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Abstract

In recent years, extensive efforts have been devoted to developing antibiofilm material which can effectively 

prevent biofilm formation. Currently, the most common method of preventing protein or bacteria adhesion is to 

impart surface functionalization using PEGylated materials or zwitterionic materials with excellent antifouling 

properties. This method is resistant to the surface adhesion of proteins and microorganisms but is less 

mechanically durable and easily damaged by external physical and chemical stimuli, which can lead to the loss 

of antifouling performance. Bactericidal methods include chemical killing by antibiotics and physical killing 

due to surface structure. Chemical methods using silver, nitrates, or copper can cause microbial infections due 

to antibiotic resistance and can be toxic and biologically harmful.

To avoid this problem, researchers have been studying physical killing methods. Nanostructures which can 

be fabricated using silicon, metal, or polymers have been used to kill bacteria. However, these methods also 

have many limitations, such as complex fabrication methods, high cost, secondary biofilm formation, and 

especially the problem of the remaining dead bacterial carcasses. Furthermore, many previous studies, whether 

concerning the chemical or mechanical approaches, have focused on a single strategy, such as antifouling 

coatings, bactericidal materials, or nanopatterning. However, these single-strategy approaches have many 

limitations, such as the drug resistance of bacteria, toxicity to cells and the environment, low antifouling 

performance, high cost, or low mechanical and chemical durability in the prevention of biofilm formation. 

Therefore, to overcome these many drawbacks first of all, simple, cost-effective, environmentally friendly and 

reproducible fabrication methods are strongly required. Moreover, to overcome several problems of the single-

strategy approaches, a multi-strategy or hybrid approach should be considered.

This dissertation presents the development of a hybrid strategy based on an antifouling material and 

bactericidal nanostructures that aim to combine both the antifouling and bactericidal functions to maintain 

effective anti-biofouling performance.

Our hybrid anti-biofouling surface consists of nanostructures with the biocompatible materials polyethylene 

glycol dimethacrylate (PEGDMA) and cellulose acetate (CA). The biocompatible nanostructure array was

easily fabricated using UV molding and soft lithography. Moreover, 2-methacryloyloxyethyl phosphorylcholine

(MPC), a zwitterionic polymer, was covalently grafted onto the fabricated nanostructures for superior 

antifouling performance. The surface can be applied to various 3D surfaces and large areas, due to the flexibility 

of the base material. Based on the synergetic integration of the bio- and ecofriendly nanostructural polymer and 

MPC, our hybrid strategy can easily fabricate an efficient anti-biofouling surface which can overcome the 

limitations of previous antifouling and antibacterial surfaces. Furthermore, our hybrid surface has high chemical 

/ structural stability even in wet conditions. Not only can it effectively prevent bacterial attachment, but it also 

exhibits better bactericidal effects, regardless of the bacterial types, compared with single anti-biofouling

strategies (repelling bacteria or killing bacteria). Furthermore, it preserves robust and excellent anti-biofouling 

activity, even under external stimuli and long-term fouling tests. 
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This novel hybrid anti-biofouling surface provides a more-promising solution for the prevention of initial 

bacterial attachment and subsequent biofilm formation. In particular, the hybrid anti-biofouling function makes

these surfaces more suitable for applications in which long-term antibacterial activity is required. Also, our 

developed surfaces can play an important role in solving bio-contamination problems in the medical and marine 

industries.

Keywords: Antifouling, Bactericidal, Nanostructure, Biofilm, Biocompatible, Flexible, Durable, 
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1. Introduction

1.1. Research background and motivation

Biofilm formation is caused by the attachment of a small number of bacteria on the surface. The bacterial 

attachment on a certain surface and bacterial proliferation greatly affect human daily life, the medical industry 

and the marine industry [1]. For the medical industry, surface contamination by bacteria attachment in catheters, 

artificial vessels, and implants can lead to inflammation response and infection, which also causes cell necrosis, 

major mortality in patients, and biological damage (Figure 1, 3) [2].

To solve these problems, the antifouling surfaces have been treated with gases or chemicals such as ethylene 

oxide gas, hydrogen peroxide gas plasma, hydrogen peroxide, and antibiotics for the anti-attachment and killing 

of microorganisms in the medical industry [3]. However, the frequent use of chemical treatments makes bacteria 

chemically resistant, which leads to secondary damage to human life.

Figure 1. Previous anti-biofouling methods in the medical industry.

For the marine industry, antifouling surfaces are coated with chemicals such as tributyltine paint, copper 

oxide paint, and mercury paint to prevent microbial adhesion. It has a short-term antifouling performance and 

is easily detached from the surface due to its low durability. Due to these problems, the cost of surface 

replacement and fuel loss in the marine industry is increasing and environmental destruction is caused because 

they have toxic components (Figure 2, 3) [4, 5]. 
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Figure 2. Previous anti-biofouling methods in the marine industry.

Figure 3. Critical cases due to microbes in the medical field (left) and Economic loss due to microbes in the 

marine industry (right).

To solve the above-mentioned problem, many researchers have been actively developing the anti-fouling 

and anti-bacterial surfaces that can effectively inhibit the attachment of bacteria and the formation of biofilm 

through the chemicals. Traditional anti-biofouling surfaces are generally classified into two types according to 

the functional mechanism including chemicals and structural anti-biofouling properties [6]. The first type is 

based on chemicals, which can repel or kill the bacteria on the surface (Figure 4, 5). First of all, the chemicals 

to prevent bacterial adhesion are as follows. The antifouling materials are hydrophilic, zwitterionic, hydrophobic 

and smart materials, among which the typical representative materials are PEGlylated and zwitterionic 

substances.
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Figure 4. Existing researches on chemical-based antifouling approach.

Figure 5. Existing researches on chemical-based bactericidal approach.

PEG is the most representative hydrophilic polymers, has been broadly employed to modify surfaces for 

antifouling properties [7-10]. The antifouling behavior of PEG-based surfaces is activated by the hydration shell 

formed by hydrogen bonds between PEG and water molecules in addition to the steric repulsion effect due to 

flexible chains (Figure 6a) [9, 11]. Zwitterionic materials are biocompatible with anti-biofouling functions and 

have phosphorylcholine side chains mimicking the hydrophilic group of phosphatidylcholine in the cell 

membrane such as the typical polybetaines, including poly(2-methacryloyloxyethyl phosphorylcholine) 

(PMPC), poly(sulfobetaine methacrylate) (PSBMA) and poly(carboxybetaine methacrylate) (PCBMA) (Figure 
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6b). Also, because zwitterionic material possesses both anionic and cationic groups with overall charge 

neutrality, they can form hydration shell via electrostatic interactions, which are much stronger than hydrogen 

bonds, resulting in denser and tighter hydration layer [9]. Compared with PEG, the hydration shell formed by 

zwitterionic materials is denser and thicker. For PEG molecular chains consist of repetitive units CH2CH2O-, 

and each unit includes an oxygen atom integrated with one water molecule via hydrogen bonding interactions, 

while zwitterionic molecule chains consist of equally charged units, and each unit includes a positive charged 

group and a negative charged group integrated with eight water molecules via at most electrostatic interactions

[9]. PEG or MPC are often used as surface grafting materials for planar surfaces based on covalent 

immobilization, physical adsorption, or gas phase treatment rather than as structural materials [12]. Despite 

excellent antifouling characteristics, they are easily damaged under physical-chemical and physical stimuli due 

to molecular-level thickness. This means that the damaged antifouling surface leads to subsequent biofilm 

formation.

Figure 6. Schematic illustration for the formation of hydration shell. (a) Each unit of the representative PEG 

materials is integrated with one water molecule. (b) Each unit of the zwitterionic materials is integrated with 

eight water molecules [9].

Chemicals can interfere with the adhesion of bacteria, but it can also kill bacteria. To kill bacteria, several 

chemicals are used as follows. as follows. Synthetic or antimicrobial agents are used to kill the bacteria. 

Representative biocidal materials are antibiotics, silver, copper, and nitrates that coat or impregnate the surface 

coating (Figure 5) [13, 14]. However, it is difficult for actual applications in daily routine, biomedical, marine,

and industrial applications because biocide substances have their own limitations including toxicity, high 

corrosivity, and lack of surface stability. Antibacterial surfaces generally have problems related to the 

accumulation of dead bacteria and debris, which not only reduces antibacterial efficacy because they prevent 

the action of antibacterial performance but also form another microbial film by providing it as a nutrient for 

subsequent bacterial attachment [6].
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The second type is based on structures, which can effectively kill the bacteria on the surface. To overcome 

the limitations of chemical methods for bacteria-repelling and bacteria-killing, researches have been actively 

performed to physically kill bacteria. Many living creatures in nature minimize bacterial contamination through 

self-cleaning to maintain their function (Figure 7). In particular, the sterilization effect of the cicada or dragonfly 

wing is based on the physical surface structure and is continuously cleaned through structural sterilization to 

maintain a clean surface [15-17]. 

Figure 7. Micro/nanostructures for antifouling in nature.

Recently, research has been underway actively to find that the pointy nanoscale structure mimicking cicada 

and dragonfly wings can effectively kill bacteria by rupturing the bacterial cell membrane. The bactericidal 

effects of these surfaces are due to the presence of sharp nanostructures (nano-pillar shaped structure with 

diameter 50–250 nm, height 80–250 nm, and pitch 100–250 nm) [18]. Such a physical bactericidal method has 

become an attractive approach to potentially tackle multi-antibiotic resistant bacteria. The bactericidal surface 

using nanostructures is made of solid inorganic materials such as black silicon and titanium oxide (Figure 8) 

[19, 20]. However, it is easily damaged by external mechanical stimuli and the accumulation of dead bacteria 

easily deteriorated antimicrobial performance and has a limitation that is difficult to apply to curved surfaces or 

large areas. To overcome many of the current limitations of antifouling surfaces, we need a surface that is 

biocompatible, mechanically durable and applicable to a variety of curved surfaces. In particular, it is required 

to enable minimization of bacterial attachment and killing the attached bacteria at the same time regardless of 

the type of bacteria is required.
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Figure 8. Existing researches on structure-based antifouling approach.

In total, researches have been studied a lot that can interfere with the attachment of bacteria to the surface 

or kill bacteria. However, the previous studies have many limitations, such as toxicity, durability, and biological 

damage, because they implement only one function. To overcome the current limitations of the antifouling 

surface, we need a surface that is biocompatible, mechanically durable and applicable to a wide range of curves. 

In order to solve problems related to biofilm formation and overcome the limitations of existing antifouling 

researches, a new strategy of protection with two functions simultaneously, biofilm formation prevention and 

bacterial killing, is proposed. We have combined the antifouling function and the bactericidal function beyond 

the traditional one-performance strategy. This strategy uses chemical, mechanical methods, and is based on 

biocompatible antifouling materials, which fundamentally prevents the formation of early biomaterials 

formation. And with the fabricated antifouling nanostructures, we can minimize the attachment of bacteria, 

regardless of bacteria type, and at the same time destroy the attached bacteria. 
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1.2. Research objectives

The purpose of this study is to propose a novel approach to develop an anti-biofouling surface to overcome 

the limitations of the previous studies. The proposed anti-biofouling surface in this study is biocompatible, 

mechanical durability, and flexible enough to apply to curved surfaces. It can kill attached bacteria regardless 

of their type, especially at the same time as it can prevent biofilm formation early on.

 The first goal of this study is to select biocompatible materials with antifouling function. Because 

antifouling and antibacterial materials in the previous studies cause biological damage due to the toxicity, it is 

important to minimize the toxic problem. Also, the base material should be flexible, because the fabricated 

surface should be applied to various 3D surfaces. Moreover, the base material should have good processability 

to fabricate antifouling nanostructures on a large area.

The second goal of this study is to fabricate mechanically durable nanostructures that mimic the 

nanostructures of a cicada wing that have a bactericidal function. Chemical killing methods can make bacteria 

having chemical resistance. Therefore, in this study, the structural approach was used to kill bacteria and 

nanostructures were fabricated with the material having high mechanical strength to ensure the killing of 

bacteria without resistance. 

The third goal of this study is to enhance the antifouling and bactericidal function of the covalently bonded 

MPC and nanostructured surfaces for long term anti-biofouling durability. The proposed anti-biofouling 

technology, in this study, has two functions simultaneously.

The final goal of this study is to ensure the long-term anti-biofouling performance of hybrid surfaces with 

anti-biofouling function, as well as strong resistance to external stimuli.

Figure 9. Research objectives.
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1.3. Research concept and outline

To realize the proposed research objective, materials were chosen which is biocompatible, has high 

mechanical strength, and has an antifouling function. Using the selected materials, we mimicked the 

nanostructure of the cicada wing with bactericidal function and fabricated the nanostructure quickly and easily

by using UV molding and soft lithography methods. The nanostructure spacing is adjusted and optimized to 

maximize antimicrobial function. Thinly fabricated surfaces are also very flexible, it can be applied to 3D 

surfaces or large area. In order to provide antifouling performance once more, amphiphilic material was coated 

thinly and stably through surface treatment technique, and chemical surface analysis was performed to verify 

this. To prove the function of the new eco-friendly anti-biofouling surface, gram-negative and gram-positive 

bacteria were cultured, and qualitative analysis was performed. To prove the durability of the anti-biofouling, 

we also conducted a long period of incubation and anti-biofouling function tests by external stimuli.

This paper is organized as follows to achieve the research purpose.

1) Selection of biocompatible antifouling material

2) Fabrication of nanostructures with high mechanical strength for bactericidal performance

3) Stable coating of amphiphilic material for maximum antifouling performance

4) bacterial test for the durability of long-term anti-biofouling and mechanical
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2. Functionalized Poly(ethylene glycol) dimethacrylate nanoneedle array

2.1. Introduction

Surface contamination due to the development of bacterial films has been a recurring problem in global 

public health [1]. Extensive efforts have been devoted toward the development of ideal antifouling and 

antimicrobial materials that can efficiently suppress bacterial adhesion and biofilm formation. Representative 

examples include surfaces coatings with biocidal substances such as antibiotics, silver, and nitric oxide, which 

have demonstrated their effective antibacterial capabilities [13, 14, 21]. However, such biocidal materials 

possess several inherent limitations such as spread of drug-resistant microbes, low biocompatibility, and limited 

long-term activity [22]. These limitations severely hinder their use in biomedical applications where 

biocompatibility and long-term activity are critical. To this end, bactericidal surfaces based on nanotopography

have been suggested as active biofilm-resistant materials. Recent studies showed that nanopillar structures with 

sharp tips can effectively kill bacteria by rupturing the cell membranes [16]. This approach has attracted much 

attention as it enables the active prevention of bacterial colonization based on only surface structural effects 

without the use of chemical substances. However, such bactericidal surfaces do not have antifouling ability, and 

therefore accumulate dead bacteria, and eventually lose their activity. Additionally, most previous 

nanostructured bactericidal surfaces were made of rigid inorganic materials, such as black silicon and titanium

oxide [19, 20, 23]. Therefore, they were not only easily damaged under external mechanical stimuli and loss of 

bactericidal activity, but also could not be applied to nonplanar or curved surfaces. Although polymeric 

nanostructured surfaces have been reported with poly(methyl methacrylate) (PMMA) or polydimethylsiloxane 

(PDMS), they are hydrophobic or do not possess intrinsic antifouling properties [24, 25]. Therefore, they have 

limited antibacterial activity and long-term stability. 

Bio-friendly antifouling polymers, such as polyethylene glycol (PEG) and 2-methacryloyloxyethyl 

phosphorylcholine (MPC), have strong potential as structural materials for nanotopography-based bactericidal 

surfaces due to their intrinsic antifouling properties and mechanical flexibility [21]. PEG is a biocompatible 

hydrogel polymer with anti-biofouling properties based on steric repulsion and a hydration layer formed on the 

surface associated with its hydrophilic nature [7, 26, 27]. MPC is also a biocompatible zwitterionic polymer 

with antifouling property, which has phosphorylcholine side chains mimicking the hydrophilic headgroup of 

phosphatidylcholine in cell membranes [28]. The negatively and positively charged groups of MPC can form a 

dense hydration layer, which efficiently prevents nonspecific protein adsorption, and adhesion of bacteria and 

mammalian cells [29]. Surfaces treated with PEG or MPC display noticeable fouling-resistance against various 

microbes compared to untreated surfaces. However, despite their remarkable antifouling properties, they have 

been barely utilized for the development of nanostructured surfaces with bactericidal properties. Instead, most 

previous studies have utilized PEG or MPC as a surface grafting material over planar surfaces without 

nanostructures, based on covalent immobilization, physical adsorption, or gas phase treatment, rather than using 

them as structural materials [29, 30]. Although the grafted PEG or MPC are covalently tethered to the surfaces, 
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they typically have a molecular-level thickness. This means that such antifouling layers are mechanically less 

durable and easily damaged under external physical and chemical stimuli, which could result in the loss of 

antifouling activity at the damaged sites, and ultimately lead to subsequent bacterial colonization [22].

Considering the fact that surface damages by external stimuli frequently occur with many coating materials, 

pronounced mechanical durability needs to be established for biofilm-resistant materials. Also, such antifouling 

coatings on planar surfaces without nanostructures become ineffective against bacteria once the cells adhere to 

the surface, because even a few adherent bacteria will rapidly proliferate and eventually form a biofilm [31]. 

Despite much research, few studies have addressed the development of robust and efficient biofilm-resistant 

materials with pronounced mechanical durability and flexibility, based on the integration of heterogeneous 

antifouling polymers and nanotopography.

In this study, we present lipid-hydrogel-nanostructure hybrids that integrate heterogeneous biocompatible 

polymers of MPC and PEG hydrogel, which possess an intrinsic antifouling nature, into a nanoscale topography 

as biocompatible, flexible, and mechanically robust biofilm-resistant materials. In this approach, we prepared 

nanoscale needles, the structures of which are entirely made using PEG-based hydrogel. The PEG nanoneedle 

(NN) is further grafted with zwitterionic polymer of MPC to further maximize the antifouling activity. Based 

on the unique lipid-hydrogel-nanostructure configuration, the hybrid shows superior dual functionalities of 

antifouling and microbicidal activity against gram-negative and -positive bacteria. In addition, it maintains 

robust anti-biofilm activity even when the MPC layer or PEG NN is damaged under external perturbations.
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2.2. Experimental

2.2.1. Fabrication of the MPC-grafted PEGDMA NN hybrids

A Si master with nanohole array was first prepared by photolithography with a stepper (PAS500/700D, 

ASML, Netherlands). The Si master was treated with a fluorinated self-assembled monolayer solution 

(trichloro(1H,1H,2H,2H-perfluorooctyl)silane, Sigma Aldrich, USA) for surface hydrophobization. PEGDMA 

(MW ~ 550, Sigma Aldrich, USA) solutions (80, 90, 100 wt% in deionized (DI) water) with 0.2 wt% of photo-

initiator (Irgacure 2959, Sigma Aldrich, USA) were filtered using a syringe filter with a 0.2 μm pore size. Then, 

a drop of the PEGDMA solution was dispensed onto the master and the drop was covered with a polyethylene 

terephthalate (PET) film. The PEGDMA drops were cured by UV exposure (λ = 365 nm, dose = 200 mJ cm−2) 

and subsequently removed from the master, which resulted in flexible PEGDMA NN arrays. Subsequently, the 

samples were cleaned with ethanol and DI water followed by drying in a convection oven. For the MPC grafting, 

the prepared PEGDMA NN samples were exposed to oxygen plasma for 1 min (O2 flow rate: 100 sccm, power: 

100 W). Then, MPC (Sigma Aldrich, USA) dissolved in DI water to a concentration of 0.25 mol/L was spin-

coated on the samples at 3000 rpm for 30 s, and then dried in an oven at 70 °C for 1 h. Finally, the grafted 

specimens were washed with ethanol and DI water, followed by drying. PUA (311 RM, Minuta Tech, Korea) 

specimens were prepared based on the same procedure with the PEGDMA samples.

2.2.2. SEM, TEM, AFM, and 3D Micrograph imaging

Scanning electron microscopy (SEM) images of the samples were obtained using a HITACHI S-4800 

microscope (Hitachi, Japan). To avoid charging effects, the samples were coated with a Pt layer (~5 nm thick) 

by metal sputtering (K575X sputter coater, Quorum Emitech, UK). Environmental scanning electron 

microscopy (ESEM) images of the swollen samples were obtained using Quanta FEG 650 microscope (FEI, 

USA). Before the ESEM imaging, the samples were submerged in DI water for 18 h. The relative humidity of 

the ESEM chamber was maintained at 100 % during the imaging (environmental mode). Samples for 

transmission electron microscopy (TEM) imaging were prepared using focused ion beam (FIB) methods (Helios 

450 HP, FEI) with both ion and electron beams. FIB-prepared samples were measured by high-resolution (HR) 

TEM (JEM-2100, JEOL, Japan). Atomic force microscopy (AFM) images were obtained using a Veeco 

Multimode V microscope (tapping mode, scan rate: 1.0 Hz, Veeco, USA). 3D micrographs of the samples were 

obtained with a 3D measurement instrument (NV-3000, Nanosystem, Korea). AFM images of the swollen 

samples were directly obtained from the submerged samples using a Veeco Nanoscope III microscope (Veeco, 

USA). Before the imaging, the samples were submerged in DI water for 18 h.

2.2.3. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
measurments

Fourier transform infrared spectroscopy was performed on a Cary 670 (Agilent) instrument with a Ge 45 ° 
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single reflection attenuated total reflectance crystal (PIKE MIRacle, Germany). The spectra were recorded using 

Agilent resolution software with an average of 32 scans in the wavenumber range of 650–4000 cm–1 at a 

resolution of 4 cm–1.

2.2.4. X-ray photoelectron spectroscopy (XPS) measurments

Surface elemental analysis was carried out by X-ray photoelectron spectroscopy (ESCALAB 250XI, 

Thermo Fisher Scientific, USA) with an Al Kα source and the employed take off angle was 90 °.

2.2.5. Contact angle measurements

The contact angles (CAs) of the water droplets on various PEGDMA and PUA samples were measured using 

a drop shape analyzer (SDLAB 200TEZD, FEMTOFAB, Korea) at room temperature (25 °C, relative humidity 

50 %). The measurement for each sample was repeated five times at random positions on the specimen to obtain 

the average CA.

2.2.6. Anti-biofilm assay

To evaluate the antibacterial properties of the PEGDMA and PUA samples, gram-negative Escherichia coli

(E. coli, ATCC25404) and gram-positive Bacillus subtilis (B. subtilis, ATCC21332) bacteria were purchased 

from American Type Culture Collection (ATCC, Manassas, VA). Before the anti-biofilm tests, each species was 

cultured overnight in 5 mL of Luria broth (LB Broth Miller, BD Difco, USA) within a shaking incubator (VS-

8480, Vision Scientific, Daejeon, Korea) operating at 37 °C and 200 rpm. Bacterial growth of the cultures was 

monitored using optical density measurements at 600 nm (OD600) with a GENESYS 20 spectrophotometer 

(Thermo fisher Scientific, USA) until the OD600 value reached 0.1(log phase). Then, PEGDMA and PUA 

samples sterilized by UV exposure and with 70 % ethanol were immersed in the bacterial suspensions followed 

by incubation for 3, 18, 24 and 30 h at 37 °C. Next, the samples were stained with a fluorescent labeling reagent 

(live/dead bacterial viability kit, BacLight™, L7012, Molecular Probes, Invitrogen, Grand Island, NY). The 

stained samples were incubated for 15 min in the dark at room temperature and then rinsed twice with PBS. 

Subsequently, the samples were examined with a multi-photon confocal microscope (LSM 780 Configuration 

16 NLO, Carl Zeiss, Germany). The areal coverage of the cells was determined using Image J software (NIH, 

Bethesda, MD, USA). A colony-forming unit (CFU) assay was also performed to quantify the antibacterial 

activities of the samples. Samples of 1×1 cm2 were placed in 24-well plates and incubated with 2 mL of the 

bacterial suspension (OD600 = 0.1) for 18 h at 37 °C. After incubation, the samples were rinsed with PBS to 

remove nonadherent bacteria, transferred to conical tubes containing 1 mL of sterile PBS, and vortexed for 5 

min to remove all bacteria from the sample surface. This bacterial solution was then diluted serially and plated 

on LB agar plates. These plates were incubated for 18 h, and colonies were counted to calculate the CFUs of 

bacteria grown on the sample surface.
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2.3. Results and Discussion

2.3.1. Fabrication of the MPC-grafted PEGDMA NN hybrids

Figure 10 shows the procedure for the preparation of the MPC-grafted hydrogel nanostructure hybrids. 

Firstly, the hydrogel NN was prepared by an ultraviolet (UV) replica molding technique with poly(ethylene 

glycol) dimethacrylate (PEGDMA). PEGDMA not only possesses outstanding antifouling ability and 

biocompatibility, but also can be rapidly cured by exposure to UV light, which enables a rapid and scalable 

fabrication of precise nanoscale structures [10, 32, 33]. Previously, PEG-based polymers have been utilized as 

a grafting material for antifouling coatings, which typically has a molecular-level thickness [34]. Therefore, 

such PEG-grafted surfaces were mechanically less-durable under external mechanical or chemical stimuli. In 

contrast to the PEG-grafted surfaces, our NN array was fully made of PEG-based polymer. Therefore, our NN 

array had high mechanical stability and durability. After preparing the PEGDMA NN array, its surface was 

covalently tethered with MPC to maximize antifouling performance (Figure 10).

Figure 10. Schematic of the fabrication procedure of the MPC-PEGDMA-nanoneedle hybrid.

The resulting structure was in the form of MPC-PEGDMA-NN triple structural hybrids, of which MPC and 

PEGDMA would play key roles for maximizing the antifouling activity, whereas the nanotopography would 

exhibit the bactericidal activity simultaneously (Figure 11, 12). MPC can form a denser hydration layer than 

PEG, and therefore exhibits better antifouling properties than that of PEG [9]. However, MPC typically has 

poor mechanical strength and is difficult to use as a structural material for fabricating nanostructures.
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Figure 11. Conceptual illustration of the hybrid structure in which the PEGDMA nanoneedle arrays with 

covalently tethered zwitterionic MPC molecules are uniformly formed on the surface.

Figure 12. (i) Photograph of the fabricated MPC-PEGDMA-nanoneedle hybrid showing its high flexibility, 

(ii) an SEM image of the MPC-grafted PEGDMA nanoneedle arrays and, (iii) a TEM image of the cross 

section of the MPC-grafted PEGDMA nanoneedle. Thickness of the grafted MPC layer is 5 nm.
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In contrast, cross-linked PEGDMA has pronounced mechanical strength (E: 40-50 MPa, Figure 13) and is 

suitable for nanopatterning [32, 33]. Also, MPC reportedly exhibits reduced biofilm-resistance to 

Staphylococcus aureus that can adhere to human tissue with its unique membrane proteins [1, 35]. This indicates 

that MPC alone cannot be guaranteed to prevent fouling activity of diverse microorganisms. The co-utilization 

of PEGDMA and MPC could act synergistically to maximize antifouling activity, while enabling facile 

nanopatterning and preserving high mechanical strength. Macroscopically, the resulting structure is in the form

of an ultrathin and flexible film on which the hybrid nanostructures were uniformly generated (Figure 12-i). 

The NN was 50 nm in tip diameter, 200 nm in bottom diameter, 300 nm in height, and 500 nm in center-to-

center pitch (Figure 12-ii). The transmission electron microscopy (TEM) image in Figure 12-iii represents a thin 

layer of MPC (~5 nm) uniformly grafted over the PEGDMA NN. The NN structure was also prepared using 

polyurethane acrylate (PUA) as a control sample. PUA is a UV-curable polymer with a slightly hydrophobic 

nature (~80°, Figure 14), which is widely utilized for nanopatterning. It does not have intrinsic antifouling 

properties [36].

Figure 13. Mechanical properties of the PEGDMA (MW: 550) with different concentrations (80 wt%, 90 wt% 

and 100 wt%) in the dried and swollen states. The swollen samples were submerged in DI water for 18 h 

before the measurements.
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Figure 14. Contact angle measurements of the planar and nanostructured PUA and PEGDMA (80 wt%) 

samples before and after MPC grafting.



17

2.3.2. Chemical mechanism of the MPC-grafted PEGDMA NN hybrids

To examine the surface chemistry of the hybrids, we performed the attenuated total reflection-Fourier 

transform infrared (ATR-FTIR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. Figure 15 and 

16 show the ATR-FTIR and XPS spectra of the pristine, O2-plasma treated, and the MPC-tethered PEGDMA 

samples (see Figure 17 for the PUA samples). When the PEGDMA sample was treated with the O2-plasma, the 

peak of C=C at 730 cm-1 vanished (Figure 15), whereas the peaks at 1100 cm-1 (C-O), 1720 cm-1 (C=O), and 

2840 cm-1 (CH) were enhanced. When the plasma-treated samples were grafted with MPC, five additional peaks 

at 970, 1080, 1240, 1620, and 3400 cm–1 were observed, which corresponded to N+-(CH3)3, P-O, O=P-O-, N-H, 

and NH2, respectively [37, 38]. The results indicated that the MPC layer was successfully grafted over the 

PEGDMA samples. In this approach, it was presumed that the MPC molecules were covalently bonded with the 

PEGDMA via a plasma polymerization. Upon O2-plasma exposure, the alkene of the methacrylate group within 

the PEGDMA generated radicals and the activated site reacted to the alkene of the methacrylate group of the 

MPC (Figure 18). Because the alkene is more reactive than other covalent bonds, the alkene of the methacrylate 

is expected to be the most available covalent bonding site between the MPC and the PEGDMA. To confirm the 

existence of the MPC molecules on the PEGDMA, surface elemental compositions were analyzed with XPS. 

XPS analyses revealed that the contents of nitrogen (N) and phosphorous (P) noticeably increased for the MPC-

grafted samples compared to the samples without MPC grafting (Table 1 for PEGDMA samples, and Table 2 

for PUA samples), which showed that the MPC molecules were successfully grafted over the PEGDMA. In 

addition to the ATR-FTIR and XPS analyses, the contact angle (CA) measurements were performed on 

PEGDMA and PUA samples before and after MPC grafting (Figure 14). The MPC-grafted samples exhibited 

greater hydrophilic wetting properties compared to the pristine samples, which further indicated that MPC was 

well-tethered on the samples by our approach.

Figure 15. ATR-FTIR spectra of the pristine (i) oxygen-plasma treated, and MPC-grafted PEGDMA samples 

showing detailed peak at 730 cm-1. (ii) oxygen-plasma treated, and MPC-grafted PEGDMA samples in the 

wavenumber range of 650-4000 cm-1.
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Figure 16. Deconvoluted peaks of (i) C1s, (ii) O1s, (iii) N1s, (iv) P2p of XPS spectra of the pristine, oxygen-

plasma treated, and MPC-grafted PEGDMA samples.
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Figure 17. (a) ATR-FTIR spectra of the pristine, oxygen-plasma treated, and MPC-grafted PUA samples in the 

wavenumber range of 650-4000 cm-1. (b) Deconvoluted peaks of (i) C1s, (ii) O1s, (iii) N1s, and (iv) P2p of XPS 

spectra of the pristine, oxygen-plasma treated, and MPC-grafted PUA samples.
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Figure 18. Chemical reaction mechanism of PEGDMA and MPC via oxygen plasma treatment.
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Table 1. Surface elemental compositions of C1s, O1s, N1s, and P2p, and their relative ratios for the pristine, O2-

plasma treated, and MPC-grafted PEGDMA samples measured by XPS.

Sample
Atomic composition (%) Atomic ratio

C1s O1s N1s P2p O/C N/C P/C

Untreated 66.9 33.0 0.006 0.004 0.493 0.000 0.000

O2 Plasma treated 63.7 36.3 0.000 0.000 0.571 0.000 0.000

O2 Plasma and
MPC-grafted

60.0 32.4 3.23 4.34 0.540 0.054 0.071

Table 2. Surface elemental compositions of C1s, O1s, N1s, and P2p, and their relative ratios for the pristine, O2-

plasma treated, and MPC-grafted PUA samples measured by XPS.

Sample
Atomic composition (%) Atomic ratio

C1s O1s N1s P2p O/C N/C P/C

Untreated 61.900 37.400 0.698 0.002 0.604 0.011 0.000

O2 Plasma treated 44.300 57.300 1.430 0.000 1.310 0.032 0.000

O2 Plasma and
MPC-grafted

59.100 35.000 2.880 3.020 0.592 0.049 0.050
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2.3.3. Structural stability properties of the PEGDMA NN 

We also examined the swelling behavior and structural integrity of PEGDMA NN under the wet condition. 

PEGDMA with lower concentrations (wt% in water) exhibited higher swelling ratio (SR), which is defined as 

(W_s-W_d)/W_d ×100 (Ws and Wd are the weights of the PEGDMA in the swollen and dried states, 

respectively) (Figure 19). This is because incorporation of water during the photopolymerization reaction can 

increase the intermolecular distances between monomeric chains [39, 40]. Accordingly, PEGDMA with higher 

water content (lower concentrations of PEGDMA) has a smaller Wd, leading to enhanced SR [39]. PEGDMA 

with higher concentrations had a higher Young’s moduli (Figure 13). This is because the water in the PEGDMA 

decreases the crosslinking density of the hydrogel during the curing process [39]. Figure 20 shows the in-situ 

atomic force microscopy (AFM) images of the swollen PEGDMA NN under the wet condition (see Figure 21 

for environmental scanning electron microscopy (SEM) images). Interestingly, PEGDMA NN could maintain 

their structural integrity even when in the swollen state, presumably due to the relatively high elastic modulus 

of PEGDMA (E: 40 – 50 MPa) and low SR.

Figure 19. Swelling ratio of the PEGDMA with different concentrations as functions of the water-exposure 

time.
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Figure 20. In-situ AFM images of swollen PEGDMA NN applied at concentrations of (i) 100 wt%, (ii) 90 

wt%, and (iii) 80 wt%. Before the AFM imaging, the samples were submerged in DI water for 18 h. AFM 

images of the swollen samples were directly obtained from the submerged samples.

Figure 21. Environmental SEM (ESEM) images of swollen PEGDMA NN applied at concentrations of (i) 100 

wt%, (ii) 90 wt%, and (iii) 80 wt%. Before the ESEM imaging, the samples were submerged in DI water for 

18 h. The relative humidity of the ESEM chamber was maintained at 100% during the imaging 

(environmental mode).
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2.3.4. Anti-biofouling properties of PEGDMA nanoneedle arrays

The bactericidal effect on the NN array decreased with the increase of the array pitch from 500 nm to 4 μm 

(Figure 22), because bacteria can adhere on the bottom surface, rather than on the NN, for arrays with larger 

pitches (Figure 23 and 24). Also, NN arrays with a lower AR showed a reduced bactericidal effect than that of 

the arrays with a higher AR (Figure 23 and 25). E. coli on the PEGDMA NN decreased with the decrease of the 

PEGDMA concentrations, as was the case with the planar surfaces. This illustrated that the PEGDMA NN 

exhibited dual functions of bacteria-repelling and -killing activities in a simultaneous manner. PEGDMA with 

a MW of 550 used in this study displayed a relatively high Young’s modulus (40–50 MPa, Figure 13) [32, 33, 

39]. Therefore, the PEGDMA NN can induce damage on the bacterial membrane with an elastic modulus of 

50–200 MPa by penetrating or stretching the cell membrane [16].

Figure 22. SEM images of the nanoneedle arrays with different pitches (500 nm, 1 μm, and 4 μm) and ARs 

(1.5 and 1.0).
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Figure 23. Confocal microscopy images of (i) E. coli and (ii) B. subtilis cultured on the PEGDMA and MPC-

grafted PEGDMA nanoneedle arrays with different pitches and ARs for 18 h. The bacteria were stained with a 

fluorescent labeling reagent (live/dead bacterial viability kit).
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Figure 24. CFU of E. coli and B. subtilis grown on various PEGDMA samples with different pitches (AR: 

1.5).

Figure 25. CFU of E. coli and B. subtilis grown on various PEGDMA samples with different ARs (pitch: 500 

nm).
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To evaluate the antifouling and antimicrobial activity of the hybrids, we cultured gram-negative 

(Escherichia coli, E. coli) and gram-positive (Bacillus subtilis, B. subtilis) bacteria on various hybrid and control 

surfaces (Figure 26). After an 18 h incubation, E. coli cultured on the planar PEGDMA surface showed notably 

decreased adhesion compared to that of E. coli grown on the planar PUA surface (Figure 26-i), demonstrating 

the intrinsic antifouling nature of the PEGDMA.

Figure 26. Confocal microscopy images of E. coli cultured on the (i) planar, (ii) MPC-grafted planar, (iii) 

nanoneedle, and (iv) MPC-grafted nanoneedle samples made of PUA, 100 wt%, 90 wt%, and 80 wt% 

PEGDMA for 18 h. The bacteria were stained with a fluorescent labeling reagent (live/dead bacterial viability 

kit).
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Quantitative analyses of the bacterial area of coverage (Figure 27) and colony-forming unit (CFU) (Figure 

28) further confirmed the nonfouling property of the PEGDMA. Bacteria were also cultured on glass for 

comparisons (Figure 27 and Figure 29). Among PEGDMA samples, lower concentrations of PEGDMA 

exhibited higher antifouling activity against E. coli. Bacteria on 80% PEGDMA (80 wt% PEGDMA and 20 wt% 

water) showed a much lower area of coverage (Figure 26-i, 27) than those on the PEGDMA with higher 

concentrations. This was because the lower elastic modulus of the PEGDMA at lower concentrations induced a 

higher antifouling effect [8, 41]. It is notable that most E. coli on the planar PEGDMA surfaces were alive, as 

evidenced by the green fluorescence emitted (Figure 26-i). This indicated that PEGDMA hydrogel suppressed 

the bacterial attachment with its antifouling capability, rather than killing the bacteria. When the planar PUA or 

PEGDMA surfaces were grafted with MPC, the bacterial attachment was remarkably reduced when compared 

with that of counterpart surfaces without MPC (Figure 26-ii, 27, 28). PEGDMA grafted with MPC exhibited 

higher antifouling effects than MPC-grafted PUA. It seemed that the MPC-tethered PEGDMA with a higher 

P/C ratio (0.071) was more effective for the prevention of bacterial attachment compared to the MPC-grafted 

PUA with a lower P/C ratio (0.05) (Table 1, 2) [42]. This result indicates that the antifouling performance could 

be amplified by integrating the PEGDMA and MPC into the hybrid configuration. Figure 26-iii shows 

fluorescence images of E. coli cultured on the PUA and PEGDMA NN array. The total number of bacteria on 

the PUA NN (Figure 26-iii) was much higher than that on the MPC-grafted planar PUA (Figure 26-ii).

Figure 27. Quantification of area coverage of the live (green) and dead (red) cells cultured on various PUA 

and PEGDMA samples.
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Figure 28. CFU of the E. coli grown on various PUA and PEGDMA samples after 0, 3, 18, 24, and 30 h 

culture. (n=9, *p < 0.05, ** p < 0.01 and *** p < 0.001 compared to bare PUA, data was analyzed by a one-

way ANOVA).

Figure 29. Confocal microscopy images of (i) E. coli and (ii) B. subtilis cultured on the planar glass for 18 h. 

The bacteria were stained with a fluorescent labeling reagent (live/dead bacterial viability kit).
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However, majority of them were dead cells as indicated by the red fluorescence. This showed that the NN array 

displayed a strong bactericidal effect based on the physical disturbance of the cell membrane integrity with its 

nanotopography through the SEM images (Figure 30). To gain more insight into the membrane damage, further 

investigations of the bacterium-nanoneedles interfaces were performed using transmission electron microscopy 

(TEM) and FIB. At this stage bacterial membrane is intact and no puncture by the nanoneedles was observed, 

although bending of the interacting taller nanopillars can be seen at far ends of bacteria as in Figure 31. The 

induced strong van der Waals forces between bacterial membrane and nanoneedles result in the membrane being 

stretched when the immobilized bacterium attempts to move on the nanoneedles surface (Figure 32). Therefore, 

the PEGDMA NN can induce damage on the bacterial membrane with an elastic modulus of 50–200 MPa by 

penetrating or stretching the cell membrane [16]. AFM images and height profiles of bacterial cells on 

nanoneedles and flat surface are shown in Figure 33. We also determined that the cells' thicknesses decreased 

as the cell lysis, indicating that some of the cytoplasm leaked out of the cell.

Figure 30. SEM images of (a) E. coli and (b) B. subtilis cultured on the PEGDMA NN for 18 h.
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Figure 31. TEM image of E. coli cultured on the PEGDMA NN for 18 h.

Figure 32. Rupture and lysis of bacterial cell as the bactericidal mechanism of nanoneedle structure.
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Figure 33. AFM images of (i) E. coli and (ii) B. subtilis cultured on the planar PEGDMA and PEGDMA NN 

for 18 h.

As with the PUA NN, the PEGDMA NN also exhibited noticeable bactericidal effects. However, the total 

number of the adhered E. coli on the PEGDMA NN was much lower than that on the PUA NN (Figure 26-iii, 

27, 28). When the NN arrays were grafted with MPC, the antifouling and antimicrobial activities were further 

enhanced (Figure 26-iv, 27, 28). In particular, the MPC-grafted hydrogel NN hybrid made of 80% PEGDMA 

showed the most superior capability of the anti-biofilm formation. Over the 30 h incubation, the MPC-grafted 

PEG NN hybrid demonstrated the best performance compared to that of other surfaces (Figure 28). The hybrid 

surface also maintained good antifouling and microbicidal activities against the gram-positive bacteria B. 

subtilis with overall similar trends for E. coli (Figure 34). Among PEGDMA samples, lower concentrations of 

PEGDMA exhibited higher antifouling activity against B. subtilis. Bacteria on 80% PEGDMA showed a much 

lower area of coverage (Figure 34-i, 35) on the PEGDMA with higher concentrations. MPC grafted PEGDMA 

exhibited higher antifouling performance than MPC-grafted PUA (Figure 34-ii, 35). It seemed that the MPC-

tethered PEGDMA was more effective for the repelling of bacterial attachment compared to the MPC-grafted 

PUA. The majority of them were dead cells as indicated by the red fluorescence (Figure 34-iii, 35). This showed 

that the NN array displayed a strong bactericidal effect based on the physical disturbance of the cell membrane 
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integrity with its nanotopography. When the NN arrays were grafted with MPC, the antifouling and 

antimicrobial activities were further enhanced (Figure 34-iv, 35, 36). In particular, the MPC-grafted NN hybrid 

made of 80% PEGDMA showed the most superior capability of the anti-biofilm formation. Over the 30 h 

incubation, the MPC-grafted PEG NN hybrid demonstrated the best performance compared to that of other 

surfaces (Figure 36).

Figure 34. Confocal microscopy images of B. subtilis cultured on the (i) planar, (ii) MPC-grafted planar, (iii) 

nanoneedle, and (iv) MPC-grafted nanoneedle samples made of PUA, 100 wt%, 90 wt%, and 80 wt% 

PEGDMA for 18 h. The bacteria were stained with a fluoresce labeling reagent (live/dead bacterial viability 

kit).
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Figure 35. Quantification of area coverage of the live (green) and dead (red) cells cultured on various PUA 

and PEGDMA samples.

Figure 36. CFU of B. subtilis grown on various PUA and PEGDMA samples after 0, 3, 18, 24, and 30 h 

culture. (n=9, * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to bare PUA, data was analyzed by a one-

way ANOVA).
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2.3.5. Durability properties of MPC-PEGDMA-NN hybrid by external stimuli

The MPC-PEGDMA-NN hybrid was designed to not only maximize the dual functions of the antifouling and 

bactericidal activities, but also preserve the anti-biofilm formation capability even if the hybrid structures are 

damaged under external perturbations. To examine its robustness of the biofilm-resistance capability, we 

prepared MPC-grafted PUA and PEGDMA NN hybrids having damaged regions by mechanical scribing (Figure 

37a, 38a). The defect was ~20 μm in width and ~60 μm in depth. Therefore, the MPC layer and NN structures 

were completely destroyed on the sites. Subsequently, we cultured the E. coli and B. subtilis on the surfaces. 

The E. coli and B. subtilis cultured on the MPC-grafted PUA NN showed a significant colonization along the 

damaged site as shown in Figure 37b. This is because the MPC layer and PUA NN were totally damaged, and 

the underlying bare PUA backing layer without anti-bacterial activity was exposed to the bacteria, allowing 

their attachment and subsequent proliferation. In contrast, the E. coli and B. subtilis showed significantly lower 

adhesions at the defect sites of the PEGDMA hybrid surface (Figure 38b). This is because even when the MPC 

and PEGDMA NN are damaged, the underlying PEGDMA backing layer still could act as an effective 

antifouling material. A slightly higher number of bacteria were attached on the damaged site compared to the 

non-damaged region, which indicated that the MPC-PEGDMA-nanostructure hybrid has the most superior 

antifouling activity.

Figure 37. (a) (i) (top) 3D micrograph and (bottom) cross-section, and (ii) SEM images showing the damaged 

MPC-PUA-NN. False colors were used to emphasize the damaged sites. (b) Confocal fluorescence 

microscopy images of the (i) E. coli and (ii) B. subtilis grown on the damaged MPC-PUA-NN (culture hour: 

18 h).
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Figure 38. (a) (i) (top) 3D micrograph and (bottom) cross-section, and (ii) SEM images showing the damaged 

MPC-PEGDMA-NN. False colors were used to emphasize the damaged sites. (b) Confocal fluorescence 

microscopy images of the (i) E. coli and (ii) B. subtilis grown on the damaged MPC-PEGDMA-NN (culture 

hour: 18 h).
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To compare the durable and robust anti-biofilm activity of the MPC-tethered PEGDMA with previously 

reported antifouling surfaces using PEG and MPC, we prepared PEG-grafted Si [43], MPC-grafted Si [29], and 

MPC-grafted PEGDMA on Si substrates (see Figure 39 for surface chemistry analysis of the samples). 

Figure 39. ATR-FTIR spectra of the PEG-grafted Si, MPC-grafted Si, and MPC-grafted PEGDMA on Si 

samples in the wavenumber ranges of (i) 650-4000 cm-1 and (ii) 675-1275 cm-1. The PEG-grafted Si was 

prepared using PEG-aldehyde on a 3-aminopropyltriethoxysilane (APTES)-treated Si surface, which has been 

used in prior studies. The MPC-grafted Si was prepared based on the UV-induced free radical grafting method 

widely adopted in several prior studies. The MPC-grafted PEGDMA was prepared by covalently tethering 

MPC over 80% PEGDMA.
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The prepared samples were mechanically scribed to generate defects on the surfaces, followed by culture of 

E. coli on the samples (Figure 40). On the PEG-grafted or MPC-grafted substrates, many a E. coli adhered and 

proliferated along the damaged site (Figure 41). This confirmed that the grafted PEG or MPC alone was prone 

to damage by external stimuli due to their low mechanical strength [29, 44]. As compared to the PEG or MPC 

grafting layers, the UV-crosslinked PEGDMA has a high elastic modulus. Accordingly, in contrast to the PEG-

grafted or MPC-grafted substrates, the MPC-PEGDMA hybrid maintained effective biofilm resistance even 

when damaged (Figure 41, see Figure 42 for results against B. subtilis). Our MPC-grafted PEGDMA surface 

also displayed higher biofilm resistance than the MPC-PEGDMA mixture composite suggested in previous 

reports (Figure 43, 44, 45) [45]. This is because the MPC-grafted PEGDMA has higher MPC density at its 

surface than that of the MPC-PEGDMA mixture composite, as evidenced by the higher P and N ratio in the 

MPC-grafted PEGDMA (Table 3). The MPC-PEGDMA mixture composite also displayed a lower elastic 

modulus (0.0009–5 MPa) than that of the PEGDMA which lessened its mechanical durability [39].

Figure 40. Three-dimensional micrographs showing the surfaces of the (i) PEG-grafted Si, (ii) MPC-grafted 

Si, and (iii) MPC-grafted PEGDMA (80 wt%) on Si substrates (a) before and (b) after applying mechanical 

stimuli.
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Figure 41. Confocal fluorescence microscopy images of E. coli on the PEG-grafted, MPC-grafted, and MPC-

grafted PEGDMA samples (i) without- and (ii) with mechanical damages after 18 h of culture.
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Figure 42. Confocal fluorescence microscopy images of B. subtilis on the PEG-grafted Si, MPC-grafted Si, 

MPC-grafted PEGDMA (80 wt%) on Si, and MPC-grafted PEGDMA (80 wt%) nanoneedles on Si substrates 

(i) without- and (ii) with mechanical damages after 18 h of culture.
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Figure 43. ATR-FTIR spectra of the PEGDMA-MPC mixture and MPC-grafted PEGDMA samples in the 

wavenumber ranges of (i) 650-4000 cm-1.

Figure 44. Three-dimensional micrographs showing the surfaces of the PEGDMA-MPC mixture (left) and 

MPC-grafted PEGDMA samples (right).
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Figure 45. Confocal fluorescence microscopy images of E. coli and B. subtilis cultured on the PEG-MPC 

mixture and MPC-grafted PEGDMA samples for 18 h.

Table 3. Relative ratios of C, O, N, and P with respect to Si for the PEGDMA-MPC mixture and MPC-grafted 

PEGDMA samples measured by XPS.

Atomic ratio 

Sample

PEGDMA-MPC 
mixture

MPC-grafted 
PEGDMA

C/Si 13.37 16.39

O/Si 6.090 7.750

N/Si 0.556 1.480

P/Si 0.823 1.527
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2.3.6. Anti-biofouling performance against marine microorganism

The attachment of the most problematic algae in the marine industry is a serious problem. And antifouling is 

difficult due to attachment through spore. Figure 46 is the form of spore development in Pyropia nezoensis. The 

spore of Pyropia nezoensis was attached to the PEGDMA NN surface for 14 days. As shown in Figure 47 and 

48-i, the attachment of the spore was very small on the PEGDMA surface. In particular, non-specific spores 

were only shown on the surface PEGDMA nanostructure. Additionally, the development of spore on 

nanostructure surface has significantly dropped (Figure 48-ii). This PEGDMA NN affects the attachment and 

the development of spore. If we apply the hybrid anti-biofouling surface to the marine industry, we will be able 

to solve the existing problems.

Figure 46. (i) Photograph of Pyropia yezoensis (ii) Development shape of Pyropia yezoensis.
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Figure 47. Attachment test of Pyropia yezoensis on various PUA and PEGDMA samples for 14 days.
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Figure 48. (i) Spore adhesion rate of Pyropia yezoensis spore, (ii) Development of Pyropia yezoensis spore on 

various PUA and PEGDMA samples for 14 days.
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2.4. Summary

In summary, we developed a biocompatible, flexible, and robust anti-biofouling materials based on the 

MPC-PEGDMA-NN hybrids only with highly biocompatible polymers. By integrating the heterogeneous 

biocompatible polymers of PEGDMA and MPC with intrinsic antifouling nature into the nanoscale topological 

configuration, their hybrid not only exhibited maximized dual functions of antifouling and bactericidal activities 

against E. coli and B. subtilis, but also preserved the robust and superior anti-biofilm capability even when the 

hybrid was mechanically damaged. We believe that this lipid-hydrogel-nanostructure hybrid material could 

serve as a versatile material with superior antifouling activities for various daily, medical, and industrial 

applications.
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3. Functionalized Cellulose acetate nanoneedle array

3.1. Introduction

Exuberant growth of bacterial films on diverse surfaces has been a global problem in public health as well 

as in industry. Extensive endeavors have been devoted to developing biofilm-resistant materials that can 

effectively limit bacterial attachment and subsequent biofilm formation. Among the many different approaches, 

surface grafting or coating with biocidal materials such as antibiotics, silver, copper, nitric oxide, and carbon 

nanomaterials have demonstrated their effective resistance to biofilm formation [46-51]. However, these 

materials not only induce drug-resistance in bacteria but also display limited long-term activity [22]. More 

importantly, many of them are toxic, non-biocompatible, and environmentally harmful, which significantly 

hinders their uses in daily, biomedical, marine, and industrial applications [52, 53]. Biocompatible and 

biodegradable antifouling materials show unique advantages for a broad range of applications. For example, 

biodegradable marine-antifouling materials can reduce the disturbance of marine-ecosystem caused by non-

biodegradable synthetic antifouling materials that accumulate in the aquatic environment [54, 55]. By 

considering recent interest towards safe and biocompatible antibacterial materials as well as biodegradable and

eco-friendly materials, the development of highly biocompatible, and environmentally friendly materials with 

superior biofilm resistance is of great importance. 

To this end, diverse polymeric materials have been suggested as efficient biocompatible antifouling 

materials. Among many different antifouling polymers, polyethylene glycol (PEG) represents one of the most 

widely used, well-known antifouling materials [12, 56-59]. The antifouling nature of the PEG polymer is 

attributed to the hydration layer formed on the surface and steric repulsion effect [60]. However, the antifouling 

performance of PEG can deteriorate in the presence of oxygen and transition metal ions as PEG is prone to 

oxidative damage [9]. MPC is also a well-known antifouling material, which mimics the phosphatidylcholine 

head group in the phospholipid bilayer of cell membranes. MPC can form a dense hydration layer through 

electrostatic interactions, which enables noticeable fouling-resistance to external contaminants [61]. However, 

MPC is mechanically less stable due to its poor mechanical strength [12].

Another type of biofilm-resistant materials —nanostructures with sharp tips (e.g., nanoneedles)— have been 

suggested as active bactericidal materials. Unlike antifouling materials that prevent attachment of bacterial cells, 

the sharp tipped nanostructured surfaces can kill bacteria by physically destroying the cell membranes [19, 62]. 

Prior studies documented that biofilm-resistant materials can be generated even using materials with limited 

antifouling properties. However, most of the previously described nanostructured surfaces were made of rigid 

and expensive materials, such as silicon, or non-degradable synthetic polymers, such as polydimethylsiloxane 

(PDMS) [63, 64]. Thus, they are susceptible to damage by external stimuli and difficult to apply onto curved or 

non-planar surfaces. They also have limited biodegradability (e.g., PDMS).

CA, one of the cellulose derivatives, has great potential as a biocompatible, environmentally friendly, and 

low-cost antifouling material as it is highly biocompatible, and biodegradable based on its inherent nature of 
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being produced from living organisms [65-67]. Hydrolysis by several enzymes is the principal mechanism of 

the biodegradation of CA (see Figure 49 for details). The abundant hydroxyl groups in CA impart a hydrophilic 

character [65, 68-71]. Moreover, CA is mechanically stable and flexible [65, 68, 71, 72]. However, CA does not 

have an inherent antifouling nature, and exhibit inferior resistance to biofilm formation [72, 73]. Consequently, 

several antifouling materials, including silver nanoparticles, copper nanoparticles, and polydopamine, have been 

incorporated into CA to generate CA-based antifouling materials [74-76]. However, most prior studies utilized 

planar, electrospun CA nanofiber mats, which do not have precisely defined surface nanostructures [75, 77, 78]. 

Despite several remarkable advantages of CA, few studies have addressed the development of biofilm-resistant 

materials based on the integration of biocompatible and eco-friendly CA and nanoscale architectures.

Herein, we present a highly effective and sustainable biofilm-resistant material that can suppress bacterial 

adhesion and biofilm formation based on a flexible nanostructured CA film. The nanostructured CA film is 

formed by shaping CA into a nanoscale needle array based on a simple nanomolding process. The CA 

nanoneedle array exhibits remarkable bactericidal performance for both gram-positive and gram-negative 

microbes by inducing physical lysis in the cell membranes despite limited antifouling nature of CA. To enhance 

the biofilm resistance of the CA nanostructures, MPC, a cell-membrane mimicking biocompatible monomer, is 

further coated over the CA array [79-82]. Based on the unique integration of the biocompatible and renewable 

CA, nanoneedle topography, and biocompatible antifouling MPC, the MPC-coated CA nanoneedle material 

shows remarkable antifouling and bactericidal behaviors simultaneously, and therefore enables the efficient and 

robust prevention of biofilm formation.  

Figure 49. Biodegradation mechanism of CA.
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3.2. Experimental

3.2.1. Fabrication of the MPC-coated cellulose acetate nanoneedle array

A silicon wafer (Si master mold) with nanohole array patterns was prepared by a conventional 

photolithographic process using a stepper (PAS 500/700D; ASML, the Netherlands). The nanoholes were 

200 nm in diameter at the top (from the surface), 50 nm in diameter at the bottom, 300 nm in depth, and 

500 nm in center-to-center pitch. Drops of polyurethane acrylate (PUA) prepolymer (311RM; Minuta Tech, 

Korea) were dispensed onto the Si master and a polyethylene terephthalate (PET) film (200 μm thick; 

Chagnsung sheet, Korea) was placed over the drops. Subsequent exposure of the PET film-covered PUA 

drops to ultraviolet light (λ = 365 nm, dose = 200 mJ cm−2) resulted in a PUA replica with nanoneedle patterns. 

The generated PUA replica was treated with oxygen plasma for 1 min (O2 flow rate: 100 sccm, power: 100 W) 

using a plasma generator (Cute; Femtoscience, Korea) and subsequently functionalized with a 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Cat No. 448931, Lot No. MKCF9461; Sigma Aldrich, USA) 

for surface hydrophobization. Subsequently, the fluorinated PUA replica was re-replicated with a hard 

polydimethylsiloxane (h-PDMS), which resulted in a h-PDMS master mold with nanohole arrays. In detail, 

a h-PDMS prepolymer was prepared by mixing 3.4 g of vinylmethylsiloxne-dimethylsiloxane (Cat No. VDT-

731; Gelest, USA), 18 μL of 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (Cat No. 396281, Lot 

No. MKBZ9752V; Sigma Aldrich, USA), and 18 μL of platinum-divinyltetramethyldisiloxane (Cat No. 

SIP6831.1; Gelest, USA) in a glass vial at 500 rpm for 5 min using a magnetic stirrer (PC-410D; Corning, 

USA). One gram of trimethylsiloxy-terminated methylhydrosiloxane–dimethylsiloxane copolymer (Cat No. 

HMS-301; Gelest, USA) and 2 mL of toluene (Cat No. 244511, Lot No. STBG1996 V; Sigma Aldrich, USA) 

were added to the mixture and stirred at 500 rpm for 10 min. The prepared h-PDMS prepolymer was spin-

coated over the fluorinated PUA replica at 1500 rpm for 30 s using a spin-coater (ACE-200; iNexus, Korea). 

Subsequent two-step curing at 25 °C for 1 h and 70 °C for 30 min resulted in the h-PDMS master mold with 

nanohole arrays. The arrays had almost identical geometries with that of the Si mater. A CA solution (20% 

w/v in acetone) was then drop-casted on the h-PDMS master mold. CA with a number average molecular 

weight of 30,000 and degree of substitution (DS) of 2.45 was used in this study (Cat No. 180955, Lot No. 

MKCB2731 V; Sigma Aldrich, USA). A PET film was placed on the CA drop. After drying the solvent at 

25 °C (relative humidity: 35%) for 5 min, the solidified CA was removed from the master, which resulted in 

a flexible CA nanoneedle array. For MPC grafting, the CA nanoneedle array was treated with oxygen plasma 

to generate additional hydroxyl groups and carboxyl moieties on its surface (O2 flow rate: 100 sccm, power: 

100 W, time: 60 s). Then, MPC (Cat No. 730114, Lot No. MKCF0806; Sigma Aldrich, USA) dissolved in 

deionized water (0.25 mol/L) was spin-coated on the array at 3000 rpm for 30 s, followed by drying in a 

convection oven (ON-11E; Jeiotech, Korea) at 70 °C for 1 h.

3.2.2. SEM, AFM, and TEM imaging

To obtain scanning electron microscopy (SEM) images of the samples, the samples were coated with Pt 
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(thickness: 5 nm) using a metal sputter (K575X, Quorum Emitech, UK). The Pt coated samples were then 

examined with a S-4800 SEM (Hitachi, Japan). Atomic force microscopy (AFM) images of the samples were 

obtained with a Multimode V AFM (Veeco, USA). To obtain transmission electron microscopy (TEM) images 

of the MPC-coated CA nanoneedle samples, the samples were first milled with a focused ion beam (FIB) 

(Helios 450 HP, FEI, USA) using gallium (Ga) ion. Before the FIB milling, an amorphous carbon layer was 

coated on the samples to protect them from ion beam damages. During the FIB milling, the accelerating 

voltage of Ga ion was 5 kV and the ion beam current was adjusted between 68 pA and 0.79 nA. The final 

milling was performed with Ga beam current from 80 pA to 0.23 nA at 3 kV of accelerating voltage. The 

samples were milled from both sides until the sample thickness was reduced to 90 nm. Then, the prepared 

samples were examined with a TEM (JEM-2100, JEOL, Japan) at 200 kV of accelerating voltage.

3.2.3. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray 
photoelectron spectroscopy (XPS)

Fourier transform infrared spectroscopy analysis was carried out on a Cary 670 instrument (Agilent, USA) 

using a Ge 45° crystal (PIKE MIRacle, Germany). The spectra were recorded in a wavenumber range of 650–

4000 cm–1 at a resolution of 4 cm–1. Surface element analysis was performed with an X-ray photoelectron 

spectroscope (ESCALAB 250XI, Thermo Fisher Scientific, USA) using an Al Kα source.

3.2.4. Contact angle measurements

The surface wetting properties of the samples were investigated by measuring the contact angles of water 

droplets on each sample using a contact angle analyzer (SDLAB 200TEZD, FEMTOFAB, Korea) (temperature: 

25 °C, relative humidity: 50%). The average contact angle values for each sample were obtained by repeating 

the contact angle measurement 5 times per sample.

3.2.5. Measurements of mechanical properties and optical transmittance

The mechanical behavior of the pristine CA sample was analyzed with a universal testing machine (UTM, 

Instron 5982, Instron Corporation). Testing was performed based on the ASTM D638 mode using sample 

dimensions of 150 × 15 × 5 (length × width × thickness, mm). The measurements were repeated five times for 

each sample and the average value was used. Optical transmittance of the samples was measured in a wavelength 

range of 250–800 nm using a UV-Vis-NIR spectrophotometer (Cary 5000, Agilent, USA).

3.2.6. Anti-bacterial film assay

Firstly, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) were grown in Luria broth within a shaking 

incubator (temperature: 37 °C, rpm: 200) until optical density measurement at 600 nm (OD600) reached 0.1. 

Then, sterilized glass and CA samples were immersed in the precultured bacterial suspension and incubated at 

37 °C for 3 – 30 h. Subsequently, the samples were stained with a live and dead bacterial viability kit 

(BacLight™, L7012, Molecular Probes, Invitrogen, NY, USA) according to the protocol suggested by the 
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manufacturer, followed by rinsing with phosphate-buffered saline (PBS). Fluorescence micrographs of the 

stained bacteria were obtained using a confocal laser scanning microscope (LSM 780, Carl Zeiss, Germany). 

The coverage area of the bacterial cells on each sample was evaluated with an image processing software (Image 

J, NIH, USA). For a colony forming unit (CFU) assay, samples were incubated with 2 mL of a bacterial 

suspension (OD600 = 0.1) for 18 h at 37 °C, followed by rinsing with PBS. The washed samples were then 

moved to a conical tube with 1 mL PBS and vortexed for 5 min to remove all bacterial cells from the samples. 

After serial dilution, this bacterial mixture was added on LB agar plates. Finally, the agar plates were incubated 

for 18 h at 37 °C and bacterial colonies were counted.

3.3. Results and Discussion

3.3.1. Preparation and structures of the cellulose acetate nanoneedle array

Figure 50 shows the fabrication procedure of the nanoneedle array using CA as a base material. Among the 

diverse cellulose derivatives, we employed CA as it is stable inside or in the presence of water, which is an 

important consideration for practical and robust antifouling applications. To generate the CA nanoneedle array,

we adopted a series of sequential replica molding processes (Figure. 50). Briefly, a positive mold with 

nanoneedles was prepared from a silicon wafer with nanohole array pattern (Si master mold) using a PUA. PUA 

is a UV-curable material, which enables rapid and precise nanopatterning [83, 84]. Then, a negative mold with 

a nanohole array was prepared from the as-prepared positive PUA mold by utilizing a h-PDMS. Subsequently, 

a drop of CA solution was drop-dispensed on the h-PDMS nanohole pattern, followed by evaporation of the 

solvent. After complete solvent evaporation, the cured CA was removed from the h-PDMS mold, resulting in a 

CA nanoneedle array. Note that it was difficult to replicate CA nanoneedles directly from the Si master as the 

non-permeable nature of the Si substrate prevents solvent evaporation and therefore hinders CA solidification. 

Finally, the surface of the CA nanoneedle was coated with MPC via oxygen plasma treatment, which equips the 

CA array with an antifouling capability. Consequently, the resulting structure is fully made of biocompatible 

and eco-friendly materials of CA and MPC without using any toxic or environmentally harmful materials.



52

Figure 50. Schematic of the fabrication procedure for the cellulose acetate (CA) nanoneedle array grafted with 

2-methacryloyloxyethyl phosphorylcholine (MPC).

In this hybrid material, the CA nanoneedle functions as a biocompatible, eco-friendly, and mechanically 

robust bactericidal material that can induce physical damage in the cell membrane. However, CA has limited 

fouling resistance to biofilm formation. In contrast, MPC has pronounced antifouling properties [85]. However, 

MPC typically shows poor mechanical strength and is difficult to use as a structural material for preparing 

nanostructures [12]. Thus, we expected that the co-utilization of CA nanoneedle and MPC could act 

synergistically to maximize biofilm resistance against diverse gram-negative and gram-positive bacteria, while 

preserving structural integrity.

Figure 51 shows the resulting CA nanoneedles arranged in a regular rectangular array. CA nanostructures 

with sharp tips were uniformly formed over a large area (Figure 51 and Figure 52-i, ii). The nanostructures were 

50 nm in tip diameter, 200 nm in diameter at the base, 300 nm in height, and 500 nm in center-to-center pitch 

(Figure 52-ii, iii). The surface of individual nanoneedles was uniformly coated with the 5 nm thick MPC, as 

evident from TEM analysis (Figure 52-iii) [86, 87]. On a macroscopic scale, the resulting CA is in the form of 

a highly flexible film, which enables the versatile application of the nanostructured CA on diverse surfaces with 

varying surface curvatures and roughness (Figure 52-i). The rainbow-like colors of the nanostructured CA were 

caused by the structural color of the periodic nanopattern array that interferes with light [88].
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Figure 51. Conceptual illustration of the flexible CA nanoneedle array on which MPC is uniformly coated.

Figure 52. (i) Photograph of the fabricated MPC-coated CA nanoneedle film, (ii) an SEM image of the CA 

nanoneedle array, (iii) a TEM image of the single CA nanoneedle coated with MPC. The dark coating layer 

around the nanoneedle represents the MPC layer with a thickness of 5 nm.
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3.3.2. Chemical mechanism of the MPC-grafted cellulose acetate nanoneedle array

Surface chemistry of the CA nanoneedle array coated with MPC was examined with ATR-FTIR spectroscopy 

and XPS. The IR spectra of the pristine, O2 plasma-treated, and MPC-coated CA were shown in Figure 53. The 

pristine CA exhibited several characteristic peaks in the IR spectra. The peaks at 1050 cm-1, 1370 cm-1, and 1753 

cm-1 corresponded to C-O stretching, C-H bending vibration of CH3, and C=O stretching of the acetyl group, 

respectively (Figure 53a). The peak at 3465 cm-1 was attributed to O-H stretching, which was much weaker than 

the same peak for pure cellulose due to acetylation [89, 90]. The peak related to C-O-C was at 1232 cm-1. After 

O2 plasma treatment, these characteristic peaks were enhanced (Figure 53a). Pronounced changes were also 

observed in the XPS results for the O2 plasma-treated CA (Figure 54a). The O=C-O peak (binding energy [BE] 

= 288.3-288.7 eV), C=O/O-C-O peak (BE = 287.2-288.0 eV) of C1s were enhanced while the C-H (or C-C) 

peak (BE = 284.2 eV) of C1s was reduced after the plasma treatment [91]. The enhanced peak of O=C-O 

indicates that carboxyl group was generated on the CA surface via plasma treatment (Table 4). Several previous 

studies have similarly reported the O2 plasma-induced generation of carbonyl groups on cellulose mediated by 

free radical formation [92-95]. In detail, the O2 plasma treatment can result in the chain cleavage and radical 

generation at various positions of CA. These radical intermediates further oxidize to become carboxylic acid 

and ketone for primary and secondary oxygenated groups, respectively (Figure 56). This generation of 

hydrophilic carbonyl groups significantly enhanced the surface energy of CA, as identified by reduced water 

contact angle (Figure 57). When O2 plasma treated CA was treated with MPC, the radical intermediates 

generated on CA during O2 plasma, prior to becoming more stable carbonyl groups, reacted with the methacrylic 

group on MPC either via addition or oligomerization, thereby covalently linking MPC onto CA surface (Figure , 

55c,d, 58). This explanation was supported by the significant reduction of O=C-O peak in XPS spectra for O2

plasma treated CA after MPC treatment, compared to that of O2 plasma treated CA without MPC treatment 

(Table 4, Figure 54a). The stable MPC linkage to CA was also confirmed with FT-IR and XPS spectra. When 

the O2 plasma-treated CA sample was coated with MPC, five distinctive peaks were observed at 970 cm-1, 1080 

cm-1, 1240 cm-1, 1620 cm-1, and 3400 cm-1 in the FTIR spectra, which were attributed to N+-(CH3)3, P-O, O=P-

O-, N-H and NH2, respectively (Figure 53b) [12]. Also, the peaks of nitrogen (N1s) and phosphorous (P2p) in the 

XPS spectra notably increased for the MPC-coated CA samples compared with the CA samples without MPC 

treatment (Figure 54c, d and Table 5). These results confirm that the MPC moieties were uniformly coated over 

the CA surface via plasma polymerization.
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Figure 53. (a) ATR-FTIR spectra of the pristine and O2 plasma-treated CA in the wavenumber range of 650-

4000 cm-1. (b) ATR-FTIR spectra of the MPC-coated CA in the wavenumber range of 650-4000 cm-1.
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Figure 54. Deconvoluted peaks of (a) C1s, (b) O1s, (c) N1s, and (d) P2p of XPS spectra of the pristine, O2 

plasma-treated, and MPC-coated CA samples.
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Figure 55. Deconvoluted peaks of (a) C1s, (b) O1s, (c) N1s, and (d) P2p of XPS spectra of the O2 plasma-treated 

and MPC-coated CA samples and MPC-coated CA samples without O2 plasma treatment.
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Table 4. Relative concentrations of the functional groups from deconvoluted C1s, O1s, N1s, and P2p peaks of the 

XPS spectra of the untreated, O2 plasma-treated, O2 plasma-treated and MPC-coated, and MPC-coated without 

O2 plasma treatment samples.

Atomic

Composition
C

1s
 (%) O

1s
 (%) N

1s
 (%) P

2p
 (%)

Deconvoluted

peaks

Peak 1

[O=C-O]

Peak 2

[C=O/

O-C-O]

Peak 3

[C-O]

Peak 4

[C-H/

C-C]

Peak 5

[C-OH]

Peak 1

[O=C-O]

Peak 6

[C-O-C]

Peak 7

[O=P]

Peak 8

[N
+
-H]

Peak 9

[(PO
3
)

-1
]

Binding energy (eV) 288.4 288.0 286.1 284.2 532.0 533.0 531.6 529.8 402 132

Untreated 18.8 11.8 43.9 25.5 69.5 17.8 12.7 - - -

O
2 
plasma-treated 33.0 13.5 44.5 9.0 59.6 35.7 4.7 - - -

O
2 
plasma-treated and 

MPC-coated
1.7 7.0 53.8 37.5 18.8 10.8 40.8 29.6 100 100

MPC-coated without 

O
2
 treatment

20.7 9.6 42.4 27.3 36.7 11.5 45.9 5.8 100 100

Figure 56. Carbonyl groups (carboxylic acid and ketone) were generated on various positions of CA unit.
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Figure 57. Contact angle of water droplet on untreated, O2 plasma treated and O2 plasma treated and MPC 

coated surfaces.

Figure 58. MPC reacted with radical intermediates of CA via addition or oligomerization.
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Table 5. Surface elemental compositions of C1s, O1s, N1s, and P2p, and their relative ratios for the untreated, O2

plasma-treated, O2 plasma-treated and MPC-coated, and MPC-coated without O2 plasma treatment samples 

measured by XPS.

Sample
Atomic Composition (%) Atomic ratio

C1s O1s N1s P2p O/C N/C P/C

Untreated 62.4 37.6 0.00 0.00 0.603 0.000 0.000

O2 plasma-treated 51.2 48.8 0.00 0.00 0.953 0.000 0.000

O2 plasma-treated and 

MPC-coated
59.1 30.0 5.6 5.3 0.507 0.096 0.090

MPC-coated without 

O2 treatment
60.8 35.5 1.9 1.7 0.584 0.0312 0.028

3.3.3. Surface, mechanical, and optical properties of the MPC-grafted cellulose acetate nanoneedle 

array

Figure 59 shows the contact angles of DI water on the planar CA, CA nanoneedles, and MPC-coated 

CA nanoneedle samples. The pristine, planar CA exhibited a hydrophilic nature with a water contact 

angle of 70°. Nanostructured CA showed an enhanced contact angle of 100° due to its surface 

roughness. However, when the CA nanoneedle was coated with MPC, the contact angle drastically 

decreased to 9°, which indicates that the CA nanostructure was stably functionalized with MPC via the 

simple oxygen plasma treatment. To further evaluate the stability of the MPC layer coated over the CA 

nanoneedle array, we submerged the MPC-coated CA nanoneedles in DI water for different periods of 

0 – 28 d. Then, water contact angle and FTIR measurements were performed for the MPC-coated 

samples with different periods of water exposure. The water contact angle on the MPC-coated samples 

remains at 9 – 10° even after 28 d-submersion in water (Figure 60). FT-IR analysis results also showed 

consistent, characteristic MPC spectra regardless of the water-exposure time (Figure 61). These results 

confirm that the polymerized MPC layer is stable in water.
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Figure 59. Contact angle of water droplet on the planar CA, CA nanoneedle, and MPC-coated nanoneedle 

surfaces.

Figure 60. Contact angle measurements of the O2 plasma-treated and MPC-coated nanoneedle samples, which 

were submerged in DI water for different periods of 0 – 28 d.
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Figure 61. ATR-FTIR spectra of the O2 plasma-treated and MPC-coated nanoneedle samples, which were 

submerged in DI water for different periods of 0 – 28 d.

We also examined the mechanical properties of the CA samples. Figure 62 is the stress-strain curve of the CA 

film obtained using a universal testing machine. The measured elastic modulus of the CA was 419 MPa. With 

the relatively high elastic modulus, the nanostructured CA was stable in the water. Figure 63 represents the in-

situ AFM image of the CA nanoneedle array submerged in DI water for 18 h. As shown, the CA nanoneedle 

could maintain its structural integrity even in underwater conditions without noticeable structural deformation. 

By considering the fact that antifouling materials are exposed to wet environments for a prolonged time, such 

mechanical stability is highly beneficial for the CA nanoneedle array to be used as a robust antifouling material. 

Furthermore, the fabricated film possessing the CA nanoneedle array was not only flexible but was also highly 

transparent (Figure 64). Therefore, our CA nanoneedle film can be used for a broad range of applications that 

require optical transparency and three-dimensional conformal attachment of anti-biofouling or anti-pathogenic 

film.
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Figure 62. A stress-strain curve of the CA sample.

Figure 63. In-situ AFM image of the CA nanoneedle submerged in DI water for 18 h. The image was directly 

acquired from the submerged sample.
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Figure 64. Optical transmittance of the pristine CA, CA nanoneedle, and MPC-coated CA nanoneedle samples 

in the wavelength range of 250-800 nm.
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3.3.4. Evaluation of the biofilm-resistance of the MPC-coated cellulose acetate nanoneedle array

To evaluate the biofilm-resistance of the CA nanotopography, gram-negative (E. coli) and gram-positive (B.

subtilis) bacteria were cultured on the planar glass, planar CA, CA nanoneedle, and MPC-coated CA nanoneedle 

samples. Figure 65 shows the fluorescence confocal microscopy images of E. coli grown on different substrates. 

As shown, after 18 h culture on the planar glass, a large number of live E. coli were adhered to the surface, as 

indicated by the green fluorescence (Figure 65-i). A slightly lower density of E. coli was observed on the planar 

CA sample as compared with that on the planar glass (Figure 65-ii), yet the difference was trivial. This indicates 

that CA does not possess noticeable, intrinsic bacterial repelling or killing properties [70, 73]. However, when

the CA was shaped into a nanoscale needle-like architecture, very different bacterial behavior was observed on 

the nanostructured CA surface (Figure 65-iii). A high density of E. coli was observed on the nanostructured CA 

substrate. However, many of the attached E. coli were revealed as dead ones as evidenced by the red 

fluorescence (Figure 65-iii), indicating that strong bactericidal effects can be obtained only with the natural CA

biopolymer by transforming the morphology of CA into a proper nanoscale architecture. This is because the 

nanostructured CA with sharp tips, with dimensions that are smaller than single microbes, induces physical 

damage and lysis in the cell membrane by penetrating or stretching the cell membrane [19]. Interestingly, when 

the CA nanoneedle array was coated with MPC via simple plasma polymerization, the number of adhered E. 

coli was remarkably reduced as compared to that on the flat CA or even the CA nanoneedle sample (Figure 65-

iv). Although a few attached bacteria were observed on the MPC-treated CA nanoneedle, the majority of them 

were dead as indicated by the red fluorescence. These results show that nanostructured CA can simultaneously 

exhibit pronounced antibacterial (bacteria-killing) and antifouling (bacteria-repelling) properties, which could 

be simply achieved by integrating the MPC with the nanostructured CA. The remarkable bacterial film-resistant 

ability of the nanostructured CA was also observed against gram-positive bacteria of B. subtilis with an overall 

similar tendency with E. coli (Figure 66).
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Figure 65. Confocal microscopy images of E. coli grown on the planar glass, planar CA, CA nanoneedle, and 

MPC-coated CA nanoneedle surfaces for 18 h. The bacteria were stained with a fluorescent labeling reagent.

Figure 66. Confocal microscopy images of B. subtilis grown on the planar glass, planar CA, CA nanoneedle, 

and MPC-coated CA nanoneedle surfaces for 18 h. The bacteria were stained with a fluorescent labeling 

reagent.
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For quantitative evaluation of the biofilm-resistant behavior of the CA nanoneedle array, we performed 

analysis of the areal coverage of bacteria and a colony forming unit (CFU) assay, as shown in Figure 67-i and 

67-ii for E. coli and Figure 68-i and 68-ii for B. subtilis, respectively. The coverage area of live E. coli and B. 

subtilis on the CA nanoneedle were 59.8% and 64.7% lower as compared to those of each bacterial species on 

the planar CA. The coverage area of live E. coli and B. subtilis on the MPC-coated CA nanoneedle were further 

reduced to 0.394% and 1.041%, which is 97.8% and 97.2% lower compared with those on the planar CA, 

respectively. In addition, the CA nanoneedle and MPC-coated CA nanoneedle maintained its effective anti-

biofilm performance during the 30 h of bacterial culture (Figure 67-ii, 68-ii). These fluorescence microscope 

imaging and quantitative analysis results clearly demonstrate that superior and robust antibiofilm properties are 

attainable with sustainable cellulose derivatives having proper nanoscale topographies.

Figure 67. (i) Coverage area of the live (green) and dead (red) E. coli cultured on the control and various CA 

samples. (ii) CFU of the E. coli grown on the control and various CA samples after 0, 3, 18, 24, and 30 h 

culture (n = 9, * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to control; data was analyzed by a one-

way ANOVA).
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Figure 68. (i) Coverage area of the live (green) and dead (red) B. subtilis cultured on the control and various 

CA samples. (ii) CFU of the B. subtilis grown on the control and various CA samples after 0, 3, 18, 24, and 30 

h culture (n = 9, * p < 0.05, ** p < 0.01, and *** p < 0.001 compared to control; data was analyzed by a one-

way ANOVA).
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3.3.5. Long-term evaluation of anti-biofouling performance on the MPC-grafted cellulose acetate 

nanoneedle

For long-term evaluation of the biofilm-resistant behavior of the MPC-grafted CA nanoneedle array, we 

performed analysis of the fluorescence confocal microscopy images of bacteria and a colony forming unit (CFU) 

with a new strain of bacteria. Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative, ubiquitous 

environmental bacterium which also is a human pathogen that can cause a wide range of life-threatening acute 

and chronic infections. Figure 69-i shows the fluorescence confocal microscopy images of P. aeruginosa grown 

on different substrates. As shown, after 28 d culture on the planar glass, a number of live P. aeruginosa were 

attached to the surface, as indicated by the green fluorescence. A lower density of P. aeruginosa was observed 

on the planar CA sample as compared with that on the planar glass. Many of the attached P. aeruginosa were 

revealed on the CA nanoneedles as dead ones as evidenced by the red fluorescence, indicating that strong 

bactericidal effects can be obtained. Although a few attached bacteria were observed on the MPC-treated CA 

nanoneedle, the majority of them were dead as indicated by the red fluorescence. 

For quantitative evaluation of the biofilm-resistant behavior of the CA nanoneedle array, we performed 

analysis of colony forming unit (CFU) assay, as shown in Figure 69-ii for P. aeruginosa. The CA nanoneedle 

and MPC-coated CA nanoneedle maintained its effective anti-biofilm performance during the 28 d of bacterial 

culture. These results show that MPC-treated CA nanoneedle can simultaneously exhibit pronounced 

antibacterial (bacteria-killing) and antifouling (bacteria-repelling) properties.



70

Figure 69. (i) Confocal microscopy images of P. aeruginosa grown on the planar glass, planar CA, CA 

nanoneedle, and MPC-coated CA nanoneedle surfaces for 28 d. The bacteria were stained with a fluorescent 

labeling reagent. (ii) CFU of the P. aeruginosa grown on the control and various CA samples after 0 h, 3 h, 18 

h, 1 d, 7 d, 14 d, 21 d, and 28 d culture.
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3.4. Summary

In summary, we have presented a sustainable antibiofilm material made of a naturally abundant, 

biocompatible, and biodegradable CA. A CA nanostructure array having sharp tips with a tip diameter of 50 nm 

could be fabricated based on a nanomolding technique using CA as the base material in a simple and 

reproducible manner. Due to the negatively charged polyion layer of the plasma-treated CA, the surface of the 

CA nanostructure could be functionalized with MPC via a facile plasma polymerization mechanism. Based on 

the unique integrated architecture of the highly biocompatible and environmentally friendly cellulose derivative, 

bioinspired MPC, and nanoscale topography incorporated in a single flexible film, this integrated cellulose 

derivative material exhibited remarkable simultaneous repelling and -killing capabilities for both gram-negative 

and gram-positive bacteria, which efficiently and reliably prevented formation of bacterial biofilms. 

Considering the burgeoning interest in safe and eco-friendly materials, the cellulose derivative-based biofilm-

resistant materials proposed in this study should serve as a versatile biocompatible, biodegradable, and 

environment-friendly antibiofilm material for every-day, biomedical, and industrial applications. For example, 

the highly flexible film with MPC-coated CA nanoneedles can be applied to the curved or non-planar surfaces 

of diverse biomedical devices. Currently, bacterial adhesion and biofilm formation on biomedical devices, such 

as catheters, lead to device-associated infections, resulting in significant morbidity and mortality. The MPC-

functionalized CA nanoneedles with outstanding biofilm-resistance, biocompatibility, and biodegradability have 

the potential to address such critical problems and contribute to the enhancement of public health.
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4. Conclusions and Perspectives

In conclusion, I proposed a chemical/mechanical hybrid antifouling strategy using biocompatible 

antifouling materials with high mechanical durability and applicable to three-dimensional surfaces.

The first research goal was to select biocompatible materials with antifouling function. I chose PEGDMA 

and CA, which are biocompatible materials and eco-friendly materials, to make antifouling surfaces. The 

selected materials had mechanical stability, low cost, and good flexibility. Due to the flexibility of the base 

material, it can be applied to various 3D surfaces and large areas, and antifouling nano-structural surfaces can 

be used.

The second research goal was to fabricate mechanically durable nanostructures that mimic the 

nanostructures of a cicada wing having a bactericidal function. Nanostructures had excellent antibacterial 

properties by damaging cell membranes regardless of the type of bacteria. The nanostructured surface, which 

mimicked the cicada wing, was easily fabricated by UV molding and soft lithography. Based on the 

nanostructure of the cicada wing, the structure spacing was adjusted and optimized to maximize the antibacterial 

performance. The fabricated nanostructures were observed and measured by SEM, AFM and TEM.

The third research goal was to enhance the antifouling and bactericidal function of the covalently bonded 

MPC and nanostructured surfaces for long term anti-biofouling durability. In order to maximize the antifouling 

properties on the surface of the fabricated nanostructures, MPC was coated as a zwitterionic material with 

excellent antifouling properties after oxygen plasma treatment. Surface chemical analysis was performed 

through FT-IR, XPS, and contact angle to confirm stable surface coating, and it was proved that MPC is stably 

covalently bonded on the fabricated surface. The coating surface of MPC was the primary antifouling surface 

that can be minimized the adhesion of bacteria, so the excellent antifouling properties were confirmed through 

the bacteria adhesion experiments. In addition, cell lysis due to nanostructures was observed through SEM, 

TEM, and AFM to confirm the physical interaction between nanostructures and bacterial membranes.

The final research goal was to ensure the long-term anti-biofouling performance of hybrid surfaces with 

anti-biofouling function, as well as strong resistance to external stimuli, and to suggest the potential for use in 

the medical and marine industries. When the MPC was damaged or the PEGDMA surface was damaged by 

external stimuli, it showed strong antifouling durability against bacterial attachment of gram-negative and gram-

positive bacteria on the damaged antifouling surface. In addition, due to the stable coating of the MPC and the 

bactericidal function of the nanostructures, hybrid anti-biofouling surfaces proved superior antifouling function

compared to single function surfaces when testing bacteria for a long time (28 days). Quantification of the 

antifouling performance of E. coli, B. subtilis and P. aeruginosa was performed using % area coverage and CFU.

In this study, nanostructured surface with the excellent bactericidal function was fabricated using 

biocompatible antifouling materials, and by covalently coating the amphiphilic material thinner once more, a 

surface having an antifouling function that can be used for a long time was realized. 

Many of the researches reported so far could only be produced under laboratory conditions using sophisticated 

instruments and relatively complex procedures, which are difficult to apply to actual medical and marine 
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industries. Simple, cost-effective, environmentally friendly and reproducible fabrication methods are needed, 

and these important design criteria should be considered in future studies. While coping with these important 

challenges may require collaborative efforts by researchers in the fields of surface chemistry, materials science, 

biomedical engineering and biotechnology, the research should provide many opportunities for innovation 

beyond antibacterial surfaces.
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