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Abstract

Understanding animals’ home range dynamics is a frequent motivating question in move

ment ecology. Descriptive techniques are often applied, but these methods lack predictive 

ability and cannot capture effects of dynamic environmental patterns, such as weather 

and features of the energy landscape. Here, we develop a practical approach for statistical 

inference into the behavioral mechanisms underlying how habitat and the energy land

scape shape animal home ranges. We validated this approach by conducting a simulation 

study, and applied it to a sample of 12 golden eagles Aquila chrysaetos tracked with 

satellite telemetry. We demonstrate that readily available software can be used to fit a 

multistate Ornstein-Uhlenbeck space use model to make hierarchical inference of habitat 

selection parameters and home range dynamics. Additionally, the underlying mathemat

ical properties of the model allow straightforward computation of predicted space use 

distributions, permitting estimation of home range size and visualization of space use 

patterns under varying conditions. The application to golden eagles revealed effects of 

habitat variables that align with eagle biology. Further, we found that males and females 

partition their home ranges dynamically based on uplift. Specifically, changes in wind 

and the angle of the sun seemed to be drivers of differential space use between sexes, in 

particular during late breeding season when both are foraging across large parts of their 

home range to support nestling growth.

Keywords

Bayesian, continuous time model, golden eagle, Markov process, movement model, biased 

random walk
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Introduction

The home range concept has been a central idea in animal behavior for some time (Burt, 

1943; Dunn and Gipson, 1977). To help understand an animal’s home range— the area 

in which an animal carries out its regular activities of foraging and reproducing (Burt, 

1943)— researchers have applied techniques ranging from simple and purely descriptive, 

including minimum convex polygons and kernel density estimators, to complex mecha

nistic models, such as advection-diffusion equations (Moorcroft and Lewis, 2006; Hooten 

et al., 2017). Within this range fall methods framed as resource selection functions 

(RSF; Manly et al., 2002) and related techniques, such as step selection functions (SSFs; 

Fortin et al., 2005). The RSF and SSF frameworks separate the probability of an animal 

occurring somewhere on a landscape into two parts: movement and resource selection 

(Moorcroft and Barnett, 2008). Together, movement and resource weighting functions 

can give rise to diverse animal space use patterns (Potts et al., 2014b).

One proposed conceptual description of animal home ranges aligns with the “elastic 

disc hypothesis,” which describes animal space use as the degree to which boundaries of 

animal territories are compressible, shaped by the territorial aggression of neighboring 

conspecifics (Huxley, 1934). This processes is analogous to the way an elastic disc can be 

molded by extrinsic stressors, and the analogy forms a general conceptual foundation de

scribing the formation and dynamics of animal home ranges (Getty, 1981). For example, 

consider an animal that requires a certain amount of suitable habitat. Given no extrinsic 

forces, that animal might spend much of its time within a smaller core area, venturing 

out equally in all directions to acquire resources. This would give rise to a circular or 

disc-shaped home range, and would be especially true for an animal that has a “central 

place” such as a nest of a den that requires tending. In contrast, if the animal resides 

near the boundary of suitable habitat, its home range must stretch along that boundary, 

as the amount of suitable habitat that the animal requires remains constant, so the shape 

of the home range will conform to habitat constraints.

Many approaches to quantifying animal home ranges describe animal space use as 

static, either because the descriptive method is not capable of dynamic description or
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home ranges are actually assumed to be static. However, animal movement is usually 

much more fluid, driven by suites of intrinsic and extrinsic forces (Nathan et al., 2008). 

Dynamic energy landscapes are a conceptual framework that incorporates such fluidity in 

how an animal’s movement can be shaped by its energetic demands interacting with land

scape features (Shepard et al., 2013). Such dynamic changes in the landscape can shape 

space use patterns in a number of ways (Morales and Ellner, 2002; Schooley and Wiens, 

2004; Prokopenko et al., 2016). For animals that can take advantage of dynamically 

available energy subsidies from moving fluids to offset energy expenditure, such as soar

ing birds using uplift or aquatic animals taking advantage of water flow, these features 

will shape dynamic space use patterns and emergent home range properties (Shepard 

et al., 2013). In these situations, the elastic disc will constantly vary, changing shape just 

as continuously as changes in the weather.

RSFs and SSFs are widely used and generally robust quantitative assessments of an

imal space use and home range dynamics, and they have seen continuous improvement 

since their respective introductions. Some of these adaptations have worked to address 

such dynamic home range processes (reviewed by Hooten et al., 2017) but few of these 

developments are particularly useful or flexible in analyses of the dynamic properties of 

space use patterns. Getty (1981) presented an early RSF adaptation inspired by the 

elastic disc hypothesis. Another early model has also been considered in understanding 

animal home ranges— the Ornstein-Uhlenbeck (OU) proccess (Dunn and Gipson, 1977)—  

and can align with the elastic disc hypothesis. As we show herein, when linked to an RSF 

framework (Johnson et al., 2008), the OU process can be useful for drawing inferences 

about the underlying mechanisms that give rise to dynamic space use patterns and home 

range formation.

Here, we develop a practical modelling approach for inferring the mechanisms of home 

range dynamics and how habitat and the energy landscape interact with behavior to shape 

animal home ranges. This approach was then validated using a simulation study to ensure 

it provided robust, unbiased inference, and we finally applied the approach to analyze the 

home range behavior and space use of territorial golden eagles Aquila chrysaetos. Specif-
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58 ically, we fit models to estimate how male and female territorial eagles partitioned space

59 based on different habitats or dynamic features of the landscape, particularly thermal

60 and orographic uplift. Our method is an adaptation of a previous method and allows

61 relatively straightforward hierarchical inference of resource selection parameters across

62 several individuals within an OU home range model.

63 Ornstein-Uhlenbeck home range model

An OU process over two-dimensional space is continuous-time, mean-reverting, and can 

help us study home range behavior of animals that tend a central place (e.g., a nest; 

Dunn and Gipson, 1977; Blackwell, 1997; Breed et al., 2017). Assuming independence 

in the two spatial dimensions simplifies the model and aligns better with central place 

behavior, as movement is equally likely in all directions around the central point. Such 

an OU process can be presented as the following stochastic differential equation (SDE):

dxt =  — w dt(xt — y )  +  a d W t, (1)

where x t is a coordinate vector of the location of the animal at time t, w =  u I2 with 

u  describing the strength of the animal’s tendency to move toward the central point y , 

a >  0, and W t is Brownian motion. The solution of this SDE takes the form:

x t =  y  +  e- “ *(xo — y )  +  a [  e - “ (t-s)dW .s. (2)
J o

While this solution conveniently gives the position of the animal at any time t, we typically 

observe animal movement by recording series of discrete locations by, for example, using 

telemetry. This invokes the position likelihood of the OU process:

64 where £  =  a2I2 and ' denotes the transpose. This discretized formulation can be de-

65 scribed as a biased random walk (BRW) with a bias toward y .  Notably, it reaches a long
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66 term steady state N (m , E ) due to the rapidly decaying effect of conditioning on x t as At

67 increases (Blackwell, 1997).

68 Assuming independence in the two spatial dimensions helps wed the OU process to the

69 elastic disc hypothesis (Huxley, 1934; Getty, 1981), similar to the circular normal distribu-

70 tion used by Getty (1981). A chosen contour of N (m , E ) can be a circular approximation

71 of an animal’s home range. Further, the highest probability density of N (m , E ) is cen-

72 tered on /j,, consistent with central place behavior. Note that using equation (3) takes

73 into account serial correlation, which is inherent to an animal’s movement, ensuring an

74 unbiased estimate of E. Additionally, the continuous-time nature of the process makes

75 it applicable under any temporal resolution of data and any irregularities in that data.

The disc may be modified by various extrinsic factors (Getty, 1981), which can be 

built into the OU process under the RSF framework (Johnson et al., 2008). The general 

form of this framework describes the probability density f u of an animal’s location over 

some landscape (and respective coordinate system) z containing a suite of habitat types 

and resources as the product of a density explaining what is available to the animal f a 

and a weighting function ^:

f u(z) =  K —l^ (z) f a (z) , (4)

where K  is a normalizing constant. When f a takes the form of an OU process and

^ (z (x t)) =  exp[z(xt)'P], where the function z (x t) returns a vector of habitat values

and/or resources associated with a location x t that lies in z and |3 weights those resources 

based on the animal’s preferences, the conditional probability density of the location of 

the animal can be written (Johnson et al., 2008) as

f u(z|xt-At) =  K -le x p [z(xt)/p  -  (x t -  Mt)/E - 1(xt -  Mt) /2 L (5)

76 where mt =  m +  e-wAt(xt-At — m) and E t =  E — e-uAtE e - “ ,At.

The likelihood function takes the form:

L (P v  E M) =  n  exp [z(xt)/p  -  (xt -  ^ t)/E - 1(xt -  Mt)/2]
t=1 Iz exp [z(x)/p  -  (x  -  Mt)/E- (x  -  Mt) / 2  d x ’

6
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where n t and £ t contain the OU process parameters, as defined above for equation (5) 

(Johnson et al., 2008). Evaluating the integral in the denominator is usually problematic 

but often avoided in estimating P with more conventional RSF models by implement

ing an use-availability design that compares resources at ‘available’ locations to ‘used’ 

locations with logistic regression (Lele and Keim, 2006; Hooten et al., 2017). We note 

that equation (6) resembles a more conventional RSF likelihood with an offset term— the 

anisotropic distance between x t and x t -At (Johnson et al., 2008). We consequently posit 

that if the OU process parameters were estimated first, then were used to construct the 

necessary covariate, P could then be estimated in a second step with regression, which is 

similar to constructing covariates for estimating P with Poisson regression (Johnson et al., 

2013) and conditional logistic regression (Forester et al., 2009). Although a sacrifice in 

statistical elegance, this saves considerable model complexity and estimation challenge, 

especially when hierarchical inference of P across several individuals is a primary goal. In 

doing so, we use point estimators to computing the covariate, which unfortunately also 

sacrifices ensured unbiased uncertainty around p. However, resource selection methods 

that use fitted parametric distributions to characterize availability often similarly disre

gard the uncertainty around the estimated parameters of those parametric distributions 

(e.g.; Avgar et al., 2016). The possible effects of discounting that uncertainty on inference 

likely warrant further study, however.

A primary advantage of the OU model within this framework is that it explicitly 

weights locations closer to the central point m more heavily. If it did not, space use 

in that area would be attributed solely to habitat or resources there, which could bias 

P . Another advantage of this OU model is that it can be used to build a home range 

estimate from a set of hypothesized mechanisms, such as different, possibly interacting, 

and/or dynamic habitat variables. Given that ^  is assumed stationary and as At gets 

large f a approaches N  (m, £ ) ,

lim fu(z|xt-At) =  K  1exp [z(xt)'p ]exp [-(xt -  m )'£  1(xt -  m)/2], (7)

which is simply the normalized product of a multivariate normal kernel (i.e. our elastic
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disc) and the habitat weighting function. We are thus left with a disc— a habitat inde

pendent central place only (circular) home range estimator N (y , £ )  — and a weighting 

function ^  that shapes the disc. The product of these provides the stationary estimate 

of f u, a contour of which is conceptually the elastic disc molded by the habitat (Fig. 1). 

It is worth noting here that equation (7) is key because if this property, which is owed 

to the OU process, were not true, then a computationally intensive simulation procedure 

or numerical investigation of the master equation would be required to construct a home 

range or space use estimate (Moorcroft and Lewis, 2006; Barnett and Moorcroft, 2008; 

Potts et al., 2012, 2014a,b,c; Potts and Lewis, 2014; Signer et al., 2019), rather than 

simply taking the product of two densities.

Simulation study

M eth od s  To ensure that estimation of the OU process and resource selection param

eter estimates were unbiased and informative, we implemented a simulation validation 

generally following the approaches of Forester et al. (2009) and Johnson et al. (2008). 

The simulation began with the creation of three artificial landscapes containing a con

tinuous resource variable. Using R and the package RandomFields (R Core Team, 2018; 

Schlather et al., 2019), landscapes were generated on a 2000 x 2000 grid using a Gaussian 

random field (GRF) with an exponential covariance function. The scale parameter was 

set at 10, 50, or 100, prescribing each landscape a different level of spatial autocorrela

tion. We simulated 100 tracks, each 100 move steps in length, for each landscape and 

each of six parameter combinations (3 =  0,1, or 2 and u  =  1 or 2) for a total of 18 

landscape/parameter scenarios. a 2 was fixed at 1002 and y  at (1000,1000). For each 

simulated track, we fit the OU model, assuming the central point y  known, generated 

available points, computed the necessary covariate from the estimated OU parameters, 

and then attempted to estimate 3  with an use-availability design using logistic regression.

Estimation was performed in a Bayesian framework using Stan with R (Stan Devel

opment Team, 2016, 2018; R Core Team, 2018), sampling five available points for each
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used point from the marginal posterior predictive distributions of each x t (Hooten et al., 

2014, 2017; Eisaguirre et al., 2019). We used three chains of 15,000 iterations, including

5,000 for warm-up, and retained 1,000 samples for inference in fitting the OU movement 

model, and we used four chains of 5,000 iterations, including 3,000 for warmup, and 

retained 2,000 samples for inference in estimating the selection parameter 3. Weakly 

informative (truncated) normal priors were placed on the OU parameters, centered away 

from the true values, and a weakly informative normal prior on 3, centered on zero. (See 

Appendix 2 for code containing details about the priors.) The covariate that accounts 

for the OU movement process in estimating 3  (equation 5) was computed for each used 

and available point with the posterior means from estimating the OU process. 3 was 

then estimated with an use-availability design and Bayesian logistic regression. For each 

parameter combination, we summarized the relative biases of the posterior means and 

the proportion of tracks for which the 95% credible interval overlapped the true value for 

3, u, and a2.

Sim ulation  R esu lts The proportions of 95% credible interval coverage were >  0.80 for 

nearly all cases in estimates of 3  (three were >  0.70) and generally high for a2 and u  as 

well (Figs. S1 & S2). Thus, simulations generally found the two-step approach provided 

estimates of resource selection parameters 3  with no or minimal bias (Fig. 2). Other use- 

availability designs have also been found to yield unbiased estimates of resource selection 

parameters (Lele and Keim, 2006; Forester et al., 2009; Avgar et al., 2016). Estimating 

the movement parameters u  and a2 yielded slightly more bias but generally similar to 

bias resulting from maximizing the full conditional likelihood, as found in the simulation 

study of Johnson et al. (2008).

Separating within home range movement and selection parameters remains inherently 

difficult for any estimation method. For example, probability of use could be high in 

certain spatial locations due to (1) the presence of a home range center (e.g., nest or 

den) or (2) the presence of a highly favorable habitat feature. The OU home range 

model partially accounts for these confounding reasons for use of some areas within home 

ranges, but consistent with the findings of Johnson et al. (2008), identifiability of the two
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160 movement and selection parameters/processes remains a serious modelling challenge.
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Application 

Model system

Golden eagles are a long-lived, territorial raptor that reach sexual maturity entering their 

third breeding season (Kochert et al., 2002; Watson, 2010). They most commonly nest on 

cliffs, or less commonly large trees, and are generally central place foragers (Kochert et al., 

2002; Watson, 2010). Eagles with established territories where a nest is a central place 

surrounded by uniformly average landscape should be expected to range and and use space 

in a circular pattern around the nest. Because real landscapes are not uniform, an eagle’s 

realized space use would then be shaped by the habitat surrounding that central point. 

Primary prey of Alaskan golden eagles are snowshoe hare Lepus americanus, ptarmigan 

Lagopus spp., and Arctic ground squirrel Urocitellus parryii (McIntyre and Adams, 1999; 

McIntyre and Schmidt, 2012; Herzog et al., 2019).

When a pair of eagles initiate a nesting attempt, the male does the majority of the 

provisioning, while the female tends the nest and does most of the incubating and brood

ing of eggs/nestlings. When nestlings mature to the point that they can thermoregulate 

(or when a nest fails), the adult female no longer needs to incubate or shade them as 

regularly, so she is free to move about the territory and aid provisioning (Watson, 2010). 

We expect that this event should be commensurate with an abrupt change in space use, 

because nest tending requirements suddenly become less restrictive. This might allow 

space use to change so that the male and female of the breeding pair partition space to 

minimize overlap in foraging areas and/or territory defense efforts. It is also possible 

that this might occur dynamically throughout the season and/or day, regardless of nest 

tending duties.

Another key characteristic of golden eagles that would be expected to strongly in

fluence how they use space is their flight mechanics— they are a soaring bird capable 

of capturing dynamic air currents to decrease or completely offset the energetic costs of
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flight (Katzner et al., 2012; Watson, 2010). Consequently, their space use patterns, and 

possibly partitioning of space among individuals, will be shaped dynamically by weather 

variables. Two common forms of such flight subsidies are thermal uplift, caused by the 

sun heating the surface of the earth and causing air to rise, and orographic uplift, caused 

by wind blowing up slope.

Extension to multiple home range cores

Because habitat and weather features are non-uniform around nest sites/central places, 

eagles (and other animals) can establish multiple core areas within their larger home 

range. Thus real home ranges are not a single circular distribution in a homogeneous 

landscape, but multiple approximately round cores shaped by the non-uniform distribu

tion of food and energy subsidies.

An OU home range model can be extended to allow for multiple core areas, and 

each core can be allowed to have a unique set of movement patterns, within an animal’s 

broader home range (Johnson et al., 2008; Breed et al., 2017). The simplest method 

to accomplish this is estimating transitions among K  cores as a Markov process, with 

a K  x K  transition matrix r  describing the probability of the animal moving from one 

core to another (or remaining in the currently occupied core) during the time interval t 

to t +  1 (Breed et al., 2017). Note that to ensure the Markov assumptions hold, fixed 

and regular time intervals are required, which is common in most (but not all) types of 

telemetry data. We can also estimate the relationships between transition probabilities 

and habitat conditions or other covariates in a manner similar to multinomial logistic 

regression. As these covariates can be temporally dynamic, we may denote our transition 

matrix as r t =  (7 j , t). Employing the multinomial logit link, we can write the conditional 

probability that the animal is in the jth  core at time t + 1  given that it came from the 

ith core:

0/7 -17 -\ exp (Yj,t)P (k*+1 =  j  |k* =  i) =  Yij,t -
E f= i  exp (Y E )

11



212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

where Y j t =  S j )ta j . S j,t is the vector of covariates associated with the core kt =  

i at time t, and the vector a j  weights those covariates by their effect on Yj,t. We 

could thus calculate r t for a set of core- and time-specific covariates. This is similar 

to modeling behavioral state transitions with a conventional hidden Markov Model for 

animal movement data (sensu Michelot et al., 2016), but the ‘states’ here are home range 

cores, each having a respective set of movement parameters (Breed et al., 2017).

Unsupervised estimation of the state transitions, which in Stan required marginalizing 

the latent discrete process, proved computationally impractical. We thus followed Breed 

et al. (2017) and implemented a k-means clustering algorithm to identify each home range 

core center and the core transitions a priori. We then proceeded with supervised 

estimation of r t and assuming each known.

Telemetry data

We captured golden eagles with a remote-fired net launcher placed over carrion bait 

near Gunsight Mountain, Alaska (61.67°N 147.35°W ). Captures occurred during spring 

migration, mid-March to mid-April 2014-2016. Adult and sub-adult eagles were equipped 

with 45-g back pack solar-powered Argos/GPS platform transmitter terminals (PTTs; 

Microwave Telemetry, Inc., Columbia, MD, USA). Eagles were sexed molecularly and 

aged by plumage.

PTTs were programmed to record GPS locations on duty cycles, ranging from 8-14 

fixes per day during the breeding season, depending on year of deployment. In 2014, 

PTTs were set to record 13 locations at one-hour intervals centered around solar noon 

plus a location at midnight local time. 2015 PTTs were programmed to record eight 

locations with one-hour intervals centered around solar noon very early and late in the 

season and 10 locations for most of the season. In 2016, we revised our programming 

approach so that PTTs took 12 fixes with a fixed 2-hr time interval. Fifteen PTTs were 

deployed in 2014, 23 in 2015, and 15 in 2016.
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Covariates

S election  covariates We used the Alaska Center for Conservation Science Alaska Veg

etation and Wetland Composite (AKVW C; 30-m resolution) data for characterizing habi

tat type. We collapsed the numerous habitat types in the dataset into eight for this anal

ysis. These were shrub, open (e.g., meadows and open tundra), bare, forest, wet (e.g., 

marsh), water, ice (i.e. perennial snow and ice), and human. See Appendix for details.

Elevation data were gathered using the Mapzen Terrain Service with the e le v a tr  

package (Hollister and Shah, 2018). We specified the ‘zoom ’ variable such that the 

resolution closely matched that of the habitat data. We included elevation and slope 

(slope E [0 , n/2] radians) as predictors in the model.

We used a state-wide data set of snow-off date (date of which an area became snow 

free) to derive a dynamic binary indicator variable of whether or not grid cells were free 

of snow (Macander et al., 2015). While one might expect some confounding between the 

(perennial) snow and ice habitat variable and this snow indicator, it would be limited 

due to few glaciated and perennial snow-covered areas frequented by eagles sampled.

The remaining variables included in the model were related to orographic and thermal 

uplift and were derived from the National elevation data and Center for Environmental 

Predictions (NCEP) North American Regional Reanalysis (NARR) data. Angle of in

cidence (aoi) was included for the effect of orographic uplift on eagle space use. It is 

the deviation of the relative wind from the aspect of a slope and was computed such 

that aoi E [0 , n] (Murgatroyd et al., 2018); n /2  corresponds to a wind orthogonal to a 

slope’s aspect, and n to a wind perfectly parallel blowing up slope. Wind direction was 

computed trigonometrically from the meridional and zonal wind components estimated 

by the NCEP NARR 10 m above the surface.

The effect of thermal uplift was included with a hill shade variable. Hill shade was 

computed following Murgatroyd et al. (2018), such that hs E [0 ,1], where hs =  1 is 

direct sun (most thermal uplift) and hs =  0 no sun (no thermal uplift). We gathered 

the required location-, date-, and time-specific azimuth and zenith of the sun using the 

package maptools (Bivand and Lewin-Koh, 2016).
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C ore  sw itch ing covariates We also included wind variables as covariates in the core 

transition process. We expected that certain wind directions and/or magnitudes might 

make certain home range cores more or less favorable. So, the cosine and sine of wind 

direction were included in addition to wind magnitude as covariates in equation (8). As 

above, these were computed trigonometrically from the NCEP NARR data specific to 

each home range core.

Inference

Due to the Markov assumption, we used only the tags deployed in 2016 programmed for 

a uniform fix rate, and given our primary goal was to illustrate this approach, here, we 

used only data for territorial eagles in 2016. This included six males and six females, all 

aged to their fifth year or older. None of these eagles were members of the same pair. 

Aerial surveys flown in June 2016 revealed that four of the eagles had young (at the time 

of the survey), and, with the exception of one nest site that was not surveyed, the others 

showed signs of reproductive attempts.

The model was fit as described above for simulations. However, we used three chains 

of 3,000 iterations, including 2,000 for warmup, retaining 3,000 samples for inference 

in estimating the OU process parameters and four chains of 2,000, including 1,000 for 

warmup, retaining 2,000 samples for inference in estimating the selection parameters. 

Weakly informative normal priors were placed on . Convergence of the posterior 

was checked with trace plots and Gelman diagnostics (Stan Development Team, 2018). 

Stan and R code for fitting the OU process and sampling from the conditional posterior 

predictive distributions are provided in Appendix 2.

As our primary interest was differences between male and female eagles in early and 

late breeding season, we wanted parameter estimates specific to each sex and to early 

and late breeding season. To keep computing time more reasonable, we fit the model 

separately for these periods as well as for each sex, as opposed to using indicator variables 

in a single model fit. The OU parameters were estimated separately for each individual, 

but the selection coefficients P were estimated hierarchically across individuals in the
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regression model. Aerial observations of the nests of the tagged eagles indicated that 

20 June was on average the approximate date when chicks should have been of age to 

thermoregulate, so that is the date we used to partition the data between early and late 

breeding season.

Space use distributions were computed according to equation (7). The probability 

density predicted for each home range core was weighted by the number of eagle locations 

in that core prior to computing the 95% volume contour of the space use distributions, 

which we used to estimate home range boundaries. 95% is fairly consistent across more 

descriptive home range estimation techniques (Hooten et al., 2017).

Results

M ovem en t param eters

Because individuals had differing numbers of home range cores, we summarize here only 

the OU movement parameters from each individual’s most heavily used core. We found 

some variation in OU parameters between sexes and periods of the breeding season (early 

vs. late) for territorial golden eagles (Fig. 3 & 4). These patterns provide some evidence 

for an increase in home range core size, indicated by larger or more variable a (Fig. 3) 

and increase in home range structure, based on an increase in number of home range 

cores (Fig. 4) for females. There was also a slight decrease in the central tendency u 

within the most used core (Fig. 3). Finally, for some eagles, there was evidence that 

wind affected switching between core areas for individuals with multi-core home ranges 

(Fig. 3).

H abitat selection

We present the effects of the most relevant habitat types in figure 5 and provided figure 

S4 with all effects in Appendix 1. Both male and female eagles weakly selected against 

forested areas during early breeding season, and females seemed to select against shrub 

and open habitats early, relative to bare areas (Fig. 5). Overall, males and females 

selected for similar terrain, though there was some evidence that females selected for
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E n ergy landscape

In the early breeding season, before chick thermoregulation or nest failure allow more 

movement away from the nest, males and females appears to select energy landscape 

features similarly (Fig. 6 , 7, & 8).

During late breeding season, male and female eagles appeared to partition the land

scape dynamically based on components of the energy landscape (Fig. 6 , 7, & 8 ). Males 

tended to use areas with more orographic uplift (i.e. higher angle of incidence; Fig. 6 ), 

while females used more thermal uplift (i.e. greater hill shade; Fig. 6). This pattern 

most likely resulted from males and females selecting dynamic energy subsidy features 

differently (Fig. 7). Further, females showed essentially no selection for or against angle 

of incidence during late breeding season (Fig. 6 & 7). The posterior probability that 

females selected more strongly for hill shade than males was 0.06, and the posterior prob

ability that males selected more strongly for higher angle of incidence than females was 

0.18 (Fig. 7). We computed these as the number of female (or male) posterior samples 

that were greater than the male (or female) posterior mean divided by the total number 

of samples.

Discussion

Our most notable finding from applying the OU space use model to territorial golden 

eagles was that male and female eagles seem to partition the energy landscape during late 

breeding season when both sexes would be using the home range and possibly provisioning 

young (Fig. 6 & 7). Two possible explanations for this dynamic partitioning of space 

could be ( 1) a means for each sex to avoid overlap in foraging and/or territory defense 

efforts and/or (2) an emergent pattern resulting from sexual size dimorphism.

Avian taxa vary in morphology to utilize different types of flight (e.g., flapping or 

soaring) but there are also morphological differences within soaring taxa, such that cer

tain species are better adapted for different types of soaring, including dynamic, slope,
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and thermal (Gill, 2007). Between sexes of species, though, we also find differences. For 

example, the females of many raptors, including golden eagle, exhibit higher wing loading 

(wing area per body mass) than males (Lish et al., 2016). Lighter wing loading could 

allow male eagles to capitalize on even slight bits of uplift generated orographically with 

more energetic efficiency than females. Thermal uplift is also generally a more efficient 

flight subsidy than orographic uplift (Duerr et al., 2012), so, given their higher wing 

loading, it might be energetically advantageous for females to use primarily thermal soar

ing. Further, Murgatroyd et al. (2018) found among-territory variation in how different 

dynamic variables predict Verreaux’s eagles’ soaring modes; however, they did not report 

the sexes of the eagles tagged. Given our results, it is possible that some of that variation 

could have also been due to sex-specific use of the energy landscape.

Orographic uplift is typically available at only relatively low heights above Earth’s 

surface, whereas thermals can travel much higher into the atmospheric boundary layer. 

The altitude of eagles using these different types of uplift follows suit (Katzner et al., 

2015). Given selection for differing types of uplift, we would thus expect male and 

female eagles might also partition their home ranges vertically as well. Maintaining good 

visibility with the surface is required for successful foraging, so partitioning thermal and 

orographic uplift could indicate different behavioral budgets or hunting strategies. Males 

could more frequently forage, while the larger females might spend more time thermal 

soaring at higher altitudes poised to defend the territory against conspecific intruders. In 

previous work, females have been reported to be more active in nest and territory defense 

than males (Bahat, 1989), likely especially in late breeding season when they are more 

free from tending young, which corresponds to the period when we found partitioning of 

the energy landscape (Fig. 6 & 7). It is important recognize that thermal and orograpahic 

uplift vary over space following changes in wind and the angle of the sun. Consequently, 

males and females may partition space and activities temporally though the day, as 

females may await better thermal soaring conditions during the day before beginning 

extensive movements around the home range. In contrast, wind can generate orographic 

uplift throughout the day.
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While our findings relating to the energy landscape were most notable, we also found 

some differences in habitat and terrain use, which are consistent with sex-specific roles 

during the breeding season. Females used and selected steeper slopes than males, con

sistent with nesting behavior and perching near the nest (Collopy and Edwards, 1989; 

Kochert et al., 2002; Watson, 2010). Not surprisingly, females used less steep slopes dur

ing late breeding season, compared to early, consistent with behavior in the later nestling 

stages of breeding (Watson, 2010). Also, males, who do most of the provisioning even 

late into the breeding season (Collopy and Edwards, 1989; Watson, 2010), selected more 

strongly for shrub and open habitats (Fig. 5), which would likely be used for hunting. 

During late breeding season, females’ selection for shrub habitats approached that of 

bare areas, likely following an increased role in provisioning. We also saw changes in 

movement patterns and home range structure consistent with this as well (Fig. 3 & 4). 

Additionally, females selected most strongly for bare areas, which could be related to 

the energy landscape, as bare ground would gather the most solar radiation to generate 

thermal uplift.

There were few general patterns in how eagles transitioned among home range cores 

following changes in wind (Fig. 3), but we did successfully estimate the Markovian 

transition process. This was similar to Breed et al. (2017), but we modeled all transition 

probabilities with covariates. In fact, we found that estimation of this multistate OU 

model was relatively easy with Stan, as convergence to the posterior was rapid. One 

possible biological pattern that we found was that females tended to avoid departing 

their most used use core area in windier conditions during early breeding season (Fig. 

3). During windier, colder conditions, female golden eagles will spend additional time 

incubating and brooding (Collopy, 1984).

Finally, predictions of home range size from the fitted model were similar to home 

range sizes estimated for golden eagles using descriptive techniques (Fig. 9; Watson, 

2010; Watson et al., 2014; Moss et al., 2014; Braham et al., 2015). While there were 

some notable large home ranges predicted (Fig. 9), these were from individuals that had 

failed at breeding, some of which made some larger scale movements away from their
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apparent territory. So, home ranges estimated from the fitted OU space use model are 

likely reasonably representative of eagle space use patterns. Although our simulation 

study suggested that a, on which our predictions of home range size strongly depend, 

can be biased, that would be expected when P (and spatial autocorrelation) is high, but 

our results in this application suggest P is relatively low for the eagles sampled (Fig. 5 

& 7). Nonetheless, our estimates of the OU parameters and predictions of home range 

size should be interpreted cautiously.

Conclusions

We showed that estimating a fairly complex mechanistic space use model is relatively 

flexible and can be done by leveraging readily available software. While the model works 

most naturally with central place animals, the ability to incorporate multiple home range 

cores, and considering the range of movement and space use patterns that can be captured 

with the OU parameters, make it quite broadly applicable. Further, the simplicity in 

computing estimates of space use distributions and home range boundaries— the product 

of two steady-state distributions— is an additional attribute (Fig. 1 & 9).

In applying the model to a sample of golden eagles, we were able to obtain hierarchical 

inference of habitat selection parameters quite easily. In doing so, although our sample 

consisted of only 12 individuals, we provided some evidence of sex-specific partitioning 

of the energy landscape within home ranges, in addition to some other movement and 

habitat selection patterns consistent with eagle biology. Sex-specific patterns in utilizing 

the energy landscape, perhaps across a breadth taxa beyond soaring birds, is certainly 

worth further study.
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Figures

Figure 1: Example of computing the steady-state, analytical home range and space use distribution from an Ornstein-Uhlenbeck space use 

model. The movement-only, habitat-independent space use distribution (a) is modified by the habitat (b) and the animal’s preferences for 

that habitat (i.e. a habitat weighting function), giving rise to a predicted space use distribution (c). Point is animal’s center of attraction, 

and the polygon in c is the 95% volume contour of the space use distribution, representing an estimated home range boundary.



Figure 2: Summary of the relative bias in the selection coefficient ft when estimated 

with an Ornstein-Uhlenbeck home range model with movement parameters estimated 

offline. The ‘scale’ parameter adjusts the level of spatial autocorrelation over the artificial 

landscape movements were simulated on, and u  is a movement parameter. Points are the 

average of posterior means computed across 100 simulations ±  two standard deviations.
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Figure 3: Summary of the posterier means of the movement parameters in an Ornstein- 

Uhlenbeck movement model fit to six male and six female golden eagles with territories 

in southcentral Alaska. a is the movement variance; u  the autocorrelation parameter 

measuring the centralizing tendency; and a  the coefficients in the Markovian home range 

core switching process. The models were fit separately for early and late breeding season.
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Figure 4: Number of home range cores estimated with a k-means clustering algorithm 

for six male and six female golden eagles with territories in southcentral Alaska. The 

algortithm was run separately for early and late breeding season.
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Figure 5: Population-level estimates of the habitat selection parameters estimated with 

an Ornstein-Uhlenbeck space use model for territorial golden eagles summering in south

central Alaska. Points are posterior means and horizontal lines are 95% credible intervals. 

The reference category used for estimation was ‘bare’ .
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Figure 6: Probability of a golden eagle using a spatial location within its breeding season 

home range in southcentral Alaska as a function of habitat variables estimated with an 

Ornstein-Uhlenbeck (OU) space use model. This is the average effect conditioned on the 

space available to each eagle characterized by an OU biased random walk. The model 

was fit separately for early and late breeding season and for each sex. Predictions were 

smoothed over the availability points with a generalized additive model (df =  4) and 

ribbons are 95% confidence intervals. Units are radians for angle of incidence and slope, 

and meters for elevation. Higher hill shade corresponds to more direct sun and greater 

thermal uplift potential.
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Figure 7: Marginal posterior densities of population-level estimates of the hill shade 

and angle of incidence parameters showing partitioning of the energy landscape (thermal 

and orographic uplift) by male and female golden eagles during late breeding season. 

These were estimated with an Ornstein-Uhlenbeck space use model for territorial golden 

eagles summering in southcentral Alaska. Densities were constructed with 2000 posterior 

samples.
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Figure 8: Space use distributions predicted from the Ornstein-Uhlenbeck space use model 

for territorial golden eagles summering in southcentral Alaska. Predictions were made 

over a characteristic landscape for morning and afternoon to illustrate differential use 

patterns according to thermal uplift. White corresponds to higher probability of use and 

blue lower.
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Figure 9: Home range sizes predicted from the Ornstein-Uhlenbeck space use model 

for territorial golden eagles summering in southcentral Alaska. Home range size was 

estimated as the 95% volume contour of the predicted space use distribution.
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Appendix 1: supplementary tables and figures591

Figure S1: Relative bias in centralizing tendency when estimated with Ornstein-

Uhlenbeck home range model with movement parameters estimated offline. Asterisk 

indicates 95% credible set captured the true value in >  70% of the simulations.
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Figure S2: Relative bias in centralizing tendency when estimated with Ornstein-

Uhlenbeck home range model with movement parameters estimated offline. Asterisk 

indicates 95% credible set captured the true value in >  70% of the simulations.
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Table S1: Habitat types used in analysis.
AKVW C class habitat type
’Bareground’ ’bare’
’Freshwater or Saltwater’ ’water’
’Bareground (Beach or Tide Flat) (Southern Alaska)’ , 
’Herbaceous (Marsh) (Interior Alaska, Cook Inlet Basin)’ , 
’Herbaceous (Marsh) (Northern and Western Alaska)’ , 
’Herbaceous (Tidal) (Southern Alaska)’ , ’Herbaceous (Wet- 
Marsh) (Southern Alaska)’ , ’Herbaceous (Aquatic)’, ’Low 
Shrub (Tidal) (Southern Alaska)’, ’Herbaceous (Wet-Marsh) 
(Tidal)’

’wet’

’Herbaceous (Mesic) (Interior Alaska, Cook Inlet Basin)’ , 
’Herbaceous (Mesic) (Northern and Western Alaska)’ , ’Herba
ceous (Mesic) (Southern Alaska)’ , ’Herbaceous (Peatland) 
(Southern Alaska)’ , ’Herbaceous (Wet) (Interior Alaska, Cook 
Inlet Basin)’ , ’Herbaceous (Wet) (Northern and Western 
Alaska)’ , ’Lichen’ , ’Moss’ , ’Moss (Southern Alaska)’ , ’Sparse 
Vegetation (Interior Alaska, Cook Inlet Basin)’ , ’Sparse Veg
etation (Northern and Western Alaska)’, ’Tussock Tundra 
(Low shrub or Herbaceous)’ , ’Fire Scar’

’open’

’Low Shrub’ , ’Low Shrub (Peatland) (Southern Alaska)’ , 
’Dwarf Shrub’, ’Dwarf Shrub (Southern Alaska)’ , ’Dwarf 
Shrub-Lichen’, ’Dwarf Shrub, or Herbaceous (Mesic) (South
ern Alaska)’ , ’Low Shrub or Tall Shrub (Open-Closed)’, ’Low 
Shrub/Lichen’ , ’Low-Tall Shrub (Southern Alaska)’ , ’Tall 
Shrub (Open-Closed)’

’shrub’

’Deciduous Forest (Open-Closed)’ , ’Deciduous Forest 
(Open-Closed) (Seasonally Flooded) (Southern Alaska)’ , 
’Deciduous Forest (Woodland-Closed) (Southern Alaska)’ , 
’Hemlock (Woodland-Closed)’ , ’Hemlock-Sitka Spruce 
(Woodland-Closed)’ , ’Needleleaf Forest (Open-Closed) 
(Seasonally Flooded) (Southern Alaska)’, ’Needleleaf Forest 
(Woodland-Open) (Peatland) (Southern Alaska)’, ’Sitka 
Spruce (Woodland-Closed)’, ’White Spruce or Black Spruce 
(Open-Closed)’ , ’White Spruce or Black Spruce (Woodland)’ , 
’White Spruce or Black Spruce-Deciduous (Open-Closed)’ , 
’White Spruce or Black Spruce/Lichen (Woodland-Open)’

’forest’

’Urban, Agriculture, Road’ ’human’
’Ice-Snow’ ’ice’
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Figure S3: Population-level estimates of the habitat selection parameters estimated with 

an Ornstein-Uhlenbeck space use model for territorial golden eagles summering in south

central Alaska. The snow variable was a dynamic indicator of whether or not a location 

was snow-free. Points are posterior means and horizontal lines are 95% credible intervals.
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Figure S4: Full version of figure 5 from main text.
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Appendix 2: code 

Stan model

data {

int<lower=0> N; 

vector[N ] d t; 

v e c to r [2 ] x [N ]; 

int<lower=1> K; 

v e c to r [2 ] mu[K]; 

in t  mumu[N]; 

vector[K ] wm[N]; 

vector[K ] wc[N]; 

vector[K ] ws[N]; 

matrix[K,K] d_mu;

}

parameters {

real<low er=0> omega[K]; 

real<low er=0> sigm a[K]; 

matrix[K,K] b; 

matrix[K,K] b_wm; 

matrix[K,K] b_d; 

matrix[K,K] b_wc; 

matrix[K,K] b_ws;

}

/ /  length  o f track

/ /  time in te rv a ls

/ /  observed lo c a t io n s

/ /  number o f s ta tes

/ /  ce n tra l p o in ts

/ /  ’ known’ s ta te  sequence

/ /  wind magnitude f o r  each core

/ /  cos in e  wind d ir e c t io n  at each core

/ /  s ine wind d ir e c t io n  at each core

/ /  in te r  core  d ista n ce  m atrix

/ / a t tr a c t io n strength

/ / d i f fu s io n  parameter

/ / in te rce p ts

/ / c o e f f i c i e n t fo r wind magnitude

/ / c o e f f i c i e n t fo r in te r -c o r e  d istan ce

/ / c o e f f i c i e n t fo r cos(w ind d ir e c t io n )

/ / c o e f f i c i e n t fo r sin (w ind d ir e c t io n )
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639

640

641

642

643

644

645

646

647

648

m a trix [2 ,2 ] Sigma; / /  v a r-cov  m atrix 

m a trix [2 ,2 ] Omega; / /  ce n tra l a t t r a c t io n  m atrix

f o r  (n in  2:N) {

/ /  s ta te  is  c a te g o r ic a l draw

mumu[n] ~ c a t e g o r ic a l_ lo g i t (  b[,mumu[n-1 ] ]  + b_d[,mumu[n-1 ]].*d_m u[,m um u[n-1 ] ]  

+ b_wm[,mumu[n-1 ]] .*w m [n -1 ] + b_wc[,mumu[n-1] ] . * w c [ n - 1]

+ b_ws[,mumu[n-1 ] ] .* w s [ n - 1 ] ) ;

/ /  d e fin e  movement param m atrices 

Sigm a[1,1] = sigma[mumu[n]];

Sigm a[1,2] = 0;

Sigm a[2,1] = 0;

Sigm a[2,2] = sigma[mumu[n]];

Omega[1,1] = -omega[mumu[n]];

Omega[1,2] = 0;

Omega[2,1] = 0;

Omega[2,2] = -omega[mumu[n]];

/ /  movement equation

x[n] ~ multi_normal(mu[mumu[n]] + m atrix_exp(Om ega*dt[n])

* ( x [ n - 1] -  mu[mumu[n]] ) ,

Sigma -  m atrix_exp(Om ega*dt[n]) * Sigma * matrix_exp(Omega’ * d t [n ])  ) ;

model {

42



649

650

651
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654
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664

665
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670

671

672

673

674

675

676

677

/ /  some p r io rs

sigma ~ normal(6000000, 1000000); 

omega ~ norm al(0, 1 ) ; 

to_vector(b_w m ) ~ norm al(0, 10 ); 

to_vector(b_w s) ~ norm al(0, 10 ); 

to_vector(b _w c) ~ norm al(0, 10 ); 

to _ v e c to r (b _ d ) ~ norm al(0, 10 ); 

t o _ v e c to r (b )  ~ norm al(0, 10 );

}

generated q u a n t it ie s {

m a trix [2 ,2 ] Sigma; 

m a trix [2 ,2 ] Omega; 

v e c to r [2 ] x_av[N ];

f o r ( i  in  2 :N ){

Sigm a[1,1] = sigm a[mumu[i]]; 

Sigm a[1,2] = 0;

Sigm a[2,1] = 0;

}
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699

700

701

702
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704

705

Sigma[2,2] = sigma[mumu[i]];

Omega[1,1] = -omega[m um u[i]];

Omega[1,2] = 0;

Omega[2,1] = 0;

Omega[2,2] = -omega[m um u[i]];

x_av[1] = x [ 1 ] ;  / /  s ta r t  somewhere

/ /  th is  draws a v a ila b le  p o in ts  from p o s te r io r  p r e d ic t iv e  

x _ a v [i]  = multi_normal_rng(mu[mumu[i]] + m atrix_exp(O m ega*dt[i]) 

* ( x [ i - 1 ]  -  mu[mumu[i]] ) ,

Sigma -  m atrix_exp(O m ega*dt[i]) * Sigma * matrix_exp(Omega’ * d t [ i ] )  ) ;  

}

}

R code

########################################

### This chunk is  done per in d ividua l###  

########################################

### samples from p o s te r io r  o f  m u ltista te  OU model
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707

708

709
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711

712

713

714

715

716
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718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

s t a n .f i t  = s ta n ("sta n _m od e l.s ta n ",

data = list(x,dt,N ,K,m u,m um u,wm ,ws,wc,d_m u),

p a r s = c ( ’ omega’ , ’ sigm a’ , ’ b ’ , ’ b _d ’ , ’ b_wm’ , ’ b_wc’ , ’ b_ws’ ,

chains = 3,

i t e r  = 3000,

warmup = 2000,

cores  = 3,

co n tro l = lis t(m ax_treed ep th  = 13 ),

seed = 3) ### re ta in s  3000 samples f o r  in feren ce

### draws a v a ila b le  p o in ts  from p o s te r io r  p r e d ic t iv e  

n_av = 5  # 5  a v a ila b le  p o in ts  per used p o in st

x .a v = m a trix (rep (0 ,n _a v ), nrow = 1) 

y .a v = m a trix (rep (0 ,n _a v ), nrow = 1)

fo r (k  in  1 :N ){

x .a v  = r b in d (x .a v ,s a m p le (u n l is t (r s ta n ::e x t r a c t (s t a n .f i t ,

pars = p a s te 0 ( ’ x _ a v [ ’ ,l 

use.nam es=F), n_av)) 

y .a v  = r b in d (y .a v ,s a m p le (u n l is t (r s ta n ::e x t r a c t (s t a n .f i t ,

pars = p a s te 0 ( ’ x _ a v [ ’ ,l 

use.nam es=F), n_av))

}

x .a v  = x .a v [ -1 , ]  

y .a v  = y .a v [ -1 , ]

x_a v ’ ) ,

, ’ , 1 ] ’ ) ) ,

, ’ , 2 ] ’ ) ) ,
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763

###################################################

### This chunk estim ates RSF across  in d iv id u a ls  ###

###################################################

# use = bern ou li u se d /a v a ila b le

# snow = binary in d ica to r

# hab = ca te g o g r ica l h ab ita t types

# e lev_s  = centered  and standardized  e le v a tio n

# s lop e_s  = centered  and standardized  slope

# ao i_s  = centered  and standardized  angle o f  in cid en ce

# hs_s = centered  and standardized  h i l l  shade

# mumu = home range core

# id  = in d iv id u a l id

# rs f_ d a t  = data frame h old in g  above v a ria b le s

r s f _ b f i t  = stan_glm er(use ~ id  # f ix e d  e f f e c t  o f  id  to  account f

# or v a r ia tio n  in  a v a i la b i l i t y  among in d iv id u a ls  

+ snow + (0+snow||id/mumu)

+ hab + (0+hab||id/mumu)

+ e lev_s  + (0+elev_s||id/mumu)

+ s lop e_s  + (0+slope_s||id/mumu)

+ ao i_s  + (0+aoi_s||id/mumu)

+ hs_s + (0+hs_s||id/mumu)

+ o f f s e t (a n is o ) ,  

fa m ily= b in om ia l(lin k = Jl o g i t J) ,  

data = r s f_ d a t ,
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764

765

766

767

768

769

770

771

772

773

cores = 4, 

i t e r  = 2500, 

warmup = 1500, 

th in  = 2,

algorithm  = ’ sam pling’ ,

in i t _ r  = 0 . 5 ,  ## th is  helps chains i n i t i a l i z e

adapt_delta  = 0 .95)
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