WAM (wave model Cycle 4.5)

Toward a relhiable wave hindcast/forecast in the Bering Sea | e s e e

variability of wave conditions during the summer.
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Motivation S .
SWH from ERS-1/2 and Envisat satellites in the Bering Sea Tracks of ERS-1/2 and Envisat satellites in the Bering Sea Validation approach.
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1.To validate the quality of available wind products through 0.8

application of the WAM model Cycle 4.5 and satellite observations

2.To analyze effects of high resolution atmospheric model

downscaling and data assimilation gl '

3. To analyze summer surface wave condition in the Bering Sea '

during the years, 2007-2011 T

4. To explore the possibility of developing a new algorithm for %
a dynamically constrained minimizing function without 4
employing the adjoint of the dynamical system (Chukchi Sea
application — see bottom right of this poster)
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WRF (atmospheric model)

WRF was configured for the Arctic Ocean (left) and
Bering Sea (right) domains in order to investigate results
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Years results of downscaling for the NCEP/NCAR reanalysis product.
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sophisticated Data Assimilation results . .
twin data experiments.
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significantly improve quality of the wind.

4. Wind induced mixing in the summer is weak, but — & N B
= = %0 | CONCLUSIONS 2

in the winter it could be essential in the south- P R N '
eastern Bering Sea shelf. ) N | | S - SNy 4 1. The r4dVar algorithm has been successfully implemented and tested

o | A with the WAM model in the framework of twin-data experiments.
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5. Analysis of surface waves in the Bering Sea

during the summers of 2007-2011 (see left side .., W -0 - N 5 5 S SR 2. It is shown that the WAM model solutions in the Chukchi Sea are

of this poster) shows a north to southeast wind ] . > . . AT controlled by wind forcing on time scales larger than 6-8 hours. An

direction with matching wave direction. g E i TR B ¢ g extension of the r4dVar method has been proposed to support the
6. Large low pressure systems over the North S R / S8, s st n *“_:._ HitH it external forcing control capability.

CONCLUS|ONS 1 Pacific / southern Bering Sea are the biggest " reane * gz 7 rreamz e Z| B SN 3. Preliminary experiments with an idealized MIT model configuration
contributor to waves. This can be seen by the | ' SN - have shown that the r4dVar technique is compatible in numerical

] o wind sea and swell results which generated the efficiency with a standard optimization scheme which employs adjoint
1. NCEI_:INC_AR and NARB reanalysis are of similar highest wave heights north of the Aleutian code.
quality with respect to hindcasts of surface waves. 4. These results give good prospects for coupled wave-ocean data
assimilation using the r4dVar approach.

Islands.



