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ABSTRACT 
 

The unique relationship between neuronal structure and function is paramount for 
the complexity of the human nervous system. This relationship allows neurons to receive, 
process, and transmit information through many inter- and intracellular mechanisms. 
Axonal transport is an essential intracellular mechanism for neuronal health and viability. 
This process involves the transport of cellular cargo in the anterograde and retrograde 
direction along the axon, relaying materials between the soma and axon terminals, 
respectively. The necessity of an expedited form of transport becomes clear when one 
considers the magnitude of distance cargo must travel; in some cases, the axon can be up 
to a meter in length. While axonal transport increases the efficiency of cargo delivery, it is 
imperative that this process be regulated both spatially and temporally. 
 The choreography of axonal transport is mediated by molecular motor proteins that 
carry neuronal cargo along microtubule tracks within the axon. Kinesin proteins, a class of 
molecular motors, transport cargo in the anterograde direction. KIF1A is a kinesin-3 family 
member that is responsible for the transport of certain critical intracellular cargo. However, 
the mechanisms for KIF1A regulation remain largely misunderstood. A known regulatory 
mechanism of kinesin motors is via the presence of microtubule associated proteins 
(MAPs) that bind to and crowd microtubule roadways. Specifically, the neuronal MAP Tau 
has been shown to differentially regulate kinesin families found in the neuron, such as 
kinesin-1 and kinesin-2. Furthermore, these regulatory capabilities are directly related to 
the behavioral binding state of Tau, of which it can bind statically or diffusively to the 
microtubule. While the potential regulatory relationship between KIF1A and Tau is 
unknown, both of these players exhibit pathological behavior in neurodegenerative 
diseases such as Alzheimer’s disease and frontotemporal dementia. These perturbations in 
KIF1A transport, in tandem with Tau dysfunction, present compelling evidence of 
important relationship between these two proteins. 
 To investigate and define the relationship between KIF1A and Tau, a single-
molecule in vitro reconstituted system approach was employed. In doing so, an unexpected 
finding occurred in the early stages of experimentation. It was revealed that KIF1A exhibits 
a unique pausing behavior between segments of processive movement on the microtubule 
surface. This behavior, which had been unreported and uncharacterized, contradicts the 
canonical behavior of other well studied kinesin proteins. KIF1A pausing was found to be 
mediated by the C-terminal tail (CTT) structure of tubulin, the building blocks of 
microtubules. Further exploration revealed that KIF1A pausing was reliant upon the level 
of polyglutamylation, a post-translational modification enriched on neuronal tubulin, of the 
CTTs. Lastly, it was determined that polyglutamylated CTTs allow for an electrostatic 
tethering mechanism with the K-loop, a motor domain surface loop of KIF1A, that allows 
the motor to pause. Like KIF1A, Tau also relies on the tubulin CTTs to exhibit its 
characteristic diffusive binding behavior. In considering this fact, KIF1A regulation via 
Tau’s behavioral binding state was investigated. Ultimately, it was discovered that the 
diffusive binding state of Tau regulates KIF1A, not the static binding state. This regulation 
occurs when KIF1A tries to engage in a pause, but cannot due to diffusive Tau occupying 
the CTTs. This work provides a new mechanism of Tau-mediated kinesin motor regulation 
and the first direct link between KIF1A and Tau function, expanding our knowledge of the 
spatiotemporal regulation of axonal transport. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Structure and Function of the Neuron 
 
In the late 19th century, Santiago Ramón y Cajal introduced the “Neurone doctrine” 

to the scientific community and established the neuron as the basic anatomical unit of the 

nervous system (Bock 2013; Andres-Barquin 2001). While our understanding of this cell 

type has been greatly increased since this foundational publication, one theme of Ramón y 

Cajal’s initial observations still rings true: the unique structure and function of this cell 

type is equal parts alluring and perplexing. The characteristic asymmetries of the neuron 

result in a uniquely polarized cell structure, as is observed in all morphologically distinct 

neuron types. This polarity is essential for the compartmentalization of neuronal regions, 

each with their respective cellular functions (Figure 1-1) (Donato et al. 2019; Terenzio, 

Schiavo, and Fainzilber 2017). 

On a network level, the role of the neuron is to receive and transport both chemical 

and electrical information from other cells. This process is achieved in part through the 

genesis of the synapse, defined by a point of communication between two neurons across 

which information is transferred (Shaw 1913; Ovsepian 2017). Specifically, this point of 

contact is commonly made by the dendrite of one neuron and the axon terminal of another 

neuron. The axon terminals, defined as a distinct morphological branching at the retrograde 

end of the axon, are the pre-synaptic site of regulated synaptic vesicle release (Figure 1-1) 

(Bullock 1959; Kalil and Dent 2014). It is at this location that the synaptic vesicles 

containing neurotransmitters, and a population of dense core vesicles containing 

neuropeptides, are docked and waiting for the cellular cues to release their contents into 

the synaptic cleft (Sudhof 1995; Kaeser and Regehr 2017; van den Pol 2012). The 
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dendrites, branching off of the neuronal cell body, serve as the area in which a post-synaptic 

cell receives pre-synaptic inputs (Figure 1-1) (Peichl and Wassle 1983; Horton et al. 2005). 

Visually characterized by their complex structural arbor, the volume occupied by the 

dendrites is directly related to the number of synapses the dendrites can sample (Peichl and 

Wassle 1983) and is carefully regulated to match the volume of pre-synaptic axon terminals 

to avoid under- or over-sampling. Synapse structure and function is heavily supported by 

glial cells called astrocytes, which form what is referred to as a tripartite synapse (Araque 

et al. 1999; Pfrieger and Barres 1996). Astrocytes carry out many roles in synapse 

maintenance such as metabolic buffering, neurotransmitter exchange, and fine-tuned 

modulation of synaptic transmission (Pfrieger and Barres 1996; Tsacopoulos and 

Magistretti 1996; Mennerick and Zorumski 1994; Pfrieger and Barres 1997). 

The axon links the soma, the site of protein synthesis, with the axon terminals, the 

site of neurotransmitter release (Figure 1-1). This defining structural feature of neuronal 

polarity branches off of the neuronal soma, the region where the vast majority, but not all, 

of protein synthesis occurs in the neuron (Kim and Jung 2015). Axons can extend striking 

magnitudes of length with some extending over one meter (Twelvetrees, Hendricks, and 

Holzbaur 2012). To address the inherent challenges of conveying cellular information in a 

polarized cell type that covers a great distance, the axon has many unique structural and 

functional characteristics. 
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Figure 1-1. Schematic of basic neuronal morphology. Neurons have a uniquely 
polarized morphology. On one end is the soma, containing the nucleus and many types of 
organelles. Branching off of the soma are dendrites that receive input from pre-synaptic 
cells. Each neuron has one axon that projects off of the soma and can span great magnitudes 
of distance (up to a meter in length). On the opposing end of the neuron are the axon 
terminals that will form synapses with post-synaptic cells. The neuron in this image was 
acquired from Servier Medical Art (SMART) under a Creative Commons Attribution 3.0 
Unported license- labels were added. 

 

When looking at a cross section of the axon, one will find many layers of structural 

complexity. At the innermost point is the axoplasm, or the cytoplasm specific to the axon, 

that is ensheathed in a plasma membrane (Figure 1-2). One important characteristic of the 

axoplasm is its limited amount ribosomes and lack of endoplasmic reticulum, resulting in 

a limited amount of protein synthesis; this means that the majority of proteins expected to 

reach the axon terminals must be synthesized in the soma and then be transported down 

the length of the axon. While not a site of major protein synthesis, the axoplasm is rich in 

many cytoskeletal proteins such as actin, microtubules, and neurofilaments (Figure 1-2), 

by which filamentous polymerization promotes a long and slender axonal morphology 

(Price et al. 1988; Schnapp and Reese 1982). Surrounding the plasma membrane of large 

diameter neurons is an insulating layer of myelin. This neuron-specific membrane is often 

defined by its high lipid content and enrichment of proteins such as myelin proteolipid 
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protein and myelin basic protein (Quarles 1999). Myelin is formed by encapsulating glial 

cells, either oligodendrocytes (in the central nervous system) or Schwann cells (in the 

peripheral nervous system) (Quarles 1999; Simons and Nave 2015) (Figure 1-2), and is 

distributed in segments along the axon separated by unmyelinated segments known as the 

nodes of Ranvier (Ghosh, Sherman, and Brophy 2018; Huxley and Stampfli 1949).  

One way that signals are able to efficiently travel down the length of the axon is 

through the generation of an action potential. Action potentials are an important 

communication tool within neurons, as they mainly result in the release of inhibitory or 

excitatory neurotransmitters. Action potentials, resulting in fast transduction of electrical 

signal, leads to rapid depolarization and repolarization of the neuronal membrane voltage, 

resulting from the influx and efflux of ions into and out of the neuron (Eccles 1966).  The 

propagation of an action potential down the length of the axon is highly dependent on the 

segmented myelin sheathing through a process known as saltatory conduction, 

characterized by the action potential “leaping” between nodes of Ranvier due to the 

increased conduction velocity of electrical signals in myelinated axon segments (Huxley 

and Stampfli 1949).  
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Figure 1-2. Cross section of an axon. In the center of an axon, there are many types of 
cytoskeletal proteins, such as microtubules, neurofilaments, and actin. These proteins play 
an important structural role in axon morphology and are surrounded by the axonal plasma 
membrane. The axon is encapsulated in many insulating layers of myelin that are generated 
from glial cells (either oligodendrocytes or Schwann cells). The cell in this image was 
acquired from Servier Medical Art (SMART) under a Creative Commons Attribution 3.0 
Unported license. 

 
 
 
 
 
 
While action potentials are one source of transport needed for neuronal 

communication, other forms of transport are necessary for intra- and inter-neuronal 

propagation of information. As discussed above, synaptic vesicles must be docked at the 

axon terminals in order to be released following an action potential. However, the contents 

of synaptic vesicles are synthesized and packaged at the proximal end of the neuron in the 
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soma. How is this neuronal cargo able to be transported intracellularly down the length of 

the axon in an efficient manner? 

 

1.2 Axonal Transport 

Intracellular transport of cellular components along axons is essential for neuronal 

survival and viability. Often analogized to a roadway full of cargo carrying trucks, this 

trafficking of cellular cargo between the soma and the axon terminals is known as axonal 

transport. Much like a busy roadway, there is an extensive amount of coordination and 

precision that must occur for efficient cargo transport within the axoplasmic environment. 

There are many challenges regarding the spatial regulation needed for axonal transport, 

such as a crowded roadway and obstacles. These spatial challenges heavily influence the 

narrow window of temporal regulation needed to ensure cargo is delivered to the right 

location at the right time. Below, a broad review of axonal transport characteristics will be 

discussed, all of which facilitate the spatiotemporal delivery of neuronal cargo. 

 The fundamental unit of the axonal transport “roadway” is the microtubule, a 

cytoskeletal polymer that contributes to the axon’s long and protruding morphology 

(Banks, Mayor, and Tomlinson 1971; Yogev et al. 2016). On the surface of axonal 

microtubules are molecular motor proteins, specifically cytoplasmic dynein and members 

of the kinesin superfamily of proteins (Schnapp and Reese 1989; Vale et al. 1985; 

Dahlstrom, Pfister, and Brady 1991). The processive nature of these proteins allow them 

to function as cargo carrying “trucks”, by attaching to and translocating cellular cargo 

along microtubules. 
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 Tunable directionality of cargo transport is essential to avoid unbalanced protein 

accumulation at the proximal or distal ends of the neuron. Anterograde transport is the 

movement of cargo away from the soma towards the axon terminals (Figure 1-3). This 

sector of cargo transport is driven by specific kinesin motors, carrying family specific 

subsets of newly synthesized proteins (Hirokawa et al. 1991), required to uphold synaptic 

function. Conversely, retrograde cargo transport from the axon terminals to the soma is 

required to remove and recycle protein components. Unlike anterograde transport, 

retrograde transport is conducted by only one molecular motor, dynein (Figure 1-3) 

(Hirokawa et al. 1990). Because of this, dynein motors achieve cargo binding specificity 

through a variety of different motor-cargo adaptor proteins (Reck-Peterson et al. 2018; 

Carter, Diamant, and Urnavicius 2016). While reconstituted motility experiments revealed 

the monodirectional movement of kinesin and dynein mediated transport, extruded squid 

axoplasm motility experiments first revealed bidirectional movement of cargo (Figure 1-

3). The introduction of bidirectional transport as a concept has significantly shifted the 

motility field’s paradigms of how cargo directionality is regulated. Most notably it has 

brought forth the idea that kinesin and dynein motors work together in teams, thought to 

be regulated by a “tug-of-war” mechanism (Hendricks et al. 2010; Muller, Klumpp, and 

Lipowsky 2008; Belyy et al. 2016). To date, mitochondria and late endosomes/lysosomes 

are the most characterized cargo to undergo bidirectional axonal transport (Cai, Davis, and 

Sheng 2011; Zinsmaier, Babic, and Russo 2009; Hollenbeck and Saxton 2005; Hendricks 

et al. 2010; Maday, Wallace, and Holzbaur 2012). 

 Along with directionality of transport, axonal cargo can be transported at two 

different speeds: either “fast” axonal transport or “slow” axonal transport. These two types 
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of axonal transport were first discovered by “pulse-chase” experiments, wherein 

radiolabeled proteins were “pulse” injected into neuronal somas, followed by a “chase” 

injection of unlabeled protein; the transport of the radiolabeled protein was then monitored 

and analyzed over time (Cancalon and Beidler 1975; Gross and Beidler 1975). From these 

experiments, the rate of fast axonal transport was discovered (most often cited as ~100 

mm/day) (Figure 1-3) (Shah and Cleveland 2002; Roy 2014; Vallee and Bloom 1991). A 

large percentage of fast anterograde cargo are lipid bound components, attached to kinesin 

motors, that need to reach the axon terminals with haste to promote synaptic function, such 

as dense core vesicles and synaptic vesicle precursors moving up to 1 µm/sec (Shah and 

Cleveland 2002). In fast retrograde axonal transport, the same logic applies; cargo needed 

to rapidly relay signaling information to the soma are transported by dynein complexes, 

including late endosomes and autophagosomes (Maday et al. 2014).  

The rate of slow axonal transport is significantly slower than fast axonal transport, 

with reports ranging from 1-10 mm/day (Figure 1-3) (Vallee and Bloom 1991; McEwen 

and Grafstein 1968). Unlike the membrane bound cargo of fast axonal transport, slow 

axonal transport cargo is comprised of cytoskeletal polymers and soluble proteins. The 

cytoskeletal proteins of slow axonal transport can be broken up into two categories: slow 

axonal transport component A (neurofilaments and tubulin; up to 10 mm/day) and slow 

axonal transport component B (actin; up to 1 mm/day) (Roy 2014; Dillman, Dabney, and 

Pfister 1996; Black and Lasek 1980). The discovery of slow axonal transport was initially 

contentious, largely due to the technical limitations of microscopic resolution in the 1980’s 

and 1990’s. However, as spatial resolution in live cell imaging has advanced, the “Stop-

and-Go” model has become the widely accepted mechanism of slow axonal transport. This 
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model, like fast axonal transport, relies on kinesin and dynein to transport cargo. However, 

in the “stop-and-go” model, these molecular motors spend a much larger fraction of time 

in a paused/stalled state on the microtubule, followed by shorter periods of processive 

movement, which results in a shorter distance travelled over time (Brown, Wang, and Jung 

2005). 

Over the past twenty years, the relationship between microtubules and the 

molecular motors responsible for axonal transport has been highly characterized at the 

molecular and single-molecule level. In considering these findings, the following sections 

of this chapter will dive deeper into our understanding of microtubules and the kinesin 

superfamily of motors, highlighting the molecular intricacies of these two components. 
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Figure 1-3. Characteristics of axonal cargo transport. (top) Axonal transport (AT) is 
conducted along microtubules and initiated by molecular motors. Cytoplasmic dynein is 
responsible for bringing cargo back to the neuronal soma via retrograde transport. Many 
kinesin protein families are responsible for bringing cargo to the axon terminals via 
anterograde transport. Cargo can also undergo bidirectional transport resulting from a “tug-
of-war” between dynein and kinesin motors. (bottom) AT is grouped into two main rates 
of transport 1) slow AT, travelling at speeds of ~ 1-10 mm/day and 2) fast AT, travelling 
at speeds of ~ 100 mm/day. The neuron in this image (color modified) was acquired from 
Servier Medical Art (SMART) under a Creative Commons Attribution 3.0 Unported 
license. 
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1.3 Microtubules 

While a simple microtubule “roadway” metaphor is a useful image, it greatly 

oversimplifies many microtubule characteristics. In reality, the microtubule is a 

sophisticated and intricate “roadway” with many unique facets. In this section, many of the 

characteristics of microtubules will be discussed, starting with the basic subunits and 

scaling up in complexity. 

 

1.3.1 Constructing a microtubule 

The microtubule is defined as a cytoskeletal polymer comprised of αβ-

tubulin heterodimer subunits (Kirkpatrick et al. 1970). In the human genome there are eight 

α-tubulin and 9 β-tubulin genes, resulting in a variety of different tubulin isotypes (Minoura 

2017). While many of these isotypes are expressed in neurons, β-tubulin isotype III is 

exclusively a neuronal isotype (Sullivan and Cleveland 1986). For initial heterodimer 

formation, both the α and β subunits must bind to a GTP nucleotide. However, the catalytic 

fate of GTP differs between the α and β subunits. GTP bound to the α subunit is in a non-

exchangeable state, or unable to undergo catalysis, and remains in the GTP state while 

sandwiched between the α and β subunits (Figure 1-4A). GTP bound to the β subunit 

however is bound to an exchangeable site (Figure 1-4A), and is able to transition to the 

GDP•Pi and GDP state (Spiegelman, Penningroth, and Kirschner 1977; MacNeal and 

Purich 1978). Both the α and β subunits have an intrinsically disordered C-terminal tail 

(CTT) that will project off of the microtubule surface, once polymerization has occurred 
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(Nogales, Wolf, and Downing 1998). These CTTs are a vital regulatory structure subject 

to many modifications that influence molecular motor function in axonal transport. 

 For tubulin dimers to polymerize into higher order microtubule structures, there are 

many environmental criteria that must be controlled. First, tubulin dimers must be in the 

presence of GTP. Second, the tubulin dimer and GTP mixture must be at a temperature in 

which polymerization can occur, most commonly referenced as ~37ºC or “body 

temperature”. Lastly, the local population of tubulin dimers must be above the critical 

concentration, or the equilibrium concentration of tubulin dimers that results in no net 

growth or net shrinkage (Lodish H 2000). Of note, the specific critical concentration of 

tubulin can be modulated by other environmental factors that can promote or hinder 

polymerization. With all of these stipulations achieved, the tubulin dimers must undergo a 

nucleation step to initiate polymerization. In cellular systems, this is often facilitated by 

microtubule-organizing centers and in in vitro reconstituted systems this process happens 

spontaneously, albeit under very high tubulin concentrations (Voter and Erickson 1984). 

 Once nucleated, tubulin dimers rapidly elongate in a “head-to-tail” arrangement 

and form linear protofilaments (Figure 1-4B). Then, individual protofilaments associate 

laterally into sheets and assemble to form the hollow and cylindrical microtubule structure 

(Figure 1-4C-D). Microtubule structures can occur in a variety of different protofilament 

arrangements, such as singlet, doublet, and triplet microtubules (Chaaban and Brouhard 

2017). The rest of this section will focus on the singlet microtubule. The number of 

protofilaments per singlet microtubule can vary from 9-16, but 13 protofilaments is the 

most common arrangement (Chaaban and Brouhard 2017). As all protofilaments in a 

microtubule have the same orientation, polymerization also generates a “+” end (β subunit 
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capped) and a “-“ end (α subunit capped) to establish a filamentous polarity (Figure 1-4). 

These two ends vary in rate of tubulin dimer assembly, with polymerization occurring most 

rapidly at the + end (Walker et al. 1988). Of note, the polarity of microtubules is important 

for regulating molecular motor based cargo transport. 

Individual microtubules are highly dynamic structures and are often referred to as 

being “dynamically unstable” (Mitchison and Kirschner 1984). In a growing microtubule, 

tubulin dimers are preferentially added to the + end, leading to the tip of the microtubule 

being in a GTP-rich state; this local enrichment of GTP into the microtubule greatly 

increases the stability of the microtubule at the tip. After a tubulin dimer is incorporated 

into a microtubule, the GTP-molecules occupying the β-tubulin binding site undergo 

hydrolysis to the GDP•Pi state and, eventually, the GDP state (Desai and Mitchison 1997). 

As the microtubule transitions into the GDP state, a number of conformational changes 

occur that result in significant loss in microtubule stability, including the loss of the “GTP 

+-end cap”. Once this cap is lost, the microtubule rapidly depolymerizes, or shrinks, in a 

process known as microtubule “catastrophe”. In some instances, a microtubule can undergo 

a “rescue” event in which there is a switch between shrinkage and growth (Cassimeris, 

Pryer, and Salmon 1988). The inherent dynamic instability of microtubules is greatly 

beneficial to many cellular processes in which rapid turnover of microtubules aids in 

cellular function. The dynamics of microtubules can also be modulated in many ways in a 

cellular environment, including through the presence of microtubule associated proteins 

(MAPs). 
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Figure 1-4. Hierarchy of microtubule structure. A) The smallest functional unit of the 
microtubule is the αβ-tubulin heterodimer. Both α- and β-tubulin bind to GTP. However, 
the GTP bound to α-tubulin is non-hydrolysable (orange), whereas the GTP bound to β-
tubulin can undergo hydrolysis (yellow). B) αβ-tubulin heterodimers assemble in a “head-
to-tail” arrangement to form a linear protofilament. C) Protofilaments form lateral contacts 
with other protofilaments to form a protofilament sheet. D) Protofilament sheets assemble 
to create the hollow and cylindrical microtubule structure. 
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1.3.2 Post-translational modifications of microtubules 

 Microtubule architecture is modified, in part, by chemical alterations to the 

microtubule structure known as post-translational modifications (PTMs). The CTTs are the 

most commonly modified location on the microtubule, although other regions of the 

microtubule are subject to PTMs as well, such as the microtubule lumen (inside of the 

microtubule cylinder). In the axonal cytoskeleton, these PTMs play an important role in 

the regulation of axonal transport by influencing the flow of cargo trafficking as well as 

recruiting necessary protein complexes. To elucidate how specific PTMs are involved in 

axonal transport, this section will focus on tubulin PTMs that are enriched in the axon: 

detyrosination/tyrosination, acetylation, and glutamylation. 

 Tyrosination/detyrosination occurs on the CTTs of α-tubulin and has three different 

levels of modification. First, a detyrosinated CTT can have a tyrosine added via a tubulin-

tyrosine ligase (TTL), yielding a tyrosinated state. Second, a tyrosine on the CTT can be 

removed via a carboxypeptidase, yielding a detyrosinated state (Janke 2014; Janke and 

Kneussel 2010). After detyrosination, an α-tubulin penultimate glutamate residue is 

exposed (Mary et al. 1996). If this glutamate is removed, this generates the D2-tubulin state 

(Yu, Garnham, and Roll-Mecak 2015). Unlike tyrosination and detyrosination, the 

production of D2-tubulin is an irreversible modification causing the α-subunit to be 

removed from the cycle of tyrosination (Paturle-Lafanechere et al. 1994). The tyrosination 

state of α-tubulin CTTs serves an important role in the stability of neuronal microtubules. 

For example, detyrosination/D2-tubulin modifications are found on very stable 

microtubules in the axon, whereas tyrosination modifications are enriched in areas with 
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dynamic microtubules, such as the growth cone (Marcos et al. 2009; Paturle-Lafanechere 

et al. 1994). While it was initially thought that the physical addition/removal of tyrosine 

residues directly regulated microtubule stability, it is now believed that this PTM serves as 

a message to the greater cellular environment to recruit factors that modulate stability. 

 Acetylation is a PTM that does not occur on the tubulin CTTs. Instead, this 

modification occurs at the lysine 40 (K40) position in the microtubule lumen of the α-

tubulin subunit (L'Hernault and Rosenbaum 1985). Due to the non-canonical location, the 

role of this PTM was initially puzzling. To add a layer of complication, this PTM is only 

found when tubulin is a part of a microtubule lattice, leading to the belief that that the 

enzymes responsible for acetylation/deacetylation must enter the microtubule lumen. Like 

the tyrosine modifications discussed above, acetylation of K40 is often found on stable 

populations of microtubules in the axon. This pattern supports the current hypothesis that 

K40 PTM of α-tubulin increases the flexibility of microtubules, making them less 

susceptible to perturbation by mechanical stressors that may lead to depolymerization, 

increasing their temporal stability/longevity (Janke and Montagnac 2017). 

 Glutamylation is the most abundant PTM in the neuron, and is heavily enriched in 

the axon. Addition of glutamate residues occurs on both α and β subunits via tubulin 

tyrosine like-ligase (TTLL) enzymes (Janke et al. 2005), with TTLL7 being the most 

abundant in neurons (Ikegami et al. 2006; Mukai et al. 2009). This process is commonly 

referred to as “polyglutamylation”, as chains of many glutamate residues can be added to 

the preexisting glutamates in the CTT sequence at multiple locations. Due to the acidic 

nature of glutamic acid, polyglutamylation introduces a local negative charge on the CTTs. 

This charge shift is important in regulating the initial electrostatic interactions between the 
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microtubule and MAPs/motor proteins and will be discussed further in chapter 2. 

Furthermore, tunable levels of polyglutamylation are required for neuronal function, as 

hyper- or hypo- polyglutamylation have been linked to disruptions in axonal cargo 

trafficking (Magiera, Bodakuntla, et al. 2018; Ikegami et al. 2007). 

 

1.3.3 Microtubule associated proteins 

 Another layer of complexity contributing to the regulation of axonal transport is the 

presence of MAPs on axonal microtubules. Defined as proteins that interact with 

microtubules, MAPs engage in a variety of different roles such as microtubule stabilization, 

regulation of microtubule dynamics, recruitment of other proteins, and direct regulation of 

cargo transport. 

 Many different MAPs contribute to the overall structure of the axon, starting at the 

protofilament level and advancing to larger microtubule networks. Doublecortin (DCX), a 

MAP that is critical for axonal outgrowth during development, directly regulates the 

protofilament number of microtubules (Fourniol et al. 2010; Tint et al. 2009). DCX does 

this by cooperatively binding between adjacent protofilaments, reinforcing longitudinal 

and lateral bonds. In doing so, DCX forces the microtubule into a 13 protofilament 

arrangement and increases microtubule stability (Fourniol et al. 2010). The equilibrium of 

microtubule stability and instability is also mediated, in part, by MAPs. For example, the 

MAP1 and MAP2 family of proteins have been shown to increase microtubule stability not 

only by increasing rescue events at the individual level, but also crosslinking microtubule 

networks to each other and to the surrounding actin network (Mohan and John 2015). In 

contrast, many severing proteins purposefully destabilize microtubules by cutting them 
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into small pieces. This process, largely facilitated by katanin and spastin, aids in local 

microtubule reorganization throughout the axon (Lasser, Tiber, and Lowery 2018; 

Bodakuntla et al. 2019). 

 Certain factions of MAPs have precise regions of localization on axonal 

microtubules, with the most heavily researched being the microtubule plus-end tracking 

proteins (+TIP). Specifically, the end binding (EB) MAPs are of great importance in 

maintaining axonal structure. From a morphological standpoint, EB proteins play an 

important role in neuronal development and axon extension (van de Willige, Hoogenraad, 

and Akhmanova 2016). Arguably their most important role, EB proteins serve as 

scaffolding to mediate protein-protein interactions; these interactions range from other 

+TIP proteins to kinesin motor families (Gumy et al. 2013; Chen, Rolls, and Hancock 2014; 

Bearce, Erdogan, and Lowery 2015). 

 While the presence of MAPs on axonal microtubules creates many avenues for 

regulation, the most direct effect of MAPs on axonal transport occurs through the 

regulation of cargo carrying motors. The MAP2 family member Tau, with polarizing roles 

in axonal health and axonal degeneration, is vital to this process. 

 

1.3.4 Tau 

Tau is the most prevalent MAP in the axon and plays many roles in the healthy and 

diseased state. As stated above, Tau is a member of the MAP2 family of proteins, with Tau 

and MAP2 being the only family members expressed in neurons. The localization of MAP2 

versus Tau in the neuron is quite stark: MAP2 is predominantly localized to the dendrites 

while Tau is predominantly localized to the axon (Dehmelt and Halpain 2005). 
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Perplexingly, knockout experiments of either Tau or MAP2 revealed that neither MAP is 

essential by itself, suggesting an important functional redundancy between these two 

proteins in the brain (Harada et al. 2002; Harada et al. 1994). 

In humans, there are six different isoforms of Tau that arise from the alternative 

splicing of the MAPT gene. MAPT has 13 different exons with exons 2, 3, and 10 being 

subject to alternative splicing (Goedert and Jakes 1990). While Tau is highly dynamic and 

lacks a native structure, the protein can be segregated into two functional regions: the C-

terminal binding domain and the N-terminal projection domain. The C-terminal binding 

domain directly interfaces with the microtubule surface through either three or four 

microtubule binding repeats (MTBR) (Dehmelt and Halpain 2005). Due to Tau’s lack of 

tertiary structure and minimal secondary structure, the orientation of these bindings sites 

on the microtubule has been technically difficult to resolve. However, recent advancements 

have shown that the MTBRs likely bind along the microtubule protofilament ridge 

(Kellogg et al. 2018). The C-terminal projection domain is comprised of the proline-rich 

region and zero, one, or two acidic inserts.  

In this dissertation, the nomenclature of a Tau isoform is defined by the extent of 

alternative splicing that has occurred. Tau isoforms can fall into a 4R (four MTBR) or 3R 

(3MTBR due to the splicing of exon 10) category. After this distinction, isoforms are 

categorized as “short” (no acid inserts; exons 2 and 3 spliced), “medium” (one acidic insert; 

exon 3 spliced), or long (two acidic inserts). This nomenclature yields the isoform names 

of 3RS, 3RM, 3RL, 4RS, 4RM, and 4RL (Figure 1-5A). The expression ratio of Tau 

isoforms is variable throughout development. When adulthood is reached, the 3R- and 4R-

isoforms are expressed in a 1:1 ratio (Boutajangout et al. 2004). 
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Tau’s highly dynamic structure facilitates the presence of two dominating 

behavioral states on the microtubule surface: the static binding state and the diffusive 

binding state (Figure 1-5B). Of note, the diffusive binding state of Tau is reliant upon an 

electrostatic interaction with the CTTs of tubulin (Hinrichs et al. 2012). While identifying 

Tau’s structure on the microtubule surface is extremely technically difficult, it is assumed 

that these two binding states are structurally distinct; ongoing efforts in our lab seek to 

understand these structural differences.  

Each isoform of Tau has its own equilibrium between time spent in the diffusive 

state and time spent in the static state, at a population-level. Using single molecule imaging 

techniques, our lab has characterized the diffusive and static binding behavior of multiple 

Tau isoforms on various microtubule lattices. In these investigations, both kymograph 

analysis (McVicker et al. 2014) and single-molecule particle tracking of Tau behavior 

(Stern et al. 2017)  revealed that 3R-Tau isoforms favor the static binding state while 4R-

isoforms favor the diffusive binding state on paclitaxel-stabilized microtubules. 

Specifically, we can state that the 3R-isoform equilibrium is 75% static and 25% diffusive, 

while the 4R-isoform equilibrium is 40% static and 60% diffusive.  Additionally, both of 

3RS- and 4RL-Tau favor the diffusive binding state on GMPCPP-stabilized microtubules, 

highlighting the influence of the microtubule lattice on Tau binding behavior (McVicker 

et al. 2014) (Figure 1-5C; unpublished data).  

While Tau performs many functions, the function most relevant to this dissertation is Tau’s 

ability to regulate the motility of kinesin motors involved in axonal transport. This was first 

demonstrated using an in vitro reconstituted system, detailing that kinesin-1 motility was 

reduced by Tau on the microtubule (Dixit et al. 2008; Vershinin et al. 2007). Furthermore, 
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these studies demonstrated that 3RS-Tau is more inhibitory than 4RL-Tau. This introduced 

the concept that certain kinesin motors are more heavily inhibited by one behavioral state 

of Tau versus the other. The relationship between kinesin regulation and the isoform-

specific behavioral equilibrium of Tau has been a continuing point of investigation in our 

lab and is a key concept that will be explored throughout this dissertation. 

 

 

Figure 1-5. Structural and behavioral characteristics of Tau isoforms. A) There are six 
isoforms of human Tau, varying by length due to the alternative splicing of acidic inserts 
and microtubule binding repeats (MTBR). All isoforms contain a proline-rich region 
(PRR). B) Tau can bind to the microtubule in a static binding state or a diffusive binding 
state (reliant upon CTTs). C) Each Tau isoform has a characteristic equilibrium of time 
spend in the diffusive versus static binding state. As a rule of thumb, 3R-Tau isoforms 
favor the static state while 4R-Tau isoforms favor the diffusive state. 
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ATP hydrolysis occurs in the kinesin motor domain, found most commonly at the N-

terminal end of the protein, and is a part of the protein that is engaged with the microtubule. 

Connecting the motor domain and the stalk, or “body”, of a kinesin is a short, flexible chain 

of amino acids known as the neck linker. At the C-terminal end of most kinesin proteins, 

there is a tail/cargo binding domain that allows kinesins to bind directly to cargo or to 

adaptor proteins (Figure 1-6). The tight mechanochemical coupling of ATP hydrolysis 

allows kinesin motors to be processive by engaging with and taking 8 nanometer steps 

along microtubules towards the microtubule + end (Brady 1985; Kojima et al. 1997). In 

order to become processive, most monomeric kinesins need to dimerize to form either a 

homo- or heterodimeric protein complex. 

 The kinesin superfamily of proteins is comprised of 45 known mammalian kinesin 

genes, each expressing a protein with unique functional properties (Miki et al. 2001). To 

aid in organization, the kinesin super family is compartmentalized into 15 smaller 

subfamilies where kinesin motors are grouped together by common structural and 

functional characteristics (Hirokawa and Tanaka 2015). Of these families, three are known 

to play major roles in axonal transport: kinesin-1, kinesin-2, and kinesin-3. 

 

1.4.1 Kinesin motors involved in axonal transport 

 In the mid 1980s, the first member of the kinesin superfamily, a kinesin-1 motor, 

was discovered. This foundational motor has been extensively researched in the 30+ years 

since its discovery and serves as an important historical comparator as other kinesin 

families are identified. This protein was originally isolated from the axoplasms of giant 

squid axons, and was found in a tetrameric protein complex (Brady 1985). It was further 



 23 

determined that this complex was comprised of two kinesin-1 motors, forming a 

homodimer, and two kinesin light chain adaptors that connected the tail of kinesin-1 motors 

to cargo. In humans, three kinesin-1 motors are expressed: KIF5A, KIF5B, and KIF5C 

(Miki et al. 2001). All three kinesin-1 motors are expressed in neurons, however kinesin-1 

proteins are expressed in many other cells/tissues within the body (Miki et al. 2001; Kanai 

et al. 2000). Kinesin-1 motors transport a variety of cargo along the axon, most notably 

mitochondria (Tanaka et al. 1998) and amyloid precursor protein (Kamal et al. 2000).  

While much of the kinesin-1 literature has focused on how kinesin-1 motors are 

activated, many studies have also focused on how these motors are regulated. Findings 

from these studies have revealed two common themes of regulation amongst kinesin 

motors: 1) self-regulation through autoinhibition and 2) regulation from obstacles on the 

microtubule surface. Regarding self-regulation, kinesin-1 motors have been shown to adopt 

an autoinhibited state via an interaction between the motor domain and tail (Dietrich et al. 

2008). This “folded” conformational state results in an inactive motor, and is a common 

theme amongst other kinesin motors. The microtubule obstacle regulation of kinesin-1 that 

is most relevant to this dissertation is the regulation of kinesin-1 motility by Tau (Dixit et 

al. 2008; Vershinin et al. 2007). Specifically, kinesin-1 motors are regulated by the static 

binding state of Tau while processing on the microtubule. 

The kinesin-2 family of motors is comprised of four members: KIF3A, KIF3B, 

KIF3C, and KIF17. While KIF17 exists in a homodimeric state, KIF3 proteins form a 

heterotrimeric complex with a KAP3 accessory subunit as KIF3A/3B/KAP3 or 

KIF3A/3C/KAP3 (Berezuk and Schroer 2004). The kinesin-2 family has multiple 

functions throughout the human body, including intraflagellar transport (Scholey 2012) 
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and transport within neurons (Wong-Riley and Besharse 2012). While mainly a transporter 

of dendritic cargo, kinesin-2 motors are also known to transport cargo along the axon, such 

as fodrin (Takeda et al. 2000) and choline acetyltransferase (in Drosophila) (Ray et al. 

1999). Like kinesin-1, kinesin-2 motors are also regulated by a folded autoinhibited state 

(Hammond, Blasius, et al. 2010). However, unlike kinesin-1, kinesin-2 motors are able to 

navigate around Tau obstacles and are insensitive to Tau’s presence on the microtubule 

surface. Previous work in our lab has revealed that the “nimbleness” of kinesin-2 is directly 

related to its longer neck linker length (kinesin-1, 14 amino acids; kinesin-2, 17 amino 

acids) allowing it to switch microtubule protofilaments and side-step around obstacles 

(Hoeprich et al. 2014; Hoeprich et al. 2017). 

The human kinesin-3 family of proteins is made up of 9 known members: KIF1A, 

KIF1Ba, KIF1Bb, KIF1C, KIF13A, KIF13B, KIF14, KIF16A, and KIF16B (Siddiqui and 

Straube 2017). In the past 10 years, the kinesin-3 family has undergone a renaissance of 

investigation. This family of motors was first identified in the mid 1990s and was thought 

to exist purely in a monomeric state (Okada et al. 1995). Many hypotheses emerged 

regarding the function of this single-headed motor, ranging from being a diffusing 

monomer (Okada and Hirokawa 1999) to behaving like a Brownian ratchet with 

asymmetrical, saw-tooth like motion (Oriola and Casademunt 2013). Ten years ago, studies 

began to support the idea that kinesin-3 motors (most focused on KIF1A) are subject to 

two-phases of autoinhibition. First, there is an interaction between the FHA and CC2 

(Figure 1-6) domains, preventing the motor from binding to the microtubule and, second, 

an interaction between the NC and CC1 domain (Figure 1-6) that regulates processivity 

(Soppina et al. 2014; Hammond et al. 2009). It was further determined that this 
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autoinhibition could be released when kinesin-3 monomers were bound to cargo; once the 

monomer switches to an active state, it can then dimerize with nearby monomers and 

become processive (Soppina et al. 2014).  

When the activated state of kinesin-3 motors was uncovered it became clear that, 

not only is this a family of processive motors, but they also exhibit unique 

“superprocessive” qualities. Superprocessivity is defined by a motor that walks magnitudes 

of distance farther, at magnitudes of speed faster, than conventional kinesin motors. This 

is now an accepted intrinsic characteristic of all kinesin-3 motors (Soppina et al. 2014). 

The superprocessive nature of kinesin-3 motors is essential for their role in axonal 

transport. Since the discovery of their processive motility, kinesin-3 motors have been 

highlighted as one of the key players in long-distance, fast anterograde transport. Neuronal 

kinesin-3 motors are known to transport many types of cargo that must go from the soma 

to the axon terminals, such as synaptic vesicle precursors (Okada et al. 1995), dense core 

vesicles (Lo et al. 2011), and transient receptor potential cation channel subfamily V 

member 1 (Xing et al. 2012). The characterization of kinesin-3 family members is an 

ongoing process with much of the current research aiming to identify kinesin-3 regulatory 

mechanisms. The work in this dissertation will focus on the regulatory mechanisms of one 

kinesin-3 family member in particular, KIF1A. 

  

1.4.2 Kinesin-3 family member, KIF1A 

 Since its discovery in 1995 (Okada et al. 1995), KIF1A has become the most 

characterized kinesin-3 member and is regarded as an essential protein for a healthy human 

nervous system. This necessity was first illustrated using a KIF1A knockout mouse model. 
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Complete KIF1A knockout pups present with motor/sensory defects and a severe failure 

to thrive, with most pups dying within 24 hours after birth (Yonekawa et al. 1998). 

Additionally, isolated primary neuron cultures and postmortem neuropathological analysis 

showed a significant decrease in both synaptic vesicle transport and synaptic terminal 

density (Yonekawa et al. 1998; Niwa et al. 2016). This finding, supported by preexisting 

literature, illuminated one of KIF1A’s critical roles in the neuron: transporting synaptic 

vesicle precursors to promote normal levels of synaptogenesis. Since this foundational 

study, many other KIF1A cargo have been discovered such as dense core vesicles (Lo et 

al. 2011), the neurotrophic factor receptor TrkA (Tanaka et al. 2016), and AMPA receptors 

(Shin et al. 2003), to name a few. 

 Much attention has been payed to the unique structural elements of KIF1A (Figure 

1-6), and how they relate to KIF1A function. All kinesin-3 motors have a family-specific 

surface loop 12 in the motor domain, known as the “K-loop”, that interacts with the 

microtubule surface (Kikkawa, Okada, and Hirokawa 2000; Soppina and Verhey 2014). 

The K-loop is characterized by a multi-lysine insert in loop 12, and KIF1A’s K-loop has 

the most insertions (six) of all the kinesin-3 motors (Soppina and Verhey 2014). The K-

loop is important for KIF1A’s characteristic high on rate on the microtubule as well as for 

partitioning KIF1A cargo to the axon (Karasmanis et al. 2018); work in this dissertation 

will go on to detail how this structure is also essential for KIF1A superprocessivity. From 

a catalytic perspective, the KIF1A K-loop is also known to work in tandem with surface 

loop 11 to facilitate the mechanochemical coupling of ATP hydrolysis (Nitta et al. 2004), 

which is discussed further in chapter two. 
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 Perturbations in KIF1A function have now been linked to a variety of different 

neurodegenerative diseases. The most significant amount of disease-related literature is 

focused on mutations in the KIF1A gene. These diseases, such as hereditary spastic 

paraplegia, all share common characteristics of brain atrophy, spasticity, optic nerve 

atrophy, and motor dysfunction (Lee et al. 2015; Klebe et al. 2012; Ohba et al. 2015; 

Tomaselli et al. 2017). Current efforts to understand the effects of these mutations have 

shown that KIF1A can either be hypo- or hyperactivated, yielding a hypo- or 

hyperaccumulation of synaptic vesicles (Chiba et al. 2019). Recently, an emerging group 

of studies have focused on a scenario in which there are no perturbations in KIF1A at the 

genomic level, yet KIF1A motors exist in a diseased neuronal environment. The remainder 

of this chapter will focus on what is known about KIF1A function in a Tauopathy disease 

state, and how Tau dysfunction may impact KIF1A cargo transport. 

 

 

 
 
Figure 1-6. Linearized diagram of KIF1A monomer. NL: neck linker, NC: neck coil 
domain, CC: coiled-coil domain, FHA: forkhead-associated domain, PH: plekstrin 
homology domain. 
 
 
 
 
1.5 Tau and KIF1A in Tauopathies: Scope and Purpose 

 Neurodegeneration, characterized in part by altered axonal transport, is one of the 

most common causes of dementia (Gale, Acar, and Daffner 2018). In healthy neurons, 
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anterograde axonal cargo transport is mediated by kinesin molecular motors and regulated 

by the MAP, Tau (Vershinin et al. 2007; Dixit et al. 2008; Hoeprich et al. 2014; McVicker, 

Chrin, and Berger 2011). However, in neurodegenerative tauopathies like Alzheimer’s 

disease (AD) and frontotemporal dementia (FTD), axonal transport is dysregulated by 

pathological alterations of Tau expression, post-translation modification, and subsequent 

alterations in Tau binding behavior (Lacovich et al. 2017; Kanaan et al. 2011; Mandelkow 

et al. 2003). Specifically, pathological alterations in Tau isoform expression, resulting from 

mutations that promote exon 10 inclusion into the MAPT transcript encoding for Tau 

protein, are observed in both AD and FTD (Chen et al. 2010; D'Souza and Schellenberg 

2005; Kopeikina, Hyman, and Spires-Jones 2012; Schoch et al. 2016; Spillantini and 

Goedert 2001; Hutton et al. 1998; Hong et al. 1998). This increase in 4R-Tau isoform 

expression tips the balance of Tau’s binding behavior towards the diffusive state and has 

been directly linked to altered axonal cargo transport, a process mediated by molecular 

motors such as KIF1A (Lacovich et al. 2017; Majid et al. 2014; Ittner et al. 2008). Our 

recently published work extends this concept revealing that phospho-regulation of Tau 

modulates the inhibition of kinesin-1 motility, due to an increase in the diffusive binding 

behavior of Tau (Stern et al. 2017). While MT bound Tau was first presented as a regulator 

of kinesin-mediated axonal transport (Dixit et al. 2008; Vershinin et al. 2007), our lab has 

shown that Tau differentially regulates kinesin motors involved in axonal transport. 

Specifically, while kinesin-1 is regulated by Tau, we have found that kinesin-2’s ability to 

navigate around MT bound obstacles makes this motor insensitive to Tau (Hoeprich et al. 

2014; Hoeprich et al. 2017). However, Tau’s regulatory effect on other neuronal kinesins 

remains unexplored. 
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KIF1A, a kinesin-3 family member, is a neuronally expressed kinesin motor 

essential for fast, long-range cargo transport (Hammond et al. 2009; Lo et al. 2011; Soppina 

et al. 2014; Soppina and Verhey 2014; Gumy et al. 2017).  However, irregular localization 

and aggregation of cargo known to be transported by KIF1A has been identified in the 

neurons of tauopathy patients (Kandalepas et al. 2013; Lassmann et al. 1992; Kopeikina et 

al. 2011), suggesting that pathological shifts in Tau isoform expression and behavioral 

binding state yields dysregulated KIF1A transport. Despite this possible connection of 

KIF1A to tauopathy presentation, Tau’s regulatory effect on dimeric KIF1A cargo 

transport is unknown.  This lack of understanding of the basic molecular mechanisms 

regulating KIF1A cargo transport, and how these mechanisms are related to Tau-mediated 

disease progression, presents a significant gap in our current knowledge and is a limiting 

step toward the development of new neurodegenerative therapeutic strategies.  

However, one cannot comprehensively tackle a problem as large as KIF1A’s role 

in Tauopathy progression, without first understanding the basics of KIF1A and Tau’s 

relationship at a molecular level. Therefore, in this dissertation, we have employed a 

bottom-up approach to address this problem by using single-molecule imaging techniques. 

Through these techniques we were able to define the effect of Tau on individual KIF1A 

motors in an in vitro reconstituted system. This investigation is strongly supported by data 

demonstrating that: 

1. Cargo transported by KIF1A is irregularly localized in the brains of FTD and AD patients 

(Hung and Coleman 2016; Siddiqui and Straube 2017; Goetzl et al. 2016; Kopeikina et al. 

2011; Kandalepas et al. 2013; Lassmann et al. 1992), 
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2. Altered Tau isoform expression, favoring the diffusive binding state of Tau, is observed 

in tauopathies such as AD and FTD (Goetzl et al. 2016; Kar et al. 2005), and 

3. Long-distance KIF1A motility is important for synaptogenesis and synaptic vesicle 

transport (Kern et al. 2013; Zhang et al. 2016; Okada et al. 1995; Hall and Hedgecock 

1991; Voelzmann et al. 2016). These persuasive data support the central hypothesis of this 

dissertation that Tau regulates the characteristic behavior and motility of KIF1A.  

In chapter 2, we pursued an early observation that KIF1A engages in unique and 

unreported pausing behavior between segments of processive motion on the microtubule 

surface. When prompted with a finding such as this, we focused on the question: by what 

mechanism is KIF1A pausing? Considering past literature supporting KIF1A’s reliance on 

tubulin’s C-terminal tails, we hypothesized that KIF1A pausing was mediated through a 

K-loop/CTT interaction. To test this hypothesis, we assessed KIF1A motility and pausing 

behavior across: 1) multiple microtubule lattices, 2) varying degrees of CTT alteration, and 

3) two different K-loop sequences created using site-directed mutagenesis. The 

culmination of these experiments dissected and uncovered a mechanism of KIF1A pausing 

that is indeed centered around a K-loop/CTT interaction. Specifically, we were able to 

determine that KIF1A pausing is directly linked to levels of CTT poluglutamylation, a 

PTM of CTTs in neurons.  

Identifying KIF1A’s pausing mechanism was vital for shaping the hypothesis and 

experimental design for chapter 3. In this chapter we defined Tau as a KIF1A regulator by 

directly testing the inhibitory capability of Tau isoforms on KIF1A pausing and subsequent 

motility. Taking into account the reliance of Tau on CTTs to engage in diffusive binding 

behavior, we hypothesized that the diffusive binding state of Tau inhibits KIF1A pausing 
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through competition for the CTT structure. Through quantifying KIF1A pausing and 

motility across 1) different Tau isoforms, 2) at multiple Tau concentrations on the 

microtubule and, 3) on microtubules with and without CTTs, we were able to show that 

the diffusive binding state, not the static binding state, of Tau regulates KIF1A pausing, 

resulting in a subsequent reduction in KIF1A motility. This study introduced a new 

mechanism of Tau-mediated regulation of kinesin motors. 

Lastly, chapter 4 is a discussion of how these findings at the single-molecule level 

contribute to the field of Tauopathy research as a whole. Additionally, potential future 

avenues for investigation will be discussed, mainly focused on systems with higher orders 

of physiological complexity. 



 32 

CHAPTER 2: POLYGLUTAMYLATION OF TUBULIN’S C-TERMINAL TAIL 
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ABSTRACT 

The kinesin-3 family member KIF1A plays a critical role in site-specific neuronal 

cargo delivery during axonal transport. KIF1A cargo is mislocalized in many 

neurodegenerative diseases, indicating that KIF1A’s highly efficient, superprocessive 

motility along axonal microtubules needs to be tightly regulated. One potential regulatory 

mechanism may be through post-translational modifications (PTMs) of axonal 

microtubules. These PTMs often occur on the C-terminal tails of the microtubule tracks, 

act as molecular “traffic signals” helping to direct kinesin motor cargo delivery, and 

include C-terminal tail polyglutamylation important for KIF1A cargo transport. KIF1A 

initially interacts with microtubule C-terminal tails through its K-loop, a positively charged 

surface loop of the KIF1A motor domain. However, the role of the K-loop in KIF1A 

motility and response to perturbations in C-terminal tail polyglutamylation is 

underexplored. Using single-molecule imaging, we present evidence that KIF1A pauses on 

different microtubule lattice structures, linking multiple processive segments together and 

contributing to KIF1A’s characteristic superprocessive run length. Furthermore, 

modifications of the KIF1A K-loop or tubulin C-terminal tail polyglutamylation reduced 

KIF1A pausing and overall run length. These results suggest a new mechanism to regulate 

KIF1A motility via pauses mediated by K-loop/polyglutamylated C-terminal tail 

interactions, providing further insight into KIF1A’s role in axonal transport. 
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INTRODUCTION 

Axonal transport is a critical process for neuronal viability and function involving 

the highly-choreographed, long-distance trafficking of cargo.  This process is facilitated in 

part by members of the kinesin superfamily of motors that utilize the mechanochemical 

coupling of ATP-hydrolysis (Schnitzer and Block 1997) to carry motor-specific cargo in 

the anterograde direction along axonal microtubules. 

The neuron-specific kinesin-3 family member KIF1A (Okada et al. 1995) is a key 

mediator of axonal transport,  delivering neuronal cargo, such as dense core vesicles (Lo 

et al. 2011) and synaptic vesicle proteins (Okada et al. 1995), in a spatiotemporally 

regulated manner along axonal microtubules (Hirokawa, Niwa, and Tanaka 2010; Vale and 

Milligan 2000). Upon cargo-mediated dimerization and release of steric autoinhibition, 

KIF1A motors are reported to exhibit “superprocessive” motility behavior, traveling 

comparatively long distances on microtubules when compared to conventional kinesin 

(Hammond et al. 2009; Soppina et al. 2014). The discovery of this superprocessive 

behavior supports KIF1A as an important player in long distance axonal transport, 

providing further insight into KIF1A’s role in many neuronal processes such as 

synaptogenesis (Kondo, Takei, and Hirokawa 2012) and neurogenesis (Tsai et al. 2010). 

The importance of tightly regulated KIF1A cargo delivery is highlighted in 

neurodegenerative diseases where mislocalization and accumulation of KIF1A cargo is 

observed (Hung and Coleman 2016; Siddiqui and Straube 2017; Goetzl et al. 2016). 

However, our understanding of this disease-state presentation is limited by the gap in 

knowledge of the mechanisms that regulate KIF1A motility. 
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Beyond serving as tracks for kinesin motors, microtubules can direct subcellular 

trafficking by providing directional cues for motor specificity on select microtubule 

populations. These “traffic signs” are frequently introduced via microtubule post-

translational modifications (PTMs), often on the C-terminal tails of microtubules (Verhey 

and Gaertig 2007; Magiera, Singh, et al. 2018). While there are many recent discoveries of 

how microtubule PTMs regulate different kinesin families (Sirajuddin, Rice, and Vale 

2014; Hammond, Huang, et al. 2010; Ghosh-Roy et al. 2012), how this concept can be 

extended to kinesin-3 motors such as KIF1A is relatively unexplored. One potential PTM 

regulating KIF1A trafficking is the heavy polyglutamylation of both a- and b- tubulin 

subunits in neurons (Audebert et al. 1994) via the tubulin tyrosine ligase-like family of 

enzymes (Ikegami et al. 2006; Janke et al. 2005). KIF1A’s dependence on optimal levels 

of polyglutamylation has been observed in the ROSA22 mouse model, characterized by a 

loss of neuronal a-tubulin polyglutamylation leading to altered KIF1A cargo trafficking 

and reduced KIF1A affinity for microtubules (Ikegami et al. 2007). These physiological 

repercussions of altered KIF1A function highlight the importance of further studying 

interactions between KIF1A and the polyglutamylation of C-terminal tails of tubulin at the 

molecular level. 

Polyglutamylation may impact KIF1A motility via a lysine-rich surface loop (loop-

12) that is characteristic of the kinesin-3 motor family (Soppina and Verhey 2014; Okada 

and Hirokawa 2000). Previous work has demonstrated that this “K-loop” is a critical 

component for optimal KIF1A function. From a catalytic perspective, it is thought that the 

K-loop is necessary for KIF1A’s structural interaction with the microtubule during the 

ATP-hydrolysis cycle (Nitta et al. 2004). Furthermore, it is known that the K-loop interacts 
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electrostatically with the glutamic acid-rich C-terminal tail of tubulin (Kikkawa, Okada, 

and Hirokawa 2000; Okada and Hirokawa 1999), tethering the motor to the microtubule 

track (Soppina and Verhey 2014). This K-loop/C-terminal tail relationship, combined with 

the physiological detriment of reduced microtubule polyglutamylation, illustrates that 

specific interactions between the KIF1A K-loop and C-terminal tails of tubulin are 

essential for optimal KIF1A function. Therefore, we hypothesized that C-terminal tail 

polyglutamylation regulates KIF1A motility and behavior on microtubules mediated by 

interactions with the KIF1A K-loop structure. Using single-molecule total internal 

reflection fluorescence microscopy, we first tested our hypothesis by quantifying the 

motility and behavioral response of KIF1A on various microtubule lattices and then 

specifically perturbed the K-loop/C-terminal tail interaction. Our findings demonstrate that 

that KIF1A pauses on the microtubule lattice, and suggest that this behavior is caused by a 

polyglutamylation-sensitive K-loop/CTT interaction. 
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EXPERIMENTAL PROCEDURES 

Tubulin isolation, microtubule preparation and labelling 

Neuronal tubulin was isolated from bovine brains donated from Vermont Livestock 

Slaughter & Processing (Ferrisburgh, VT) using a high molarity PIPES buffer (1 M PIPES, 

pH 6.9 at room temperature, 10 mM MgCl2, and 20 mM EGTA) as previously described 

(Castoldi and Popov 2003). Purified tubulin was clarified using ultracentrifugation for 20 

minutes at 95,000 rpm at 4°C in an Optima TLX Ultracentrifuge (Beckman, Pasadena, 

CA). After clarification, tubulin concentration was calculated using the tubulin extinction 

coefficient of 115,000 cm-1 M-1 and read at 280nm in the spectrophotometer.  

Tubulin was purified from HeLa Kyoto cells with TOG affinity column 

chromatography using gravity-flow setup (Widlund et al. 2012; Hotta et al. 2016). Cells 

were resuspended in BRB80 (80 mM PIPES, 1 mM EGTA, 1 mM MgCl2 pH 6.8) 

supplemented with 1 mM DTT and protease inhibitors (cOmpleteÔ, Mini, EDTA-free 

[Sigma-Aldrich, St. Louis, MO] and 0.2 mM PMSF) and sonicated. Cleared lysate was 

loaded onto a TOG column, in which ~ 15 mg of bacterially purified GST-TOG1/2 protein 

was conjugated with 1 ml of NHS-activated Sepharose 4 Fast Flow resin (GE Healthcare; 

Marlborough, MA). Wash, elution, desalting and concentration was carried out as 

described in Hotta et al, 2016 (Hotta et al. 2016). Glycerol was not added to the purified 

tubulin. Aliquoted tubulin was snap frozen in liquid nitrogen and stored at -80ºC. 

Clarified tubulin was supplemented with 1mM GTP (Sigma-Aldrich) or guanosine-

5′-[(α,β)-methyleno]triphosphate sodium salt (GMPCPP; Jena Bioscience, Jena, 

Germany). To label microtubules, unlabeled tubulin was mixed with rhodamine-labeled 

tubulin (Cytoskeleton, Denver, CO) at a ratio of 100:1. Microtubules were stabilized with 
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GMPCPP following previously reported methods (McVicker, Chrin, and Berger 2011) or 

polymerized at 37°C for 20 minutes and stabilized with 20 µM paclitaxel (taxol; Sigma-

Aldrich) in DMSO. Microtubules were diluted to a working concentration of 1 µM in P12 

Buffer (12mM PIPES, 1mM MgCl2, 1 mM EGTA, pH 6.8 supplemented with 20 µM 

paclitaxel) (Soppina and Verhey 2014). 

Plasmids, mutagenesis, and cell lysate motor expression 

 KIF1A(1-393)-LZ-3xmCitrine plasmid was a generous gift of Kristen Verhey 

(University of Michigan, Ann Arbor, MI) and the KIF1A(1-396)-GFP (Addgene plasmid 

# 45058) mammalian plasmid were a gift from Gary Banker (Oregon Health & Science 

University). TriAla-KIF1A-LZ-3xmCitrine was generated from the KIF1A(1-393)-LZ-

3xmCitrine plasmid using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies, Santa Clara, CA). COS-7 monkey kidney fibroblasts (American Type 

Culture Collection, Mansses, VA) were cultured in DMEM-GlutaMAXä with 10% fetal 

bovine serum (FBS) at 37°C with 5% CO2. Cells were transfected with 1µg of either WT 

KIF1A-LZ-3xmCitrine, Tri-Ala KIF1A-LZ-3xmCitrine, or KIF1A-GFP mammalian 

plasmid using the Lipofectamine 2000 delivery system (Thermo Fisher Scientific, 

Waltham, MA) and incubated in Opti-MEMTM (Thermo Fisher Scientific) media with 4% 

FBS. The next day, cells were harvested, pelleted, and washed with DMEM GlutaMAXä. 

The pellet was vigorously resuspended in lysis buffer (25mM HEPES, 11mM K+ Acetate, 

5mM Na+ Acetate, 5mM MgCl2, 0.5mM EGTA, 1% Triton X-100, 1mM PMSF, 1mg/ml 

pepstatin, 10 µg/ml leupeptin, 5µg/ml aprotinin) and centrifuged at room temperature for 

15 minutes at 14,000 rpm. Relative amounts of protein between preps and motor constructs 
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was determined using densitometry, and supernatant containing expressed motor protein 

was aliquoted and stored at -80°C until further use. 

Subtilisin treatment 

To remove C-terminal tails, 5 µM paclitaxel stabilized microtubules were treated 

with 0.05 µM Subtilisin A (Sigma Aldrich), resuspended in P12 Buffer, for 45 minutes at 

25°C. The reaction was stopped by the addition of 5 mM phenylmethanesulfonyl fluoride. 

Subtilisin treatment was confirmed by Coomassie staining of SDS-PAGE denaturing gel. 

Tubulin concentration was determined as previously described. 

In vitro single-molecule TIRF 

Flow chambers used in in vitro TIRF experiments were constructed as previously 

described (Stern et al. 2017). Flow chambers were incubated with monoclonal anti-b III 

(neuronal) antibodies at 33 µg/ml for 5 minutes, then washed twice with 0.5 mg/ml bovine 

serum albumin (BSA; Sigma Aldrich) and incubated for 2 minutes. 1 µM of microtubules 

(any experimental condition) were administered and incubated for 8 minutes. Non-

adherent microtubules were removed with a P12 wash supplemented with 20 µM 

paclitaxel. Kinesin motors in Motility Buffer consistent with past literature (MB; 12 mM 

PIPES, 1 mM MgCl2, 1 mM EGTA, supplemented with 20 µM paclitaxel, 10 mM DTT, 

10 mg/ml BSA, 2 mM ATP and an oxygen scavenger system [5.8 mg/ml glucose, 0.045 

mg/ml catalase, and 0.067 mg/ml glucose oxidase; Sigma Aldrich]) (Soppina and Verhey 

2014), or a High Salt Motility Buffer (same as Motility Buffer, only change being PIPES 

concentration raised to 80 mM), supplemented with 2 mM ATP, were added to the flow 

cell just before image acquisition. For landing rate assays, in vitro KIF1A motility assays 
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were prepared as described above, with the only change being that MB was supplemented 

with 2 mM ADP. Control Drosophila melanogaster biotin-tagged kinesin-1 motors were 

labeled with streptavidin-conjugated Qdot 655 (Life Technologies, Carlsbad, CA) at a 1:4 

motor:Qdot ratio as previously described (Stern et al. 2017; Hoeprich et al. 2017). 

Total internal reflection fluorescence (TIRF) microscopy was performed at room 

temperature using an inverted Eclipse Ti-E microscope (Nikon, Melville, NY) with a 100x 

Apo TIRF objective lens (1.49 N.A.) and dual iXon Ultra Electron Multiplying CCD 

cameras, running NIS Elements version 4.51.01. Rhodamine-labeled microtubules were 

excited with a 561 and a 590/50 filter. KIF1A-LZ-3xmCitrine (WT or Tri-Ala) motors were 

excited with a 488 laser and a 525/50 filter. Qdot 655 conjugated kinesin-1 motors were 

excited with a 640 laser and 655 filter. All movies were recorded with an acquisition time 

of 200 msec for 500 frames (100 sec observation). 

Photobleaching assay 

As an additional control, a photobleaching assay was performed to confirm that 

KIF1A run lengths were not underestimated due to photobleaching of the C-terminal 

3xmCitrine tag (Figure S2-6). Motors were adhered to microtubules in the presense of 

adenylylimidodiphosphate (AMPPNP; Sigma-Aldrich) and washed once to remove 

unattached motors. Using Image J, a region of interest (ROI) was drawn around each 

fluorescent spot and the average intensity of each pixel within the ROI was measured over 

time. Intensity was background corrected and a motor was considered photobleached when 

the ROI average intensity was 0. 
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Western blot analysis 

Purified tubulin protein was separated by electrophoresis on Mini-PROTEANÒ 

TGXÔ gels (Bio-Rad, Hercules, CA) and transferred to a polyvinylidene fluoride 

membrane (Bio-Rad). Membranes were blocked in a 1:1 solution of phosphate-buffered 

saline (PBS; 155 mM NaCl, 3 mM Na2HPO4, and 1 mM KH2PO4, pH 7.4) and OdysseyÒ 

blocking reagent (Li-COR, Lincoln, NE). A mouse anti-polyglutamylated tubulin antibody 

(1:8,000; GT335, AdipoGen, San Diego, CA) or a mouse anti-alpha tubulin antibody 

(1:10,000; DM1A, Sigma-Aldrich) was administered to membrane, followed by a 

secondary DyLight 800 anti-mouse IgG antibody (1:10,000; Thermo Fisher Scientific). 

Secondary antibody fluorescence was detected using an Odyssey CLx (Li-COR).  

Data analysis 

Motility events were analyzed as previously reported (Hoeprich et al. 2014; 

Hoeprich et al. 2017)). In brief, overall run length motility data was measured using the 

ImageJ MTrackJ plug-in, for a frame-by-frame quantification of KIF1A motility. Pauses 

are defined as segments where the average velocity is less than 0.2 µm/s over three frames 

or more. Continuous events were identified at the boundaries of pausing events. Average 

overall/continuous speed were plotted as a histogram, with mean and SD are reported in 

Table 2-1. KIF1A pause duration events were fit to a single exponential decay, represented 

as cumulative frequency plots with confidence intervals (CI) of 95%. Pause duration is 

reported as the inverse of the decay rate, representing the lifetime of pause duration events. 

To assess statistical significance between motor populations, we account for the 

fact that the characteristic run length of the motor is directly coupled to the length 

distribution of the experimental microtubule population and 2) that microtubule length 
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distributions will vary between experimental set ups and condition. Furthermore, we 

recognize the uncertainty in our experimental data reporting due to variations in sampling. 

To account for this, we use a bootstrap analysis, involving the extensive resampling of data 

sets, to generate histograms of characteristic run length and characteristic track length. 

After bootstrapping, these previously exponential distributions now fit a Gaussian 

distribution, allowing us to measure 99% confidence interval of our data sets. To assess 

statistical significance between data sets, we then use a permutation resampling algorithm 

(tested against a null hypothesis), as this is a distribution independent test without the 

assumptions of other nonparametric tests (Thompson, Hoeprich, and Berger 2013). 

Kymographs of motor motility were created using the MultipleKymograph ImageJ 

plug-in, with a set line thickness of 3. To correct for microtubule track length effects on 

motor motility, overall/continuous run length data was resampled to generate cumulative 

frequency plots (99% CI), using previously reported methods (Thompson, Hoeprich, and 

Berger 2013). After data resampling, statistical significance between motor run length and 

speed data sets was determined using a paired t-test.  

To determine the landing rate of KIF1A on various microtubule conditions, the total 

number of motor landing events on the microtubule was divided by the length of the 

microtubule and further divided by the duration of the movie (events/µm/minute). To be 

considered a landing rate event, a motor must remain on the microtubule for three 

consecutive frames under ADP or AMPPNP state condition
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RESULTS 

KIF1A exhibits pausing behavior and superprocessive motility on taxol-stabilized and 

GMPCPP microtubules assembled from brain tubulin. 

 Initial single molecule TIRF microscopy observations revealed that dimeric KIF1A 

motors possess the novel ability to pause during a run on taxol-stabilized microtubules 

(Figure 2-1A, Movie S2-1). While pausing, the dimeric motor appears to be spatially 

constrained as it does not exhibit the highly diffusive behavior of the KIF1A monomer 

(Okada and Hirokawa 1999). While other kinesin motors have been shown to exhibit 

transient pauses (Gramlich et al. 2017; Padzik et al. 2016), the high pause frequency (Table 

2-1) and substantial number of pauses per distance (Figure 2-2F) of KIF1A has not been 

previously characterized, leading us to investigate this behavior further.  

The discovery of this novel pausing behavior led us to redefine our nomenclature 

of KIF1A motility by dissecting KIF1A motility into three segments (Figure 2-1A). First, 

we define the continuous run length as segments where, within a single event, KIF1A is 

moving at a constant velocity. Next, continuous run lengths are connected by pauses that 

occur at the beginning of continuous runs, in between continuous runs, or after continuous 

runs. To characterize KIF1A pausing, we have quantified both the pause frequency (# of 

pauses/overall run) and pauses per distance (# of pauses/µm microtubule). While 

representative KIF1A kymographs include long pauses (Figure 2-1C, 2-2A, 2-2B), it is 

important to note that the majority of pausing events are less than 1.5 seconds and occur at 

stochastic locations on the microtubule (Figure 2-1C, Table 2-1). Lastly, we define the 

overall run length as the sum of continuous run lengths during a single motility event on 
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the microtubule. KIF1A pausing behavior (Figure 2-1B, 2-1C) is best revealed at motor 

concentrations lower than those utilized in previous work (Soppina and Verhey 2014) . 

 

 

 
Figure 2-1. KIF1A pauses during runs along the microtubule. A) Representative 
kymograph with corresponding nomenclature used to describe novel KIF1A motility 
behavior. B,C) Representative kymographs demonstrating that at B) high motor 
concentrations, pausing becomes obscured by surrounding motor motility while at C) low 
motor concentrations, extensive pausing behavior (white arrows) is revealed at stochastic 
positions on the microtubule. This research was originally published in the Journal of 
Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. 
Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility of kinesin-3 
family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the American Society 
for Biochemistry and Molecular Biology 
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 To confirm that this behavior was not dependent on the facilitated dimerization of 

our leucine zipper construct (KIF1A-LZ-3xmCitrine), we repeated our single molecule 

experiments with a non-leucine zipper construct (KIF1A-GFP). We confirmed that in the 

absence of the leucine zipper, KIF1A exhibits extensive pausing behavior and 

superprocessive motility (Figure S2-1). Additionally, we observed an increase in purely 

diffusive events with this construct (Figure S2-1A), likely resulting from KIF1A 

monomers (Soppina et al. 2014; Hammond et al. 2009). Our results demonstrate that the 

KIF1A-LZ-3xmCitrine construct is an appropriate model for dimeric KIF1A behavior. 

As our current investigations are focused on the processive, dimeric KIF1A motor, we 

performed all other experiments with the LZ construct. 

 We next investigated KIF1A’s pausing on GMPCPP microtubules, which contain 

tubulin subunits in the GTP state rather than the GDP state and are known to have more 

protofilaments than taxol-stabilized microtubules (Ginsburg et al. 2017; Hyman et al. 1995; 

Zhang, LaFrance, and Nogales 2018). KIF1A pausing occurred on both microtubule 

lattices (Figure 2-2A, B) with similar frequencies of 0.95 pauses/overall run (Taxol 

[n=165]) versus 1.02 pauses/overall run (GMPCPP [n=171]) and pauses per distance of 

0.14 pauses/µm (Taxol) versus 0.16 pauses/µm (GMPCPP) (Figure 2-2F, Table 2-1). 

However, there was a 46% decrease in pause duration from 1.23 sec (Taxol) to 0.66 sec 

(GMPCPP) (Figure 2-2D, 2-2E, Table 2-1). With respect to other motility characteristics, 

we observed no significant change in overall run length (6.24 ± 2.09 µm [n=165] and 6.01 

± 2.17 µm [n=171]) or continuous run length (2.95 ± 1.07 µm [n=282] and 2.81 ± 0.61µm 

[n=305]) along taxol-stabilized versus GMPCPP microtubules, respectively (Figure 2-2C, 

Table 2-1). We also observed no change in the overall speed (1.35 ± 0.41 µm/s and 1.27 ± 
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0.28 µm/s, respectively; Table 2-1, Figure S2-2) or continuous speed (2.01 ± 0.53 µm/s 

and 2.06 ± 0.54 µm/s, respectively; Table 2-1, Figure S2-3) along taxol-stabilized versus 

GMPCPP microtubules, respectively. However, there was a significant decrease in 

KIF1A’s ability to land on GMPCPP microtubules in motility buffer with the presence of 

ADP with 4.86 ± 0.88 events/µm/min [n=958] compared to 7.93 ± 1.25 events/µm/min 

[n=1152] on taxol-microtubules (Figure 2-7, Table 2-1). Thus, while KIF1A displays a 

decrease in pause duration and a decreased landing rate on GMPCPP microtubules (Table 

2-1), these results confirm that KIF1A’s unique pausing behavior occurs on microtubules 

of varying protofilament and nucleotide composition. 
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Figure 2-2. KIF1A pausing behavior occurs on taxol-stabilized and GMPCPP 
microtubules. A,B) Representative kymographs of KIF1A motility on A) taxol-stabilized 
or B) GMPCPP microtubules. C) Quantification demonstrates no significant differences in 
KIF1A overall run length (RL) (6.24 ± 2.09 µm [n=165] and 6.01 ± 2.17 µm [n=171], 
respectively) and continuous run length (2.95 ± 1.07 µm [n=282], and 2.81 ± 0.91µm 
[n=305], respectively). Run length values are reported as mean ± standard deviation and 
were calculated as previously reported (Thompson, Hoeprich, and Berger 2013). D) KIF1A 
pause duration is 1.23 sec (Confidence Interval [CI] 1.00 – 1.42 sec) on taxol-stabilized 
microtubules [n=147] and E) 0.66 sec (CI 0.59 – 0.73 sec) on GMPCPP microtubules 
[n=152]. F) KIF1A exhibits similar pauses per distance on taxol-stabilized (0.14 
pauses/µm [n=165]) and GMPCPP (0.16 pauses/µm [n=171]) microtubules.  Pause 
durations were fit to a single exponential decay and are represented as cumulative 
frequency distributions; the time constant of fit is reported in seconds with a 95% 
confidence interval. All other metrics are reported as Mean ±  SD.  * p < 0.001 Kinesin-1 
was used as an experimental control across all conditions (Figure S2-2 through S2-5). Each 
condition is representative of at least four independent experiments. This research was 
originally published in the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, 
Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail 
controls pausing and motility of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 
29(16):6263-6363. © the American Society for Biochemistry and Molecular Biology 
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Interaction with tubulin C-terminal tails mediates KIF1A pausing behavior, landing rate, 

and superprocessive motility. 

 To investigate a potential mechanism facilitating KIF1A pausing, we considered 

the known interaction of KIF1A’s lysine-rich K-loop with tubulin’s glutamate-rich C-

terminal tail projections (Soppina and Verhey 2014; Okada and Hirokawa 2000). Previous 

work has shown that the positively-charged surface loop-12 (K-loop) of the KIF1A motor 

domain interacts with the microtubule C-terminal tails, helping to anchor KIF1A to the 

microtubule (Kikkawa, Okada, and Hirokawa 2000) and mediate KIF1A landing on the 

microtubule (Soppina and Verhey 2014). We thus asked if subtilisin-mediated proteolytic 

removal (Knipling, Hwang, and Wolff 1999) (Figure 2-3A) of the tubulin C-terminal tails 

could influence KIF1A motility and pausing behavior. On subtilisin-treated microtubules, 

we observed a 47% reduction of KIF1A overall run length (3.31 ± 1.34 µm [n=171]) when 

compared to untreated microtubules (Figure 2-3B, 2-3C, Table 2-1). Subtilisin treatment 

did not significantly change the continuous run length (2.91 ± 1.16 µm [n=205]) of KIF1A 

(Figure 2-3C, Table 2-1), however we did observe a 45% decrease in pause duration (1.23 

sec to 0.68 sec), a 79% reduction in pause frequency (0.95 pauses/overall run to 0.18 

pauses/overall run), and an 85% reduction in pauses per distance (0.14 pauses/µm to 0.02 

pauses/µm) (Figure 2-3D, 2-3E, Table 2-1). Due to the decreased pausing events, KIF1A’s 

overall speed increased on subtilisin-treated microtubules from 1.35 ± 0.41 µm/s 

(untreated) to 1.58 ± 0.38 µm/s (Table 2-1, Figure S2-2). However, continuous speed 

remained relatively unchanged between untreated and subtilisin-treated microtubules (2.01 

± 0.53 µm/s and 1.94 ± 0.50 µm/s, respectively) (Table 2-1, Figure S2-3). 
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 It has been previously reported that the perturbation of KIF1A’s interaction with 

the C-terminal tail reduces the motor’s landing rate (Soppina and Verhey 2014). Measuring 

KIF1A landing rate in ADP-containing motility buffer confirms the necessity of this 

interaction, showing that subtilisin-treatment of microtubules reduces the landing rate of 

KIF1A by 65% (7.93 ± 1.25 events/µm/min to 2.80 ± 0.42 events/µm/min, Figure 2-7, 

Table 2-1). Taken together, these results expose KIF1A’s reliance on the microtubule C-

terminal tail to engage with the microtubule, initiate pausing behavior, and generate 

superprocessive overall run lengths. 
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Figure 2-3. Removal of the tubulin C-terminal tail reduces KIF1A pausing. A) Cartoon 
depiction of tubulin C-terminal tail (CTT) cleavage upon addition of subtilisin.  B) 
Representative kymographs of KIF1A motility on untreated microtubules (top) vs 
subtilisin (Sub) treated microtubules (bottom). C) The overall run length of KIF1A was 
reduced from 6.24 ± 2.09 µm to 3.31 ± 1.34 µm [n=171] upon subtilisin treatment of 
microtubules, while continuous run length was not significantly changed (2.95 ± 1.07 µm 
and 2.91 ± 1.16 µm [n= 205], respectively). D) KIF1A pause duration is 0.68 sec (CI 0.57 
– 0.83 sec) on subtilisin-treated microtubules [n=34], compared to untreated microtubules 
(1.23 sec; Figure 2-2D). E) KIF1A pauses per distance was significantly decreased from 
0.14 pauses/µm to 0.02 pauses/µm upon subtilisin-treatment of taxol-stabilized 
microtubules. Run length values and standard deviations were calculated as previously 
reported (Thompson, Hoeprich, and Berger 2013). Kinesin-1 was used as an experimental 
control across all conditions (Figure S2-2 through S2-5). Each condition is representative 
of at least four independent experiments. Pause durations were fit to a single exponential 
decay and are represented as cumulative frequency distributions; the time constant of fit is 
reported in seconds with a 95% confidence interval. All other metrics are reported as Mean 
±  SD. * p < 0.001 This research was originally published in the Journal of Biological 
Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. 
Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility of kinesin-3 
family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the American Society 
for Biochemistry and Molecular Biology 
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Conserved lysine residues of the K-loop are key mediators in KIF1A pausing and motility. 

 Given the influence of the tubulin C-terminal tails on KIF1A pausing behavior, we 

further investigated the influence of the electrostatic interaction between the KIF1A K-

loop and the microtubule C-terminal tails. First, we assessed the dependence of KIF1A 

pausing on the local electrostatic environment by increasing the salt concentration of our 

motility buffer from 12 mM to 80 mM PIPES. We observed a decrease in pause duration 

(1.23 sec to 0.78 sec, Figure 2-4C) with no significant changes in pause frequency (0.90 

pauses/overall run), pauses per distance (0.14 pauses/µm) or any motility parameters 

(Figure 2-4A, 2-4B, S2-2, S2-3). Furthermore, in 80 mM PIPES we observed a decrease in 

KIF1A landing rate to 3.28 ± 0.61 events/µm/min [n=592] (Figure 2-7, Table 2-1). 
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Figure 2-4. KIF1A behavior and motility in 80 mM PIPES Motility Buffer on taxol-
stabilized microtubules. A) KIF1A exhibits a similar overall run length (5.98 ± 2.14 µm 
[n=164]) and a continuous run length (3.14 ± 0.98 µm [n=280]) in 80 mM PIPES as 
compared to standard motility buffer. B) KIF1A exhibits a similar number of pauses per 
distance in Motility Buffer (0.14 pauses/µm) and 80 mM PIPES (0.14 pauses/µm). C) In 
80 mM PIPES, KIF1A pause duration is 0.78 sec (CI 0.66 – 0.91 sec) [n=132], compared 
to Motility Buffer (1.23 sec; Figure 2-2D). Pause durations were fit to a single exponential 
decay and are represented as cumulative frequency distributions; the time constant of fit is 
reported in seconds with a 95% confidence interval. All other metrics are reported as Mean 
±  SD. This research was originally published in the Journal of Biological Chemistry. 
Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of 
tubulin’s C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A. 
J. Biol. Chem. 2019; 29(16):6263-6363. © the American Society for Biochemistry and 
Molecular Biology 
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 Second, we investigated how positively-charged residues within the K-loop 

contribute to KIF1A pausing and motility. It has been previously reported that mutating all 

six lysines of the K-loop to alanine residues abolishes KIF1A motility and interaction with 

the microtubule (Soppina and Verhey 2014), highlighting the importance of the K-

loop/microtubule interaction to the intrinsic motility properties of KIF1A. Therefore, we 

mutated the three lysines most conserved across the kinesin-3 family to maintain the ability 

of KIF1A motors to engage with the microtubule surface (Figure 2-5A). The KIF1A K-

loop mutants (Tri-Ala KIF1A) displayed a marked reduction in both motility and pausing 

behavior (Figure 2-5B-E). Specifically, both the overall run length (2.41 ± 1.42 µm 

[n=173]) and continuous run length (2.00 ± 1.11 µm [n=207]) were significantly reduced 

by 61% and 32%, respectively, when compared to WT KIF1A on taxol-stabilized 

microtubules (Figure 2-5C, Table 2-1). Due to fewer pausing events, there was a 23% 

increase in overall speed (1.66 ± 0.45 µm/s) and a continuous speed of 1.72 ± 0.45 µm/s 

(Table 2-1, Figure S2-2, Figure S2-3). Tri-Ala KIF1A mutants also exhibited impaired 

pausing behavior quantified by a 62% reduction in pause duration (1.23 sec to 0.47 sec), a 

75% decrease in pause frequency (0.95 pauses/overall run to 0.23 pauses/overall run, and 

a 64% decrease in pauses per distance (0.14 pauses/µm to 0.05 pauses/µm) (Figure 2-5D,E, 

Table 2-1). As expected from previous work (Soppina and Verhey 2014), the Tri-Ala 

KIF1A mutant also had a dramatic, 92% reduction in landing rate when compared to WT 

KIF1A on taxol-stabilized microtubules (0.64 ± 0.14 events/µm/min [n=527] for Tri-Ala 

and 7.93 ± 1.25 events/µm/min [n=1552] for WT) in motility buffer supplemented with 

ADP (Figure 2-7, Figure S2-7, Table 2-1) but no change in microtubule interaction in 

motility buffer supplemented with AMPPNP (1.47 ± 0.34 events/𝜇m/min [n=574] for Tri-
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Ala and 2.01 ± 0.49 events/𝜇m/min [n=917] for WT (Figure S2-7). These results confirm 

that the KIF1A K-loop/microtubule C-terminal tail interaction plays a critical role not only 

in the landing rate as previously described (Soppina and Verhey 2014), but also for the 

pausing behavior of KIF1A. 
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Figure 2-5. The KIF1A K-loop regulates pausing. A) Amino acid sequence alignment 
of the KIF1A loop 12 (K-loop) of WT KIF1A and the Tri-Ala KIF1A mutant. For the Tri-
Ala mutant, the three most conserved lysines amongst the kinesin-3 family have been 
mutated to alanine residues (yellow text). B) Representative kymographs of WT KIF1A 
motility (top) vs Tri-Ala KIF1A motility (bottom). C) The Tri-Ala mutation of the KIF1A 
K-loop significantly reduced both overall (6.24 ± 2.09 µm to 2.41 ± 1.42 µm [n=173]) and 
continuous (2.95 ± 1.07 µm to 2.00 ± 1.11 µm [n=207]) run length. D) KIF1A pause 
duration is 0.47 sec (CI 0.41 – 0.53 sec) upon mutation of the K-loop [n=36], compared to 
WT KIF1A (1.23 sec; Figure 2-2D). E) Mutation of the K-loop significantly decreased 
number of pauses per distance from 0.14 pauses/µm (WT KIF1A) to 0.05 pauses/µm (Tri-
Ala KIF1A). Run length values and standard deviations were calculated as previously 
reported (Thompson, Hoeprich, and Berger 2013). Kinesin-1 was used as an experimental 
control across all conditions (Figure S2-2 through S2-5). Each condition is representative 
of at least four independent experiments. Pause durations were fit to a single-exponential 
decay and are represented as cumulative frequency distributions; the time constant of fit is 
reported in seconds with a 95% confidence interval. All other metrics are reported as Mean 
±  SD. * p < 0.001 This research was originally published in the Journal of Biological 
Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. 
Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility of kinesin-3 
family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the American Society 
for Biochemistry and Molecular Biology 
 
 
 
 
 



 56 

Microtubule C-terminal tail polyglutamylation regulates KIF1A pausing behavior and 

motility. 

 We next aimed to identify a specific property of the tubulin C-terminal tail that 

could influence KIF1A pausing and motility. It has been previously established that 

reduced levels of a-tubulin polyglutamylation result in improper KIF1A localization and 

insufficient cargo delivery in hippocampal and superior cervical ganglia neurons of 

ROSA22 mice (Ikegami et al. 2007). As neuronal microtubules are subjected to extensive 

C-terminal tail polyglutamlation (Audebert et al. 1994), we hypothesized that this post-

translational modification is important for regulation of KIF1A motility behavior including 

pausing. We thus assessed KIF1A’s pausing and superprocessivity on tubulin purified from 

HeLa cells, which are known to contain markedly less polyglutamylation than neuronal 

tubulin (Figure 2-6A) due to low expression of the tubulin tyrosine-like ligase enzymes 

(Regnard et al. 1999; Lacroix and Janke 2011; Lacroix et al. 2010). It is important to note 

that this change in tubulin polyglutamylation alters the local charge of the microtubule 

surface as compared to neuronal tubulin. KIF1A overall run length was reduced by 34% 

on taxol-stabilized HeLa microtubules (4.12 ± 1.48 µm [n=164]) when compared to taxol-

stabilized neuronal microtubules with no significant reduction in continuous run length 

(Figure 2-6C, Table 2-1). In regards to pausing behavior, we observed a 58% reduction in 

pause frequency (0.95 pauses/overall run to 0.40 pauses/overall run), a 50% reduction in 

pauses per distance (0.14 pauses/µm to 0.07 pauses/µm), and a 51% decrease in pause 

duration (1.23 sec to 0.59 sec) (Figure 2-6B, 2-6D-E, Table 2-1). Due to the reduction in 

pausing events, the overall speed of KIF1A on HeLa tubulin (1.70 ± 0.41 µm/s) increased 

by 26% when compared to KIF1A on neuronal microtubules, while continuous speed 
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decreased by only 7% (Table 2-1, Figure S2-2, Figure S2-3). We also observed a 

substantial, 94% reduction in KIF1A landing rate on HeLa microtubules when compared 

to neuronal microtubules (7.93 ± 1.25 events/µm/min [n=1552] versus 0.49 ± 0.13 

events/µm/min [n=429]) (Figure 2-7, Table 2-1). Taken together, these results confirm that 

microtubule C-terminal tail polyglutamylation dictates KIF1A’s ability to pause and thus 

mediates superprocessive behavior. 
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Figure 2-6. KIF1A pausing is regulated by the polyglutamyation state of the 
microtubule. A) Western blot revealing higher levels of polyglutamylation (polyE, top) 
on purified neuronal (brain) tubulin in comparison to purified HeLa tubulin, known to have 
little tubulin polyglutamylation (Regnard et al. 1999; Lacroix et al. 2010; Lacroix and 
Janke 2011). The total a-tubulin loading control is shown in the bottom blot. B) 
Representative kymographs of KIF1A motility on neuronal microtubules (top) vs HeLa 
microtubules (middle and bottom). C) The overall run length of KIF1A was reduced from 
6.24 ± 2.09 µm to 4.12 ± 1.48 µm [n=164] on HeLa microtubules, while continuous run 
length was not significantly changed (2.95 ± 1.07 µm on HeLa microtubules vs 2.98 ± 0.96 
µm [n=222] on brain microtubules). D) KIF1A pause duration is 0.59 sec (CI 0.54 – 0.64 
sec) on HeLa microtubules [n=58], compared to neuronal microtubules (1.23 sec; Figure 
2-2D). E) KIF1A pauses per distance was significantly decreased from 0.14 pauses/µm on 
brain microtubules to 0.07 pauses/µm on HeLa microtubules. Run length values and 
standard deviations were calculated as previously reported (Thompson, Hoeprich, and 
Berger 2013). Kinesin-1 was used as an experimental control across all conditions (Figure 
S2-2 through S2-5). Each condition is representative of at least four independent 
experiments. Pause durations were fit to a single-exponential decay and are represented as 
cumulative frequency distributions; the time constant of fit is reported in seconds with a 
95% confidence interval. All other metrics are reported as Mean ±  SD.  * p < 0.001 This 
research was originally published in the Journal of Biological Chemistry. Lessard, DV, 
Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s C-
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terminal tail controls pausing and motility of kinesin-3 family member KIF1A. J. Biol. 
Chem. 2019; 29(16):6263-6363. © the American Society for Biochemistry and Molecular 
Biology 
 
 
 
 

 
 
Figure 2-7. KIF1A landing is influenced by microtubule state and the K-loop/C-
terminal tail interaction.  Quantification of KIF1A landing rate in the ADP state on 
indicated microtubule (MT) subsets (Mean ± SD). On taxol-stabilized microtubules KIF1A 
had a landing rate of 7.93 ± 1.25 events/𝜇m/min [n=1552]. On GMPCPP microtubules, 
KIF1A landing rate was significantly reduced to 4.86 ± 0.88 events/𝜇m/min [n=958]. 
Removal of the tubulin C-terminal tails (Sub MTs) significantly reduced KIF1A landing 
rate to 2.80 ± 0.42 events/𝜇m/min [n=717]. Increasing salt concentration (80 mM PIPES) 
of the motility buffer reduced the landing rate to 3.28 ± 0.61 events/𝜇m/min [n=592]. 
Mutation of the KIF1A K-loop (Tri-Ala KIF1A) significantly reduced the landing rate to 
0.64 ± 0.14 events/𝜇m/min [n=527]. On HeLa microtubules with reduced 
polyglutamylation, the KIF1A landing rate was significantly reduced to 0.49 ± 0.13 
events/𝜇m/min [n=429]. Each condition is representative of at least four independent 
experiments. Mean ±  SD reported.  * p < 0.001 This research was originally published in 
the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, 
R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility 
of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the 
American Society for Biochemistry and Molecular Biology 
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Table 2-1. Summary of KIF1A motility and behavior on microtubules across all 
conditions. Pause durations were fit to a single-exponential decay and the time constant of 
the fit is reported in seconds. All other metrics are reported as Mean ±  SD.  * = p<0.001 
relative to KIF1A on taxol-stabilized MTs. This research was originally published in the 
Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, 
Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility 
of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the 
American Society for Biochemistry and Molecular Biology 

 
 
 
 
  

 

Overall 
Run 

Length 
(µm) 

Overall 
Speed 
(µm/s) 

Continuous 
Run 

Length 
(µm) 

Continuous 
Speed 
(µm/s) 

Pause 
Frequency 

(# 
pauses/overall 

run) 

Pauses per 
Distance (# 
pauses/µm) 

Pause 
Duration 

(sec) 

Landing  
Rate 

(events/µm/min) 

Taxol 
6.24 ± 
2.09 

1.35 ± 
0.41 2.95 ± 1.07 2.01 ± 0.53 0.95 0.14 1.23 7.93 ± 1.25 

GMPCPP 
6.01 ± 
2.17 

1.27 ± 
0.28 2.81 ± 0.91 2.06 ± 0.54 1.02 0.16 0.66 4.86 ± 0.88* 

Subtilisin 
3.31 ± 
1.34* 

1.58 ± 
0.38 2.91 ± 1.16 1.94 ± 0.50 0.18* 0.02* 0.68 2.80 ± 0.42* 

80 mM 
PIPES 

5.98 ± 
2.14 

1.34 ± 
0.30 3.14 ± 0.98 1.99 ± 0.47 0.90 0.14 0.78 3.28 ± 0.61* 

Tri-Ala 
2.41 ± 
1.42* 

1.66 ± 
0.45 

2.00 ± 
1.11* 1.72  ± 0.45 0.23* 0.05* 0.47 0.64 ± 0.14* 

HeLa 
Tubulin 

4.12 ± 
1.48* 

1.70 ± 
0.41 2.98 ± 0.96 1.87  ± 0.40 0.40* 0.07* 0.59 0.49 ± 0.13* 
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DISCUSSION 

The superprocessivity of the kinesin-3 family member KIF1A has been previously 

established (Soppina et al. 2014), supporting its known role in long-distance axonal 

transport (Lo et al. 2011; Hung and Coleman 2016). Here we present a novel molecular 

mechanism that influences KIF1A’s superprocessive motion. First, we demonstrate that 

KIF1A engages in previously unreported pauses on the microtubule lattice. KIF1A walks 

a superprocessive distance (~3 µm on average) before initiating a pause, supporting the 

notion that although pausing is rare, it is related to the superprocessive nature of the motor 

itself. Pausing has several effects on the overall motility of dimeric KIF1A motors. Pauses 

enable KIF1A to string together multiple continuous runs to generate a longer overall run. 

Of note, even in the absence of pauses, KIF1A remains a superprocessive motor, with 

continuous run lengths of ~ 3 µm. KIF1A’s overall speed is also increased in the absence 

of pauses, with no effect on continuous speed. This response is expected, considering that 

a reduction in pause frequency will reduce a slower population of motors undergoing 

pauses.  

 Furthermore, we show that pauses are mediated by interactions between the KIF1A 

K-loop and tubulin C-terminal tails. When the K-loop/C-terminal tail interaction is 

interrupted (e.g., subtilisin treatment, K-loop mutation), KIF1A shows a reduced pause 

frequency and duration on the microtubule lattice. Disruption of the K-loop/C-terminal tail 

interaction also results in a dramatic reduction in the landing rate of dimeric KIF1A motors, 

consistent with previous work (Soppina and Verhey 2014). The K-loop is also critical for 

monomeric KIF1A motors to diffuse along the surface of microtubules (Okada and 

Hirokawa 1999). In addition, cellular work has shown that loop-12 is important for 
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regulation of KIF1A dendritic cargo sorting (Eva P. Karasmanis 2018). As the K-loop is 

conserved across members of the kinesin-3 family, our newly-identified pausing 

mechanism is likely to be a conserved feature of this class of motor.  

 Finally, we demonstrate that polyglutamylation of the tubulin C-terminal tail is a 

post-translational modification that regulates KIF1A pausing behavior and subsequent 

motility. Along HeLa microtubules, which lack polyglutamylation, KIF1A displayed 

significantly reduced landing rate, pause frequency, and pause duration. Electrostatic 

interactions between the K-loop and C-terminal tail play an important role as increasing 

the salt concentration in our motility buffer resulted in a reduced landing rate and pause 

duration. That the increased salt concentration did not influence pause frequency suggests 

that the factors that influence pausing are not completely based on electrostatics. That 

tubulin C-terminal tail polyglutamylation influences KIF1A behavior at the single 

molecule level provides a mechanistic understanding of how polyglutamylation can 

regulate KIF1A cargo trafficking (Ikegami et al. 2007). The levels of tubulin C-terminal 

tail polyglutamylation are highly tuned during neural development (Audebert et al. 1994; 

Audebert et al. 1993) and could also influence KIF1A during synaptogenesis (Stavoe et al. 

2016) and interkinetic nuclear migration (Dantas et al. 2016). Compartmentalizing 

neuronal tubulin polyglutamylation into localized hotspots (Janke, Rogowski, and van Dijk 

2008) may contribute an advantageous level of regulation to fine-tune KIF1A function 

during these developmental processes.  

 With a molecular regulatory mechanism identified in regards to KIF1A pausing and 

motility, a question still remains: how is KIF1A able to pause in between processive 

segments (continuous runs)? Our proposed mechanism states that pausing is mediated in 
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part by a KIF1A/C-terminal tails interaction. A structural mechanism responsible for 

KIF1A pausing can be proposed based on past work examining the flexibility and structural 

confirmation of the K-loop during ATP hydrolysis (Nitta et al. 2004). This study 

demonstrated that when KIF1A is bound to AMPPNP, loop-12 is positioned up and away 

from the microtubule surface whereas when KIF1A is bound ADP, loop-12 adopts a 

“downward” position to interact with the C-terminal tails on the microtubule surface. From 

this, we propose that pauses are initiated by loop-12 interaction with the microtubule C-

terminal tail when KIF1A is in the ADP state. Importantly, a pause would happen when 

both motor domains are in the same nucleotide state at the same time, making this a 

catalytically rare event and explaining why pausing occurs on the magnitude of every ~ 3 

µm. We speculate that with both loop-12s in a downward position, KIF1A exhibits a 

spatially-constrained form of diffusion close to the resolution limit of our TIRF microscope 

as compared to the previously observed highly diffusive behavior of the KIF1A monomer 

(Okada and Hirokawa 1999). 

The mechanistic importance of loop-12 positioning is further supported by our data 

comparing the landing rate of WT and Tri-Ala motors in the presence of ADP or AMPPNP 

in the motility buffer. Under ADP conditions, the landing rate of the K-loop mutant (Tri-

Ala) is significantly reduced when compared to WT KIF1A (Figure S2-7), consistent with 

previous work (Soppina and Verhey 2014). However, under AMPPNP conditions, there is 

no significant difference in landing rates between WT and Tri-Ala KIF1A motors (Figure 

S2-7). These findings support our proposed structural mechanism of pausing in which the 

“downward” positioning of KIF1A loop-12 when bound to ADP enables loop-12 to interact 

with the microtubule C-terminal tails and facilitate pausing. Furthermore, the significant 
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reduction of Tri-Ala KIF1A pausing and continuous run length in motility assays (Figure 

2-5C, 2-5E) highlight the importance of the K-loop for KIF1A motility. Further testing 

how KIF1A catalytic activity and structural states influence pausing is an enticing future 

direction beyond the scope of this current study. 

 Our results demonstrate that KIF1A responds not only to post-translational 

modification of the microtubule surface but also to the state of the microtubule. 

Specifically, we demonstrate that KIF1A has a reduced landing rate (Figure 2-7) and pause 

duration (Figure 2-2D, Table 2-1) on GMPCPP microtubules as compared to taxol-

stabilized microtubules. This is potentially due to a nucleotide-specific difference in 

positioning of the C-terminal tails on the microtubule surface. Whether the motor is 

influenced by protofilament number and/or nucleotide state of the GMPCPP lattice will 

require further study. Recent compelling work has demonstrated that microtubule 

associated proteins (MAPs) and septins can also influence KIF1A motility and function 

(Monroy et al. 2018; Eva P. Karasmanis 2018; Gumy et al. 2017; Lipka et al. 2016). 

Pausing may allow KIF1A to navigate around MAPs and other obstacles on the 

microtubule. The necessity to regulate kinesin cargo transport through pausing is a pre-

established concept on a cellular level, as many neuronal cargo have been observed to halt 

processive movement in order to navigate around obstacles in the crowded cellular 

environment (Trybus 2013; Maday et al. 2014; Hendricks et al. 2010; Castle et al. 2014). 

On the other hand, microtubule C-terminal tail polyglutamylation can regulate the 

microtubule affinity of MAPs such as MAP1A, MAP1B, MAP2, and Tau (Bonnet et al. 

2001; Larcher et al. 1996). For example, Tau interacts with tubulin C-terminal tails in a 

unique diffusive behavior that is important for Tau function on a cellular and systemic level 
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(Hinrichs et al. 2012). Tau could thus compete with KIF1A for microtubule C-terminal 

tails and thereby regulate KIF1A pausing and motility. This concept is a compelling topic 

for further study. 

 Understanding the mechanisms responsible for KIF1A motility is critical when one 

considers the extensive range of axonal cargo that KIF1A transports along neuronal 

microtubules (Siddiqui and Straube 2017; Tsai et al. 2010; Lo et al. 2011; Niwa et al. 2016; 

Tanaka et al. 2016; Carabalona, Hu, and Vallee 2016; Lee et al. 2015; Niwa, Tanaka, and 

Hirokawa 2008; Lee et al. 2003; Yonekawa et al. 1998). Furthermore, until we advance 

our understanding of KIF1A regulation, we are limited in our ability to address the disease 

state manifestations of altered KIF1A function. The regulatory capabilities of Tau’s 

binding behavior on KIF1A cargo transport are critical to understanding KIF1A’s role in 

in diseases known for impaired axonal transport, such as frontotemporal dementia (FTD), 

where changes in Tau isoform expression have been correlated to disease progression 

(Iqbal et al. 2010). For example, pathological overexpression (Kopeikina, Hyman, and 

Spires-Jones 2012; Schoch et al. 2016; Goedert, Ghetti, and Spillantini 2000) of the more 

diffusive Tau isoforms (McVicker et al. 2014) and reduced transport of cargo known to be 

transported by KIF1A are observed in FTD (Goetzl et al. 2016; Siddiqui and Straube 2017; 

Rodriguez-Martin et al. 2016). As we speculate that the diffusive binding state of Tau may 

compete with KIF1A for the microtubule C-terminal tail, this is an enticing concept for 

further investigation on a molecular and cellular level. In summary, our discovery of a 

microtubule C-terminal tail polyglutamylation-mediated mechanism for regulation of 

KIF1A motility provides crucial insight as to how KIF1A cargo delivery is regulated during 

axonal transport and how this process may become altered in the disease state.  
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SI FIGURES 
 
Movie S2-1. Sample motility of KIF1A on taxol-stabilized microtubules. TIRF microscopy 
was used to observe the motility of KIF1A-LZ-3xmCitrine on rhodamine labeled, taxol-
stabilized microtubules. 500 frames were recorded at 5 fps, shown here at 25 fps. Data was 
analyzed as described in the Methods section. 
 
 
 
 
 
 
 

 
Figure S2-1. The LZ does not influence KIF1A pausing behavior.  A) Representative 
kymograph of the non-leucine zipper KIF1A construct (KIF1A[1-396]-GFP) on taxol-
stabilized microtubules. KIF1A-GFP undergoes extensive pausing behavior during a single 
overall run (outlined in white). There are also many purely diffusive events of KIF1A 
molecules not stabilized by the leucine zipper, presumably monomeric motors (Soppina et 
al. 2014). B) Quantification of overall run length displayed as cumulative frequency plot. 
C) Histogram of overall speed. D) Summary of KIF1A-GFP motility and behavior on 
taxol-stabilized microtubules. KIF1A-GFP exhibits an overall run length (ORL) of 5.30 ± 
2.32 𝜇m [n=123]), an overall speed of 1.30 ± 0.35 𝜇m/s [n=123] and exhibits 0.17 
pauses/µm. Run length values and standard deviations were calculated as previously 
reported (Thompson, Hoeprich, and Berger 2013). Each condition is representative of at 
least four independent experiments. Mean ± SD reported. This research was originally 
published in the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, 
Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls 
pausing and motility of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 
29(16):6263-6363. © the American Society for Biochemistry and Molecular Biology 
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Figure S2-2. Histograms of overall speed across all conditions The Mean ± SD for each 
condition is presented above each graph. This research was originally published in the 
Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, 
Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility 
of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the 
American Society for Biochemistry and Molecular Biology 
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Figure S2-3. Histograms of continuous speed across all conditions The Mean ± SD for 
each condition is presented above each graph. This research was originally published in 
the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, 
R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility 
of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the 
American Society for Biochemistry and Molecular Biology 
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Figure S2-4. Cumulative frequency plots of overall run length across all conditions. 
Black dots represent the raw run length and red dots represent the observed cumulative 
frequency. Kinesin-1 was used as an experimental control; run length of kinesin-1 is 
reported. The mean overall run length was calculated as previously reported (Thompson, 
Hoeprich, and Berger 2013) and is shown within each graph (Mean ± SD). This research 
was originally published in the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, 
Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail 
controls pausing and motility of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 
29(16):6263-6363. © the American Society for Biochemistry and Molecular Biology 
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Figure S2-5. Cumulative frequency plots of continuous run length across all 
conditions. Black dots represent the raw run length and red dots represent the observed 
cumulative frequency. Kinesin-1 was used as an experimental control; run length of 
kinesin-1 is reported. A continuous run length was calculated as previously reported 
(Thompson, Hoeprich, and Berger 2013) and is shown within each graph (Mean ± SD). 
This research was originally published in the Journal of Biological Chemistry. Lessard, 
DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s 
C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A. J. Biol. 
Chem. 2019; 29(16):6263-6363. © the American Society for Biochemistry and Molecular 
Biology 
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Figure S2-6. Photobleaching assay measuring average KIF1A-LZ-3xmCitrine 
bleaching time. KIF1A motors in an AMPPNP nucleotide state were imaged using TIRF 
microscopy. Fluorescence intensity over time of individual motors was measured and 
corrected for channel background noise. Mean ± SD reported. This research was originally 
published in the Journal of Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, 
Verhey, KJ, Ohi, R, Berger, CL. Polyglutamylation of tubulin’s C-terminal tail controls 
pausing and motility of kinesin-3 family member KIF1A. J. Biol. Chem. 2019; 
29(16):6263-6363. © the American Society for Biochemistry and Molecular Biology 
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Figure S2-7. Comparison of WT and Tri-Ala KIF1A landing rates in the ADP vs 
AMPPNP state. In motility buffer supplemented with ADP as the available nucleotide 
(MB + ADP), WT KIF1A had a landing rate of 7.93 ± 1.25 events/𝜇m/min (n=1552) while 
Tri-Ala KIF1A had a landing rate of 0.64 ± 0.14 events/𝜇m/min (n=527). In motility buffer 
supplemented with AMPPNP (MB + AMPPNP), WT KIF1A had a landing rate of 2.01 ± 
0.49 events/𝜇m/min (n=917) while Tri-Ala KIF1A had a landing rate of 1.47 ± 0.34 
events/𝜇m/min (n=574). Mean ±  SD reported. * = p<0.001 relative to WT KIF1A under 
corresponding condition. This research was originally published in the Journal of 
Biological Chemistry. Lessard, DV, Zinder, OJ, Hotta, T, Verhey, KJ, Ohi, R, Berger, CL. 
Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility of kinesin-3 
family member KIF1A. J. Biol. Chem. 2019; 29(16):6263-6363. © the American Society 
for Biochemistry and Molecular Biology 
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ABSTRACT 
 
Many neurodegenerative diseases result from dysfunction of axonal transport, a highly 

regulated cellular process responsible for site-specific neuronal cargo delivery. The 

kinesin-3 family member KIF1A is a key mediator of this process by facilitating long-

distance cargo delivery in a spatiotemporally regulated manner. While misregulation of 

KIF1A cargo delivery is observed in many neurodegenerative diseases, the regulatory 

mechanisms responsible for KIF1A cargo transport are largely unexplored. Our lab has 

recently characterized a mechanism for a unique pausing behavior of KIF1A in between 

processive segments on the microtubule. This behavior, mediated through an interaction 

between the KIF1A K-loop and the polyglutamylated C-terminal tails of tubulin, helps us 

further understand how KIF1A conducts long-range cargo transport. However, how this 

pausing behavior is influenced by other regulatory factors on the microtubule is an 

unexplored concept. The microtubule associated protein Tau is one potential regulator, as 

altered Tau function is a pathological marker in many neurodegenerative diseases. 

However, while Tau’s effect on kinesin-1 and -2 has been extensively characterized, Tau’s 

role in regulating KIF1A transport is greatly unexplored at the behavioral level. Using 

single-molecule imaging, we have identified Tau-mediated regulation of KIF1A pausing 

behavior and motility. Specifically, we have elucidated the competitive interaction between 

Tau and KIF1A for the C-terminal tails of tubulin. This competition introduces a new 

mechanism of Tau-mediated kinesin regulation by inhibiting KIF1A’s ability to use pauses 

to connect multiple processive segments into a longer run length.  Moreover, we have 

correlated this regulatory mechanism to Tau’s behavioral dynamics, further elucidating the 

function of Tau’s diffusive and static behavioral state on the microtubule surface. In 
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summary, we introduce a new mechanism of Tau-mediated motility regulation, providing 

insight on how disruptions in axonal transport can lead to disease state pathology. 

 

SIGNIFICANCE 
 

KIF1A mediated cargo transport is essential in many cellular processes such as 

axonal transport and neuronal development. Defects in KIF1A transport have been 

implicated in neurodegenerative diseases including Alzheimer’s disease and 

frontotemporal dementia. However, the mechanism of KIF1A’s pathological misregulation 

remains elusive, highlighting the importance of identifying regulators of KIF1A function. 

The microtubule associated protein Tau is an attractive potential regulator of KIF1A 

motility as Tau dysfunction is a hallmark of these neurodegenerative diseases. Here, we 

demonstrate a direct connection between Tau and KIF1A motility, revealing a unique form 

of Tau-mediated regulation of axonal transport. Our results provide a molecular foundation 

for understanding the role of motor protein misregulation in neurodegenerative disease 

progression. 
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INTRODUCTION 

Impaired cellular cargo trafficking is a hallmark of many neurodegenerative 

diseases, such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) (Bodea et 

al. 2016; Ballatore, Lee, and Trojanowski 2007; Kneynsberg et al. 2017; Zempel and 

Mandelkow 2014). This disease-state pathology implicates a deficiency in axonal 

transport, a critical process for neuronal viability and function, involving the 

spatiotemporal trafficking of cellular cargo along the length of the axon. A key mediator 

of this process is the kinesin-3 family member KIF1A, known to transport cargo that must 

travel great magnitudes of distance down the axon, such as dense core vesicles (Lo et al. 

2011) and synaptic vesicle proteins (Chiba et al. 2019; Okada et al. 1995). Recent 

discoveries uncovering the motor specific behavior of KIF1A, such as its 

“superprocessive” motility, or ability to travel comparatively farther distances than other 

kinesin motors, (Soppina et al. 2014; Soppina and Verhey 2014) and characteristic pausing 

in-between processive segments of motility (Lessard et al. 2019), have provided significant 

insight as to how this motor is able to transport cargo such extreme magnitudes of distance 

in comparison to other kinesin motors. Moreover, KIF1A’s motor specific behavior and 

motility must be tightly regulated to achieve efficient spatiotemporal cargo delivery within 

the neuron. The systemic importance of proper KIF1A regulation is demonstrated in 

neurodegenerative diseases presenting with KIF1A cargo mislocalization, such as AD and 

FTD (Hung and Coleman 2016; Siddiqui and Straube 2017; Goetzl et al. 2016). However, 

the mechanisms contributing towards pathological KIF1A cargo delivery are greatly 

unexplored, stemming from our lack of knowledge of mechanisms that regulate KIF1A 

motility. 
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The complex landscape of axonal microtubules may provide a regulatory 

mechanism for the spatiotemporal delivery of KIF1A cargo, via the presence of 

microtubule associated proteins (MAPs) that bind to the microtubule surface. Specifically, 

the neuronal MAP Tau is an attractive potential regulator of KIF1A, as Tau has been shown 

to differentially regulate the motility of specific kinesin families. Initial observations of the 

highly characterized kinesin-1 family of motors revealed that, upon encountering 

microtubule bound Tau, kinesin-1 motors prematurely dissociate from the microtubule 

surface (Dixit et al. 2008; Vershinin et al. 2007). Our lab has further explored Tau’s 

regulation of kinesin-1 motility, discovering that a pathologically relevant phosphomimetic 

mutation of Tau leads to an intermediary level of kinesin-1 motility inhibition, as well as 

showing that Tau’s regulation of kinesin-1 depends on the nucleotide binding state of 

microtubules (Stern et al. 2017; McVicker, Chrin, and Berger 2011). Contrastingly, our lab 

has also shown that unlike kinesin-1, kinesin-2 motility is insensitive to Tau (Hoeprich et 

al. 2014; Hoeprich et al. 2017).  Despite the complex array of Tau’s regulatory mechanisms 

on other kinesin family members, no studies have yet explored the effects of Tau on dimeric 

KIF1A motility parameters. It is imperative that the relationship between KIF1A and Tau 

be thoroughly characterized at a molecular level to build the cellular framework needed to 

understand Tau’s effect on KIF1A cargo transport in a neurodegenerative setting. 

Pathologically, irregular Tau function in AD and FTD further emphasizes the importance 

of defining this relationship (Zempel and Mandelkow 2014; Kneynsberg et al. 2017; Iqbal 

et al. 2010; Avila et al. 2004; Boutajangout and Wisniewski 2014), insinuating that Tau’s 

loss-of-function could sacrifice a critical regulatory mechanism of KIF1A cargo delivery. 
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However, the lack of research on this topic highlights a gap in knowledge, halting our 

understanding of neurodegenerative disease progression. 

Intriguingly, both KIF1A and Tau demonstrate unique behavioral interactions with 

the microtubule surface. Tau binds to the microtubule surface both statically and 

diffusively in an equilibrium that is isoform specific (Hinrichs et al. 2012; McVicker et al. 

2014). It has been further shown that Tau relies on the tubulin C-terminal tails (CTTs) to 

facilitate specifically diffusive binding behavior (Hinrichs et al. 2012). Based on this 

interaction, the isoform-dependent equilibrium of Tau’s static and diffusive binding is an 

important parameter to consider when assessing Tau’s regulation of kinesin motors. For 

example, our lab has shown that the run length of kinesin-1 motors are more severely 

inhibited by the static binding state of Tau, not the diffusive binding state of Tau (Stern et 

al. 2017; Hoeprich et al. 2014; Hoeprich et al. 2017). Yet, how Tau’s isoform-specific 

binding equilibrium may regulate KIF1A is a concept entirely unexplored.  

Much like Tau, the CTTs of tubulin are an essential structure for KIF1A function.  

The KIF1A/CTT interaction is largely mediated by an electrostatic “tethering”  between 

KIF1A’s K-loop, a positively charged surface loop in the motor domain, and post-

translational addition of negatively charged glutamic acid residues to the CTTs, a signature 

of neuronal tubulin (Lessard et al. 2019). This K-loop/CTT interaction is known to be 

important for many KIF1A characteristics such as landing rate and facilitating diffusive 

events along the microtubule surface in the weakly-bound ADP state (Soppina and Verhey 

2014; Hirokawa, Nitta, and Okada 2009). In addition to these findings, our lab has recently 

described the characteristic pausing behavior of KIF1A, revealing that KIF1A relies on the 

CTTs to engage in pauses in-between segments of processive movement on the 
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microtubule (Lessard et al. 2019). Considering that both KIF1A and diffusively bound Tau 

interact with the microtubule C-terminal tails, we hypothesized that diffusive Tau has the 

potential to act as regulator of KIF1A motility by competitively interacting with the CTT 

during KIF1A pausing (Figure 3-1). Using single-molecule total internal reflection 

fluorescence microscopy (TIRF), we tested our hypothesis by quantifying the motility and 

behavioral response of KIF1A on Tau decorated microtubules. Our findings uncovered a 

new mechanism of Tau-mediated kinesin motor regulation. From this, we present the 

discovery of diffusive Tau’s regulation of KIF1A motility during KIF1A pausing. 
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Figure 3-1. Graphical representation of experimental hypothesis. Previous literature 
has detailed that both KIF1A and Tau interact with the C-terminal tails (CTT) of tubulin 
subunits. The interaction between KIF1A’s “K-loop” and the polyglutamylated CTTs has 
been shown to facilitate KIF1A’s recently characterized pausing behavior (Lessard et al. 
2019). Each Tau isoform has a characteristic behavioral equilibrium between a static and 
a diffusing binding state. The diffusive binding state of Tau is achieved through an 
interaction with the CTTs (Hinrichs et al. 2012). As both proteins rely on interactions with 
the CTTs to exhibit protein-specific behavior, we hypothesis that KIF1A and the diffusive 
binding state of Tau compete for CTT interaction. 
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MATERIALS AND METHODS 

Microtubule preparation and labelling 

Tubulin was isolated from bovine brains donated from Vermont Livestock 

Slaughter & Processing (Ferrisburgh, VT) as previous described (Lessard et al. 2019). 

Isolated tubulin was clarified using an Optima TLX Ultracentrifuge (Beckman, Pasadena, 

CA) at 95,000 rpm for 20 minutes at 4ºC. Clarified tubulin was read at 280nm in a 

spectrophotomer and the extinction coefficient of 115,000 cm-1 M-1 was used to determine 

concentration. Clarified tubulin was supplemented with 1 mM GTP (Sigma-Aldrich, St. 

Luois, MO) and labelled, stabilized, and diluted as previously described (Lessard et al. 

2019). For microtubule C-terminal tail removal, microtubules were treated with Subtilisin 

A (Sigma Aldrich) as previously described (Lessard et al. 2019). For experiments 

containing Tau, tubulin polymerization was performed as described above, in the absence 

of labeled tubulin. Polymerized microtubules were incubated with 200 nM, 100 nM or 50 

nM Alexa 647 labeled Tau (1:5, 1:10 or 1:20 Tau to tubulin ratio) for an additional 20 

minutes at 37°C. Tau and microtubules mixture was centrifuged at room temperature for 

30 minutes at 15,000 rpm. The pellet was then resuspended in Motility Buffer (MB). 

Protein expression and labelling 

Wild-type (WT) 3RS- and 4RL-Tau constructs were expressed in BL21 

CodonPlus(DE3)-RP Escherichia coli cells (Stratagene, La Jolla, CA) and purified as 

previously described (McVicker, Chrin, and Berger 2011; McVicker et al. 2014).  Purified 

protein was dialyzed in 1x BRB80, and concentration was determined using the 

Bicinchoninic Acid (BCA) Protein Assay (Pierce, Rockford, IL) using WT 3RS-Tau as a 

standard. To label Tau, protein was incubated with a 10-fold molar excess of dithiothreitol 
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(DTT) at room temperature for 2 hours. DTT was then removed using a 2 ml 7K MWCO 

Zeba spin desalting column (Pierce, Rockford, IL). Protein was then incubated with 

fivefold molar excess of Alexa 647 C5 Maleimide (Invitrogen Molecular Probes, Carlsbad, 

CA) overnight at room temperature. Excess fluor was removed using the previously 

mentioned Zeba desalting columns. To determine the labeling efficiency, Alexa Fluor 647 

concentration was determined using an extinction coefficient of 270,000 cm-1 M-1 at 495 

nm using a 640 Spectrophotometer. Labeled protein concentration was determined using a 

BCA assay. KIF1A(1-393)-LZ-3xmCitrine motors (a generous gift of Dr. Kristen Verhey, 

University of Michigan, Ann Arbor, MI) were expressed in COS-7 monkey kidney 

fibroblasts (American Type Culture Collection, Mansses, VA) as previously described 

(Lessard et al. 2019). 

In vitro single-molecule TIRF 

Flow chambers used in in vitro TIRF experiments were constructed as previously 

described (Stern et al. 2017). Flow chambers were incubated with monoclonal anti-b III 

(neuronal) antibodies at 33 µg/ml for 5 minutes, then washed twice with 0.5 mg/ml bovine 

serum albumin (BSA; Sigma Aldrich) and incubated for 2 minutes. 1 µM of microtubules 

(all experimental conditions) were administered and incubated for 8 minutes. Non-adherent 

microtubules were removed with a MB wash supplemented with 20 µM paclitaxel. Kinesin 

motors in MB (12 mM PIPES, 1 mM MgCl2, 1 mM EGTA, supplemented with 20 µM 

paclitaxel, 10 mM DTT, 1 mM MgCl2, 10 mg/ml BSA, 2 mM ATP and an oxygen 

scavenger system [5.8 mg/ml glucose, 0.045 mg/ml catalase, and 0.067 mg/ml glucose 

oxidase; Sigma Aldrich]), supplemented with 2 mM ATP, were added to the flow cell just 

before image acquisition. For landing rate assays, in vitro KIF1A motility assays were 
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prepared as described above, with the only change being that MB was supplemented with 

2 mM ADP. Control Drosophila melanogaster biotin-tagged kinesin-1 motors were 

labeled with streptavidin-conjugated Qdot 655 (Life Technologies, Carlsbad, CA) at a 1:4 

motor:Qdot ratio as previously described (Stern et al. 2017; Hoeprich et al. 2017). 

In vitro fluorescence based Tau binding assay 

To assess the affinity of Tau for subtilisin treated microtubules, we performed a 

TIRF binding assay, as previously described (Stern et al. 2017). In brief, unlabeled 

subtilisin-treated microtubules were diluted to a working concentration of 1.5 µM, adhered 

to flow chambers as previously described, and washed with MB to remove non-adherent 

microtubules. Next, 10 nM of Alexa 647 labeled Tau was flowed in and imaged at 10 

frames/s for 20 frames. This process was repeated with increasing concentrations of Alexa 

647 labeled Tau and conducted on the previously described TIRF set up. 

Data Analysis 

In vitro motility assays 

Motility events were analyzed as previously reported (Hoeprich et al. 2014; 

Hoeprich et al. 2017). In brief, overall run length motility data was measured using the 

ImageJ (v. 2.0.0, National Institute of Health, Bethesda, MD) MTrackJ plug-in, for a 

frame-by-frame quantification of KIF1A motility. Pauses are defined as segments in where 

the average velocity is less than 0.2 µm/s over three frames or more. Processive events 

were identified at the boundaries of pausing events (Lessard et al. 2019). Kymographs of 

motor motility were created using the MultipleKymograph ImageJ plugin, with a set line 

thickness of 3. To correct for microtubule track length effects on motor motility, 

overall/processive run length data was resampled to generate cumulative frequency plots 
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(99% CI), using previously reported methods as described in Chapter 2 (Thompson, 

Hoeprich, and Berger 2013). To determine the landing rate of KIF1A on various 

microtubule conditions, the total number of motor landing events on the microtubule was 

divided by the length of the microtubule and further divided by the duration of the movie 

(events/µm/minute). 

Tau Binding Assay 

TIRF Tau binding assays were analyzed as previously described (Stern et al. 2017). 

In summary, using the MultiMeasure tool in FIJI, the average intensity of Tau per unit 

length of microtubule (Avg I) was measured for each frame. Average intensity was 

normalized to Bmax for each respective concentration, then plotted against [Tau] to generate 

a binding curve and fit to one-site-specific binding with Hill slope. From this fit, a Hill 

coefficient (h) and KD were determined and used to calculate the fraction of bound Tau at 

a given tubulin concentration. 
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RESULTS 
 

3RS-Tau regulates KIF1A overall run length, but not continuous run length. 

Using TIRF microscopy, we first assessed the regulatory effect of 3RS-Tau, a well 

characterized isoform in terms of kinesin motility regulation that favors the static binding 

state (Figure 3-2A), on single-molecule KIF1A motility. KIF1A’s motility was first 

investigated on paclitaxel-stabilized microtubules in the presence of Alexa 647 labeled 

wild-type (WT) 3RS-Tau at three concentrations (50 nM, 100 nM, or 200 nM 3RS-Tau ; 1 

µM microtubules). In the absence of Tau, KIF1A’s overall run length was 6.84 ± 2.07 µm 

(Figure 3-2A, Table 3-1) and overall speed was 1.37 ± 0.42 µm/s (Figure S3-1, Table 3-1), 

supporting past reports of this motor’s superprocessivity and consistent with our previous 

work characterizing KIF1A’s pausing behavior (Lessard et al. 2019; Soppina et al. 2014). 

In the presence of 3RS- Tau KIF1A’s overall run length significantly decreased in a dosage 

dependent manner (50 nM 3RS-Tau; 4.65 ± 1.83 µm, 100 nM 3RS-Tau; 3.84 ± 1.50 µm, 

200 nM 3RS-Tau; 3.31 ± 1.06 µm) (Figure 3-2C, Figure S3-3, Table 3-1), while overall 

speed increased with the addition of Tau (50 nM 3RS-Tau; 1.38 ± 0.34 µm/s, 100 nM 3RS-

Tau; 1.40 ± 0.37 µm/s, 200 nM 3RS-Tau; 1.59 ± 0.39 µm/s) (Figure S3-1, Table 3-1). These 

results provide direct evidence of 3RS-Tau’s ability to regulate KIF1A motility by both 

decreasing the overall run length while simultaneously increasing overall speed. 

To further investigate the process by which overall run length is reduced by 3RS-

Tau, we next assessed changes in KIF1A’s continuous run length, a main component of 

the overall run length measurement (Lessard et al. 2019). In contrast to the trends observed 

with overall run length, there was no significant reduction of KIF1A’s continuous run 

length between our control microtubules (no Tau), or at any concentration of 3RS-Tau (No 
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Tau; 2.82 ± 0.73 µm, 50 nM 3RS-Tau; 2.84 ± 0.76 µm, 100 nM 3RS-Tau; 2.70 ± 0.57 µm, 

200 nM 3RS-Tau; 2.82 ± 0.73 µm) (Figure 3-2D, Figure S3-4, Table 3-1). Following suit, 

there was also no change in continuous speed at any 3RS-Tau concentration (50 nM 3RS-

Tau; 2.09 ± 0.59 µm/s, 100 nM 3RS-Tau; 1.95 ± 0.52 µm/s, 200 nM 3RS-Tau; 2.10 ± 0.58 

µm/s) when compared to our control (Figure S3-2, Table 3-1). From these experiments we 

can conclude that, while 3RS-Tau regulates KIF1A’s overall run length and speed, it does 

not do so by regulating KIF1A’s continuous run length or speed. 

 

4RL-Tau is more regulatory than 3RS-Tau on KIF1A motility. 

To compare the KIF1A regulation via two Tau isoforms with contrasting binding 

equilibriums, we next turned to Alexa 647 labeled WT 4RL-Tau, an isoform that favors 

the diffusive binding state (Figure 3-2A-B). Similar to 3RS-Tau, we observed a dosage 

dependent decrease of KIF1A overall run length (50 nM 4RL-Tau; 3.89 ± 1.36 µm, 100 

nM 4RL-Tau; 3.09 ± 1.09 µm, 200 nM 4RL-Tau; 2.54 ± 0.94 µm) (Figure 3-2C, Figure 

S3-3, Table 3-1) and a dosage dependent increase in overall speed (50 nM 4RL-Tau; 1.48 

± 0.45 µm/s, 100 nM 4RL-Tau; 1.54 ± 0.48 µm/s, 200 nM 4RL-Tau; 1.61 ± 0.35 µm/s) in 

the presence of 4RL-Tau. However, when KIF1A’s overall run length was compared 

between 3RS- and 4RL- Tau, KIF1A’s overall run length was significantly shorter on 4RL-

Tau coated microtubules at every Tau concentration (Figure 3-2C, Figure S3-3, Table 3-

1). The culmination of these results revealed to us that 4RL-Tau is statistically more 

inhibitory than 3RS-Tau on KIF1A overall run length across a dosage of Tau 

concentrations. 

To further investigate how 4RL-Tau is more regulatory on KIF1A overall run 
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length, we compared the effects of 3RS- vs 4RL-Tau on KIF1A continuous run length. 

Like 3RS-Tau, there was no significant difference between KIF1A continuous run length 

at any concentration of 4RL-Tau (50 nM 4RL-Tau; 2.69 ± 0.78 µm, 100 nM 4RL-Tau; 

2.62 ± 0.83 µm, 200 nM 4RL-Tau; 2.52 ± 0.81µm) (Figure 3-2D, Figure S3-4, Table 3-1); 

however, all 4RL-Tau concentrations significantly reduced KIF1A continuous run length 

when compared to control microtubules. Unlike 3RS-Tau, we observed a dosage dependent 

decrease in continuous speed (50 nM 4RL-Tau; 1.96 ± 0.52 µm/s, 100 nM 4RL-Tau; 1.80 

± 0.56 µm/s, 200 nM 4RL-Tau; 1.73 ± 0.40 µm/s) when compared to our control (Figure 

S3-2, Table 3-1). Additionally, at our highest Tau concentration (200 nM), KIF1A 

continuous run length is significantly shorter on 4RL-Tau coated microtubules than 3RS-

Tau coated microtubules (Figure 3-2D, Figure S3-4, Table 3-1). Taken together, these 

results show that 4RL-Tau does not shorten KIF1A continuous run length between any of 

our experimental concentrations of 4RL-Tau. However, the changes in continuous speed 

as well as significant differences in continuous run length when compared to our control 

or 3RS-Tau at our highest experimental concentration support the idea that 4RL-Tau is 

more regulatory than 3RS-Tau on KIF1A motility.  
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Figure 3-2. 4RL-Tau more strongly reduces KIF1A run length than 3RS-Tau. A) 
Cartoon depicting structural and behavioral characteristics of 3RS-Tau. Top: Linearized 
3RS-Tau protein structure, featuring a proline rich region (green) and three microtubule 
binding repeats (orange). Bottom: The behavioral equilibrium of 3RS-Tau favors the static 
binding state. B) Cartoon depicting structural and behavioral characteristics of 4RL-Tau. 
Top: Linearized 4RL-Tau protein structure, featuring two acidic inserts (blue) a proline 
rich region (green) and four microtubule binding repeats (orange). Bottom: The behavioral 
equilibrium of 4RL-Tau favors the diffusive binding state. C) The overall run length (ORL) 
of KIF1A was reduced upon the addition of either 3RS- or 4RL-Tau in a dosage dependent 
manner. When 3RS- and 4RL-Tau are compared at specific concentrations, it is revealed 
that 4RL is more inhibitory than 3RS-Tau. (3RS ORL: 50 nM N=130, 100 nM N=147, 200 
nM N=212; 4RL ORL: 50 nM N=170, 100 nM N=144, 200 nM N=155) D) Continuous 
run length was not significantly reduced between 3RS- and 4RL-Tau at 50 nM and 100 nM 
concentrations, but was significantly reduced at the highest Tau concentration (200 nM). 
(3RS CRL: 50 nM N=206, 100 nM N= 198, 200 nM N=243; 4RL CRL: 50 nM N=249, 
100 nM N=171, 200 nM N=167)Run length values are reported as mean ± standard 
deviation and were calculated as previously reported (Thompson, Hoeprich, and Berger 
2013). *,ƚ p <0.05 
 

KIF1A pausing behavior is regulated by 3RS- and 4RL- Tau in a dosage dependent 

manner, and is more strongly regulated by 4RL-Tau than 3RS-Tau. 

As referenced earlier, KIF1A’s overall run length is defined as the summation of 

continuous run lengths and pausing events during a single motility event on the microtubule 

(Lessard et al. 2019). With the effect of 3RS- and 4RL-Tau on KIF1A overall and 

continuous run length established, we next investigated Tau’s effect on KIF1A’s 

characteristic pausing behavior. KIF1A’s pausing behavior, and other quantifiable 

behaviors such as landing rate, are made possible through an interaction between the CTTs 
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of tubulin and the KIF1A K-loop (Lessard et al. 2019; Soppina and Verhey 2014). 

Moreover, Tau also relies on the CTTs to engage in diffusive binding behavior (Hinrichs 

et al. 2012). The potential competition between KIF1A and Tau for the tubulin CTTs, 

combined with the observed regulatory effect of 3RS- and 4RL-Tau on KIF1A’s overall 

run length, but not continuous run length, lead us to investigate KIF1A pausing as the point 

of Tau-mediated regulation.  

Upon addition of either 3RS- or 4RL-Tau, KIF1A pause frequency (# of 

pauses/overall run length) was drastically reduced (Figure 3-3A-B). Similar to what we 

observed regarding the influence of Tau on KIF1A’s overall run length, we observed a 

dosage dependent decrease on KIF1A pause frequency on both 3RS- (50 nM 3RS-Tau; 

0.59 ± 0.06 pauses/ORL, 100 nM 3RS-Tau; 0.35 ± 0.07 pauses/ORL, 200 nM 3RS-Tau; 

0.15 ± 0.03 pauses/ORL) and 4RL-Tau (50 nM 4RL -Tau; 0.47 ± 0.05 pauses/ORL, 100 

nM 4RL -Tau; 0.19 ± 0.03 pauses/ORL, 200 nM 4RL -Tau; 0.08 ± 0.02 pauses/ORL) 

coated microtubules when compared to control microtubules (0.97 ± 0.07 pauses/ORL) 

(Figure 3-3C, Figure S3-5, Table 3-1). A reduction in KIF1A pause duration was observed 

in two instances:  1) with 4RL- Tau at 100 nM concentration between 3RS- Tau (3RS; 2.03 

± 1.96 s, 4RL; 1.92 ± 2.51 s) and 2) between 4RL-Tau at 100 nM concentration and our 

control microtubules (2.27 ± 3.04 s) (Figure 3-3D). However, it is important to consider 

that the extensive variability between conditions due to small sample sizes (less 

measureable pauses as Tau concentration increases) and large standard deviations is likely 

to skew this result.  

In comparing kymographs of KIF1A motility we also observed a visually 

appreciable reduction in motor landing events on Tau-coated microtubules when compared 
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to control microtubules, consistent with past literature (Monroy et al. 2018). This, 

combined with KIF1A’s previous established reliance of the tubulin CTT for landing 

(Soppina and Verhey 2014), lead us to explore potential differences in KIF1A landing rate 

in the absence and presence of 3RS- and 4RL-Tau. At our highest Tau concentration (200 

nM), we observed a significant reduction in KIF1A landing rate on microtubules coated in 

either 3RS- (2.50 ± 0.40 events/µm/min) or 4RL-Tau (0.68 ± 0.06 events/µm/min) when 

compared to our control microtubules (6.35 ± 1.37 events/µm/min) (Figure 3-6).  

If KIF1A’s pausing is the point of Tau-mediated regulation, then how might this 

relate to the characteristic binding equilibrium of each Tau isoform? Considering that Tau 

must also engage with the tubulin CTTs to bind diffusively, and that 4RL-Tau favors the 

diffusive binding state, we further hypothesized that 4RL-Tau would be more inhibitory to 

KIF1A pausing than 3RS-Tau. This was confirmed when KIF1A’s pause frequency was 

compared between 3RS- and 4RL- Tau, revealing that KIF1A’s pause frequency was 

significantly reduced on 4RL-Tau coated microtubules at every Tau concentration (Figure 

3-3C, Figure S3-5, Table 3-1). The culmination of these results support our idea that KIF1A 

pauses are heavily subjected to Tau-mediated regulation. Furthermore, these findings 

insinuate that the diffusive binding state, not the static binding state, of Tau is regulating 

KIF1A pausing and subsequent motility. 
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Figure 3-3. 4RL-Tau more strongly inhibits KIF1A pausing behavior when compared 
to 3RS-Tau. A) Representative kymographs of KIF1A behavior on microtubules with no 
Tau (left) and 3RS-Tau (200 nM; right). B) Representative kymographs of KIF1A behavior 
on microtubules with no Tau (left) and 4RL-Tau (200 nM; right). C) KIF1A pause 
frequency (# ofpauses/ overall run) decreases in a dosage-dependent manner upon addition 
of 3RS- and 4RL-Tau. At individual concentrations of Tau (50 nM, 100 nM, or 200 nM), 
4RL-Tau significantly reduces the pause frequency of KIF1A when compared to 3RS-Tau. 
D) KIF1A pause duration did not significantly change upon addition of 3RS- or 4RL-Tau 
(with the exception of 100 nM 4RL-Tau). (3RS pauses: 50 nM N=64, 100 nM N=36, 200 
nM N=20; 4RL pauses: 50 nM N=62, 100 nM N=24, 200 nM N=12) *,ƚ p <0.05 
 

A purely static Tau obstacle, 3RS-Tau on subtilisin-treated microtubules, does not 

further impede KIF1A motility. 

In order to ascribe diffusive Tau as the regulatory binding state on KIF1A pausing 

and subsequent motility, we needed to rule out static Tau as a potential regulatory binding 

state. Previously conducted studies have revealed that removal of CTTs removes the 

diffusive behavior of Tau, and shifts the microtubule bound population to a static binding 

state (Figure 3-4A) (Hinrichs et al. 2012). As our previous studies have characterized 

KIF1A’s motility and pausing behavior on subtilisin-treated microtubules (Lessard et al. 

2019), we next assessed the motility and pausing of KIF1A on 3RS-Tau coated, subtilisin-

treated microtubules (purely static Tau obstacles) to compare these findings to the motility 
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and pausing of KIF1A on 3RS-Tau coated, untreated microtubules (a mix of diffusive and 

static obstacles). 

First, to account for differences in 3RS-Tau binding affinity for the microtubule 

surface after microtubule CTT removal (Figure 3-4A-B), we performed a TIRF binding 

assay conducted as previously reported (Stern et al. 2017). Upon removal of CTTs, 3RS-

Tau’s KD decreased from 116 ± 40 nM to 70 ± 7 nM (Figure 3-4C). Additionally, we saw 

an increase in Hill coefficient from 1.8 to 4.1 (Figure 3-4C), suggesting that the removal 

of CTTs results in an increase of 3RS-Tau’s cooperativity on paxlitaxel-stabilized 

microtubules. With this knowledge, we calculated the fraction of bound 3RS-Tau on 

subtilisin-treated microtubules at our highest experimental concentration of 200 nM. We 

then adjusted the concentration of 3RS-Tau added to ensure that the same fraction of 3RS-

Tau is bound to subtilisin microtubules as our untreated microtubules, making shifts in 

3RS-Tau’s behavioral state the only changing variable.  
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Figure 3-4. TIRF binding assays for Tau on untreated and subtilisin-treated 
microtubules (MTs). A) Representative kymograph of 3RS-Tau on untreated 
microtubules demonstrating the static (straight lines) and diffusive (jagged lines) 
behavioral states of Tau. B) Representative kymograph of 3RS-Tau on subtilisin-treated 
microtubules demonstrating that C-terminal tail removal shifts Tau to the static state. C) 
Upon subtilisin treatment of MTs, Tau’s affinity and cooperativity increased. 3-5 
experiments per concentration, totaling N=50 microtubules at each concentration. 
 

 

With the addition of 3RS-Tau to subtilisin treated microtubules (Figure 3-5A), we 

saw no significant change in KIF1A’s overall run length (3.26 ± 1.22 µm), overall speed 

(1.22 ± 0.23 µm/s), continuous run length (3.12 ± 1.12 µm), continuous speed (2.10 ± 0.47 

µm/s), pause duration (1.34 ± 0.91 s), or pause frequency (0.17 pauses/overall run), when 

compared to KIF1A on subtilisin-treated microtubules without 3RS-Tau (Figure 3-5B-D, 

Figure S3-1 through S3-4, Table 3-1). Intriguingly, the addition of 3RS-Tau to subtilisin-

treated microtubules significantly reduced the landing rate (1.92 ± 0.40 events/µm/min) of 

KIF1A in comparison to subtilisin-treated microtubules without Tau (Figure 3-6, Table 3-

100 s

100 s

5.98 !m 8.19 !m
A CB
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1), indicating that 3RS-Tau can regulate KIF1A landing rate independently of the CTT 

structure. Taken together, our results imply that the diffusive state of Tau relies on an 

interaction with the CTTs to regulate KIF1A motility and behavior on the microtubule, and 

that the statically bound state of Tau does not regulate KIF1A motility or pausing. 

 

Figure 3-5. Addition of 3RS-Tau to subtilisin treated microtubules does not further 
inhibit KIF1A motility or pausing. A) Cartoon depiction of experimental conditions 
including microtubules without Tau and with C-terminal tails (CTT; top), microtubules 
with 3RS-Tau added (200 nM) and with CTTs (middle), or microtubules with with 3RS-
Tau added (200 nM) and no CTTs (bottom). B) KIF1A overall run length was significantly 
reduced upon the addition of 3RS-Tau, or the addition of Tau on subtilisin (Sub)-treated 
microtubules, when compared to control microtubules (untreated, no Tau). KIF1A 
continuous run length was not significantly changed upon the addition of Tau, or the 
addition of Tau on subtilisin-treated microtubules, when compared to control microtubules 
(untreated, no Tau; Sub + 3RS-Tau: ORL N=162, CRL N=189). C) KIF1A pause 
frequency (# of pauses/overall run) decreased on subtilisin-treated + 3RS-Tau microtubules 
(200 nM 3RS-Tau) when compared to control (no Tau, no subtilisin treatment) but not 
when compared to untreated microtubules with 3RS-Tau (200 nM 3RS-Tau). D) KIF1A 
pause duration on control microtubules, 3RS-Tau coated microtubules (200 nM 3RS-Tau) 
and subtilisin-treated + 3RS-Tau microtubules (200 nM 3RS-Tau). Sub + 3RS-Tau pauses: 
N=26. Characteristic run length values and standard deviations were calculated as 
previously reported (Thompson, Hoeprich, and Berger 2013).* p <0.05 
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Figure 3-6. Quantification of KIF1A landing rate in the ADP state on indicated 
microtubule subsets. On undecorated, untreated microtubules, KIF1A had a landing rate 
of 6.85 ± 1.37 events/µm/min (N=971). Landing rate was significantly reduced with the 
addition of 3RS-Tau (2.50 ± 0.40 events/µm/min, N=846, 200 nM Tau), subtilisin 
treatment with the addition of 3RS-Tau (1.92 ± 0.40 events/µm/min, N=742, 200 nM Tau), 
or with the addition of 4RL-Tau (0.68 ± 0.06 events/µm/min, N=575, 200 nM Tau). * = 
p<0.001 relative to KIF1A on undecorated, untreated microtubules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	6-Results
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Table 3-1. Summary of KIF1A motility and behavior on microtubules (1 𝜇M) across 
all conditions. Metrics are reported as Mean ± SD. * = p<0.05 relative to KIF1A on “No 
Tau” MTs. ƚ = p<0.05 relative to 3RS- vs. 4RL-Tau at each respective concentration. 
 
 

Condition 
Tau 
(nM) 

Overall 
Run 

Length 
(µm) 

Overall 
Speed 
(µm/s) 

Continuous 
Run Length 

(µm) 

Continuous 
Speed 
(µm/s) 

Pause 
Frequency (# 
pauses/overall 

run) 

Pause 
Duration 

(sec) 
Landing Rate 

(events/µm/sec) 

No Tau - 
6.84 ± 
2.07 

1.37 ± 
0.42 2.82 ± 0.67 1.98 ± 0.53 0.97 

2.27 ± 
3.04 6.85 ± 1.37 

3RS Tau 50 
4.65 ± 
1.83*, ƚ 

1.38 ± 
0.34 2.84 ± 0.76 2.09 ± 0.59 0.59*, ƚ 

1.98 ± 
1.70 - 

3RS Tau 100 
3.84 ± 
1.50*, ƚ 

1.40 ± 
0.37 2.70 ± 0.57 1.95 ± 0.52 0.35*, ƚ 

2.03 ± 
1.96*,ƚ - 

3RS Tau 200 
3.31 ± 
1.06*, ƚ 

1.59 ± 
0.39 2.82 ± 0.73*, ƚ 2.10 ± 0.58 0.15*, ƚ 

1.89 ± 
1.80 2.50 ± 0.40* 

4RL Tau 50 
3.89 ± 
1.36*, ƚ 

1.48 ± 
0.45 2.69 ± 0.78* 1.96 ± 0.52 0.47*, ƚ 

1.64 ± 
1.41 - 

4RL Tau 100 
3.09 ± 
1.09*, ƚ 

1.54 ± 
0.48 2.62 ± 0.83* 1.80 ± 0.56 0.19*, ƚ 

1.92 ± 
2.51*, ƚ - 

4RL Tau 200 
2.54 ± 
0.94*, ƚ 

1.61 ± 
0.35 2.52 ± 0.81*, ƚ 1.73 ± 0.40 0.08*, ƚ 

1.43 ± 
1.47 0.68 ± 0.06* 

Sub + 
3RS-Tau 200 

3.26 ± 
1.22 * 

1.22 ± 
0.23 3.12 ± 1.12 2.10 ± 0.47 0.17* 

1.34 ± 
0.91 1.92 ± 0.40 * 
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DISCUSSION 
 

The significance of KIF1A’s role in long-range anterograde axonal transport (Hung 

and Coleman 2016; Carabalona, Hu, and Vallee 2016; Kondo, Takei, and Hirokawa 2012; 

Lo et al. 2011) is highlighted by the impact of altered KIF1A motility in the disease state 

(Tanaka et al. 2016; Yonekawa et al. 1998; Lee et al. 2015). Nevertheless, how this long-

range transport is regulated for precise spatiotemporal delivery of cargo is poorly 

understood. The MAP Tau is an attractive possibility due to its disease state relevance and 

regulation of kinesin-1 motility (Vershinin et al. 2007; Dixit et al. 2008; Stern et al. 2017; 

Hoeprich et al. 2014), yet the effects of Tau on KIF1A motility and behavior are relatively 

unexplored. Given our lab’s recent study detailing the necessity of tubulin’s CTTs for 

KIF1A pausing behavior (Figure 3-7A) (Lessard et al. 2019), we considered that Tau could 

regulate KIF1A motility in two mutually non-exclusive ways: 1) as an obstacle that 

truncates processive motility, and/or 2) by rendering the CTT inaccessible, prohibiting 

KIF1A from pausing. Here we present a new mechanism of Tau-mediated regulation 

unique to KIF1A’s superprocessive motility and behavior. First, we reported the regulatory 

capabilities of two Tau isoforms, 3RS- and 4RL-Tau, on KIF1A overall run length. In 

exploring this finding further, we then demonstrated Tau’s regulatory effect occurs during 

characteristic KIF1A pausing behavior (Lessard et al. 2019). Finally, we were able to 

indirectly ascribe this regulation specifically to the diffusive binding state of Tau (Figure 

3-7B).  

When developing our model of Tau-mediated KIF1A regulation (Figure 3-7), it 

was important to consider how Tau is known to regulate other kinesin motor families. 

Foundational publications investigating Tau’s regulatory role on microtubule based motors 
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revealed that Tau regulates the processive motility of kinesin-1 motors by acting as an 

unnavigable obstacle, and that potency of regulation varies by Tau isoform (Vershinin et 

al. 2007; Dixit et al. 2008). Building upon these findings, our lab was able to ascribe Tau’s 

regulation of kinesin-1 to Tau’s static binding state, not the diffusive binding state 

(Hoeprich et al. 2014; Stern et al. 2017). In contrast, kinesin-2 motors are known to be 

insensitive to Tau, as their long neck linker allows them to switch microtubule 

protofilaments and side-step around obstacles (Hoeprich et al. 2017; Shastry and Hancock 

2010; Hoeprich et al. 2014).  

If Tau regulates KIF1A as a static obstacle while the motor is processing (like 

kinesin-1 motors), we would expect to have seen a reduction in continuous run length upon 

addition of Tau, as this parameter is defined as segments where, within a single motility 

event, KIF1A is moving at a constant velocity (Lessard et al. 2019). However, our study 

revealed that, while the overall run length of KIF1A is reduced upon addition of either 

3RS- or 4RL- Tau, the continuous run length does not change between experimental Tau 

concentrations (Figure 3-2). Furthermore, when the CTTs of tubulin were removed, biasing 

3RS-Tau’s binding state to be exclusively static, there was no significant change in KIF1A 

motility or pausing behavior when compared to 3RS-Tau coated microtubules with CTTs 

still present (Figure 3-5, 3-7D). Thus, while this study revealed Tau’s ability to regulate 

KIF1A, it does not do so by acting as a static roadblock. Alternatively, these findings lead 

us to postulate that, like the kinesin-2 family, KIF1A is able to navigate around static Tau 

obstacles, likely resulting from differences in its neck linker structure (Hoeprich et al. 2017; 

Phillips et al. 2016). The concept of KIF1A using protofilament side-stepping to navigate 

around Tau is further supported by recent cryo-electron microscopy reconstructions of Tau 
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on the microtubule surface, revealing that Tau binds along the crest of a single 

protofilament (Kellogg et al. 2018). The assessment of KIF1A’s ability to side-step, and 

particularly how this behavior correlates with KIF1A’s neck linker length/sequence, is an 

enticing project for future studies in our lab. 

Our current results support a model where Tau regulates KIF1A by rendering the 

C-terminal tail inaccessible, prohibiting KIF1A from pausing and connecting multiple 

continuous runs to generate a superprocessive overall run length. Past work in our lab has 

characterized KIF1A’s reliance on tubulin’s CTTs to engage in characteristic pausing 

behavior on the microtubule surface (Figure 3-7A, 3-7C) (Lessard et al. 2019).  

Furthermore, Tau relies on tubulin’s CTTs to engage in its diffusively bound behavioral 

state (Figure 3-4A-B) (Hinrichs et al. 2012). In further support of our model, both 3RS- 

and 4RL-Tau isoforms exhibited dosage dependent inhibition on KIF1A pause frequency 

(Figure 3-3), further confirming that KIF1A is not being regulated in the moments in which 

it is engaged in processive motility. Specifically, as the more diffusive isoform, 4RL-Tau, 

has a greater regulatory potency on KIF1A pausing (Figure 3-3C-D) and overall run length 

when compared to the more static isoform, 3RS-Tau, at each experimental concentration 

(Figure 3-3C), we propose that the diffusive binding state of Tau is inhibiting KIF1A 

pausing behavior and subsequent motility. 

Differences in affinity between Tau isoforms, or of Tau on different microtubule 

lattices, are imperative to consider when making dosage-dependent claims of Tau’s ability 

to regulate KIF1A motility. Consequently, a quantitative assessment of statically bound 

3RS-Tau on subtilisin-treated microtubules (Figure 3-4B) was conducted over a range of 

concentrations (Figure 3-4C). These results demonstrated an increased Hill coefficient of 
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3RS-Tau on subtilisin-treated microtubules (Figure 3-4C) when compared to 3RS-Tau 

bound to untreated microtubules. While this increased cooperative behavior insinuates 

Tau’s ability to form patches, it is important to note that the lowest concentration our 

motility assays were conducted at is 50 nM, a concentration that is much higher than past 

literature where Tau patches were observed (Tan et al. 2019; Dixit et al. 2008). 

Additionally, these experiments yielded an accurate KD for 3RS-Tau on subtilisin treated 

microtubules (Figure 3-4C). Measuring Tau’s affinity in each of our experimental 

scenarios allowed us to calculate the fraction of Tau bound at given experimental 

concentrations, and adjust accordingly to ensure our KIF1A motors are encountering 

identical amounts of Tau bound to the microtubule surface. 

With Tau now mechanistically characterized as a regulator of KIF1A motility, we 

can use our findings to further understand disease-state pathology. The regulatory 

capabilities of Tau’s static and diffusive binding behavior on axonal cargo transport are 

critical to understanding Tau’s role in neurodegeneration. In diseases known for impaired 

axonal transport, such as AD and FTD, changes in Tau isoform expression have been 

correlated to disease progression (Iqbal et al. 2010). For example, pathological 

overexpression (Kopeikina, Hyman, and Spires-Jones 2012; Schoch et al. 2016; Goedert 

and Spillantini 2000) of the more diffusive four-repeat Tau isoforms (McVicker et al. 2014) 

and reduced transport of KIF1A cargo are observed in FTD (Goetzl et al. 2016; Siddiqui 

and Straube 2017; Rodriguez-Martin et al. 2016). Our results support a FTD disease state 

model in which a shift towards the diffusive state of Tau pathologically over-regulates 

KIF1A cargo transport in two ways. First, 4RL-Tau is significantly more inhibitory to 

KIF1A’s on-rate than 3RS-Tau (Figure 3-6), presenting an increased KIF1A “parking 
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problem” (Monroy et al. 2018). Second, the KIF1A motors that are able to engage with the 

microtubule will have impaired motility due to the increase in diffusive Tau isoform 

expression, resulting in decreased pause frequency and overall run length. Additionally, 

the irregular localization and aggregation of KIF1A cargo seen in the neuronal pre-synaptic 

terminals in AD (Hung and Coleman 2016) can now be attributed to a loss of Tau-mediated 

KIF1A regulation, yielding “overactive” anterograde transport. This loss of regulation 

further explains an aggregation of KIF1A cargo at the distal neurite tips, as a reduction in 

microtubule bound Tau is observed in tauopathies resulting from hyperphosphorylation 

(Avila et al. 2004; Boutajangout and Wisniewski 2014; Medeiros, Baglietto-Vargas, and 

LaFerla 2011). This logic is supported by recent work in C. elegans neurons, revealing that 

in PTL-1 (C. elegans Tau analog) knockdown worms, Unc-104 (KIF1A analog)-mediated 

synaptic vesicles travelled farther distances down the axon (Tien et al. 2011). Additionally, 

a disease state loss of Tau on the microtubules can initiate signaling cascades known to 

alter the motility of Drosophila Unc-104 (Voelzmann et al. 2016). In summary, these 

findings bring clarity to the different pathological phenotypes of KIF1A dysfunction in AD 

and FTD, highlighting the physiological relevance of Tau’s ability to regulate cargo 

transport through isoform-specific behavioral equilibria and connecting Tau to KIF1A in 

neurodegenerative disease. 
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Figure 3-7. Model of Tau-mediated KIF1A regulation. A) In the absence of Tau, KIF1A 
exhibits an overall run length composed of continuous runs connected by pauses. These 
pauses are reliant upon accessible C-terminal tails (CTTs) to tether the KIF1A K-loop to 
the microtubule, before initiating another continuous run. B) When Tau is bound to the 
microtubule surface, the diffusive state of Tau interacts with and occupies the C-terminal 
tail. KIF1A can still achieve an initial continuous run, and navigate around static Tau 
obstacles, but cannot interact with the C-terminal tails due to diffusive Tau occupancy. 
This reduction in pausing decreases KIF1A’s ability to string together multiple continuous 
runs within an overall run length event. C) Tau’s regulatory behavior on KIF1A is 
mimicked when C-terminal tails are proteolytically removed from the microtubule surface. 
A continuous run length can be initiated however, in the absence of C-terminal tails, the 
motor cannot tether to the microtubule to pause and is unable to string together multiple 
continuous runs within an overall run length event (as shown in (Lessard et al. 2019). D) 
Addition of Tau to subtilisin-treated microtubules results in a predominantly static 
population of Tau on the microtubule surface. Similar to panel B, KIF1A maintains the 
ability to navigate around static Tau obstacles, however, the absence of C-terminal tails 
limits the motors ability to pause. This reduction in pause frequency results in the inability 
to string multiple continuous runs together in an overall run length event.  
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SI FIGURES 
 
 

 
 
Figure S3-1. Histograms of overall speed across all conditions (Mean ± SD).  
  

Figure	S1
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Figure S3-2. Histograms of continuous speed across all conditions (Mean ± SD).  
 

Figure	S2
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Figure S3-3. Cumulative frequency plots representing the overall run length across 
all experimental conditions. The raw run length is represented by black dots the observed 
cumulative frequency is represented by grey dots. Shown within each graph is the overall 
run length, calculated as previously reported (Thompson, Hoeprich, and Berger 2013) 
(Mean ± SD).  
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Figure S3-4. Cumulative frequency plots representing the continuous run length 
across all experimental conditions. The raw run length is represented by black dots the 
observed cumulative frequency is represented by grey dots. Shown within each graph is 
the overall run length, calculated as previously reported (Thompson, Hoeprich, and Berger 
2013) (Mean ± SD). 
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Figure S3-5. Histograms of pause frequency (pauses/overall run [ORL]) across all 
conditions (Mean ± SEM).  
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CHAPTER 4: DISCUSSION 

Axonal transport is an essential process for neuronal function, and is mediated in 

part by kinesin-driven anterograde cargo transport down the length of the axon. In the past 

10 years, the kinesin-3 family member KIF1A has emerged as an essential long-distance 

cargo transporter, most notably carrying cargo needed for synaptic health and plasticity. 

While many initial studies were focused on mechanisms of KIF1A activation, recent efforts 

have been aimed at understanding how this highly efficient kinesin motor is regulated. One 

potential regulatory mechanism is the MAP Tau, as it is known to differentially regulate 

the kinesin-1 and kinesin-2 family of motors involved in axonal transport. Furthermore, 

both KIF1A and Tau dysfunction are observed in Tauopathies such as AD and FTD, 

suggesting a relationship between these two proteins. In considering these previous 

findings, the driving hypothesis of this dissertation was that Tau regulated KIF1A behavior 

and motility.  

Regarding this hypothesis, the most influential experimental pursuit throughout this 

work was to mechanistically characterize KIF1A’s pausing behavior. This work was 

initially met with criticism and contention from members of the single-molecule kinesin 

motility field. However, based on the dosage-dependent relationship between Tau 

concentration and KIF1A pausing, not investigating this behavior would have led to an 

incomplete and misrepresentative story about Tau-mediated KIF1A regulation. Ultimately, 

it became clear as to why KIF1A’s pausing behavior was unreported and uncharacterized, 

eventually coming down to differences in experimental set up between investigating teams 

of scientists. The multiple in-depth discussions between these teams were essential for the 

findings in both chapter 2 and 3, driving the framework of this dissertation. 
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Suspecting that a K-loop and CTT interaction mediates KIF1A pausing was a 

logical starting point, as there had been a prior study highlighting the importance of this 

interaction on KIF1A landing rate (Soppina and Verhey 2014). Building off of this, 

investigating how levels of CTT polyglutamylation contribute to KIF1A pausing and 

motility allowed us to characterize the KIF1A/CTT interaction with an additional level of 

structural complexity. Not only did tying KIF1A pausing to a main neuronal tubulin PTM 

significantly clarify the mechanism, but brought the relevance of pausing into axon specific 

context. Furthermore, attributing levels of polyglutamylation to KIF1A behavior helps 

explain KIF1A dysfunction on an organismal level, such as altered KIF1A cargo trafficking 

in the ROSA22 mouse model characterized by low levels of CTT polyglutamylation 

(Ikegami et al. 2007). 

While new information was acquired in the characterization of a KIF1A pausing 

mechanism, this discovery raises many more experimental questions than it resolves. 

Perhaps the most obvious follow-up study should be aimed at understanding how a KIF1A 

motor functions on a catalytic level in comparison to conventional kinesin motors. The 

catalysis of ATP by dimeric kinesin motors is a fine-tuned mechanochemical cycle that 

requires an extensive amount of coordination to keep motor domains in opposite phases of 

ATP binding/hydrolysis (Cochran 2015). In considering this fact, one may wonder- where 

does pausing fit into this cycle and how is a KIF1A motor able to reinitiate this cycle after 

being paused? While much work is needed to answer this question, the clue may be in 

KIF1A’s unique pairing of loop 11 and loop 12 used to bind the microtubule surface (Nitta 

et al. 2004), as discussed in chapter 2. Additionally, the relevance of pausing in a cellular 

system is an enticing follow-up study. This question is complicated by both the increased 
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physiological complexity of the axon, as well as the accepted concept that molecular 

motors work in teams, attached to a single cargo, while processing along the axon. 

As mentioned throughout this dissertation, Tau relies on CTTs to engage in 

diffusive binding behavior. As chapter 2 revealed that KIF1A also relies on CTTs for 

pausing, the idea that diffusive Tau regulates KIF1A while attempting to engage in a CTT-

mediated pause is a considerable leap in logic. While this did end up being our central 

hypothesis for chapter 3, it was explored gingerly as it contradicted the reigning paradigm 

of Tau-mediated kinesin regulation in two main ways. First, when connecting how Tau’s 

behavioral binding equilibrium regulates kinesin motors (kinesin-1), past literature credits 

static Tau as the regulatory binding state (Hoeprich et al. 2014; Vershinin et al. 2007; Dixit 

et al. 2008; Stern et al. 2017). This “obstacle hypothesis” paints static Tau as being a 

blockade-style obstacle that is unnavigable to kinesin-1 motors, causing them to 

prematurely dissociate from the microtubule surface. The obstacle hypothesis also brings 

to light the second way in which Tau-mediated regulation of KIF1A differs from the past 

literature. While the obstacle hypothesis shows that Tau inhibits kinesin motors while they 

are processing on the microtubule, our work presents the concept that Tau can also inhibits 

motors while they are stalled (paused).  

While motility experiments initially revealed that 4RL-Tau was a more potent 

inhibitor of KIF1A pausing, this was not enough evidence to present a comprehensive 

picture of this new type of Tau-mediated regulation. Ultimately, in order to accept or reject 

our hypothesis in chapter 3, we needed to rule out the regulatory capabilities of Tau’s static 

binding state. By creating an experimental set up (Figure 3-5) that builds off of findings 

from chapter 2 (Figure 2-3) (Lessard et al. 2019), we were able to confirm that static Tau 
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obstacles are not inhibiting KIF1A, negating the obstacle hypothesis as a plausible 

explanation and ascribing Tau-mediated KIF1A regulation to the diffusive binding state. 

Many questions still remain about Tau-mediated regulation of KIF1A pausing and 

motility. This dissertation assessed the regulatory capabilities of two Tau isoforms, leaving 

four isoforms uncharacterized. While it is expected that 3R-/4R-Tau isoform groupings 

would have a similar regulatory effect due to their similarities in binding equilibrium, there 

are subtler structural differences between isoforms, like N-terminal acidic inserts, that 

could modulate Tau’s regulatory behavior (Figure 1-5). Additionally, the work in this 

dissertation revealed that KIF1A walks ~3 µm (~375 steps) before engaging in a pause on 

both uncoated and Tau-coated microtubules. Even at our lowest Tau concentration, KIF1A 

is facing a high number of Tau molecules while walking on the microtubule. As we have 

shown that Tau is not regulating KIF1A during processive movement, it begs the question 

of how KIF1A is able to navigate through such a crowded microtubule environment while 

moving. Previous work from our lab may explain how this is happening. As highlighted in 

chapter 3, kinesin-2 motors are insensitive to the presence of Tau on the microtubule 

surface, unlike kinesin-1 motors that prematurely dissociate from the microtubule after 

encountering a Tau obstacle. This insensitivity results from an increased “nimbleness”, 

meaning that kinesin-2 motors can switch microtubule protofilaments (Figure 1-4) and 

side-step around obstacles. Kinesin-2’s nimbleness results from its 17 amino acid neck 

linker (Figure 1-6). While only being three amino acids longer than kinesin-1’s 14 amino 

acid neck linker, these additional residues allow kinesin-2 to have a longer reach between 

steps and an increased probability of stepping laterally to an adjacent protofilament 

(Hoeprich et al. 2014; Hoeprich et al. 2017). Like kinesin-2, the KIF1A neck linker 
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sequence is 17 amino acids long, suggesting that KIF1A also can side step around 

obstacles. This concept is a potential explanation for how KIF1A is able to navigate 

through such a crowded microtubule environment while moving and is an enticing point 

for future studies. 

The findings of this dissertation allow us to paint a more comprehensive picture of 

how Tau regulates the main kinesin motor families involved in axonal transport. While it 

was known that Tau regulates kinesin-1 motors, but not kinesin-2 motors, the relationship 

between KIF1A and Tau was unclear before this work. Based on our findings, it is 

postulated that Tau-mediated regulation of KIF1A shares similar characteristics with both 

kinesin-1 (regulated by Tau, but by a different mechanism) and kinesin-2 (likely side-steps 

around obstacles) motors. By defining the relationship between KIF1A and Tau we have 

presented a new mechanism of Tau-mediated regulation, and expanded our understanding 

of how kinesin motor families involved in axonal transport are regulated by Tau (Figure 4-

1). 
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Figure 4-1. Tau differentially regulates the kinesin motor families involved in axonal 
transport. Kinesin-1 motors are known to be regulated by static Tau obstacles while 
processing along the microtubule surface. In contrast, kinesin-2 motors are insensitive to 
Tau obstacles resulting from their ability to side-step around obstacles. Kinesin-3 (KIF1A) 
is regulated by Tau, but not by static Tau while processing, like kinesin-1. Instead, KIF1A 
is regulated by diffusive Tau while pausing on the microtubule surface. Is it also postulated 
that KIF1A can side-step around obstacles while processing on the microtubule surface. 
The neuron in this image was acquired from Servier Medical Art (SMART) under a 
Creative Commons Attribution 3.0 Unported license. 

 

 

  

Kinesin-1: Regulated by static Tau

Kinesin-3: Regulated by diffusive Tau

Kinesin-2: Insensitive to Tau
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Work presented in this dissertation has focused on a significant gap in knowledge 

regarding the basic molecular mechanisms regulating KIF1A cargo transport and 

contributes to our understanding of how KIF1A and Tau are related in certain Tauopathies. 

These findings would not have been uncovered without the use of an in vitro reconstituted 

system, visualized by single-molecule microscopy techniques.  To many, the reconstituted 

system is not an obvious choice when tackling a problem as mysterious as 

neurodegenerative disease. At times, this bottom-up approach has even been referred to as 

a “reductionist” system (although many in the field would argue to call it a 

“constructionist” system). However, by peeling away layers of physiological complexity, 

an enormous amount of quantitative power is gained, allowing researchers to confirm or 

refine suspected molecular models that would otherwise be convoluted in cellular, animal, 

and clinical systems. Using this system, we were able to define Tau’s regulation of KIF1A 

down to a structural level of intricacy that would not be achievable using other 

experimental models. Thus, while small in scale, it is important to not lose sight of the 

potential magnitude of these observations. 

How does one extrapolate single-molecule data to provide meaning in a clinical 

disease-setting, particularly when the gap in knowledge between these two scales of 

research is so expansive? Perhaps, the best approach is not to try and build a direct ladder 

between molecular biophysics and clinical disease, but instead to identify how our findings 

contribute to rungs along the way.  

Our work now provides mechanistic context for emerging cellular and organismal 

models of KIF1A regulation. The most direct comparison is to recent work in a C. elegans 

model, in which Unc-104 (KIF1A homolog) cargo transport was quantified in PTL-1 (Tau 
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homolog) wild-type and knockout worms. When PTL-1 was knocked out, an over 

accumulation of Unc-104 cargo was observed at the distal ends of neurons, likely due to 

the loss of PTL-1 mediated regulation (Tien et al. 2011). Additionally, it has been proposed 

that Unc-104 regulation is mediated by a Tau-spectraplakin complex in primary 

Drosophila neurons (Voelzmann et al. 2016). Taken together, these findings support the 

idea of a universal relationship between KIF1A and Tau (extended to their homologs) 

likely due to a regulatory mechanism similar to the one identified in this work. 

While assessing the behavioral state of Tau is technically difficult in cellular 

systems/disease models, our broader characterization of Tau-mediated KIF1A regulation 

allows us to view disease-state perturbations of KIF1A function through a new lens. A 

defining characteristic of FTD is the disease state alteration in Tau isoform expression, due 

to a splicing defect that results in an increase of 4R-Tau isoforms (Chen et al. 2010; 

D'Souza and Schellenberg 2005). As we know 4R-isoforms of Tau favor the diffusive 

binding state, and we have shown that the diffusive binding state of Tau regulates KIF1A, 

we can provide a possible explanation as to why a severe reduction and irregular 

localization of KIF1A cargo is observed in FTD (Goetzl et al. 2016; Siddiqui and Straube 

2017; Rodriguez-Martin et al. 2016), due to heightened systemic regulation of KIF1A 

function. In this scenario, a shift to favor 4R-isoforms would reduce KIF1A’s on rate 

(Figure 3-6), making it difficult for KIF1A motors to engage with the microtubule and 

become processive. For the population of KIF1A motors that are able to engage with the 

microtubule surface, their pausing and subsequent motility would be significantly impaired 

due to the increased presence of diffusive Tau on the microtubule surface. Conversely, 

advanced AD pathology is characterized by a loss of Tau on axonal microtubules, resulting 
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from disease-state hyperphosphorylation of Tau (Avila et al. 2004; Boutajangout and 

Wisniewski 2014; Medeiros, Baglietto-Vargas, and LaFerla 2011). In this same scenario, 

a pathological hyperaccumulation of both KIF1A and its cargo is observed at the pre-

synaptic terminals of AD neurons, suggesting that loss of our proposed regulatory 

mechanism leads to deleteriously excessive KIF1A function. Taken together, our findings 

correlate with and provide support for many emerging studies regarding KIF1A and Tau’s 

relationship on multiple levels of physiological intricacy.  

 

Future Directions 

 Our next goal is to add complexity to our model of Tau-mediated KIF1A regulation 

presented in this dissertation, by extending our studies into relevant cellular systems. As 

mentioned in the section above, there is a lack of definition of Tau and KIF1A’s 

relationship in the experimental systems that are between single-molecule biophysics and 

clinical disease models, highlighting the necessity to investigate how Tau regulates KIF1A 

in cellular systems. 

 We have begun this investigation by using a SH-SY5Y neuroblastoma cellular 

model. SH-SY5Y cells are a valuable model system to gain understanding of Tau-mediated 

regulation of KIF1A motility in axonal transport. Most notably SH-SY5Y cells generate 

long neurites, structurally similar to axonal projections, when exposed to differentiating 

agents like retinoic acid (Shipley, Mangold, and Szpara 2016). Additionally, SH-SY5Y 

cells endogenously express KIF1A and Tau, the level of which is directly tied to the number 

of days differentiated (Figure 4-2). Preliminary investigation has revealed that KIF1A 

localizes in two distinct areas in this cell type (after 7 days of differentiation). First, KIF1A 
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localizes in distinct puncta along the neurites (Figure 4-2A, white arrows). Second, KIF1A 

also appears to localize perinuclearly, which intensifies between two nuclei in close contact 

(Figure 4-2B, red arrow). Additionally, we have shown that Tau expression increases over 

a 10-day time course of differentiation, with a complete isoform band patterning observed 

by day 10 (Figure 4-2A). This preliminary data presents us with a compelling cellular 

system to investigate the relationship between Tau expression and KIF1A localization. Our 

goal with this system would to be to perturb levels of Tau expression (via knockdown or 

specific isoform overexpression), and assess changes in KIF1A localization. Generally, we 

would hypothesize that the number and distribution of KIF1A puncta on SH-SY5Y neurites 

is directly related to levels of Tau expression. However, there are many parameters of this 

system that need to be addressed before fine-tuning that hypothesis, most importantly the 

levels of KIF1A expression over a 10-day time course of differentiation.  

Our ultimate future goal would be to directly link Tau-mediated KIF1A regulation 

to human neurodegenerative disease progression, in a human cellular system that 

recapitulates the disease-state shifts in 4R:3R Tau isoform expression. Building upon our 

preliminary results in both in vitro reconstituted systems and SH-SY5Y cells, induced 

pluripotent stem cell (iPSC)-derived dopaminergic (DA) neurons (SCDNs) are one 

potential system to investigate the effects of 4R:3R isoform expression on KIF1A 

localization and motility. Structural alterations and neurotransmission deficits in the DA 

midbrain are known to contribute to both FTD and AD pathology (Nobili et al. 2017; Huey, 

Putnam, and Grafman 2006; D'Amelio, Puglisi-Allegra, and Mercuri 2018). Additionally, 

SCDNs are a valuable in vitro model of Tau-mediated regulation, as this differentiated cell 

type is known to express all six mature isoforms of Tau as well as KIF1A (Iovino et al. 
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2010). Furthermore, the temporal expression of SCDNs Tau isoforms has been previously 

established. While the relative expression of total MAPT transcription peaks at 48 DIV, 

mature 4R Tau expression increases over time, generating expression patterns comparable 

to levels from human midbrain tissue (post-mortum) by DIV 190 (Beevers et al. 2017). A 

number of AD and FTD patient derived iPSCs are commercially available for purchase. 

This would present us with a cellular model to investigate the effects of cell line 

endogenous disease-state alterations of 4R:3R expression on KIF1A motility (between 

AD/FTD patient cell lines and control cell lines) without having to perturb levels of Tau 

expression ourselves. The potential for experimental design in system this goes far beyond 

fixing and staining cells to quantify KIF1A localization; many other markers of KIF1A 

related neuronal health could be assessed, such as synapse formation/function and live cell 

imaging of KIF1A cargo trafficking. 
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Figure 4-2. Preliminary observations of KIF1A and Tau expression in SH-SY5Y cells. 
A) Western blot of Tau expression from harvested cell lysates on days 2, 4, 6, 8, and 10 of 
retinoic acid (10 µM) differentiation. A pan-Tau antibody (Tau-5, mouse monoclonal) was 
used to blot for phosphorylated and non-phosphorylated Tau protein. A predicted high 
molecular weight (MW) Tau band is observed at ~ 55 kDa MW. Banded patterning of Tau 
isoforms (37-49 kDa MW) is observed by day 10. GAPDH was used as a loading control 
(~39 kDa MW) C5: undifferentiated control cells in 5% serum media. C10: 
undifferentiated control cells in 10% serum media. B) Immunofluorescent staining of 
KIF1A and Tau (7 days post retinoic acid differentiation). White arrows: KIF1A puncta on 
neurites. Red arrow: perinuclear localization of KIF1A between two contacting cells. 
Green: KIF1A, magenta: Tau (pan; Tau-5), blue: DAPI. 40x. 
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