt−1|x1:t−1)−
t−1∑

rt−1=0

E[xt|x(r)
t−1]PBO(rt−1|x1:t−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t−2∑

rt−1=0

E[xt|x1:t−1]PBO(rt−1|x1:t−1)−
t−2∑

rt−1=0

E[xt|x(r)
t−1]PBO(rt−1|x1:t−1)

∣∣∣∣∣∣
≥ max

i∈[1,t−2]
|E[xt|x1:t−1]− E[xt|x(i)

t−1]|αi −
∑
j 6=i
|E[xt|x1:t−1]− E[xt|x(j)

t−1]|αj

≥ |E[xt|x1:t−1 − E[xt|x(i∗)
t−1]|αi∗ −

∑
j 6=i∗
|E[xt|x1:t−1]− E[xt|x(j)

t−1]|αj

= εL > 0.

In the case T∗GLRT = 1, the loss of CBOCPD is written as

|E[xt|x1:t−1]− ECBO[xt|x1:t−1]| = |E[xt|x1:t−1]− E[xt|∅]| ≤ εU .

Then, the gain is bounded as

|E[xt|x1:t−1]− EBO[xt|x1:t−1]| − |E[xt|x1:t−1]− ECBO[xt|x1:t−1]| ≥ εL − εU .

In the case T∗GLRT = 0, the loss of CBOCPD is written as

|E[xt|x1:t−1]−
t−1∑

rt−1=1

E[xt|x(r)
t−1] · PCBO(rt−1|x1:t−1)|

=

∣∣∣∣∣∣
t−1∑

rt−1=1

E[xt|x1:t−1]PCBO(rt−1|x1:t−1)−
t−1∑

rt−1=1

E[xt|x(r)
t−1]PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t−2∑

rt−1=1

E[xt|x1:t−1]PCBO(rt−1|x1:t−1)−
t−2∑

rt−1=1

E[xt|x(r)
t−1]PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣εL
t−2∑

rt−1=1

PCBO(rt−1|x1:t−1)

∣∣∣∣∣∣ = εU · βt−1.

Then, the gain is bounded as

|E[xt|x1:t−1]− EBO[xt|x1:t−1]| − |E[xt|x1:t−1]− ECBO[xt|x1:t−1]| ≥ εL − εU · βt−1.

As P(T∗GLRT = 1) = δI0δ
I
1 and P(T∗GLRT = 0) = (1− δI0)(1− δI1) in stationary case, the expected

gain is bounded from below as

E(|E[xt|x1:t−1]− EBO[xt|x1:t−1]| − |E[xt|x1:t−1]− ECBO[xt|x1:t−1]|)

≥ (εL − εU )δI0δ
I
1 + (εL − εUβt−1)(1− δI0)(1− δI1) ≥ 0

36



where the last inequality follows the assumption. Thus we can conclude that the expected gain

is non-negative.
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