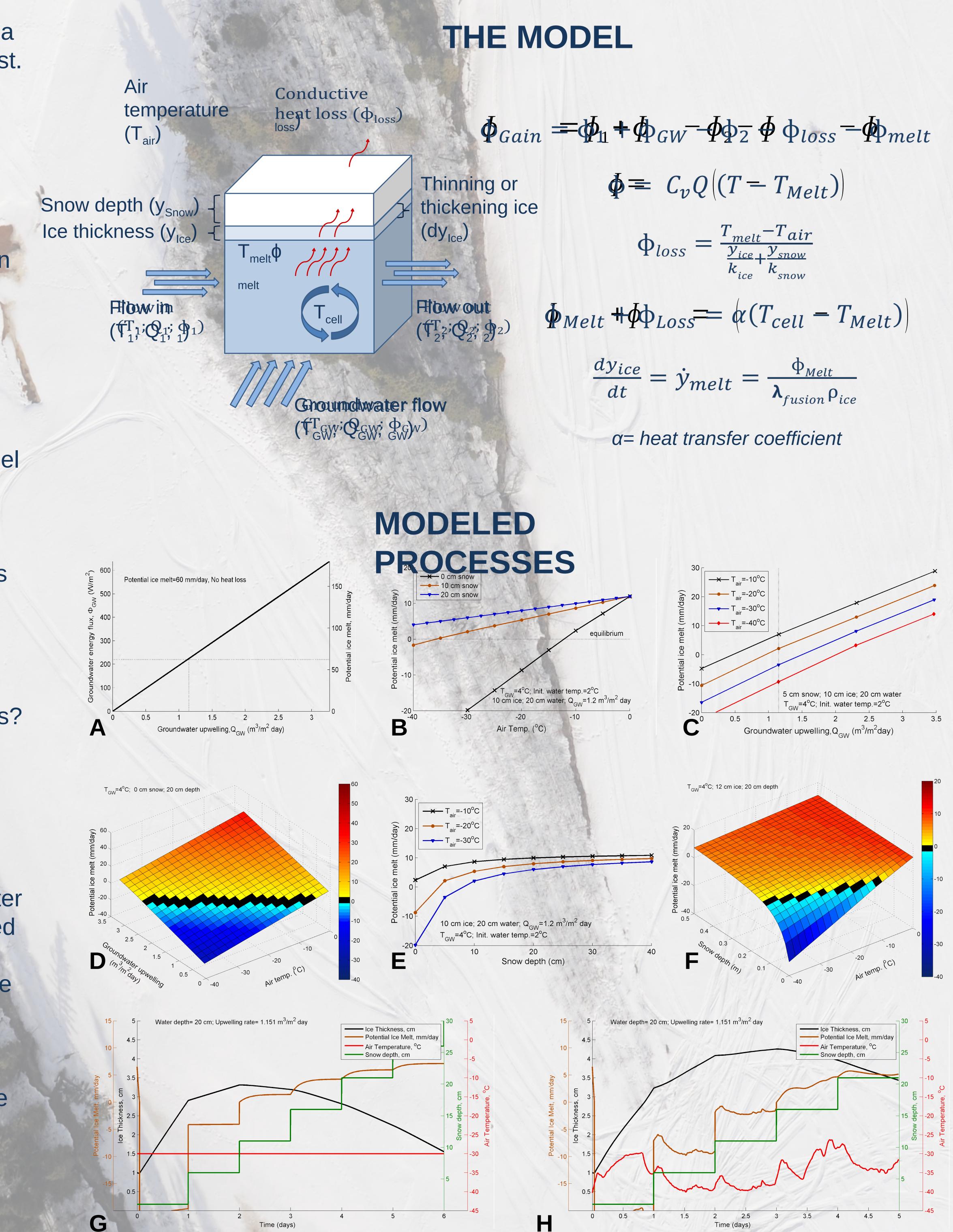


ABSTRACT

The Tanana River flows through interior Alaska, a region characterized by discontinuous permafrost. Studies link degrading permafrost to increased winter river discharge due to increasing groundwater input. In winter, interior Alaskan rivers are exclusively fed by groundwater, which serves as an external source of heat. In fact, some portions of rivers fed by groundwater maintain thin ice throughout the winter, or remain altogether ice-free, despite very cold air temperatures. These ice conditions represent a significant danger to winter travellers who use rivers for wintertime travel, particularly in this largely roadless area.


We developed a physically-based, numeric model to explore how fluctuations in groundwater discharge control ice thickness on the Tanana River. The model allows us to examine how changes in groundwater flow affect ice dynamics by addressing two questions: 1) What are the dominant factors controlling seasonal ice dynamics on the Tanana River? 2) What are the rates of change in ice thickness resulting from observed and projected changes in these factors?

Conclusions

Ice melt is amplified by increased hydraulic gradients, increased groundwater upwelling, increased air temperature, increased groundwater temperature, increased water depth, or increased snow depth. A warming climate in regions with discontinuous permafrost is expected to increase groundwater input into rivers, decrease the temperature gradient between the atmosphere and the ice/water interface, and increase snow depths. All these changes contribute to faster ice melt, decreased ice thickness, and thus more hazardous conditions for winter travellers. The model illustrates the physical mechanisms that corroborate reports from Alaskans about ice conditions that have become more dangerous in

Permafrost Degradation Leaves Us On Thin Ice Chas Jones¹, Knut Kielland², and Larry Hinzman¹

¹International Arctic Research Center, University of Alaska Fairbanks ²Institute of Arctic Biology, University of Alaska Fairbanks chas.jones@iarc.uaf.edu; kkielland@alaska.edu; lhinzman@iarc.uaf.edu

Pa

- Ground GW up Wat Sno Heat tra Wate
- +60%

GW up GW Initial ic Sno Initial

ICe Compl

Ice Melt Rate

RESULTS

 Upwelling rate Ice thickness Snow depth • Air temp. Water depth

Table 1. Sensitivity Analysis

· OCHORINY / THUI Y SIS							
rameter	Units	Initial	Variabilit y	Ice Melt Rate Sensitivity			
lwater temp.	°C	4.0	+/- 30%	+/- 38%			
welling rate	m/day	1.1	+/- 30%	+/- 38%			
ter depth	cm	20	+/- 30%	+/- 34%			
ow depth	cm	25	+/- 30%	-13% to +8%			
r temp.	°C	-20	+/- 30%	+/- 11%			
ansfer coef.	$\label{eq:product} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.23	+/- 30%	-8% to +4%			
er column temp.	°C	2.0	+/- 30%	+/- 4%			

*If SAW boy is valed by +0.30%, set/sid wranges/frda =50% to

Table 2. Climate Scenario Analysis

rameter	Units	Historic climate scenario	climate	Future climate scenario
				1.3
owelling rate	m/day	.9 (-20%)	1.1	(+20%)
horiz. flow	m/day	0.3	0.3	0.3
ce thickness	cm	10	10	10
ow depth	cm	15	20	25
ir temp.	°C	-18	-15	-12
water temp.	°C	2.0	2.0	2.0
	mm/			
melt rate	day	5.2	9.3	13.0
lete ice melt	days	19.1	10.7	7.7
e in ice melt	%	-44%	N/A	+40%
na Adap	Arctic P			

