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Abstract

Fatigue damage is the continuous degradation of a material, primarily due to the
formation of microcracks and resulting from the repeated application of stress cycles.
Traditionally a fatigue analysis was performed during the structural design stage of
a machine or structure; however, more recently there has been increased interest
in the monitoring and prognosis of fatigue damage in existing and operating struc-
tures. In monitoring, the structure already exists and its mechanical properties can
be estimated by processing sensor measurements and non-destructive testing. The
traditional approach to fatigue monitoring is to carry out a visual inspection, find
macroscopic cracks and then predict their growth. This was often carried out by
finding changes in dynamic properties of the system, i.e. changes in modal frequen-
cies, mode shapes, and modal damping. Yet in many cases, by the time the cracks
grow to a point where they are detectable, the load bearing capacity of the structure
has been greatly reduced. Therefore, a preferable approach is to track fatigue damage
on the whole structure prior to the appearance of macroscopic cracks. This would
allow for higher levels of reliability, larger lead times and reduced risk. Although no
exact figures are available, it is estimated that upwards of 50% of mechanical failures
in metallic structures can be attributed to fatigue. Structural health monitoring has
been extensively studied for structural systems but hasn’t been applied to biomechan-
ical systems where biomechanical failure is consistent with the process of mechanical
fatigue.

The objective of this dissertation is to show that state estimation algorithms,
i.e. the Kalman filter, can be successfully formulated to estimate fatigue damage in
near-real time for structural and biomechanical systems. The Kalman filter combines
dynamic response measurements at minimal spatial locations with a structural model
to estimate the response of the dynamical system at all model degrees-of-freedom.
The estimates of the dynamic response of the instrumented structural systems are
subsequently used for fatigue damage diagnosis and prognosis in combination with
an empirical S-N curve. By quantifying the uncertainty in both the state estimate
and S-N curve, the fatigue damage index becomes bounded based on a user-defined
allowable probability of failure.

The main contributions of this dissertation are summarized as follows: i) Devel-
opment of a fatigue monitoring framework for structural and biomechanical systems;
ii) Experimental validation of service life fatigue monitoring in near-real time for
statically determinant structures; iii) Uncertainty quantification and propagation of
system response and fatigue damage estimates using Kalman filters.
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Chapter 1

Introduction

1.1 Background and Motivation

Fatigue is the degradation of a structure due to the repeated application of cyclic

stresses, even if the applied stress is below the material’s yield strength. It has been

estimated that 50% of mechanical failures can be attributed in one way or another

to fatigue [Stephens et al.; 2000]. Fatigue failures are not only confined to structural

systems but also biological systems, such as with stress fractures and overuse injuries

in runners. Studies have shown that eight out of ten runners will get injured each

year [van Gent et al.; 2007]. Although fatigue is hard to predict, monitoring can help

reduce uncertainty.

A major challenge for the civil engineering community is the aging infrastructure

of the United States. Engineered systems will gradually deteriorate due to operational

stresses if they are not properly managed and maintained. Therefore it is essential

to monitor the performance and estimate the remaining useful life of current civil

infrastructure. Traditionally, visual inspections were performed by trained inspectors
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to assess the current condition of the structure. However, this process has been

proven inefficient due to the subjective nature of inspections that often fail to quantify

unseen damage within the structure or those located in hard to reach places [Inaudi

& Deblois; 2009]. It has been estimated that upgrading the existing fatigue critical

infrastructure would cost $1.6 trillion in part due to a significant portion of the

infrastructure exceeding its intended service life [USDOH; 2010].

Structural health monitoring (SHM) has been extensively studied for the past four

decades in order to identify the extent of damage in civil, mechanical and aerospace

engineered structures. The main focus of this interdisciplinary research has been to

develop and implement sensing technologies and data processing methods in order to

assess the condition and/or find damage in structural systems. This could include

civil infrastructure, aircraft, wind turbines, mechanical machines, and biomechanical

systems. In this context damage is defined as a change in material and/or geometric

properties that adversely affect the performance of the system [Farrar & Worden;

2007]. Systems are typically instrumented with an array of sensors that capture the

dynamic global response during operation. The SHM framework then assesses the

current state of the system by extracting damage sensitive features from the observed

dynamic response measurements.

Throughout the lifetime of a system, the operational environment will naturally

age and degrade the structure. Continuous monitoring during the structures lifetime

allows for increased knowledge of the state of the system during this degradation

process ensuring that the system is able to perform its intended function. When

an extreme event occurs, for example an earthquake, SHM can be used to quickly

assess the damage and potential hazard in near real time prior to or in combination

2



with a visual inspection. Therefore structural damage may be due to gradual wear

or discrete events which are classified by high-cycle or low-cycle fatigue [Inman et

al.; 2005]. High-cycle fatigue is characterized by high frequency low amplitude stress

cycles, such as with ground reaction forces while running or bridges subject to traffic

loads. Low-cycle fatigue is characterized by low frequency high amplitude stress

cycles, such as with earthquake ground motions that tend to nonlinear geometric

deformations.

The concept of monitoring the health of a structure is not a new idea, as early as

the 19th century the term fatigue had been coined. After the Versailles train crash

in 1842, tapping of train wheels became common practice to qualitatively determine

fatigue damage [Schutz; 1996]. In the ensuing decades structural monitoring became

focused on response systems to extreme events. Only recently has there been a shift

to long-term SHM especially with catastrophic failures such as the I-35W Bridge

collapse in Minneapolis, MN the need for continuous fatigue monitoring had become

apparent [Hao; 2010].

Figure 1.1: Fatigue failures (a) I-35 bridge collapse, (b) a wind turbine collapse
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Vibration based monitoring is a passive method that uses a network of sensors to

measure the dynamic response of a system. The resolution of this method is based on

the number and layout of the sensor array on the structure. Sensors can include ac-

celerometers, strain gages, fiber optic sensors, etc. The foundation for vibration-based

damage detection is that small changes in the physical properties, (mass, damping,

and stiffness) can cause measurable changes in the dynamic properties of the system,

for example changes in natural frequencies, modal damping, and mode shapes [Doe-

bling et al.; 1998]. Oftentimes these methods provide a general overview of damage

within the structure yet require knowledge of potential damage locations.

This work is motivated in part by the need to quantify damage and its uncertainty

in near real time when no physical damage is apparent. At the onset of a crack there

is a localized decrease in the stiffness of the structure that will create changes in

the dynamic response measurements. Yet, oftentimes when a crack coalesces and

propagates the change in dynamic properties is indiscernible until the crack is visible

or grows to a critical size. By the time the change is seen, the strength of the structure

has already been greatly reduced. Therefore global vibration measurements should be

used to reconstruct the stress fields throughout the entire structure and monitor the

fatigue damage from an early stage prior to macroscopic cracks appearing to achieve

near-real time monitoring and prognosis of fatigue damage.

1.2 Research Objectives

The objective of this work is to show that optimal linear filtering can be applied

to structures subject to non-Gaussian excitation for fatigue monitoring in near-real
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Figure 1.2: Dynamic properties vs. Remaining Strength

time. The Kalman filter combines structural models with limited global measure-

ments to obtain the probabilistic estimate of the response throughout the structure.

A mechanistic approach is explored to quantify structural fatigue damage during the

serviceable life of structures subject to non-Gaussian excitation. For this purpose

the estimate of the response and its uncertainty is fused with probabilistic damage

models, i.e probabilistic S-N curves, for fatigue monitoring applications to provide a

generalized framework for damage accumulation.

In this dissertation the Kalman filter for linear state estimation is verified and val-

idated using simulated and experimental results for damage accumulation. For this

purpose, the estimated states are compared to corresponding simulated or measured

quantities, and the accuracy and efficiency of the results are quantified to generate a

fatigue monitoring framework. The framework is then considered for three uncorre-

lated systems subject to non-Gaussian processes.
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1.3 Dissertation Contributions

The main contributions of this dissertation are the following:

• Development of a state estimation mechanistic fatigue usage framework. A

framework for fatigue usage monitoring and prognosis is developed. The pur-

pose of this dissertation is to determine if it is possible to estimate fatigue dam-

age in near real time for structural systems with unknown excitation within

the same structural health monitoring framework. Then to determine the ac-

curacy of the estimates of the dynamic response of a structural system when

fundamental conditions are relaxed, i.e the excitation is a Gaussian process.

Four fundamental steps are necessary in order to carry out fatigue monitoring:

(1) statistical knowledge of the loads, (2) detailed stress analysis (3) statistical

model for the variation of material properties and (4) damage accumulation

framework.

• Uncertainty quantification and propagation for fatigue usage estimates. The

accumulation of fatigue damage is a random process. Typically the fatigue

material properties can be expressed as a random variable while the applied

loading on the structure is a stochastic process. Uncertainty is introduced into

the damage index from the the estimated stresses determined by the state esti-

mation algorithm and the empirical fatigue material properties. The objective

of this dissertation is to characterize the variation in the damage index in order

to quantify confidence in the fatigue state at any time for any structure in order

to determine a generalized stopping criteria.
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• Experimental validation of developed fatigue usage framework. Application in a

small-scale experiment: A Kalman filter is used to estimate local stress fields

based on global acceleration measurements. From the estimated stress, the

evolution of mechanical fatigue can be monitored by using a rainflow cycle

counting algorithm and an empirical S-N curve to estimate a damage index and

its uncertainty using Miner’s rule. The methodology is tested using aluminum

cantilever beams with a reduced cross section near the base support to facilitate

crack initialization and propagation. The damage index is tracked in near-real

time and a stopping criteria is determined. To the best knowledge of the author

this is the first experiment that tracks fatigue damage and its uncertainty using

global measurements until failure.

1.4 Dissertation Overview

The dissertation is organized as follows:

• Chapter 2: Fundamentals. An introduction to the general theory necessary

to understand the content in the remainder of the dissertation. This chapter

covers the fundamental principles for system theory including state space rep-

resentation, fatigue theory and structural health monitoring with a focus on

fatigue usage to generate a fatigue monitoring framework for structural and

biomechanical systems. Provided is a literature review of how researchers have

approached the fatigue monitoring problem, dating back to the 19th century,

and how knowledge has progressed for fatigue usage monitoring in various sys-

tems.
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• Chapter 3: Fatigue usage monitoring in 5MW simulated wind turbine using

sparse vibration measurements: comparative study. In this chapter a compara-

tive study for stress estimation for a simulated wind turbine is provided. With

the high infrastructure costs of wind turbine systems, it is necessary to have a

SHM system to track fatigue throughout the serviceable life to prevent struc-

tural failures. By optimally placing sensors global dynamic response can be

estimated which can then be used in a fatigue damage monitoring framework.

The global dynamic response is estimated by a model-based-observer, a Kalman

filter, and a modal interpolation method. The comparison is carried out on

the National Renewable Energy Laboratory’s (NREL) 5MW reference turbine

subjected to turbulent wind within NREL’s high-fidelity FAST software for 20

simulated test cases.

• Chapter 4: Fatigue life prognosis using minimum global response measurements:

experimental validation. In this chapter a probabilistic methodology for fatigue

prognosis using global response measurements is provided and experimentally

validated. A Kalman filter is employed to estimate local stress fields based

on global acceleration measurements. The time history of the estimated stress

fields are combined with fatigue damage models to compute the estimated fa-

tigue damage and its uncertainty in near-real time. Aluminum cantilever beams

with a reduced cross-section near the base support to facilitate crack initializa-

tion are excited with a sequence of base motions. Each beam was tested until

failure while the algorithm simultaneously predicted the extent of damage and

its uncertainty in near real time.

• Chapter 5: Estimating ground reaction force within a mechanical fatigue frame-
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work: an application for high mileage runners. In this chapter the fundamental

framework to estimate ground reaction forces in runners using minimal global

response measurements is provided. This research bridges the disciplines of

system theory and biomechanics by framing the problem within a mechanical

fatigue framework. By modeling a human as a structure the previously derived

probabilistic methodology for fatigue prognosis can be applied to biological

structures. 14 participants ran on an instrumented treadmill at various user-

defined speeds with an accelerometer placed at the sacrum. A dual Kalman filter

is formulated to estimate the unknown excitation, while an unscented Kalman

filter estimates the augmented state vector using the estimated excitation in

order to determine the corresponding ground reaction force at each step. From

the estimated ground reaction force, the evolution of mechanical fatigue can be

monitored.

• Chapter 6: Conclusions and future work. Provides an overview of the breadth

of research covered in the dissertation and possible areas for further research.
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Chapter 2

Fundamentals

This chapter provides the preliminary knowledge to understand the topics covered

in the following chapters. It will cover the fundamental principles of system theory,

fatigue theory, and structural health monitoring to generate the fatigue monitoring

framework for structural and biomechanical systems. A high-level model of the frame-

Figure 2.1: Fatigue monitoring framework for structural and biomechanical systems
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work is presented in Fig. 2.1, which should become clear after reading this section in

its entirety.

2.1 System Theory

Physical systems are studied with a combination of modeling, mathematical equa-

tions, analysis and design to understand the systems performance. The system is

influenced by various inputs that determine its response which can be measured. If

the performance is unsatisfactory then one or more of these parts need to be adjusted

in order to improve its performance.

First the physical system needs to be modeled. The model will be dependent on

the question that is asked. For example a building might be modelled as a rigid body

when subject to static loading conditions but might be modelled as a spring-mass-

damper system when determining its response to wind excitation.

After the model is selected the various physical laws are applied in order to develop

the mathematical equations that describe the system. For this dissertation the author

is interested in structural and biomechanical systems that are subject to Newton’s

law. These equations might be linear, nonlinear, integral, difference, or differential

equations among others.

Next the analysis is carried out in a qualitative and/or quantitative nature. Quan-

titative analysis determines the response of the system that is excited by inputs; while

qualitative analysis defines the parameters of the system such as stability, controlla-

bility, and observability. Typically design techniques are influenced by the qualitative

analyses performed.
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When the response of the system is unsatisfactory, the model has to be adjusted.

This can be achieved by adjusting specific parameters of the system; or it could be

achieved by introducing compensators. If the model is optimal then the performance

of the physical system should be improved by these adjustments or compensators;

when this is not the case then the model is incorrect for the given system.

The systems that will be covered in this dissertation are limited to linear systems

that have the following equation to describe the relationship between the input u and

output y,

y(t) =
∫ t

to
G(t, τ)u(τ)dτ (2.1)

This is defined as the input-output description. When the linear system is lumped

and time invariant it can be described by,

ẋ(t) = Acx(t) + Bcu(t) + w(t) (2.2)

y(t) = Ccx(t) + Dcu(t) + r(t) (2.3)

Equation 2.2, the state equation, is a set of first-order differential equations and

Equation 2.3, the measurement equation, is a set of algebraic equations that define

the internal description for the linear system. The vector x is called the state; for

structural and biomechanical systems this will consist of displacements and velocities,

and the set of two equations are called the state-space representation of the system.

Ac is the n x n continuous state transition matrix, Bc is the n x p continuous input

matrix, Cc is the m x n continuous measurement matrix, and Dc is the m x p

continuous direct transmission matrix. The process noise is denoted as w(t) and the

measurement noise is denoted as r(t)
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Note that these are continuous-time equations in which the variable t is defined

at every time instant (−∞,∞), however in real world applications measurements are

taken at discrete points in time. Therefore the discrete time state space representation

is defined as,

ẋk+1 = Axk + Buk + wk (2.4)

yk+1 = Cxk + Duk + rk (2.5)

where the discrete state transition matrix and discrete input matrix are defined as,

A = eAcdt (2.6)

B = [A− I]Ac
−1Bc (2.7)

while the measurement matrix and direct transmission matrix remain unchanged;

C = Cc,D = Dc. wk is the process noise, and rk is the measurement noise. The

system response will be the solution to the problem that is excited by the initial state

x(0) and the input u(0) which is formally presented in Fig. 2.2. The fundamental

statement is that the state can be reconstructed at unmeasured locations of the system

from known measurements.

2.1.1 System Model

In reality, all biomechanical and structural systems have an infinite number of degrees

of freedom. Meaning that there is an infinite number of coordinates necessary to

fully define a systems configuration. A degree of freedom is defined as a systems

movement in a prescribed direction. For this dissertation each node can have axial
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Figure 2.2: The state space representation with a system with n states, m measurements
and p inputs.

motion, shear motion, and rotational motion. The simplest model for any system is

a single degree of freedom (SDOF), where only one spatial coordinate is required to

define it’s configuration.

Throughout this dissertation the model will consist of mass-spring-damper (MSD)

models. Therefore the description of a mass matrix, a stiffness matrix and a classical

damping matrix for all degrees of freedom will fully define the system model. For

the SDOF case with vertical motion, the mass matrix is m1, the stiffness matrix is

k1, and the damping matrix is c1, which is presented in Fig. 2.3. For most systems

a SDOF model won’t provide an accurate representation of the system therefore a

more complex multidegree-of-freedom (MDOF) system is typically required.

The MDOF system will consist of nodes and elements that are combined to gener-

ate a planar frame finite element model (FEM) representation of the system which is

presented in Fig 2.4. Each element has six DOFs, a length (Lij), an elastic modulus

(Eij), moment of inertia (Iij), and a cross sectional area (Aij). The mass matrix is a
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Figure 2.3: Structural and biomechanical SDOF model

Figure 2.4: Element framework for a 2D Planar Frame

diagonal matrix of the form,

M =



m1 0 0 . . . 0

0 m2 0 . . . 0
...

0 0 0 . . . mn


(2.8)

where m is the mass for shear and axial motion and the mass moment of inertia for

rotational motion for each node. The stiffness matrix is formulated at the element or

local level then related to the global coordinates in post processing which results in
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a band matrix. The local stiffness matrix is defined as,

Kij =



AijEij
Lij

0 0 −AijEij
Lij

0 0

0 12EijIij
L3
ij

6EijIij
L2
ij

0 −12EijIij
L3
ij

6EijIij
L2
ij

0 6EijIij
L2
ij

4EijIij
Lij

0 −6EijIij
L2
ij

2EijIij
Lij

−AijEij
Lij

0 0 AijEij
Lij

0 0

0 −12EijIij
L3
ij

−6EijIij
L2
ij

0 12EijIij
L3
ij

−6EijIij
L2
ij

0 6EijIij
L2
ij

2EijIij
Lij

0 −6EijIij
L2
ij

4EijIij
Lij



(2.9)

for each element. The damping matrix is a function of the mass and stiffness matrix

and is formulated as follows,

Cd = [Φ]T [c][Φ] (2.10)

where Cd is diagonal for a special case of c, in which c = 2Mωξ. ω is the natural

frequency, ξ is the modal damping factor, and Φ are the eigenvectors. The damping is

classical for the special case when c is proportional to the mass and/or stiffness. The

damping is considered Rayleigh damping when its the special case of c = α[M ]+β[K]

2.1.2 Equations of Motion

For this dissertation attention is restricted to structural and biomechanical systems

whose dynamic response can be described by the following matrix ordinary differential

equation

Mq̈(t) + CDq̇(t) + Kq(t) = b2u(t) (2.11)

where q(t) ∈ Rnx1 is the displacement vector at time t, M is the mass matrix,

CD is the damping matrix, and K is the stiffness matrix. The time history of the
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unknown forcing is u(t) ∈ R1xn, and b2 ∈ Rnx1 is the force distribution matrix vector.

Formulated in state space representation the state, x =

q
q̇

 and,

Ac =

 0 I

−M−1K −M−1Cd

 ; Bc =

 0

M−1b2

 (2.12)

The measurements of the system’s response are defined by

y(t) = Cx(t) + Du(t) + r(t) (2.13)

where r(t) ∈ Rmx1 is the measurement noise. The measurement equation will have

the following structure depending on the type of measurement,

Cdis = [c2 0] (2.14)

Cvel = [0 c2] (2.15)

Cacc = [−c2M−1K − c2M−1Cd] (2.16)

and Ddis = Dvel = 0 ,

Dacc = c2M−1b2 (2.17)

where c2 ∈ Rmxn maps the degrees of freedom to the measurements.
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2.1.3 Observability

The concept of observability examines the ability of estimating the state from the out-

put measurements. The discrete-time state equation is observable if for any unknown

initial state x0, there exists a finite integer k1 > 0 such that the knowledge of the

input sequence uk and the output sequence yk over [k = 0, k1] uniquely determine the

initial state x0. Observability is determined from the pair (A,C) which is formulated

into the observability matrix,

O =



C

CA
...

CAn−1


(2.18)

If the observability matrix is full rank then the states can be reconstructed from the

output of the system. For structural and biomechanical systems that means that the

stress at a point will be observable if all the displacements that determine the stress

are observable. To determine stresses the Euler Bernoulli Beam curvature equations

are used,

σ = Mc

I
(2.19)

where M is the moment, c is the distance from the neutral axis, and I is the moment

of inertia.
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2.1.4 Model Based Observer

The model based observer was originally derived by Hernandez [Hernandez; 2011],

and can be written in second order form as,

M¨̂q(t) + (Cd + cT
2 Ec2) ˙̂q(t) + Kq̂(t) = cT

2 Ey(t) (2.20)

under the assumption of velocity measurements. The proposed estimator becomes a

modified version of the system with added dampers at measurement locations and

excited by forces that are linear combinations of the output measurements and pro-

portional to the added dampers. A visual representation of this is presented in Fig.

2.5. The matrix E is selected in such a way to minimize the trace of the state error

Figure 2.5: Visualization of the MBO with added dampers to the system model at locations
of measurements.

covariance matrix. If measurements are accelerations then masses are added and if

displacements then springs are added to the system. However, when dampers are

added to the system the dynamic properties, i.e modal shapes and frequencies are
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unchanged. This results in lower estimation error than in the cases of displacements

and acceleration due to the distortion in these frequencies.

The state error is defined as e = q − q̂, therefore the state error is given by,

Më(t) + (Cd + cT
2 Ec2ė(t) + Ke(t) = b2u(t)− c2Er(t) (2.21)

The matrix E ends up on both sides and is free to be selected. As E increases

the effective damping at measurement locations is increased which will reduce the

estimation error. However, on the right hand side of the equation it is proportional

to the measurement noise which will increase the estimation error. Therefore an

optimization algorithm is necessary to determine the optimal E.

To determine the state error covariance, the Fourier transform of both sides of

Eq. 2.21 is taken,

(−Mω2 + (Cd + cT
2 Ec2)iω + K)e(ω) = b2u(ω)− cT

2 Er(ω) (2.22)

and define G,Ho as,

G(ω) = −Mω2 + Cdiω + K (2.23)

Ho(ω) = (G(ω) + cT
2 Ec2iω)−1 (2.24)

then the state error estimate in the frequency domain is written as,

e(ω) = Ho(ω)(b2u(ω)− cT
2 Er(ω)) (2.25)

If the general assumption that the measurement noise and unmeasured excitation are
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uncorrelated is used, and due to the required symmetry of the estimators damping

matrix E = ET, the spectral density matrix of the state error See(ω) can be expressed

as

See(ω) = Ho(ω)b2Suu(ω)bT
2 H∗o(ω) + Ho(ω)cT

2 ESrr(ω)Ec2H∗o(ω) (2.26)

where Suu is the spectral density matrix of the unmeasured excitation and Srr is the

spectral density of the noise. The covariance matrix of the state error can then be

expressed as

P =
∫ +∞

−∞
Seedω =

∫ +∞

−∞
(Ho(ω)b2Suu(ω)bT

2 H∗o(ω) + Ho(ω)cT
2 ESrr(ω)Ec2H∗o(ω))dω

(2.27)

The objective function then becomes to select the matrix E such that

∂

∂E
tr(P) = ∂

∂E
J1 = 0 (2.28)

Note that only the displacement portion of the state error covariance is being min-

imized. The optimal E does not have an analytical closed-form solution therefore

numerical optimization is required. This can be performed in MATLAB® by using

the built-in optimization function, fminsearch. If only the diagonal of E is used

the optimization is not numerically intensive and gives the following form for the E

matrix,

E =



E11 0 0 . . . 0

0 E22 0 . . . 0
...

0 0 0 . . . Enn


(2.29)
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The FEM based observer then estimates the state using the second order form (Eq.

2.20) with the previously determined damper matrix.

2.1.5 Kalman Filter

The Kalman filter [Kalman; 1960] is a two-step recursive algorithm. First the Kalman

filter estimates the current state variables and their associated uncertainties, begin-

ning with the following relations

x̂
(+)
k+1 = xk+1 + x̃

(+)
k+1 (2.30)

x̂
(−)
k+1 = xk+1 + x̃

(−)
k+1 (2.31)

the tilde denotes estimation error, the hat denotes an estimate, the + denotes a

posteriori and the - denotes a priori. From the assumed form of the linear estimator,

x̂
(+)
k+1 = K′k+1x̂

(−)
k+1 + Kk+1yk+1 (2.32)

If wk, rk are gaussian, the filter that is found will be the optimal linear filter in terms

of minimizing the euclidean norm of the estimation error. The estimation error is

determined as,

x̃
(+)
k+1 = [K′k+1 + Kk+1C− I]xk+1 + K′k+1x̃

(−)
k+1 + Kk+1rk+1 (2.33)

where K ′k+1 and Kk+1 are time varying weighting matrices that will be defined later.

By definition the expected value of the measurement noise is zero or, E[rk] = 0. To
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generate an unbiased estimator for any given state vector, xk, the expected value of

the state error must also be zero, E[x̃(−)
k ] = 0. This results in,

K′k+1 = I−Kk+1C (2.34)

and the estimator will take the form,

x̂
(+)
k+1 = (I−Kk+1C)x̂(−)

k+1 +Kk+1yk+1 (2.35)

then the state estimate of a dynamical system x̂
(−)
k+1 at time t = (k+ 1)∆t is corrected

by using a weighted difference between model predictions and measurements in its

re-written form,

x̂
(+)
k+1 = x̂

(−)
k+1 + Kk+1

(
yk+1 −Cx̂(−)

k+1

)
(2.36)

where x̂(+)
k+1 is the corrected (a posteriori) state estimate and x̂(−)

k+1 is the a priori state

estimate computed for this system as,

x̂
(−)
k+1 = Ax̂(+)

k (2.37)

The recursion method is briefly presented here. A detailed derivation of the gain

can be found in [Simon; 2006,Gelb; 1996]. First consider P(−)
k+1, the priori state error

covariance matrix at time t = (k + 1)∆t, expressed in the following form

E[(xk+1 − x̂k+1)T (xk+1 − x̂k+1)] = P(−)
k+1 = AP(+)

k AT + Qk (2.38)
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where Qk is the covariance matrix of the unmeasured excitation and P(+)
k is the

posteriori state error covariance at the previous time step. The Kalman feedback

gain matrix, Kk+1 at time t = (k + 1)∆t, is expressed as

Kk+1 = P(−)
k+1CT

(
CP(−)

k+1CT + Rk+1

)−1
(2.39)

where Rk+1 is the measurement noise covariance. The a posteriori state error covari-

ance matrix is given by

P(+)
k+1 = (I−Kk+1C)P(−)

k+1 (2.40)

The two step recursive method of the KF is presented visually in Fig. 2.6.

2.1.6 Unscented Kalman Filter

The unscented Kalman filter (UKF) is a standard technique used for nonlinear es-

timation and machine learning applications. This includes estimating the state of a

nonlinear dynamical system, estimating parameters for nonlinear system identifica-

tion, and dual estimation where both the state and unknown parameters are estimated

simultaneously. The UKF was proposed by Julier and Uhlman [Julier & Uhlmann;

1997] in order to introduce improvements to the Extended Kalman filter (EKF) dur-

ing the propagation of the Gaussian random variable (GRV) through the system

dynamics. The state distribution is approximated as a GRV which is then propa-

gated through the first-order linearization of the nonlinear system by determining the

Jacobian of the state matrix and possibly the measurement matrix if dual estimation

is performed. This can lead to large errors in the posterior mean and covariance of

the GRV which leads to sub-optimal performance and in many cases divergence. A
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Figure 2.6: Two step recursive method of the KF, (a) The time update for the covariance,
(b) The measurement update for the estimated state

detailed derivation of the EKF can be found in [Jazwinski; 1970,Gelb; 1996].

The UKF addresses this issue by providing a deterministic sampling approach

without the requirements of a large number of GRV realizations like with Monte-

Carlo methods. Much like the EKF, the state distribution is approximated as a

GRV; however the distribution is represented by a minimal set of chosen sigma points.

These sample points will completely capture the mean and covariance of the GRV,
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and when these points are propagated through the true nonlinear system, the mean

and covariance will be accurately determined to the 3rd order taylor series expansion

for any nonlinearity. This process is known as the unscented transformation, in

which one can determine the statistics of random variable that undergoes a nonlinear

transformation. If sigma points are chosen carefully, Zk, based on the mean and

covariance of x, and put through any nonlinear function y = f(x) the mean and

covariance of f(Zk) can be determined which will have the same mean and covariance

of y. This process is depicted in Fig.2.7. Assume that x, a length n vector, has a

Figure 2.7: The unscented transformation

mean of x̄ and a covariance Px. To evaluate the statistics of y the sigma matrix Z of

2n+ 1 sigma vectors Zi with corresponding weights Wi is formed as,

Z0 = x̄ (2.41)

Zi = x̄+ (
√

(n+ λ)Px)i i = 1, ..., n (2.42)

Zi = x̄− (
√

(n+ λ)Px)i−n i = n+ 1, ..., 2n (2.43)
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Wm
0 = λ/(n+ λ) (2.44)

W c
0 = λ/(n+ λ) + (1− α2 + β) (2.45)

Wm
i = W c

i = 1/(2(n+ λ)) i = 1, ..., 2n (2.46)

where λ = α2(n+κ)−n is a scaling parameter, α determines the spread of the sigma

points around the mean, κ is a secondary scaling parameter, and β incorporates prior

knowledge of the distribution. The sigma vectors are then propagated through the

nonlinear function,

Yi = f(Zi) i = 0, ..., 2n (2.47)

then the mean and covariance of y are approximated by the weighted sample mean

and covariance of the posterior sigma points,

y ≈
2n∑
i=0

Wm
i Yi (2.48)

Py ≈
2n∑
i=0

W c
i {Yi − y}{Yi − y}T (2.49)

Briefly presented below is the formulation of the dual estimation approach for the

UKF. For a full derivation refer to [Wan & Van Der Merwe; 2000]. First consider the

discrete-time nonlinear dynamic system,

xk+1 = f(zk, uk) + wk (2.50)

yk = g(zk, uk) + rk (2.51)

where zk is the augmented state vector, which includes the states and the unknown
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parameters that need to be estimated, zk = [xk, θk]T . The process begins by calcu-

lating the sigma points as,

Zk = [ẑk ẑk ±
√

(n+ λ)Pz
k] (2.52)

where P z
k is the covariance of the augmented state vector. In the time update step

the sigma points are put through the state equations as,

Z
(−)
k+1 = f(Zk, wk) (2.53)

ẑ
(−)
k+1 =

2n∑
i=0

Wm
i Z

(−)
i,k+1 (2.54)

with the a priori covariance determined as,

P(−)
k+1 =

2n∑
i=0

W c
i [Z(−)

i,k+1 − ẑ
(−)
k+1][Z(−)

i,k+1 − ẑ
(−)
k+1]T (2.55)

The sigma points are then put through the measurement equation as,

Y
(−)
k+1 = g(Z(−)

k+1, rk) (2.56)

ŷ
(−)
k+1 =

2n∑
i=0

Wm
i Y

(−)
i,k+1 (2.57)

In the measurement update phase the covariance and cross-covariance of the measure-

ments are updated to the state to determine the Kalman gain to provide a estimate

of the augmented state and covariance.

Pyy =
2n∑
i=0

W c
i [Y (−)

i,k+1 − ŷ
(−)
k+1][Y (−)

i,k+1 − ŷ
(−)
k+1]T (2.58)
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Pxy =
2n∑
i=0

W c
i [Z(−)

i,k+1 − ẑ
(−)
k+1][Y (−)

i,k+1 − ŷ
(−)
k+1]T (2.59)

Kk+1 = PxyP−1
yy (2.60)

Similar to the standard kalman filter the augmented state and covariance is updated

as,

ẑk+1 = ẑ
(−)
k+1 + Kk+1(yk+1 − ŷ(−)

k+1 (2.61)

Pk+1 = P(−)
k+1 −Kk+1PyyKT

k+1 (2.62)

This ends the formulation of the UKF, in its implementation it has shown to con-

sistently achieve better accuracy than other methods such as the EKF at a similar

computational cost.

2.1.7 State-input-parameter estimation process

A dual observer was established by Dertimanis et al, which combines the dual and un-

scented Kalman filter (UKF) for state-input parameter estimation. The dual Kalman

filter (DKF) determines the unknown structural excitation while the latter solves the

state and parameter estimation by means of an augmented state-space formulation.

For brevity the key components of the process are highlighted; for a full derivation

refer to [Dertimanis et al.; 2019]. The derivation begins by introducing two fictitious

equations

uk+1 = Tuk + wuk (2.63)

θk+1 = θk + wθk (2.64)
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where T denotes a state matrix and wuk , w
θ
k are zero mean Gaussian processes of

covariance matrices Quu and Qθθ, respectively. The augmented state vector is defined

as zk = [xk, θk]T ∈ Rn̄x1, for n̄ = 2n + d, in which the new augmented state-space

model is formulated as

zk+1 =

A 0

0 I

 zk +

B

0

uk +

wx
k

wθ
k

 = f(zk, uk) + pk (2.65)

yk+1 =
[
C 0

]
zk +

[
D
]
uk + rk = g(zk, uk) + rk (2.66)

where wxk is uncorrelated with wθk, and is superimposed to Eq. 8. The process noise

of the augmented state equation is denoted as pk which again has zero mean and

covariance matrix Qpp = diag{Qxx, Qθθ}. The zero mean Gaussian measurement

noise is denoted as rk with a covariance matrix R.

2.1.8 Input Estimation

A new state-space model is considered when an estimate of θk becomes available

through the UKF, which is a function of the the measured output, yk, the unknown

state, uk, and known input to the system, xk

û−k+1 = T ûk + wuk (2.67)

ŷk+1 = Cx̂k +Dûk + rk (2.68)
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The dual Kalman filter is then implemented to provide an online estimation of ûk. In

the measurement update step the input gain, mean and covariance are calculated as

follows

Ku
k+1 = (DP u−

k+1D
T +R)−1P u−

k+1D
T (2.69)

û+
k+1 = û−k+1 +Ku

k+1(yk+1 − Cx̂−k+1 −Dû−k+1) (2.70)

P u+
k+1 = P u−

k+1 −Ku
k+1D

TP u−
k+1 (2.71)

the one-step ahead predictions of the input mean, input covariance and state mean

at time k are denoted as u−k+1, P
u−
k+1 and x−k+1 respectively. During the time update

step, the input mean and covariance predictions are determined by

û−k+1 = T û+
k (2.72)

P u−
k+1 = TP u−

k+1T
T +Quu (2.73)

2.1.9 State and parameter estimation

Here the UKF is employed to obtain a solution to the joint state and parameter

estimation problem. The UKF is based on the unscented transformation. Sigma

points, Zk, are carefully chosen based on the mean and covariance of the state, zk,

and when these points are put through the function f(x) the mean and covariance

of f(Zk) will have the same mean and covariance of f(zk). The set of sigma points

are calculated when the input estimate u+
k from the DKF and a measurement, yk,
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becomes available by

Ẑ+
k = [ẑ+

k ...ẑ
+
k ] +

√
c
[
0
√
P z+
k ...−

√
P z+
k

]
(2.74)

where c is a function of the spread of the sigma points. The sigma points are then

propagated through the output equation

Ŷ +
k+1 = g(Ẑ+

k , û
+
k ) (2.75)

The output mean and covariance is then calculated as

ŷk+1 = Ŷ +
k+1µx (2.76)

P y
k+1 = Ŷ +

k+1MŶ +
k+1

T +R (2.77)

where µx and M are parameters of the UKF which are functions of the first and

second-order weightings. From here the cross covariance between the state and the

output is calculated

P xy
k+1 = Z+

k MŶ +
k
T (2.78)

along with the UKF gain

Kz
k+1 = P xy

k+1P
y
k+1
−1 (2.79)

The augmented state mean and covariance matrix are then updated

ẑ+
k+1 = ẑ−k+1 +Kz

k+1(yk+1 − ŷk+1) (2.80)
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P z+
k+1 = P z−

k+1 −Kz
k+1P

y
k+1K

z
k+1

T (2.81)

For the next time update step the sigma points are fed through the state equation to

determine the updated sigma points

Ẑ−k+1 = f(Ẑ+
k , û

+
k ) (2.82)

Then the augmented state mean and covariance is obtained for k + 1 by

ẑ−k+1 = Ẑ−k+1µx (2.83)

P z−
k+1 = Ẑ−k+1MẐ−k+1

T +Qpp (2.84)

these quantities are then used to calculate the unknown force vector during the next

iteration.

2.2 Fatigue Theory

This section will focus on the historical development of fatigue monitoring as a branch

of technology. The theory will then be applied to structural problems in the assump-

tion that the necessary parameters have been identified through state estimation.

Hence it will begin with stress counting and end prior to macroscopic crack growth

since that is not the scope of this dissertation. As stated previously, when fatigue

cracks have grown to a point where they are visible and can be quantified by visual

inspection i.e. crack length, the residual strength of the structure has already been

greatly reduced. At this point remediation efforts for structural health monitoring
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often can only provide damage location and not the overall current health of the

structure at stress critical locations.

2.2.1 History

The term "fatigue" was originally coined by Braithwaite in his paper ’On the fatigue

and consequent fracture of metals’ in 1854 [Braithwaite; 1854]. Previously the term

"tired" had been used to define the period of usage for metallic structures before

breaking. At this time fatigue failures in metallic structures were a well-known tech-

nical problem. In the 19th century several serious fatigue failures had already been

reported, mainly in the transportation sector and laboratory investigations were being

carried out.

This begins with Albert [Albert; 1837], in 1837 designing the first fatigue-test

results on conveyor chains that had failed in service. By 1842 Rankine [Rankine; 1842]

began discussing the fatigue strength of railway axles. Then in 1853 the first example

of a safe life design approach appeared in Morin’s book Resistance des Materiaux

[Morin; 1853] again on train axles. In Braithwaite’s fatigue paper he describes several

fatigue failures for other systems such as water pumps, propellar shafts, levers, etc.

Included in this was a discussion on allowable stress for fatigue-loaded components.

Throughout this period there were several disastrous railroad accidents due to fatigue,

the most infamous being the Versailles rail accident that resulted in 60 deaths, in

combination with thousands of failed railway axles reported by the Institution of

Mechanical Engineers.

The first substantial research on fatigue was performed by August Wöhler. He

recognized that if a single static load was applied to a structure below its yield strength
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it wouldn’t result in damage to the structure. However, when that same load was

cycled on the structure many times it would induce material failure. In 1867, he

presented his work on metal fatigue curves, which were later coined Wöhler or S-N

curves, at the Paris World Trade Fair [Wohler; 1867]. These curves related the number

of stress cycles to failure within the finite fatigue life region. These were results of

fatigue tests on railway axles from a rotating-bending test machine he designed in

order to stress cycle the materials. In 1910 Basquin [Basquin; 1910] formulates the

Wöhler curve in present day formulation with log-log scales for the stress vs. number

of cycles with the following equation to show the linearity of the process for a majority

of the stress life,

log(Nf ) = K − blog(σi) (2.85)

where σi is the measured stress and K, b are material dependent properties that

define the slope and intercept of the curve. At this time numerical values for material

parameters were determined from Wöhler’s previous research decades prior.

The next substantial research on fatigue monitoring was performed by Palmgren

in 1924 [Palmgren; 1924]. His trademark paper focused on extending from the tensile

strength of a material to the fatigue limit for the S-N curve using a four-parameter

equation. This was the first quantitative description of a probability of life for fatigue-

loaded components. Then in 1945 Miner extended this work by defining a damage-

accumulation hypothesis,

D =
k∑
i=1

ni
Ni

= 1.0 (2.86)

which states that the ratio of the experienced stress cycles to the number of cycles

to failure approaches 1.0 at failure. This has been coined as the ’Palmgren-Miner
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Damage Accumulation rule’ [Miner; 1945]. At the time there were many restrictions

that made application for this hypothesis infeasible in practice, however they have

since been relaxed. Miner was the first to check his hypothesis by performing fatigue

tests.

The work of Wöhler, Palmgren, and Miner provide the fundamental basis for the

fatigue monitoring framework used in this dissertation. Fatigue research remained of

utmost importance, however research focused on topics such as stress-concentration

factors, fatigue limit influencers, design of fatigue testing, fracture mechanics, Good-

man diagrams, and the empirical study of material fatigue properties. For an exten-

sive list of fatigue contributions between 1838 and 1987 refer to [Schutz; 1996]

2.2.2 Fatigue Monitoring

Fatigue is driven by the cyclic or fluctuating stresses or strains, that arise due to

the excitation of real-life engineering structures. Mechanical fatigue is the classical

example of fatigue in which internal repetitive stresses occur under the excitation of

externally applied mechanical loading, which could include forces or displacements.

Civil structures such as bridges and buildings, or mechanical components such as gears

and pumps are susceptible to this form of fatigue. However, there are other types

of fatigue which won’t be covered in this dissertation but include thermal fatigue,

electrical fatigue, creep fatigue, corrosion fatigue or a combination of those stated.

Fatigue originates from the local yielding of the material regardless of the type

of loading condition [Schijve; 2008, Sobczyk; 1992] experienced by the system. The

local stress concentration at the microscopic level or grain level of the material can

cause dislocations or micro-cracks to form in slip bands. Under the influence of
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cyclic stresses these dislocations shift and coalesce to form micro-cracks. It is from

these micro-cracks that the formation of a macro-crack begins. The macro-crack

will propagate through the structure, in most cases perpendicular to the maximum

principle stress direction, which will ultimately lead to structural failure of the system

[Cui; 2002,Ottosen et al.; 2008]. Therefore there exists two principle phases to fatigue

life of structural systems, namely crack initiation and crack propagation. This is

presented in Fig 2.8.

Figure 2.8: Crack initiation by cyclic slip [Schijve; 2008].

The crack initiation phase of mechanical fatigue can be explained as a surface

phenomenon. Plasticity, which is a local phenomenon, for initial cycles is restricted

to a small number of grains and will be able to occur more effectively when there are

no surrounding grains to stop the plastic deformation at the surface. As a consequence

of cyclic slips originating from cyclic stresses and the inhomogeneity from grain to

grain, micro-plasticity often occurs. The cyclic loading results in the creation of

non-reversible slip bands on parallel slip planes. The original initiation has been

shown to develop along a slip band in the form of an intrusion or extrusion [Suresh;

2001]. High stress concentrations, geometric discontinuities, inherent material defects,
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and surface imperfections lead to the initiation of micro-defects. The micro-cracks

will grow into adjacent grains with the growth directions deviating from initial slip

band orientations. Each grain boundary will provide resistance against growth. This

resistance to crack growth is material dependent and determines the growth rate.

Growth becomes continuous when the number of grains along the micro-crack front

becomes sufficiently large. The end of the crack initiation phase concludes when the

growth of the micro-crack becomes independent of the surface conditions.

After the crack initiation phase there is the crack propagation phase. This phase

is not the scope of this dissertation because once cracks become visible, the remaining

fatigue life of a laboratory specimen is usually a small percentage of the total life.

However, for real structures the crack propagation phase could be a larger percentage.

Therefore the quantification of fatigue through the crack initiation phase will be

explained now.

To facilitate fatigue there must exist different types of fluctuations or load forms

on the structure. The simplest type of load form is constant amplitude loading where

the forms are repetitive in time. Each stress cycle will be identical [Pook; 2007]. The

loading can be expressed as a stress amplitude,

σa = σmax − σmin
2 (2.87)

and/or a mean stress as,

σm = σmax + σmin
2 (2.88)
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The loading can also be expressed in terms of the stress ratio,

R = σmin
σmax

(2.89)

and/or amplitude ratio,

A = σa
σm

(2.90)

The other type of load forms are variable amplitude loading which covers everything

that isn’t constant amplitude loading [Schijve; 2009]. The simplest form consist of

several blocks of continuous amplitude loadings to the most complex; arbitrary non-

periodic loading. Variable loading is sometimes broken into narrow band random

loading, where the cycles can be distinguished and broad band random loading where

the individual cycles can’t be distinguished.

To count the cycles independent of the type of loading condition the structure

undergoes; the rainflow counting algorithm is commonly used [Matsuishi; 1968]. This

method was coined "rainflow" due to its resemblance of rain falling onto a pagoda and

running down the edges of the roof. The algorithm is defined as follows,

1. The loading history is rotated, such that the time axis is vertically downward.

2. A flow of rain starts at each successive extremum point.

3. A half cycle is defined by allowing each rainflow to drip down the roof until,

(a) It falls opposite a larger maximum or smaller minimum point.

(b) Meets a rainflow falling from above

(c) It falls indefinitely
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4. Each full cycle is counted by pairing the repeated half cycles.

A visual representation of the motivation and application of the algorithm is presented

in Fig. 2.9.

Figure 2.9: The motivation and application of the rainflow algorithm. (a) time history of
stress loading (b) the method to count cycles

Once the cycles are counted a cumulative fatigue damage theory can be applied.

The fundamental idea behind these theories is that inherent microscopic parameters

that govern the accumulation of damage is related to macroscopic quantities such

as stress or strain. This dissertation focuses on stress-based approaches for fatigue

damage quantification. However, there also exists strain based approaches that use

the Coffin-Manson relationship [Coffin; 1954,Manson; 1954], energy based methods

that focus on the relationship between hysteretic area and fatigue behavior [Inglis;

1927], or continuum damage mechanics which studies the deterioration of mechanical

variables in a thermodynamically consistent contiuum framework [Kachanov; 1958,
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Kachanov; 1986].

The stress-based approach was introduced by Wöhler in 1860 with his formulation

of the S-N curve. Specimens are loaded at specific cyclic stresses until ultimate failure

is reached, at that point the number of cycles, Nf , are recorded. Either the stress

range or the stress amplitude is plotted against the number of cycles to failure in

order to obtain the S-N curve. For most engineering materials these curves were

empirically generated in the 20th century. A generic S-N curve is presented in Fig.

2.10. Note that at the high cycle region there exists asymptotic behavior of the S-N

Figure 2.10: The general form of an S-N curve.

curve which is defined as the endurance or fatigue limit. In which specimens loaded

with a stress amplitude below this limit will have infinite life. Some materials such

as Aluminum have been shown to not have a well defined endurance limit. The S-N

curve is numerically quantified by Basquin’s equation,

log(Nf ) = K − blog(σi) (2.91)
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Note that empirical data from cyclic stress fatigue tests determine the parameters

that define the curve. Typically, several tests are performed at each stress amplitude

which provides a distribution of cycles to failure. This commonly follows a normal

distribution about each parameter, yet the mean value is used in the formulation for

most S-N curves.

Once the time history of the stresses on the structure are rainflow counted and

an S-N curve of the material is formulated one can use the Palmgren-Miner linear

damage rule to determine the extent of damage as,

D =
k∑
i=1

ri =
k∑
i=1

ni
Nf,i

(2.92)

where D is the damage index, ri is the cycle ratio corresponding to each load level

σa,i, ni is the estimated or measured number of cycles at stress value σa,i, Nf,i is the

number of cycles til failure at stress value σa,i from the S-N curve. Failure will occur

when this damage index approaches 1.

2.2.3 Fatigue Uncertainty

The accumulation of fatigue damage is a random process. Typically the fatigue

material properties can be expressed as a random variable while the applied loading

on the structure is a stochastic process [Shen et al.; 2000]. Uncertainty is introduced

into the damage index from the the estimated stresses determined by the Kalman

filter and the empirical fatigue material properties. The objective of this dissertation

is to characterize the variation in the damage index in order to quantify confidence

in the fatigue state at any time for any structure in order to determine a stopping
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criteria. The stress estimation uncertainty can be expressed as a single-sided Gaussian

probability distribution with bounds on the acceptable range of expected damage

values per cycle.

f(d) = 1
b

(nsK)( d
b

)( 1−b
b

) 1√
2πσs

e
−( ((nsKd)

1
b −µs)2

2σ2
s

) + 1√
2πσs

e
−( ((nsKd)

1
b +µs)2

2σ2
s

) (2.93)

where d is the range of possible damages for PDF integration, ns is the inverse of

the number of cycles at each experienced stress, b,K are the empirically determined

material-dependent parameters that describe the shape of the S-N curve, σs is the

standard deviation of the stresses, and µs is the mean estimated stresses.

Material fatigue is well understood in a qualitative sense, yet statistical distribu-

tions for fatigue parameters are unable to be derived from this physical interpreta-

tion [Schijve; 2003]. Therefore a distribution must be assumed, the most common

distribution function is the normal distribution which is used here. Other applicable

distribution functions are the log(N)-normal distribution, the 3-parameter Weibull

distribution, and the log(N −No)-normal distribution [Schijve; 2005]. The slope and

y-intercept for the S-N curve presented above are assumed to be jointly Gaussian

random variables with the following probability density function,

y = f(x, µ,Σ) = 1√
|Σ|(2π)2

exp(−1
2(x− µ)Σ−1(x− µ)′ (2.94)

where µ is the mean vector and Σ is the covariance matrix.

It is essential to include both the uncertainty of the estimated stresses and the

uncertainty in the S-N curve fatigue parameters to minimize the risk of material fail-

ure prior to maintenance. The associated risk is directly related to the quantification
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of uncertainty in both state estimation and material properties. If the uncertainty in

the S-N curve parameters are not included the extent of fatigue damage is underesti-

mated which is not representative of real-world applications. This was experimentally

validated in Chapter 4.

Two methods are proposed for this framework. Both take advantage of defining

the slope and y-intercept of the S-N curve as jointly Gaussian random variables.

For method one, Monte-Carlo simulations are performed by realizing S-N curves for

the structures life which are used along with the estimated stresses to quantify an

estimated index. The uncertainty bounds were then chosen based on the variance

in the fatigue indices realized. The downside of this method is that it can’t be

performed in near-real time, therefore an offline method that can be performed a

priori is proposed.

For method two realizations of the slope and y-intercept are realized as correlated

Gaussian random variables. Then an ellipse is drawn around the data based on the

variance in the semi-major and semi-minor axes. The percent of realizations that

fall within the ellipse will define the confidence in the estimate of the material’s

fatigue parameters. Maxima and minima of the semi-major axis are then chosen as

the parameters for the S-N curve that will determine the uncertainty bounds of the

estimated damage index. This allows near-real time tracking of the damage index

since the estimated stresses are directly used in three probabilistic S-N curves that

are defined based on confidence intervals and material properties. The two methods

are presented in Fig. 2.11.
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Figure 2.11: (a) Monte-Carlo like method to determine uncertainty in damage index (b)
Offline method to determine confidence interval of fatigue material properties of S-N curve.

2.3 Structural Health Monitoring

Structural health monitoring (SHM) is the process of formulating a damage identifi-

cation framework for civil, mechanical, and aerospace structures. The general format

for this process consists of detection, localization, classification, assessment and pre-

diction of fatigue damage. Detection will qualitatively indicate present damage in

a structure, localization will provide a probable location for damage, classification

will determine the type of damage, assessment will provide an estimate of the extent

of damage, and prediction will estimate the remaining life of the structure. Most

SHM research has been conducted over the last 40 years and has attempted to iden-

tify global damage in structures. The interest has been spurred by the potential for

significant life-safety and economic benefits through implementation.

Essential to the damage identification framework is the need to define two different
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states of the system, namely the current state and an initial, undamaged state. This

allows for a meaningful comparison for the state of system degradation. Changes in

material and/or geometric properties of the system allow for quantification of damage.

This damage is often seen as changes to the system response or mechanical properties.

All damage will begin at the material level, and all materials will have some degree

of defect or flaw in its undamaged state unbeknownst to the user. Then when the

system is loaded these defects or flaws will grow and coalesce at varying rates to cause

local component failure which ultimately leads to system-level damage. In this sense

the definition of damage isn’t total system failure, but rather that the system can no

longer operate in its intended manner. When the damage continues to grow, there

will be a point where the system will no longer be able to operate acceptably to the

user. This point will be considered system failure.

Damage accumulation is typically defined on two different time scales, relatively

long periods and discrete time events. The long periods of damage accumulation are

associated with fatigue or corrosion, while discrete events could include nonscheduled

events such as earthquakes or scheduled events such as aircraft take-offs.

A successful SHM procedure incorporates three main processes for implementa-

tion. This include observations of the mechanical or structural system through sensor

measurements, the extraction of damage-sensitive features from the measurements,

and then the analysis of these features to quantify the extent of damage through the

current state of the system. Much like the two time scales for damage accumulation

there exists long-term and discrete time SHM. In terms of long-term SHM the output

of the process, damage accumulation, is periodically updated in regards to the struc-

tures ability to perform its intended function under its operational environment which
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is continually degrading the system. During a discrete event, such as an earthquake,

SHM can be used for rapid condition screening and risk assessment. The screening

process will provide real-time information about the system integrity during and after

the event.

Five closely related disciples are incorporated to completely identify damage in

civil, mechanical, and aerospace structures. This includes SHM, condition monitor-

ing (CM), non-destructive evaluation (NDE), statistical process control (SPC) and

damage prognosis (DP). SHM provides online-global damage identification of these

systems. CM addresses damage identification for rotating machinery such as those

used in manufacturing [Bently & Hatch; 2002]. NDE is a local damage identification

procedure that is performed off-line after damage has been located. This process is

carried out for damage characterization and as a post processing method using a pri-

ori knowledge of the damage [Schull; 2002]. SPC uses a variety of sensors to monitor

changes in a process rather then the structure, where one cause of the change could

result from structural damage [Montgomery; 1997]. DP is performed once damage

has been detected and is used to predict the remaining useful life of the system [Farrar

& Worden; 2007]. For a review of the technical literature for damage identification

refer to [Doebling et al.; 1996,Sohn et al.; 2003].

High fidelity finite element model updating has been proposed by some authors

in order to estimate fatigue damage. Specifically, the hypothesis is that as dam-

age accumulates the mechanical characteristics such as natural frequencies, damping

ratios, and mode shapes will also change. Giagopoulos et al. have proposed a struc-

tural health monitoring framework that incorporates a model updating method as

changes are seen in the structural response to provide an estimate of the fatigue pro-
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cess [Giagopoulos et al.; 2019]. These changes can be incorporated into a fatigue

accumulation framework based on updating the joint conditional probability of the

damage estimate as knowledge of the damage sensitive features are evaluated [Gob-

bato et al.; 2012]. The framework has been proposed and experimentally validated

for crack propagation trajectories and shown to improve remaining fatigue life esti-

mates [Gobbato et al.; 2014]. As this dissertation shows, for certain types of systems

the model updating approach is only viable once the structure is damaged to a point

of imminent failure.

2.3.1 Fatigue Monitoring Framework

Traditionally a fatigue analysis is carried out during the structural design stage of

a machine or structure, however, more recently there has been a marked interest

in monitoring and prognosis of fatigue damage in existing and operating structures.

Several important differences exist between the design and the monitoring/prognosis

problem in fatigue. In design the engineer is dealing with a hypothetical, yet un-

built structure and therefore mechanical properties and boundary conditions can (and

must) be assumed. In monitoring, the structure already exists and its mechanical

properties can be estimated by processing sensor measurements and non-destructive

testing. Furthermore, in the design stage, the structure will begin its operation in a

pristine state, while in the monitoring case the current state of the fatigue damage of

the structure is highly uncertain.

The traditional practical approach to monitoring fatigue is to carry out a visual in-

spection, find macroscale cracks and track/predict their evolution; however, in many

cases, by the time the cracks grow to a point where they are detectable, the load bear-
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ing capacity of the structure has been greatly reduced [Downing; 2012]. A preferable

approach is to track fatigue damage on the whole structure prior to the appearance of

macroscopic cracks. This would allow for higher levels of reliability, larger lead times

and reduced risk. However, since it is not cost effective to use strain sensors at all

critical locations of a structure, the essential capability that is required to achieve this

objective is tracking stress/strain time history through the whole structure by using

global vibration measurements, such as accelerations. One possibility to achieve this

capability is via state estimation.

State estimation is a model-data fusion approach that aims to reconstruct the state

of a dynamical system, displacements and velocities within a linear model framework,

from noisy observations of its response and a model. The state is a set of variables that

if known along with the input/excitations at a given time can uniquely describe the

future system response. For the purpose of fatigue monitoring the components of the

response that are of interest are the internal stress and strain fields of the structural

elements which can be derived from displacements, velocities, and accelerations. This

is possible when the state is observable. A state is observable if it can be reconstructed

from knowledge of the outputs and inputs of the system. Observability is determined

by the rank of the observability matrix. The stress at a point will be observable if all

the displacements necessary to determine the stress are observable.

Several methods have been proposed and successfully validated to estimate unmea-

sured response in structural systems [Palanisamy et al.; 2015,Hernandez; 2011,Erazo

& Hernandez; 2014]. The Kalman filter is the optimal state estimator in the sense

that it minimizes the Euclidean norm of the state error time step of interest. A

fundamental assumption of the Kalman filter is that the unmeasured excitations are
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realizations of a Gaussian random process, this condition is often relaxed; however, a

dual-Kalman filter approach can be used to estimate both the state and the unmea-

sured excitation in order to reduce the state error [Azam et al.; 2015]. By strategically

placing sensors it is possible to use minimal sensors to ensure that the states of in-

terest are observable. Minimal sensor instrumentation is desirable due to decreased

cost of the sensor network, ease of installation, and decreased maintenance.

From the estimated stress, the evolution of mechanical fatigue can be monitored

by using a rainflow cycle counting algorithm and an S-N curve to estimate fatigue

damage [Schijve; 2003]. Fatigue accumulation frameworks with minimal instrumen-

tation have been proposed and validated for a subset of the structures serviceable

lifetime in both simulation and experimentally [Papadimitriou et al.; 2011]. The

Kalman filter has been shown to be an effective tool to estimate the unmeasured

response in structural systems. However, the accuracy of the damage accumulation

framework throughout the structures serviceable lifetime has yet to be quantified.

Many frameworks incorporate the uncertainty in the stress estimation yet use the

expected value of the S-N curve parameters which makes them over-confident in the

estimated damage index bounds. The true bounds of the damage estimate provide

a more realistic interpretation of the fatigue index in near-real time, allowing for re-

medial action to be performed before macroscopic crack growth and/or component

failure. An important challenge that is addressed in this dissertation is quantifying

the uncertainty in the damage estimate throughout the structures serviceable life by

tracking stress cycles.
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Chapter 3

Fatigue usage monitoring in 5MW

simulated wind turbine using sparse

vibration measurements: compar-

ative study

3.1 Abstract

As wind turbine design technology remains an industry focus the size and flexibility

of wind turbines continues to increase. This has resulted in the viability of offshore

wind farms making maintenance and repair operations more difficult and costly. One

consequence of the increased size and harsh operational environment is the potential

for fatigue failure of structural components. The development of structural health

monitoring systems capable of tracking fatigue damage is desirable. This type of sys-
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tem can be coupled with control mechanisms to simultaneously maximize generation

and minimize operational loads which lead to fatigue damage. Various researchers

have proposed the use of vibration measurements to monitor stresses and fatigue

damage in the tower and blades of turbines. This paper compares three methods

to estimate loads and stresses (and their associated uncertainty) in the tower of the

National Renewable Energy Laboratory’s (NREL) 5 MW reference turbine subjected

to turbulent wind. Simulations are carried out using NREL’s high-fidelity FAST soft-

ware. The methods are compared under a 20 different operating conditions, which

include varying wind speeds and pitch angles.

3.2 Introduction

As the United States and the rest of the world set renewable energy pathways for

energy electrification, the investment into wind energy technology becomes neces-

sary. The blades of wind turbines have continued to be the target for technological

improvement resulting in larger wind turbines in more remote locations [Veers et al.;

2003]. The change in size and environmental conditions leads to challenging main-

tenance and repair operations. Not only does this increase the maintenance cost for

wind farm operators, it also increases the fatigue loading on structural components

of the wind turbine system, thus reducing service life. It is therefore desirable to

develop structural health monitoring (SHM) systems that are capable of tracking fa-

tigue damage in susceptible areas and/or components to increase the reliability of

the entire system. In addition SHM systems can be coupled with control mechanisms

to simultaneously maximize generation and minimize operational loads resulting in a
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significant increase in the expected component lifetime [Hammerum et al.; 2007].

An SHM framework is necessary when operation and maintenance costs can ac-

count for 20%-30% of the levelized cost of electricity (LCOE) averaged across the

lifetime of a wind turbine [Blanco; 2009]. Documented cases of wind turbine accidents

since the 1980s show that approximately 35% result from some type of structural fail-

ure [CWIF; 2016]. Structural failures include damage to the tower, nacelle, blades,

and/or bolts. The anchor bolts have been shown to be the dominant load carry-

ing failure mode of the tower-foundation system due to poor quality and insufficient

strength [Fujiyam et al.; 2014,Chou & Tu; 2011].

SHM systems for wind turbines typically use localized methods to detect damage

in structural components [Ciang et al.; 2008,Wymore et al.; 2015]. These methods

include visual inspection, digital image correlation, acoustic emission, etc. Due to

their localized nature, finding damage can be time consuming and in some cases not

practical. The alternative is to use global response measurements, yet these practices

tend to have low sensitivity to localized damage. Therefore it is desirable to have a

method that uses global response of the system to estimate local quantities related to

damage. In this paper we propose the use of global measurements to estimate stresses

in critical locations and connections.

In order to place the current work in context we briefly summarize recent work

on the use of vibration measurements to perform damage diagnosis. Soman et al.

[Soman et al.; 2016] used a discrete Kalman Filter along with several Fibre Bragg

grating based strain sensors to determine the neutral axis position of the DTU 10 MW

reference wind turbine tower. The bi-axial tracking of the neutral axis was performed

in a simulated environment with sensor pairs at various tower heights. The study was
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performed to determine and validate the efficacy of using the neutral axis to quantify

damage in the presence of measurement noise.

Benedetti et al. [Benedetti et al.; 2013] used strain measurements from an oper-

ating two-bladed mini wind turbine (11 kW) to observe the onset of fatigue cracks

in real-time monitoring. They provide experimental characterization of the operat-

ing turbine and then recreate the turbine in a simulated environment to determine

the strain sensitivity of a damaged tower. By using the strain difference between

adjacent strain sensors they were able to detect the presence of a crack, however the

detection algorithm is limited by the number of sensors and their location. Tibaldi

et al. [Tibaldi et al.; 2016] used a high fidelity linear model of the 5 MW reference

turbine in the HAWC2 simulated environment to evaluate wind turbine fatigue loads.

A spectral method is used to compute the fatigue loads from the power spectral den-

sity of the response at selected sensor locations. Three load evaluation cases were

examined which included the normal operation full wind speed range, two different

controller tunings, and three different wind speeds with variable turbulence seeds.

Recently there has been a focus on automated operational modal analysis (OMA)

for SHM of wind turbine support structures. OMA identifies resonance frequencies,

mode shapes, and damping parameters in near real time from acceleration data,

namely SCADA data and acceleration signals as input. OMA is attractive due to

its ability to estimate fatigue in unmeasured locations from minimal easily measured

locations. Shirzadeh et al. [Shirzadeh et al.; 2015] used OMA to compare dynamic

properties of a 3 MW Vestas wind turbine instrumented with 10 accelerometers in the

field and in a simulated environment, HAWC2, showing good agreement. Weijtjens

et al. [Weijtjens et al.; 2016] has performed a full scale test study of a 3 MW Vestas
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wind turbine instrumented with six accelerometers. Two years of continuous data was

processed using a case-by-case strategy to determine changes in modal parameters,

they determined an increased stiffness of the turbine tower. Similarily, Iliopoulos et

al. [Iliopoulos et al.; 2015] identified modal parameters of a 3 MW Vestas wind turbine

with 10 sensors through OMA. A numerical FE model was created in ANSYS to

estimate accelerations, stresses and strains at unmeasured locations. Several studies

have shown the efficacy of OMA for variable wind turbine sizes, locations and quantity

of sensors [Iliopoulos et al.; 2014, Iliopoulos et al.; 2016,Pacheco et al.; 2017,Tewolde

et al.; 2017,Weijtjens et al.; 2017].

Tatsis et al. [Tatsis et al.; 2017] used minimal output only measurements in com-

bination with an augmented Kalman filter to estimate fatigue damage accumulation

at the support structure of the 5 MW reference turbine within FAST. The estimated

states are combined with an FE model of the substructure to quantify the stress which

is propagated through a fatigue model to identify the accumulated damage.

This paper compares the accuracy of three popular algorithms for dynamic re-

sponse estimation, namely a model-based observer (MBO), the Kalman filter (KF)

and modal interpolation (MI). Each algorithm makes specific assumptions that are

never fully satisfied in practice.In the context of wind turbine structures some of these

assumptions manifest themselves in the characterization of the unmeasured wind exci-

tations, the model simplifications and measurement noise. In a realistic environment

it is not possible to control all the conditions separately, therefore in this paper we

resort to simulations in order to compare the various methods under 20 different

operating conditions.

The MBO was originally derived by Hernandez [Hernandez; 2011, Hernandez;
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2013] and was subsequently validated in the lab by Erazo [Erazo & Hernandez; 2014].

It explicitly accounts for spatial correlation and the statistical properties of the exci-

tation through knowledge of the underlying power spectral density of the wind loads.

The KF is the optimal state estimator in the sense that it minimizes the Euclidian

norm of the estimation error [Kalman; 1960]. However, there is significant tempo-

ral and spatial correlation in the loading for wind turbines. The KF has been used

for real-time parameter estimation under wind loading yet it is not evident that the

KF provides an accurate estimation of the state for cumulative fatigue loading mod-

els [Hernandez et al.; 2013]. The MI method makes use of low order mode shapes

along with noise contaminated sensor measurements to estimate the dynamic response

of the wind turbine structure.

Each method is used to estimate loads and stresses (and their associated uncer-

tainty) throughout the tower and bolted connections of the NREL 5 MW reference

turbine subjected to turbulent wind. The comparative study is implemented in a

simulated environment where the system is a FAST model of the turbine, the turbu-

lent wind field is generated using TurbSim, and the estimator is formulated using a

simplified finite element model of the tower [Jonkman & Buhl; 2005,Jonkman et al.;

2009,Jonkman & Buhl; 2005b].

The paper is organized as follows, it begins with a section that provides a de-

scription of the assumed system model followed by a section with a description of the

wind load model. The introductory sections are followed by sections that describe the

modal interpolation method, the standard KF formulation and the MBO. The final

section presents the simulation results along with a thorough comparison between the

MBO, the KF and the MI estimates which concludes the paper.
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3.3 System Model and Measurements

We restrict our attention to wind turbine structures whose dynamic response to tur-

bulent wind loads can be simulated as a linear system of the form

Mq̈(t) + CDq̇(t) + Kq(t) = b2f(t) (3.1)

where q(t) ∈ Rnx1 is the displacement vector at time t, M is the mass matrix, CD

is the damping matrix, and K is the stiffness matrix. The forcing function vector is

f(t) ∈ Rnx1, and b2 ∈ Rnxn is the force distribution matrix.

Throughout the paper measurements of the structural response will be given by

velocities defined by

y(t) = [0 c2]x(t) + v(t) (3.2)

where c2 ∈ Rmxn maps the degrees of freedom to the measurements and v(t)

∈ Rmx1 is the measurement noise. Velocities can be readily obtained from acceleration

measurements using a variety of filtering techniques.

3.4 Wind Load Model

In the absence of vortex shedding or aeroelastic effects the wind-induced force on a

discretized section of a slender structure at height z, and time t can be characterized
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in quasi-steady form below

F (z, t) = 1
2ρCd(z)At(z)V(z, t)2 = 1

2ρCd(z)At(z)(U(z) + u(z, t))2 (3.3)

where u(z, t) is the time-varying along-wind turbulence component of the wind at

height z at time t and U(z) is the along-wind mean wind speed at height z. The

parameters ρ, Cd, and At are the air density, the drag coefficient at height z, and

the projected area of contact at height z respectively. The equation above repre-

sents a partially correlated non-white random excitation in a one-dimensional frame

neglecting transverse wind force and torsional moment effects.

The time varying component, u(z, t), is generally simulated as a realization of a

stationary random process characterized by its PSD, defined as

S(n) =
∫ ∞
−∞

e(−2πn)iτR(τ)dτ (3.4)

where n is the frequency in Hz and R(τ) is the autocorrelation function of the real-

valued process h(t), expressed as

R(τ) = lim
T→∞

1
T

∫ T/2

−T/2
h(t)h(t+ τ)dt (3.5)

Parseval’s equality gives a physical interpretation of the PSD,

P =
∫ ∞
−∞
|f(t)|2dt = 1

2π

∫ ∞
−∞

S(n)dn (3.6)

The time varying along-wind turbulence component is generated using the soft-

ware TurbSim, which simulates a full-field turbulent wind time series by using a
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statistical model with the underlying assumption that the wind velocity is a station-

ary random process [Jonkman & Buhl; 2005,Jonkman et al.; 2009,Jonkman & Buhl;

2005b].

A common model to describe the time-varying component of the wind turbulence

is the IEC Kaimal spectrum [Jonkman & Buhl; 2005b] expressed in the frequency

domain by

Suu(n) =
4σ2
u(5.67∗min(60m,HubHt))

ūhub

(1 + 6∗n∗(5.67∗min(60m,HubHt))
ūhub

)5/3
(3.7)

where Suu(n) is the value of the spectrum at frequency n, σu is the standard deviation

of the wind velocity, ūhub is the mean velocity at hub height, min(x, y) indicates the

minimum of x and y, and HubHt is the height of the hub (90m for the turbine

considered in this paper). A reference height wind speed is necessary to generate the

scalar values for the mean speeds at points i, j.

The coherence function between two points, i and j, spatially separated on a grid

is defined as

Ci,j(n) = exp
− a

√
(n ∗∆
ūhub

)2 + (0.12 ∆
Lc

)2

 (3.8)

where a is the coherence decrement (8.8), ∆ is the distance between points i and j

on the grid, and Lc is the coherence scale parameter defined as

Lc = 2.45min(30m,HubHt) (3.9)
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3.5 Response Estimation

This section presents a brief description of the fundamental theory behind the three

response estimation algorithms to be compared in this paper. Namely, modal inter-

polation, the Kalman filter and the model-based observer. All three algorithms make

certain simplifying assumptions and it is not clear from the onset how these assump-

tions propagate to the estimation errors. Another important aspect to be considered

is variance estimation. It is important to determine which algorithm can provide

error bounds that are consistent with the actual estimation errors.

An essential module of the proposed fatigue usage monitoring framework is state

estimation. State estimation aims to reconstruct the dynamic response of a dynamical

system from measurements of noise contaminated measurements and a model. An

observer is a dynamical system driven by the measurements and whose state is an

estimate of the original system of interest. In the case of a linear second order

structural system, the state vector corresponds to the displacement and velocity of

all degrees of freedom.

3.5.1 Modal Interpolation

The objective in modal interpolation is to estimate the response at all degrees of

freedom based on the measured response at some degrees of freedom. The modal

interpolation (MI) estimate is given by

Ym(t) = Φmz(t) (3.10)
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where Ym(t) is the time history response at all degrees of freedom of the system

model. Φm is a selected modal subset, and z(t) is the time history response of each

modal coordinate.

The estimation is carried out using mode shapes as the interpolation function.

Thus, denoting y(t) as the measurement at time t, the estimated modal response is

z(t) = Φ−1
m,my(t) (3.11)

where Φm,m is a matrix of modal coordinates that correspond to the rows at the

measured degrees of freedom. For a unique solution Φm,m must be invertible (i.e.

number of measurements greater than or equal to the number of interpolating mode

shapes). Modal interpolation has been used successfully by [Baqersad et al.; 2015] for

dynamic response estimation in wind turbine structures. the variance in the estimated

modal response is given by

var[z(t)] =
(

Φm

Φm,s

)2

var[v(t)] (3.12)

where Φm,s is the modal coordinate at the sensor location.

3.5.2 Kalman Filter

The Kalman filter [Kalman; 1960] is a recursive estimation algorithm that uses a

weighted difference between model predictions and measurements to correct the state

estimate of a dynamical system x̂
(−)
k+1 at time t = (k + 1)∆t, where k = 1, 2, ...

x̂
(+)
k+1 = x̂

(−)
k+1 + Kk+1

(
yk+1 −Cx̂(−)

k+1

)
(3.13)
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where x̂(+)
k+1 is the corrected (a posteriori) state estimate and x̂(−)

k+1 is the a priori

state estimate computed for this system as,

x̂
(−)
k+1 = Ax̂(+)

k (3.14)

A is the state transition matrix, defined as

A = eF∆t (3.15)

where F is a matrix of the form

F =

 0 I

−M−1K −M−1CD

 (3.16)

The recursion method used will be briefly presented here, for a more detailed

derivation of the gain refer to [Simon; 2006, Gelb; 1996]. First consider P(−)
k+1, the

priori state error covariance matrix at time t = (k + 1)∆t, expressed in the following

form

E[(xk+1 − x̂k+1)T (xk+1 − x̂k+1)] = P(−)
k+1 = AP(+)

k AT + Qk (3.17)

where Qk is the covariance matrix of the unmeasured excitation and P(+)
k is the

posteriori state error covariance at the previous time step. The Kalman feedback

gain matrix, Kk+1 at time t = (k + 1)∆t, is expressed as

Kk+1 = P(−)
k+1CT

(
CP(−)

k+1CT + Rk+1

)−1
(3.18)
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and the a posteriori state error covariance matrix is given by

P(+)
k+1 = (I−Kk+1C)P(−)

k+1 (3.19)

3.5.3 Model Based Observer

Lastly this paper considers the use of a Model-based observer (MBO) to perform

state estimation. This estimator was originally derived by Hernandez in [Hernandez;

2011]. The MBO can be written in second order form as

M¨̂q(t) + (CD + cT2 Ec2) ˙̂q(t) + Kq̂ = cT2 Ey(t) (3.20)

As can be seen, the estimator modifies the original system by adding viscous dampers

and corrective forces at the measurement locations. The corrective forces are linear

combinations of the velocity at those points and proportional to the added dampers

(see fig. 3.1). The matrix E in the above equation is diagonal and contains the added

viscous damping constants in the diagonal. The matrix E is selected such that it

minimizes the trace of the state error covariance matrix.

The state error, defined as e = q − q̂ is given by

Më(t) + (CD + cT2 Ec2)ė(t) + Ke(t) = b2f(t)− cT2 Ev(t) (3.21)

where the value of E needs to be determined. Note that the matrix E is found on

both sides of the equation, therefore an optimal balance needs to be reached between

the effective damping of the estimator and estimation error that is proportional to
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the measurement noise.

By taking Fourier transform of both sides of the state error equation

(−Mω2 + (CD + cT
2 Ec2)iω + K)e(ω) = b2f(ω)− cT2 Ev(ω) (3.22)

and defining

G(ω) = −Mω2 + CDiω + K (3.23)

and

Ho(ω) = (G(ω) + cT2 Ec2iω)−1 (3.24)

The frequency domain expression for the state error estimate is given by

e(ω) = Ho(ω)(b2f(ω)− cT2 Ev(ω)) (3.25)

If measurement noise and unmeasured excitation are uncorrelated, then the spec-

tral density matrix of the state error, See(ω), can be expressed as

See(ω) = Ho(ω)b2Sff(ω)bT
2 H∗o(ω)

+ Ho(ω)b∗2Svv(ω)b∗T2 H∗o(ω)

+ Ho(ω)cT2 ESnn(ω)ETc2H∗o(ω) (3.26)

where Sff(ω) is the spectral density matrix of the wind load acting on the turbine

tower,

Sff (z) = (ρCd(z)At(z)U(z))2Suu(z) (3.27)
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Svv(ω) is the spectral density matrix of the lateral loading at the connection between

the turbine nacelle and the tower, Snn(ω) is the spectral density of the measurement

noise.

We can now express the covariance matrix of the state error as

P =
∫ +∞

−∞
See dω (3.28)

The objective function for the optimization process is to select the diagonal of E such

that
∂

∂E
tr(P) = ∂

∂E
J1 = 0 (3.29)

The objective functions used in the derivation of the KF and the MBO are similar

in that the state error covariance is minimized. However in the MBO only the dis-

placement section of the state error covariance is minimized while the KF minimizes

the full state error covariance. Another important difference is that the KF operates

in the time domain, while the MBO operates in the frequency domain. This makes

a difference whenever the characterization of the unknown excitation is considered.

In most wind turbine applications the excitations are characterized in the frequency

domain by their power spectral density.

Numerical optimization is required to define the optimal matrix E for the general

multivariable case, due to there being no analytic closed-form solution as of now.

The minimization of the diagonal of E will yield acceptable results therefore the

minimization procedure is not numerically expensive since the problem is reduced

from (m2 + m)/2 to m independent values to uniquely define E. Physically this

means that the new system will only add grounded and corrective forces proportional
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to the measurements and will not add interconnecting dampers. Therefore the matrix

E will be a diagonal matrix.

3.5.4 Fatigue Damage

To evaluate the fatigue damage at any location along the height of the wind turbine

tower, the Palmgren-Miner linear accumulation rule is used [Miner; 1945]. The dam-

age at a point is quantified as the sum of the ratios of the number of operational

cycles to the number of failure cycles at each experienced stress level. Expressed as

D =
∑
i

Di =
∑
i

n(σi)
Nf (σi)

(3.30)

where n(σi) is the number of cycles at stress level σi and Nf (σi) is the number of cycles

to failure at the same stress level. The stress time history provided by measurements

or determined through state estimation are used in combination with the rainflow

counting algorithm to supply the number of cycles at each stress level. To determine

the number of cycles to failure at the same stress level an experimentally obtained

SN curve is used. An SN curve is defined by

Nf = Aσ−bi (3.31)

where A and b are material-dependent parameters that determine the shape of the

curve.
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3.6 Simulation Results

This section presents the numerical results of the MBO, KF, and MI methods com-

pared against simulated results from FAST. The simulated system is the tower of

the 5 MW reference turbine designed by Jonkman [Jonkman et al.; 2009], and is dis-

cretized every 8.76 m resulting in 10 elements along the height. Gross properties of

the turbine system are presented in table 1. A full description of structural properties

and dimensions are found in [Jonkman et al.; 2009]. Virtual sensors are located at

the top and midpoint of the tower. Our model only includes the tower therefore the

shear force at the connection between the nacelle and the tower was determined from

the FAST simulations. Twenty test cases were considered which span four operational

conditions; a parked turbine with blades at 0 pitch, a parked turbine with blades at 90

pitch, an operating turbine with variable controlled pitch, and an operating turbine

with optimal pitch angle for five different wind regimes. The operational turbines

were initialized at the rated rotor speed of 12.1 rpm. Simulations were sampled in

10-minute steady state intervals with a time step of 0.01 seconds. A schematic of the

5 MW reference wind turbine system is seen in Fig. 3.1. The number of nodes, the

location of the wind and shear forces, the physical dimensions, and the MBO on the

updated system is presented.
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Figure 3.1: (a) Schematic of the 5 MW reference turbine and (b) the MBO estimator. The
number of nodes, the location of the forces, the physical dimensions, and the estimator are
shown.

Table 3.1: NREL 5-MW Baseline Wind Turbine Properties.

NREL 5-MW Baseline Wind Turbine Gross Properties Full-System Natural Frequencies in Hertz
Rating 5 MW 1st Tower Fore-Aft 0.324
Rotor Configuration Upwind, 3 Blades 1st Blade Collective Flap 0.6993
Hub Height 90 m 1st Blade Asymmetric Edgewise 1.0793
Cut-in, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 2nd Blade Asymmetric Edgewise 1.9337
Cut-in, Rated Rotor Speed 6.9 rpm, 12.1 rpm 2nd Blade collective Flap 2.0205
Blade Length 61.5 m 2nd Tower Fore-Aft 2.9003
Tower Structural-Damping Ratio 1%

3.6.1 Wind Load Simulation

The wind velocity field is simulated in TurbSim, a module of FAST. TurbSim numer-

ically simulates the time series for three-component wind speed vectors in a rectan-

gular two dimensional grid using a statistical model. Our simulations used TurbSim

to generate unidirectional wind speed time series at each nodal point of the tower

FEM. We realized a IEC Kaimal Spectra with a reference height of 10 m, a surface
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Table 3.2: FAST 5W Reference Turbine Simulations

Test Wind Profile Pitch Operating Conditions Etop Emid
1 Cut In 0 Parked 7.60E+08 5.21E+08
2 Rated 0 Parked 6.43E+08 4.42E+08
3 Cut Out 0 Parked 6.83E+08 4.75E+08
4 8 m/s 0 Parked 6.46E+08 4.37E+08
5 17 m/s 0 Parked 5.76E+08 3.95E+08
6 Cut In 90 Parked 6.45E+08 4.56E+08
7 Rated 90 Parked 4.87E+08 3.45E+08
8 Cut Out 90 Parked 4.93E+08 3.55E+08
9 8 m/s 90 Parked 7.40E+08 5.52E+08
10 17 m/s 90 Parked 4.26E+08 3.01E+08
11 Cut In Variable Generating * *
12 Rated Variable Generating 7.22E+08 4.98E+08
13 Cut Out Variable Generating 2.34E+08 1.55E+08
14 8 m/s Variable Generating 8.28E+08 5.70E+08
15 17 m/s Variable Generating 4.13E+08 2.81E+08
16 Cut In 90 Generating 6.62E+08 4.71E+08
17 Rated 0 Generating 7.22E+08 4.98E+08
18 Cut Out 23 Generating 3.37E+08 2.25E+08
19 8 m/s 0 Generating 1.70E+09 1.37E+09
20 17 m/s 13 Generating 5.68E+08 3.95E+08

roughness length of 0.1, and various mean wind speeds at the reference height. The

other input variables were set to default. A realization of each wind regime and its

corresponding PSD is shown in Fig. 3.2. The mean wind speed of the wind regimes

are 3, 8, 11, 17, and 24 m/s, which correspond to the cut-in wind speed, between the

cut-in and rated wind speed, the rated wind speed, between the rated and cut-out

wind speed, and the cut-out wind speed for the 5 MW reference turbine. The power

of the unmeasured forcing resides in the low frequency region, hence the lower order

modes will be excited for the wind turbine system. Table 2 defines the parameters

used in the 20 simulated test cases including the corresponding damper values. For

test case 11, the FAST controller wouldn’t initiate due to the wind speed being at

the cut in value.

The associated wind loads for a rated wind speed of the operational turbine is

shown in Fig. 3.3, the wind load value is compared to the shear loading at the top of

the tower to emphasize the magnitude of the shear force from the rotor interaction.
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Figure 3.2: (a) Realization of wind velocity field at the hub height for five different full field
mean wind speeds (U = 3, 8, 11, 17, and 24 m/s) and (b) their corresponding PSD.

Figure 3.3: (a) Wind loading on an operating wind turbine at a rated wind speed of 11
m/s. (b) The wind loading is then compared against the shear loading at the tower-nacelle
connection.

3.6.2 Tower Shear Force

The FAST model includes a combined multi-body and modal-dynamics formulation

to solve the nonlinear equations of motion that are derived and implemented using

Kane’s method. Modal properties of the blades and tower are used as input, while

the multi-body formulation includes the platform, nacelle, generator, gears, and hub.
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To determine the true dynamics of the wind turbine substructure it is necessary

to determine the connection forces between the nacelle and tower. The shear force at

the connection contains the coupled dynamic information of the tower and the rotor

which is contained within its PSD shown in Fig. 3.4. The defined peaks correspond

to the first and second mode of the tower and blades.

Figure 3.4: (a) The PSD of the tower shear force for a braked wind turbine (test cases 1-5).
(b) The PSD of the tower shear force for an operating wind turbine (test cases 16-20).

The shear force at the nacelle connection accounts for the tower and blade de-

flections, tilt/pre-cone angles, dynamic excitation, etc [Noppe et al.; 2016]. A more

detailed description of dynamic modeling using Guyan Reduction [Guyan; 1965] or

the Craig-Bampton method [Craig & Bampton; 1968] can be found in literature while

its application to a wind turbine support structure can be found in [van der Valk &

Voormeeren; 2012].

3.6.3 Flanged Tower Bolt Tension

For wind turbine applications bolted joints consist of interior or exterior flange con-

nections along the steel tubular structure. Connections are susceptible to bolt fatigue
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damage and can lead to tower collapse. When the structure is subjected to a bending

moment the maximum tension force can be determined by a conventional linear force

distribution method as seen in Fig. 3.5 and the following equation [Azim; 2013].

Figure 3.5: The force distribution of a typical flanged pipe joint with 12 bolts. (a) is a
location on the tower with interior bolts, (b) is the exterior base bolts of the tower.

Tmax = M

2r +∑N
b=1 4rsin(θb)2 (3.32)

where M is the applied bending moment, r is the distance from the center of the

pipe to the center of the bolt, and θb is the circular angle of the bolt. This simplified

approach does not account for the effect of variation in flange thickness and/or the

diameter of the bolt. A more detailed analysis requires a modification of the FEM to

incorporate a change in the stiffness of the structure at bolted connections, thorough

derivations can be found in the literature [Azim; 2013, Tafheem & Amanat; 2015].

Bolts are also subjected to shear forces which can be readily estimated using the

proposed method.
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Figure 3.6: The covariance matrix Q. The 29th DOF is the location of the shear loading
force.

3.6.4 Kalman Filter Computation

The KF gain matrix was computed while the R and Q matrices were held constant.

The noise covariance matrix R is dependent on the simulated wind conditions and is

five percent of the standard deviation of the velocity measurements. The equivalent

load covariance matrix Q is also dependent on the simulated wind conditions and is

calculated by determining the covariance matrix of the load vector throughout the

time period of interest. Due to this dependence the values of R and Q vary for each

simulation under consideration. A realization of the Q matrix is seen in Fig. 3.6.

Note that the magnitude of DOF [29,29] is significantly higher than the other DOF’s,

this is the location of the shear interaction force at the tower-nacelle connection.
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Figure 3.7: The optimization of E for (a) one and (b) two sensor locations for an operating
turbine with variable pitch at cut-out wind speed.

3.6.5 Optimal E Matrix

The FEM-based estimator was computed by determining the feedback matrix E from

the optimization of equation 29. When a single virtual sensor measurement is used, E

will be a single value and if two measurements are used then E will be a diagonal 2x2

matrix. The MATLABő function, fminsearch was used to optimize equation 29 by

finding the optimal E value(s) that minimize the trace of the state error covariance

matrix. This function uses the Nelder-Mead simplex direct search algorithm to find

an optimal solution. The set of all damper values is shown in Fig. 3.7 for one and two

sensors of an operating turbine with variable pitch at cut-out wind speed. Similar

results were found for the other cases, hence there was a unique minimum for each

test case.
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3.6.6 Estimator Performance

The accuracy of the three estimators (MBO, KF, and MI) were assessed by comparing

twenty simulations with varying operating conditions for the 5 MW reference turbine.

Two virtual sensor measurements were used in the estimator formulation for increased

tracking capabilities although one sensor was sufficient. For each simulation the

bending moment at the base and mid height, the stress at the base and mid height,

the tension in the connection bolts at the base and mid height, the shear force at the

base of the tower, and the tension and shear force in the bolts was calculated for each

estimator. For brevity only the stress at the base, the shear force at the base, and

the tension in the connection bolts at the base will be presented for two test cases.

Since the FEM only included the tower of the turbine, the mass of the rotor and

nacelle were not included in the formulation of the FEM. However the statistics of

the shear force at the connection between the nacelle and the top of the tower was

determined from FAST and used directly in the KF and MI while the PSD was used

in the optimization of E for the MBO. The FAST output was assumed to be the true

dynamics of the system and used as a comparison to determine the accuracy of the

various estimators.

The confidence intervals for the MBO and KF take advantage of the state error

covariance matrix and the local stiffness matrix to determine the element uncertainty.

The confidence interval for the MI takes advantage of the square of the modal co-

ordinate ratio and the variance of the measurement noise to determine the element

uncertainty. The relative uncertainties can be seen in the remaining figures. The

state error covariance matrix for the MBO is larger in relative magnitude than the
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KF which results in a larger uncertainty in the dynamics of the system while the

modal coordinate ratio and measurement noise variance is small for the MI result-

ing in a small associated uncertainty. For all test cases a one standard deviation

confidence interval was used.

The five wind speed regimes detailed previously interact with four wind turbine

operating conditions to account for the twenty simulation test cases. Test cases 1-5

the turbine is parked with 0 pitch, for test cases 6-10 the turbine is parked with 90

pitch, for test cases 11-15 the turbine is operating with variable pitch, for test cases

16-20 the turbine is operating with fixed pitch. The most interesting test cases are

case three and twelve. Test case three has the wind turbine parked with a fixed pitch

of 0 degrees and a mean wind speed of 24 m/s. This is a worst case scenario for

the wind turbine, the blades are not rotating and are fully bracing the wind which

mainly activates first modes. This simulation resembles a parked turbine with a pitch

failure, where there is no aerodynamics/generation. Test case twelve has an operating

turbine with variable pitch at a rated wind speed of 11 m/s simulating a turbine in

normal operating conditions.

A comparison between the three estimators for the base stress for test cases three

and twelve are shown in Figs. 3.8 and 3.9 respectively. For test case three the

estimators are able to match the true dynamics of the system. As stated previously

the confidence interval decreases in size from MBO to KF to MI. Note that for this

case aerodynamics minimally influence the system response, the tower/rotor systems

motion is mainly in the first mode. For test case twelve, aerodynamic effects are seen

in the turbulent response. The MBO and KF are able to match the true dynamics of

the system, while the confidence interval of the MBO allows for a larger percentage
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Figure 3.8: Comparison of estimated bending stress at the tower base between the FAST
model, the MBO, the KF and MI. The confidence interval is one standard deviation. The
test case under consideration is of a 0 pitch parked turbine with a mean wind speed of 24
m/s. The endurance limit is 207 MPa

of the true dynamics to lie within it’s bounds. The MI is not able to match the true

dynamics of the system to the same degree as the MBO or KF. In an operating turbine

several modes are activated; however since two only two sensors are being used the

dynamics are constructed from only two mode shapes resulting in poor estimation. In

both figures the base stress is plotted against the endurance limit for the ten minute

interval. It is seen that the stresses are below the endurance limit therefore no damage

is accumulating. This is what we would expect during normal operating conditions.

In other words if a damage accumulation algorithm was used along with an SN curve,

the cycles wouldn’t add significant damage to the structure.

A comparison between the three estimators for the base shear for test cases three

and twelve are shown in Figs. 3.10 and 3.11 respectively. For test case three the

MBO and KF are able to match the true dynamics of the system yet with higher

error than with the base stress. This is also seen for test case twelve. For both case

three and twelve the MI is not able to match the true dynamics. The frequency
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Figure 3.9: Comparison of estimated bending stress at the tower base between the FAST
model, the MBO, the KF and MI. The confidence interval is one standard deviation. The
test case under consideration is of an operating turbine with variable pitch with a mean wind
speed of 11 m/s. The endurance limit is 207 MPa

Figure 3.10: Comparison of the estimated shear force at the the tower base between the
FAST model, the MBO, the KF and MI. The confidence interval is one standard deviation.
The test case under consideration is of a 0 pitch parked turbine with a mean wind speed of
24 m/s.

content is matched yet the magnitudes and shape are incorrect and during the ten

minute interval we see that tracking is inadequate.

For the time intervals shown the true dynamics are within the uncertainty bounds
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Figure 3.11: Comparison of the estimated shear force at the tower base between the FAST
model, the MBO, the KF and MI. The confidence interval is one standard deviation. The
test case under consideration is of an operating turbine with variable pitch with a mean wind
speed of 11 m/s.

of the estimator. We then quantify the percent of time that the real dynamics of

the wind turbine system is within our MBO estimate and its associated uncertainty

bounds, Fig. 3.12, this is compared against the KF. For all test cases we find that

the accuracy of the MBO is higher than the KF. The error-covariance for the MBO

is larger than that of the KF resulting in larger confidence bounds, hence the MBO

is more conservative in its estimation. Yet when we look at the average error of our

displacement estimates the MBO has an average error of 3.61E−06 while the KF has

an average error of 3.54E−06. Therefore the MBO provides a similar estimate of the

system dynamics compared to the KF with only knowledge of the underlying PSD of

the unmeasured excitation which is typically the metric known for wind forces. The

average error of the MI is 3.74E − 06.

Another way to provide a comparison between the methods is to determine the

error in the damage index. If we assume an SN curve for the wind turbine tower, we

can perform cycle counting on the MBO/KF/MI estimates and compare them against
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Figure 3.12: Comparison of the accuracy of the MBO against that of the KF for each test
case. (a) MBO (base), (b) MBO (mid height), (c) KF (base), and KF(mid height). The
accuracy is based on the percent of time the true dynamics is within the uncertainty bounds.

the real system dynamics. This provides a better estimate of the fatigue error since

error in displacements can be attributed to phase offset. Fig. 3.13 shows the percent

difference between the estimates and the real damage at the base of the turbine tower.

The MBO, KF and MI estimates underestimate the damage, with the MBO being

more conservative than the KF which was also seen in the stress estimation. In some

cases all the estimators perform poorly specifically when the blades are feathered.
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Figure 3.13: Percent error in damage estimates between the MBO/KF/MI and the true
dynamics.

3.6.7 Bolt Fatigue

The 5 MW reference turbine is in a simulated environment with no documentation

for the bolted connection design or bolt dimensions. Literature shows that large

offshore wind turbines typically have bolt sizes ranging from M64-M72. Schaumann

and Eichstadt state that applications with M72 bolts reduce the number of required

bolts to 100 [Schaumann & Eichstadt; 2015]. If we assume the use of 100 M72 bolts at

the base of the wind turbine tower the maximum tension in the bolt can be determined

by equation 31. The pretension is determined from the following equation

FP = 0.7Rp,0.2%Asp (3.33)

where Fp is the nominal pre-load, Rp,0.2% is the 0.2% yield stress and Asp is the tensile

stress area of the bolt. For the 5 MW turbine a pre-tension of 1526 kN should be
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Figure 3.14: Comparison of estimated bolt tension at the tower base between the FAST
model, the MBO, the KF and MI. The test case under consideration is of an operating
turbine with variable pitch with a mean wind speed of 11 m/s.

used for the 100 M72 bolts. The pre-tension is applied to the bolts for the test cases

under consideration. A bolt fatigue analysis would use the estimated bolt tension

to quantify damage but this is outside the scope of this paper. Fig. 3.14 show the

tension in the base bolts for test case 12. Equation 3.33 uses the estimated base

moment we found previously multiplied by a constant therefore again we see that

the MBO, KF, and MI are able to match the true dynamics, with the MI having the

greatest error.

3.7 Conclusions

This paper expands on the problem of tracking internal forces on minimally instru-

mented structures subjected to turbulent stationary wind. The performance of three

popular methods for response and fatigue damage estimation are compared,namely,

the Kalman filter, model-based observer and modal interpolation. The comparison
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is performed in a simulated environment that is not ideal with respect to the afore-

mentioned methods. The authors treat the particular case of estimating time history

of stresses, bolt tensions, and shear forces throughout the tower of a simulated 5MW

wind turbine under 20 different conditions with varying wind profile, blade pitch angle

and energy generation.

For response estimation it is shown that the Modal interpolation method is out-

performed by the model-based observer and Kalman filter in nearly all the cases. It

was found for all case the model-based observer seems to overestimate the estima-

tion variance while the Kalman filter displays a slight underestimation of estimation

variance with respect to the actual error.

In the case of fatigue damage estimation, the rainflow cycle counting was used

together with Miner’s rule. Again, modal interpolation is outperformed by both the

Kalman filter and the model-based observer, with the Kalman filter providing slightly

superior estimation accuracy than the model-based observer.

In conclusion, based on the simulated results, the authors recommend either the

Kalman filter or the model-based observer over modal interpolation.
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Chapter 4

Fatigue life prognosis using mini-

mum global response measurements:

experimental validation

4.1 Abstract

The authors present a probabilistic methodology for fatigue prognosis using global

response measurements. The methodology employs a Kalman filter to estimate local

stress fields based on global acceleration measurements. The estimated stress field

time history along with fatigue damage models are used to compute fatigue damage

and its uncertainty in near-real time. The authors present the results from laboratory

experiments aimed at validating the proposed methodology. The laboratory model

is a one meter 6061-T6 aluminum cantilever beam with a reduced cross-section near

the base support to facilitate crack initialization. The structure was excited with

96



a sequence of base motions, which were realizations of a low-pass white noise. The

instrumentation consisted of two accelerometers, a strain gage and a shake table for

base excitation. Each beam was tested until failure while the proposed algorithm

simultaneously predicted the extent of damage. In all tests conducted, the remaining

useful life and its uncertainty was estimated. A stopping criteria was found to be an

estimated damage index of 0.60 based on several confidence interval metrics.

4.2 Introduction

Fatigue damage can be defined as the degradation of a material, primarily due to the

formation of cracks and resulting from repeated application of stress cycles. Fatigue is

a significant and complex phenomena occurring in structures such as aircraft, bridges,

turbines, cranes, trains, etc. Although no exact figures are available, it is estimated

that upwards of 50% of all mechanical failures in metallic structures can be attributed

to fatigue [Gagg & Lewis; 2009,Sobczyk & Spencer; 1991].

Fatigue encompasses two scales. At the microscopic scale; defects, voids and cracks

begin to grow and coalesce until one (or multiple) visible macroscopic cracks form

and grow up to a point where the structural integrity is compromised. Due to the

lack of knowledge regarding the state of microscale defects, it has not been possible to

obtain a deterministic theory that fully describes the micro-macro fatigue phenomena.

Therefore most fatigue failure models are phenomenological and stochastic.

Three fundamental steps are necessary in order to carry out a fatigue analysis:

(1) definition of the loads, (2) detailed stress analysis and (3) statistical model for the

variation of material properties. Traditionally a fatigue analysis is carried out during
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the structural design stage of a machine or structure, however, more recently there

has been a marked interest in monitoring and prognosis of fatigue damage in existing

and operating structures. Several important differences exist between the design and

the monitoring/prognosis problem in fatigue. In design the engineer is dealing with a

hypothetical, yet un-built structure and therefore mechanical properties and bound-

ary conditions can (and must) be assumed. In monitoring, the structure already

exists and its mechanical properties can be estimated by processing sensor measure-

ments and non-destructive testing. Furthermore, in the design stage, the structure

will begin its operation in a pristine state, while in the monitoring case the current

state of the fatigue damage of the structure is highly uncertain.

The traditional practical approach to monitoring fatigue is to carry out a visual in-

spection, find macroscale cracks and track/predict their evolution; however, in many

cases, by the time the cracks grow to a point where they are detectable, the load bear-

ing capacity of the structure has been greatly reduced [Downing; 2012]. A preferable

approach is to track fatigue damage on the whole structure prior to the appearance

of macroscopic cracks. This would allow for higher levels of reliability, larger lead

times and reduced risk. Since it is not cost effective to use strain sensors at all crit-

ical locations of a structure, the essential capability that is required to achieve this

objective is tracking stress/strain time history through the whole structure by using

global vibration measurements, such as accelerations. One possibility to achieve this

capability is via state estimation.

State estimation is a model-data fusion approach that aims to reconstruct the

state (displacements and velocities in the cases of a linear elastic structure) from noisy

measurements and a model. Several methods have been proposed and successfully
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validated to estimate unmeasured response in structural systems [Palanisamy et al.;

2015,Hernandez; 2011,Erazo & Hernandez; 2014]. The Kalman filter is the optimal

state estimator in the sense that it minimizes the Euclidean norm of the state error

time step of interest. A fundamental assumption of the Kalman filter is that the

unmeasured excitations are realizations of a Gaussian random process, this condition

is often relaxed; while a dual-Kalman filter approach can be used to estimate both

the state and the unmeasured excitation in order to reduce the state error [Azam et

al.; 2015].

From the estimated stress, the evolution of mechanical fatigue can be monitored by

using a rainflow cycle counting algorithm and an S-N curve to estimate fatigue dam-

age [Schijve; 2003]. Fatigue accumulation frameworks with minimal instrumentation

have been proposed and validated for a subset of the structures serviceable lifetime

in both simulation and experimentally [Papadimitriou et al.; 2011]. The Kalman fil-

ter has been shown to be an effective tool to estimate the unmeasured response in

structural systems. However, the accuracy of the damage accumulation framework

throughout the structures serviceable lifetime has yet to be quantified. Many frame-

works incorporate the uncertainty in the stress estimation yet use the expected value

of the S-N curve parameters which makes them over-confident in the estimated dam-

age index bounds. The true bounds of the damage estimate provide a more realistic

interpretation of the fatigue index in near-real time, allowing for remedial action to be

performed before macroscopic crack growth and/or component failure. An important

challenge that is addressed in this paper is quantifying the uncertainty in the damage

estimate throughout the structures serviceable life by tracking stress cycles.

High fidelity finite element model updating has been proposed by some authors

99



in order to estimate fatigue damage. Specifically, the hypothesis is that as dam-

age accumulates the mechanical characteristics such as natural frequencies, damping

ratios, and mode shapes will also change. Giagopoulos et al. have proposed a struc-

tural health monitoring framework that incorporates a model updating method as

changes are seen in the structural response to provide an estimate of the fatigue pro-

cess [Giagopoulos et al.; 2019]. These changes can be incorporated into a fatigue

accumulation framework based on updating the joint conditional probability of the

damage estimate as knowledge of the damage sensitive features are evaluated [Gob-

bato et al.; 2012]. The framework has been proposed and experimentally validated

for crack propagation trajectories and shown to improve remaining fatigue life esti-

mates [Gobbato et al.; 2014]. As this paper shows, the model updating approach is

only viable once the structure is damaged to a point of imminent failure.

This paper proposes and experimentally validates a methodology to estimate and

predict the remaining fatigue life of an instrumented structure. A Kalman filter is

used to estimate local stress fields based on global acceleration measurements. From

the estimated stress, the evolution of mechanical fatigue can be monitored by using a

rainflow cycle counting algorithm and an empirical S-N curve to estimate a damage

index and its uncertainty using Miner’s rule [Schijve; 2003]. The methodology is

tested using aluminum cantilever beams with a reduced cross section near the base

support to facilitate crack initialization and propagation. The structure is excited

until failure with a sequence of base motions, which are realizations of a low-pass

white noise. The damage estimate and its uncertainty is tracked in near-real time

until macroscopic crack growth is seen and the structures remaining strength has

been greatly reduced. The flowchart in Fig. 4.1 illustrates the fatigue framework. To

100



the authors’ best knowledge this is the first paper that tracks fatigue damage and

its uncertainty using global measurements until failure. The natural frequency of the

system is tracked during the process to show that in non-redundant systems changes

in modal characteristics aren’t seen until significant microscopic damage has already

occurred and failure is imminent, thus highlighting the value of the proposed fatigue

monitoring approach.

Figure 4.1: Overview of proposed fatigue accumulation framework for remaining fatigue life
prediction.

The paper is organized as follows, it begins with a section that provides a descrip-

tion of the fatigue damage framework. This is followed by a section that describes

the experimental setup and procedure. The final section presents the experimental

results which includes a discussion on the accuracy of the framework and concludes

the paper.
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4.3 Theoretical Background

We restrict our attention to systems whose dynamic response to ground motion can

be described by the following matrix ordinary differential equation

Mq̈(t) + CDq̇(t) + Kq(t) = −Mrüb(t) (4.1)

where q(t) ∈ Rnx1 is the displacement vector at time t, M is the mass matrix, CD

is the damping matrix, and K is the stiffness matrix. The time history of the base

acceleration is üb(t) ∈ R1xn, and r ∈ Rnx1 is the influence vector.

The absolute measurements of the system’s response are defined by

y(t) = −c2M−1Kq(t)− c2M−1CDq̇(t) + r(t) (4.2)

where c2 ∈ Rmxn maps the degrees of freedom to the measurements and r(t)

∈ Rmx1 is the measurement noise.

4.3.1 Kalman Filter

The Kalman filter [Kalman; 1960] is a two-step recursive estimation algorithm. First

the Kalman filter estimates the current state variables and their associated uncer-

tainties, then the state estimate of a dynamical system x̂
(−)
k+1 at time t = (k + 1)∆t

is corrected by using a weighted difference between model predictions and measure-

ments,

x̂
(+)
k+1 = x̂

(−)
k+1 + Kk+1

(
yk+1 −Cx̂(−)

k+1

)
(4.3)
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where x̂(+)
k+1 is the corrected (a posteriori) state estimate and x̂(−)

k+1 is the a priori

state estimate computed for this system as,

x̂
(−)
k+1 = Ax̂(+)

k (4.4)

A is the state transition matrix, defined as

A = eF∆t (4.5)

where F is a matrix of the following form

F =

 0 I

−M−1K −M−1CD

 (4.6)

The recursion method is briefly presented here. A detailed derivation of the gain

can be found in [Simon; 2006, Gelb; 1996]. First consider P(−)
k+1, the a priori state

error covariance matrix at time t = (k + 1)∆t, expressed in the following form

E[(xk+1 − x̂k+1)T (xk+1 − x̂k+1)] = P(−)
k+1 = AP(+)

k AT + Qk (4.7)

where Qk is the covariance matrix of the unmeasured excitation and P(+)
k is the

posteriori state error covariance at the previous time step. The Kalman feedback gain

matrix, Kk+1 at time t = (k + 1)∆t, is expressed as

Kk+1 = P(−)
k+1CT

(
CP(−)

k+1CT + Rk+1

)−1
(4.8)

where Rk+1 is the measurement noise covariance. The a posteriori state error

covariance matrix is given by
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P(+)
k+1 = (I−Kk+1C)P(−)

k+1 (4.9)

4.3.2 Fatigue Damage

The Palmgren-Miner linear accumulation rule is used to evaluate fatigue damage. The

rule states that the fatigue damage at any stress cycle is the ratio of the operational

cycles to the average number of cycles to failure [Miner; 1945]. The damage time

history can be expressed as

D =
∑
i

Di =
∑
i

n(σi)
Nf (σi)

(4.10)

where n(σi) is the number of cycles at stress level σi and Nf (σi) is the number of

cycles to failure at the same stress level. The estimated stress time history is used in

combination with a rainflow counting algorithm to determine the number of cycles

at each stress level. Then an empirical S-N curve is used to determine the number of

cycles to failure at the estimated or measured stress levels. One way to express an

S-N curve is:

log (Nf ) = K − b log (σi) (4.11)

where K and b are empirically determined material-dependent parameters that de-

scribe the shape of the curve.
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4.4 Experiment and Procedure

Ten (10) instrumented fatigue critical 6061-T6 aluminum cantilever beams with di-

mensions shown in Fig. 4.2, were used to validate the procedure. The aluminum

beams were machined at the Instrumentation and Model facility at the University of

Vermont. Free vibration data was used to identify the first modal frequency and a

damping ratio for each beam. The average values were 4.97 Hz and 0.017 respectively.

Each cantilever was instrumented with two accelerometers (PCB 333B30) as indi-

cated in Fig. 4.3(c),(d). Cantilever five (5) was instrumented with a strain gage (PCB

740B02) shown in Fig. 4.3(e). The data was recorded using the LMS Scadas Mobile

Data Acquisition System at a sampling frequency of 100 Hz. The cantilever beams

were attached to the Quanser Shake Table II using plates as shown in Fig. 4.3(b).

The experimental set-up is presented in Fig. 2(b) where the location of the applied

base motion, accelerometer measurements and strain measurement are shown.

The objective is to track fatigue damage at the critical location where there is

a reduced cross section. This is performed by estimating the stress time history

between 13 and 17 cm above the base support along with an empirical S-N curve.

Each cantilever was subjected to a sequence of base motions, which are a realization

of a low-pass white noise. A 60 second frequency sweep ranging from 4-6 Hz was used

to excite the structure. This provided a dynamic amplification factor that would

on average cause structural failure within several hundred loading sequences. The

estimates obtained from the Kalman filter will be compared against the measured

response for cantilever five (5) at the location of the strain gage. In order to not

affect the fatigue properties of the beam at the reduced cross section the strain gage
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was mounted 25 cm from the base.

Figure 4.2: (a) Experimental set-up for ground motion dynamic test (b) Instrumented can-
tilever test beam with dimensions, sensor locations and excitation description.

4.4.1 Kalman Filter Formulation

Three matrices need to be defined in order to formulate the discrete-time Kalman

filter. The initial error covariance matrix, the measurement noise covariance and the

covariance matrix of the unmeasured excitation. For each test case the cantilever

structure begins at rest; therefore the initial error covariance matrix is zero. The

measurement noise covariance is dependent on the accelerometers that were used.
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Figure 4.3: Experimental set up for fatigue testing; (a) Ten (10) fatigue critical 6061-T6
aluminum cantilever beams, (b) Connection to the shake table, (c) Top accelerometer, (d)
Base accelerometer, (e) Strain gage.

Note that the only measurement that was used in the Kalman filter implementation

was the top accelerometer. The base accelerometer was only used to determine the

covariance matrix of the unmeasured excitation. The top accelerometer at rest had a

covariance of 2.25x10−6 which was used as our R value. The base accelerometer was

used to determine the unmeasured excitation imposed by the base motion. From the

measurements a Q value of 0.0135 was found.
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4.5 Results and Discussion

This section presents the results of the fatigue tests for the ten (10) cantilever exper-

iments. Each cantilever was tested until failure, which was defined as a macroscopic

crack with a length at least half of the width, 1.5 cm, at the reduced cross section.

The cantilevers were subjected to the same 60 second sequence of base motions until

failure. A realization of the base motion is presented in Fig. 4.4 with the dynamic

response to the same realization shown in Fig. 4.5.

Figure 4.4: Realization of a 60 second base motion, (a) presents the absolute accelerations,
and (b) shows the frequency content.

4.5.1 System model

The simulated system model of the cantilever beam is discretized into 26 elements

where each node has three degrees-of-freedom; axial, shear, and moment. At the re-

duced cross section there is element refinement to match the average observed natural

frequency of the true beams which is seen in Fig 4.6. This results in a 78 degree-of-
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Figure 4.5: Realization of the dynamic response of a 60 second base motion at the top
accelerometer, (a) presents the absolute accelerations, and (b) shows the frequency content.

freedom system with a natural frequency of 4.92 Hz and a damping ratio of 0.0165.

Therefore the initial model has small yet quantifiable and consistent model error prior

to fatigue accumulation.

4.5.2 Fatigue model

An empirical S-N curve from MIL-HDBK-5H: Metallic Materials and Elements for

Aerospace Vehicle Structures was used. The S-N curve for 6061-T6 Aluminum with

fully reversed stress cycles were based on the net section for an axially loaded spec-

imen. To convert from axial to bending stresses a constant ratio was used, 0.70
0.90 , as

recommended in [Juvinall & Marshek; 2012]. The S-N curve is shown in Fig. 4.7

with the corresponding equation in MPa:

log (Nf ) = 20.68− 67.84 log (Seq) (4.12)
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Figure 4.6: The 78 DOF system model for each cantilever beam with an element refinement
at the reduced cross section.

Figure 4.7: The S-N curve for 6061-T6 aluminum for fully reversed axially loaded specimens.
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where the equivalent stress for a fully reversed stress cycle is defined as,

Seq = 20.63 Smax (4.13)

4.5.3 Kalman filter performance

This section presents the experimental performance of the Kalman filter in tracking

stresses in near-real time. The accuracy of the Kalman filter is examined in cantilever

five (5) with a dynamic strain gage. For comparison the measured strain is converted

to stress by multiplying by the elastic modulus of aluminum (68.9 GPa) which is

presented in Fig. 4.8.

Figure 4.8: Kalman stress estimation compared against strain gage measurement, (a)
presents the absolute accelerations, and (b) zooms into the dynamic amplification region.

The Kalman filter is able to estimate stresses with high accuracy throughout the

base motion sequence except at the dynamic amplification peak where the Kalman

filter overestimates the stress. Cycle counting is performed on the estimated stresses

from the Kalman filter, 437 cycles are counted for a corresponding damage of 2.3620e−17.
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When cycle counting is performed using direct measurements from the dynamic strain

sensor 453.5 cycles are counted for a corresponding damage of 1.8216e−17.

As test cases are performed the coalescence of microscopic cracks caused a decrease

in the natural response frequency of the beams prior to macroscopic crack growth.

Fig. 4.9 shows the change in the response frequency of all the cantilevers throughout

the fatigue process. A macroscopic crack often formed by 0.90 % of the lifetime, at

this point the average natural frequency had decreased from 4.865 Hz to 4.80 Hz.

Figure 4.9: Tracking of the natural response frequency throughout the fatigue lifetime of all
cantilevers. The black line corresponds to the average modal frequency.

Similar results were found for all ten (10) cantilevers. Therefore it is necessary

to determine the effect of model error in the Kalman estimate prior to and during

crack growth. A reduction in the stiffness of the element that corresponds to the

stress critical location was implemented by a reduction in the elastic modulus of this

element by 14%. This resulted in a modeled natural frequency of 4.785 Hz. The

Kalman filter was then re-ran with the introduced model error and compared with

the strain measurements from cantilever five (5) to determine the accuracy of the

estimate during fatigue degradation. The results are seen in Fig. 4.10.
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Figure 4.10: Kalman stress estimation for reduced stiffness element at possible fatigue crack
location compared against strain gage measurement, (a) presents the absolute accelerations,
and (b) zooms into the dynamic amplification region.

The reduced element model overestimates the stresses compared to the original

model. If cycle counting is performed on the new Kalman estimate 474 cycles are

counted for a corresponding damage of 2.547e−17. Therefore the Kalman filter will

overestimate the number of cycles and the corresponding damage estimate for the

test cases where macroscopic crack growth is visible. Yet this is a small percentage

of the total lifetime of the structure.

4.5.4 Uncertainty quantification

The accumulation of fatigue damage is a random process. Typically the material

properties can be expressed as random variables while the applied loading on the

structure is a stochastic process [Shen et al.; 2000]. Uncertainty is introduced into

the damage index from the the estimated stresses determined by the Kalman filter

and the material properties. The stress estimation uncertainty can be expressed as
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a single-sided Gaussian probability distribution with bounds on the acceptable range

of expected damage values per cycle,

f(d) = 1
b

(nsK)( d
b

)( 1−b
b

) 1√
2πσs

e
−( ((nsKd)

1
b −µs)2

2σ2
s

) + 1√
2πσs

e
−( ((nsKd)

1
b +µs)2

2σ2
s

) (4.14)

where d is the range of possible damages for PDF integration, ns is the inverse of

the number of cycles at each experienced stress, b,K are the empirically determined

material-dependent parameters that describe the shape of the S-N curve, σs is the

standard deviation of the stresses, and µs is the mean estimated stresses.

Material fatigue is well understood in a qualitative sense, yet statistical distribu-

tions for fatigue parameters are unable to be derived from this physical interpreta-

tion [Schijve; 2003]. Therefore a distribution must be assumed, the most common

distribution function is the normal distribution which was used for this experimental

validation. Other applicable distribution functions are the log(N)-normal distribu-

tion, the 3-parameter Weibull distribution, and the log(N − No)-normal distribu-

tion [Schijve; 2005]. The SN curve shape parameters, originally defined in eq. 11, are

random variables defined as,

X =

K
b

 (4.15)

The parameters presented above are assumed to be jointly Gaussian random variables

with the following PDF,

fX(X) = 1√
|Σ|(2π)2

exp(−1
2(X − µ)TΣ−1(X − µ) (4.16)
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where µ is the mean vector and Σ is the covariance matrix.

4.5.5 Fatigue damage framework

For each cantilever beam the damage index was tracked in near-real time, the remain-

ing useful life and its uncertainty was estimated. The statically determinant struc-

tures were tested until failure while the proposed algorithm simultaneously quantified

the extent of fatigue damage. At the onset of macroscopic crack formation the tests

were stopped. The location and size of crack at failure is highlighted and shown in

Fig. 4.11 for each cantilever. Table 1 presents the fatigue properties of the cantilever

beams. For each beam the crack initiation test case and the decrease in natural fre-

quency response was documented and its corresponding damage index at that test

was determined. Note that the frequency drops at most 9% at macroscopic crack

growth, with most cases being less than 3%. Experimentally the authors have shown

that by the time you can quantify and locate damage based on frequency response

the structures integrity is already greatly reduced. In most cases the fatigue index

had already surpassed one (1).

Table 4.1: Fatigue properties of cantilever beams

Beam Mass 1st Modal Frequency Crack Initiation Frequency Drop Estimated Damage Index
# Kg Hz tcr

ti
1 1.523 5.078 272 0.914 1.383
2 1.525 4.922 637 0.962 0.653
3 1.523 5.078 537 0.942 0.868
4 1.521 5.078 161 0.952 1.712
5 1.525 4.922 223 0.972 0.919
6 1.519 5.000 167 0.957 1.359
7 1.519 4.896 223 0.957 1.900
8 1.525 4.922 203 0.962 1.188
9 1.525 4.922 213 0.972 0.993
10 1.521 4.883 225 0.970 0.951

At first only the uncertainty in the state estimate is used in the proposed al-
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Figure 4.11: The location and size of macroscopic cracks at failure are highlighted for all
ten (10) cantilevers.

gorithm. The estimated damage index is tracked in near-real time along with its

uncertainty which is presented in Fig. 4.12. A deterministic S-N curve is used based

on the mean value of the stress failure cycles. At the point that the upper bound

of the uncertainty interval reaches one (1) the estimated index is determined. This

is the point in which the experiment should be stopped to prevent failure. In two

cases (2 and 3) the uncertainty bounds never reach one (1). For all other cases the

experiment should be stopped at an index between 0.80 and 0.90 although this might

not provide ample time before remediation.

Therefore it is essential to include both the uncertainty of the estimated stresses

and the uncertainty in the S-N curve fatigue parameters to minimize the risk of

material failure prior to maintenance. The associated risk is directly related to the

quantification of uncertainty in both state estimation and material properties. If

the uncertainty in the S-N curve parameters are not included the extent of fatigue

damage is underestimated which is not representative of real-world applications as
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Figure 4.12: Estimated damage index and its uncertainty tracked in near-real time for each
cantilever beam. Included is the probability of failure. (a-g) correspond to test cases (1-10)

seen throughout this experiment.

Two methods are proposed for this framework. Both take advantage of defining

the S-N curve parameters; K,b as jointly Gaussian random variables. For method one

Monte-Carlo simulations were performed by realizing 500 S-N curves for each test case

which were used along with the estimated stresses to quantify an estimated index.

The uncertainty bounds were then chosen based on the variance in the fatigue indices

realized. The downside of this method is that it can’t be performed in near-real time,

therefore the authors propose an offline method that can be performed a priori.

For method two, realizations of K and b are realized as jointly Gaussian random

variables, based on Eq. 16. The parameter K, was realized with a a mean of 20.68
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and a variance of 0.10. The parameter b, was realized with a mean of 67.84 and a

variance of 0.10 with a cross-correlation of 0.95. Empirical values were taken from the

MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures

handbook. An ellipse is then drawn around the data based on the variance in the

semi-major and semi-minor axes. The percent of realizations that fall within the

ellipse will define our confidence in the estimate of the material’s fatigue parameters.

Maxima and minima of the semi-major axis are then chosen as the parameters for the

S-N curve that will determine the uncertainty bounds of the estimated damage index.

This allows near-real time tracking of the damage index since the estimated stress

time histories are directly used in three probabilistic S-N curves that are defined based

on confidence intervals and material properties. The two methods are presented in

Fig. 4.13.

Figure 4.13: (a) Monte-Carlo like method to determine uncertainty in damage index (b)
Offline method to determine confidence interval of fatigue material properties of S-N curve.

The second method was used due to its ability to track in near-real time. Four

(4) different confidence intervals for the S-N curve parameters are presented which
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include 0.30, 0.50, 0.70, and 0.90. The corresponding semi-major b parameters are

71.08, 72.12, 73.22, and 74.26 with semi-major K parameters of 21.15, 21.31, 21.46,

and 21.62 respectively. The semi-minor b parameters are 64.6, 63.57, 62.40 and 61.36

with semi-minor K parameters 20.22, 20.06, 19.91, and 19.76 respectively. Depending

on the choice of pseudo-confidence intervals a stopping criteria can be determined for

all ten (10) test cases which is presented in Fig 4.14. When the estimated index

reaches 0.60 the experiment should be stopped to prevent failure which allows for

remediation.

Figure 4.14: Estimated damage index and its uncertainty tracked in near-real time for each
cantilever beam. Included is the probability of failure. (a-g) correspond to test cases (1-10)

The estimated indices for all the test cases are considered, Fig. 4.15(a), and at an

index of 0.60 none of the specimens have failed when using the empirical S-N curve.
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This is presented alongside the estimated probability of failure from 500 realizations

of the S-N curve with varying fatigue damage index thresholds, Fig. 4.15(b). By

choosing the damage index threshold at 0.60 the average probability of failure is

0.156. Depending on the allowable probability of failure for any system a varying

failure index thresholds can be chosen by the user.

Figure 4.15: (a) Estimated damage index tracked in near-real time for all cantilever beams.
(b) The probability of failure based on varying damage index thresholds for all cantilever
beams.

Traditionally for vibration-based damage detection small changes in the physical

properties, (mass, damping, and stiffness) can cause measurable changes in the dy-

namic properties of the system, for example changes in natural frequencies, modal

damping, and mode shapes. The authors are presenting that for certain systems these

changes aren’t seen until the remaining useful life is small and often macroscopic

cracks have already formed. Therefore it is desirable to monitor fatigue throughout

the structures life rather than search for changes in the dynamic properties. Presented

in Fig. 4.16, the average damage index is compared against the average natural re-

sponse frequency which shows that at a damage index of 0.6 there isn’t quantifiable

changes in the system response frequency. When measurable changes are seen, the

remaining fatigue lifetime is less than 10% on average.
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Figure 4.16: The average damage index, left axis, is compared against the average natural
response frequency, right axis, throughout the lifetime of all the cantilevers. As the damage
index accumulates in time the natural response frequency remains constant for 90% of the
structures lifetime

4.6 Conclusions

This paper presents the results from laboratory experiments aimed at validating a

probabilistic near-real time fatigue damage tracking methodology. The study was

conducted using ten (10) instrumented 6061-T6 aluminum cantilever beams subject

to non-periodic excitation. The methodology is composed of two steps: First, global

response measurements are used to estimate stresses at fatigue critical locations of

the structure, this step is carried out using a Kalman filter. Second, estimated stress

cycles are counted along with an S-N curve to estimate a failure index and its un-

certainty. The uncertainty quantification method used is formulated based on model

error and the uncertainty in the S-N curve parameters.

Based on probabilistic numerical simulations and the results from the laboratory

experiments a stopping criteria of 0.60 for the damage index is proposed. However,
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the authors are not claiming that this stopping criteria is universal for other systems

but rather that the proposed framework can help to determine an optimal stopping

criteria based on an allowable probability of failure. This is contrast to the tradi-

tional approach to detect and quantify damage by interrogating changes in vibration

characteristics such as natural frequency and mode shapes. As can be seen in Fig.

4.16 by the time vibration changes are apparent the remaining useful life has already

been greatly spent even if macroscopic cracks are not visible. The proposed frame-

work can help engineers design optimal maintenance procedures intended to prevent

catastrophic fatigue failures while the system is in operation.
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Chapter 5

Estimating ground reaction force

within a mechanical fatigue frame-

work: an application for high mileage

runners

5.1 Abstract

Estimation of ground reaction forces in runners has been limited to laboratory en-

vironments by means of instrumented treadmills and optoelectronic systems. Re-

cent advances in estimation techniques using wearable sensors for kinematic anal-

ysis and sports performance could enable estimation outside the laboratory. This

paper proposes a state-input-parameter estimation framework to estimate the ver-

tical ground reaction force in near real time using a dual-Kalman filter to estimate
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the unmeasured input in combination with an unscented Kalman filter to estimate

the state and uncertain model parameters (i.e. leg stiffness). The model is a sin-

gle degree of freedom spring-mass-damper with acceleration measurements at the

sacrum. For validation, 14 subjects performed three one-minute running trials at

three different speeds (self-selected slow, comfortable, and fast) on a pressure-sensor-

instrumented treadmill. The estimated vertical ground reaction force waveform pa-

rameters; peak vertical ground reaction force (RMSE = 6.1%−7.2%, ρ = 0.95−0.97),

vertical impulse (RMSE = 8.5% − 13.0%, ρ = 0.50 − 0.60), loading rate (RMSE

= 24.6% − 39.4%, ρ = 0.85 − 0.93), and cadence (RMSE =< 1%, ρ = 1.00) were

compared against the instrumented treadmill measurements. The proposed algorithm

provides excellent agreement in near-real time using minimal instrumentation while

having the ability to automatically personalize to the user without the need for prior

training data.

5.2 Introduction

Fatigue damage is defined as the continuous degradation of a material, often due to the

formation of microcracks or tears from applied cyclic stresses. Fatigue is a complex

and random process that effects engineering structures, such as aircrafts, bridges,

trains, etc. but also impacts biological systems. The accumulation of repetitive

loading in biological tissue often leads to overuse injuries (Hreljac, 2005; Stanish,

1984), where the structural damage and biomechanical failure is consistent with the

process of mechanical fatigue (Edwards, 2018). Running, a popular physical activity

for maintaining health and wellness, is often associated with high risk of overuse
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injury. The ground reaction forces (GRF) experienced during running place the

musculoskeletal system under high biomechanical stresses that can either lead to

beneficial structural adaptations such as increased bone density and leg stiffness or

negative adaptations such as overuse injuries at the tissue or skeletal level (Kibler

et al., 1992; Dye, 2005; Burr et al., 1985; Chamay & Tschantz, 1972). Although

no exact values are available, it has been estimated that upwards of 80% of runners

will obtain a running related injury (RRI) each year. Like structural fatigue damage,

RRI’s often come with associated economic and performance costs (Hespanhol Junior

et al. 2016).

High mileage runners, defined as anyone who runs more than 40 miles per week

(or ∼50,000+ steps), are often at an increased risk of RRI’s due to the large number

of stress cycles experienced. This is exacerbated by the shortened recovery period be-

tween running sessions (Macera et al., 1989). Stress cycles are often characterized by

parameters derived from the vertical GRF (vGRF) waveform. Traditionally, vGRF

waveforms have been monitored by force instrumented treadmills or derived from

whole-body kinematics from optoelectronic systems (OS) within a laboratory envi-

ronment (Bobbert et al., 1991; Winter, 2005). Although this results in high accuracy,

reliability and repeatability; laboratory-based technologies do not enable continuous

athlete monitoring and may not reflect running conditions prevalent outside of the

laboratory setting such as running on uneven surfaces or surfaces of different stiffness

(Sinclair et al., 2013; Alton et al., 1998). A preferable approach would be to monitor

vGRF indirectly using a global measurement of vibration recorded by wearable tech-

nologies (Abdul Razak et al., 2012). These technologies include pressure-sensitive

insoles, wearable load cells, and/or inertial measurement units (IMU). During typical
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running conditions it is not practical, or cost-effective, to use an extensive network

of sensors like those found in traditional biomechanics laboratory settings, and thus

minimal wearable instrumentation that is still able to resolve vGRF is desired.

The vGRF waveform has been extensively studied for human runners (Cavanagh,

1987) and several models can describe it accurately (Chi & Schmitt, 2005; Clark et

al., 2014; Derrick, 2004; Lieberman et al., 2010; Nigg, 2010). A mass-spring-damper

(MSD) model is commonly used to model the vGRF waveform. Some of these mod-

els require the specification of 14 or more input parameters to perform the forward

dynamics simulation (Chi & Schmitt, 2005; Liu & Nigg, 2000; Ly et al., 2010; Nigg

& Liu, 1999; Nikooyan & Zadpoor, 2011). These parameters are typically deter-

mined within a laboratory setting and often require a constant running speed. Direct

modelling requires subject-specific parameters such as masses, dimensions, and/or

mechanical properties such as stiffness and damping in order to accurately estimate

vGRF. Methods that employ either physical or statistical models (artificial neural

networks, orthogonal forward regression, etc.) for estimating vGRF from wearable

accelerometer data recorded at the thigh, shank, iliac crest, medial tibia, upper back,

or sacrum have previously been validated (Ohtaki et al., 2001; Neugebauer et al., 2014;

Wundersitz et al., 2013; Gurchiek et al., 2017; Raper et al., 2018). Although statis-

tical models for estimation of vGRF have been successful they are often dependent

on training data and multiple sensors (Guo et al., 2017; Wouda et al., 2017). These

methods are often subject to sub-optimal performance when training data isn’t rep-

resentative of measured data. Rather this paper proposes an alternative data-model

fusion approach that uses structural models combined with state estimation algo-

rithms with minimal instrumentation to update model parameters in near-real time
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to automatically personalize to the user.

State estimation aims to reconstruct the state of a dynamical system from noisy

observations of its response and a model (Gelb 1987). The Kalman filter has been

shown to be an effective tool to estimate the unmeasured response in structural/me-

chanical systems (Palanisamy et al., 2015; Waller & Schmitt, 1990). A fundamental

assumption of the Kalman filter is that the unmeasured inputs are realizations of a

Gaussian random process, this condition is often relaxed. However, a dual-Kalman

filter approach can be used to estimate both the state and the unmeasured input in

order to improve the accuracy (Azam et al., 2015). An unscented Kalman filter can

then be implemented to estimate the state and uncertain model parameters. This is

well suited for monitoring vGRF due to the uncertainty in biomechanical parameters,

i.e. leg stiffness, that are influenced by fatigue, structural adaptation, running surface

and shoe choice (Mizrahi et al., 2000; Morin et al., 2011; Kerdok et al., 2002).

The purpose of this study is to formulate a state-input-parameter estimation

framework to estimate the vGRF of a runner in near-real time. The methodology is

tested using an instrumented treadmill with acceleration measurements at the sacrum.

This model-data fusion method could provide novel insight concerning the identifica-

tion and effects of mechanical fatigue during high mileage running in non-laboratory

running conditions.
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5.3 Methods

5.3.1 MSD Model

The single-body model has been used to describe the active peak of the vGRF during

impact (Blickhan, 1989), while the two-body model is the simplest multi-body model

that can determine the impact and active peaks at stance phase, allowing for the

ability to study both fore-foot and heel strike running (Mizrahi & Susak, 1982; Nevzat

Ozguiven & Berme, 1988). In order to implement the desired estimation in near-real

time it is necessary to limit the required estimation parameters for a SDOF MSD

model (see Fig. 5.1). Although this choice improves implementation it could restrict

the ability to capture the entire vGRF waveform during heel strike.

Figure 5.1: A single-body model capable of estimating vGRF during impact which was orig-
inally used to estimate vGRF during jumping.
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5.3.2 Equations of motion

The equation of motion for the model introduced in Fig. 5.1 can be expressed as

Mq̈(t) + Cdq̇(t) + K(θ)q(t) = b2u(t) (5.1)

where q(t) ∈ Rnx1 is the displacement vector at time t. The matrices M, CD and K(θ)

are the mass, damping and stiffness matrices, which are different for each runner. This

structural system is uncertain because the stiffness matrix depends on the parameter

vector θ ∈ Rdx1, which is unknown a priori. The unknown input term is u(t) ∈ R1xn,

and b2 ∈ Rnx1 is the input distribution matrix vector. The absolute acceleration

measurements of the system’s response are defined by

y(t) = −c2M−1K(θ)q(t)− c2M−1CDq̇(t)− c2M−1b2u(t) + r(t) (5.2)

where c2 ∈ Rmxn maps the degrees of freedom to the measurements and r(t) ∈ Rmx1

is the measurement noise. A Newtonian method is considered for comparison. The

method uses a single inertial measurement unit at a location assumed to represent

the motion of the COM (i.e. sacrum) thus enabling an estimate of the vGRF via

Newton’s second law of motion as per,

F (t) = Mä (5.3)

where ä is the net sacral acceleration. A sacrum-worn accelerometer measures the

specific force, ä+ g, which is first lowpass filtered at the approximate step frequency
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before the estimate of vGRF, eq. (5.3). This method has been used for estimation of

vertical loading during walking (Bocian et al., 2016).

5.3.3 State-input-parameter estimation process

An observer is a dynamical system driven by the measurements and whose state is

an estimate of the system of interest. In the case of a linear second order structural

system, the state vector corresponds to the displacement and velocity of all degrees

of freedom, xk = [q q̇]T . A dual observer was proposed by Dertimanis et al., which

combines the dual and unscented Kalman filter (UKF) for state-input-parameter es-

timation. The observer was originally used for structural systems subject to Gaus-

sian input. The dual Kalman filter (DKF) determines the unknown structural input

while the UKF solves the state and parameter estimation by means of an augmented

state-space formulation. For brevity only the fundamental equations necessary for

implementation are presented. For a full derivation refer to Dertimanis et al. The

derivation begins by introducing two auxiliary state equations

uk + 1 = Tuk + wuk (5.4)

θk+1 = θk + wuk (5.5)

where T is a matrix and wuk , w
θ
k are zero mean Gaussian processes with covariance

matrices Quu and Qθθ, respectively. The augmented state vector is defined as zk =

[xk, θk]T ∈ Rn̄x1, for n̄ = 2n+ d, in which the new augmented state-space model is
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formulated as

zk+1 =

A 0

0 I

 zk +

B

0

uk +

wx
k

wθ
k

 = f(zk, uk) + pk (5.6)

yk+1 =
[
C 0

]
zk +

[
D
]
uk + rk = g(zk, uk) + rk (5.7)

where A is the state transition matrix, B is the input matrix, C is the measurement

matrix, D is the direct transmission matrix and wxk is uncorrelated with wθk. The

process noise in the augmented state equation is denoted as pk which again has zero

mean and covariance matrix Qpp = diag{Qxx, Qθθ}. The measurement error is a zero

mean Gaussian measurement noise denoted as rk with a covariance matrix R.

5.3.4 Participants

Data from 14 subjects (8 female, mass [mean ± SD]: 75.02± 12.78 kg, height: 1.74±

0.08 m, age: 23.50±6.10 y.o.), recruited as part of a larger study, were used to validate

the proposed vGRF estimation algorithm. All subjects provided written consent to

participate. This study was approved by the University of Vermont Institutional

Review Board.

5.3.5 Experimental procedure

Each subject wore an inertial sensor (Opal v2, APDM, Inc.) positioned over the

sacrum and securely attached using an elastic strap around the waist and double-

sided tape. As part of the larger study inertial sensors were also placed on the
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sternum, thigh, tibia, and foot. Only a subset of the inertial sensors, namely at the

foot, were used for time synchronization. Herein, we use only the data from the on-

board accelerometer (128 Hz, range: ±16 g). Following a static standing calibration

trial, subjects performed three one-minute running trials at three different speeds

(self-selected slow, comfortable, and fast) on a pressure-sensor-instrumented treadmill

(h/p/cosmos quasar, 100 Hz).

5.3.6 Data analysis

Accelerometer-based estimates of vGRF were informed by data from the sensor’s axis

most closely aligned with the subject’s cranial-caudal anatomical axis. This axis may

not align directly with the vertical axis of the instrumented treadmill, and thus re-

mains a potential source of error in the reported results. Gravity was removed from

the data by subtracting the best straight-fit line from the raw accelerometer data.

Accelerometer-based vGRF estimates were down sampled to 100 Hz via linear inter-

polation for comparison to the treadmill data. The accelerometers and treadmill were

time-synchronized using cross-correlation of the foot acceleration at ground contact.

5.3.7 Algorithm formulation

The input noise covariance matrix (Quu, eq. 5.4), the measurement noise covariance

(R, eq. 5.7), the augmented process noise covariance matrix (Qpp, eq. 5.6) and the

auxiliary state transition matrix (T, eq. 5.4) need to be defined in order to formu-

late the state-input-parameter estimation algorithm. The input noise covariance was

set to 1x107 N , which is the Newtonian forcing variance for all participants. The

134



measurement noise covariance for the sacrum accelerometer was 0.01 m/s2. The aug-

mented process noise covariance matrix had two formulations because the estimation

error appeared to be subject-specific and thus subjects were divided into two groups

based on the root-mean-square error (RMSE) of the vGRF estimation for each in-

dividual. At first the augmented process noise covariance was set to the diagonal

matrix [1x10−4 m, 1x10−4 m/s , 1x10−3 N/m] for all participants. This resulted in

four subjects (group one) having large RMSE (> 0.30) for all test cases therefore the

augmented process noise covariance was decreased to [1x10−5 m, 1x10−5 m/s, 1x10−3

N/m]. The remaining ten participants (RMSE < 0.30) were placed in group two.

The initial augmented state stiffness parameter was set to 20 kN and the states were

set to zero. The auxiliary state transition matrix (in this case a scalar) was set to

0.96.

5.3.8 Statistical analysis

The estimation accuracy of the model was assessed for all the individual footfalls

acquired using the RMSE statistic, which quantifies the goodness of fit in absolute

terms. This approach is common for quantifying the degree of overlap in time-series

data (Clark et al., 2014; Gurchiek et al., 2017). The total number of footfalls, 100-

200 per test, were sufficiently large to detect small changes in algorithm performance

across speeds using RMSE statistics.

Model performance was further established by considering the Spearman rank

correlation coefficient between several parameters often used to characterize the vGRF

signal (peak vGRF, vertical impulse, loading rate, and cadence) as predicted by the

model and as extracted from the ground-truth vGRF signal provided by the treadmill.
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Peak vGRF was determined by finding the maximum value of the vGRF waveform

for each step. Vertical impulse was determined by integrating the vGRF during foot

contact. Loading rate was determined by finding the slope of the vGRF until 40% of

stance phase or until the active peak was visible, if there was one (Matijevich et al.,

2019). Cadence was determined by the average time difference between consecutive

steps.

5.4 Results

Estimated model parameters are presented in Table 5.1. Running speed was user de-

fined which allowed for treadmill speed to overlap between test cases. The treadmill

speed increased by at least 1 m/s throughout the testing procedure for each partici-

pant. Leg stiffness, estimated through the augmented state vector, increased through

the running tasks from 11.98± 2.59 kN to 13.56± 3.81 kN with the largest increase

from slow to comfortable. The damping parameter was chosen to fit the data, but the

damping ratio was consistent across cases and participants, at 16 percent of critical.

The estimated stiffness value was used to define the critical damping value.

Table 5.1: Treadmill speed and SDOF Model Parameters including estimated stiffness (k1),
damping (c1), and corresponding damping ratio (ξ) for each test case

Test Run Speed (m/s) k1 (kN/m) c1 (Ns/m) ξ (damp. ratio)
Slow 1.62± 0.22 11.98± 2.59 291.43± 80.81 0.16± 0.04
Comfortable 2.13± 0.42 13.05± 3.23 300.00± 66.14 0.16± 0.04
Fast 2.74± 0.71 13.56± 3.81 318.57± 71.25 0.16± 0.03

The uncertain stiffness parameter converged within 30 seconds for the case pre-

sented in Fig. 5.2. The initial stiffness parameter began at 20 kN and converged

within 60 seconds for all cases but the rate is dependent on the damping parameter.
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The variance of the parameter estimation is also presented.

Figure 5.2: The convergence of the (a) uncertain stiffness parameter and its (b) variance
estimate.

The estimated vGRF is compared against the vGRF measured from the instru-

mented treadmill and the Newtonian method (Eq. 5.3). The Newtonian method

provides a baseline reference for the proposed algorithm. The frequency of the vGRF

is matched when viewing 30 strides and the magnitude is comparable when zoomed

into four steps (see Fig. 5.3). The RMSE for the Newtonian method is an order of

magnitude higher than our method. For this case, the RMSE of the proposed algo-

rithm is 0.14 BW and the Newtonian method is 2.68 BW. During the flight phase

the proposed algorithm and Newtonian method estimate a negative vGRF at roughly

-1 BW. For the remainder of the paper the flight phase is set to zero for clarity of

comparison.

Uncertainty in the estimated vGRF is quantified by the variance of the states from

the state-input-parameter estimation process. A one standard deviation confidence
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Figure 5.3: The pressure-sensor-instrumented treadmill vGRF (black) compared against the
estimated vGRF (blue) from the input-parameter-state estimation algorithm and a low pass
Newtonian method (red). (a) Provides ten seconds of analysis, (b) zoomed in portion of the
ten second analysis.

interval is plotted with the estimate, which shows that the true vGRF is within the

confidence bounds for most steps, Fig. 5.4.

All the steps for each participant are overlaid with the vGRFs from the instru-

mented treadmill and the estimated vGRFs, Fig. 5.5. The algorithm is conservative

in its estimate but consistently monitors the vGRF for all participants throughout

the three running tasks.

The average and standard deviation of the peak vGRF, vertical impulse, loading

rate and cadence across all participants are presented in Table 5.2. The measured and

estimated peak vGRF (2.68± 0.36 to 3.14± 0.32 BW), loading rate (18.58± 5.90 to

30.75± 7.38 BW/s) and cadence (146.81± 7.67 to 161.39± 11.74 steps/min) increase

with increasing speed, while the vertical impulse remains constant (0.48±0.04 BWs).

Table 5.3 presents each participant’s RMSE (group one in bold) for the peak
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Figure 5.4: The pressure-sensor-instrumented treadmill vGRF (black) compared against
the estimated vGRF (blue) from the input-parameter-state estimation algorithm and its
uncertainty. (a) Provides ten seconds of analysis, (b) zoomed in portion of the ten second
analysis.

Table 5.2: The mean and standard deviation of the vGRF waveform parameters from the
pressure-sensor-instrumented treadmill and the proposed algorithm

Parameters Slow Comfortable Fast
Peak vGRF (BW) 2.63± 0.34 2.96± 0.32 3.10± 0.34
Estimated Peak vGRF 2.68± 0.36 2.97± 0.32 3.14± 0.32
Vertical Impulse (BWs) 0.54± 0.06 0.51± 0.05 0.47± 0.04
Estimated Vertical Impulse 0.48± 0.048 0.48± 0.04 0.47± 0.04
Loading Rate (BW/s) 22.85± 7.17 33.80± 11.48 45.95± 17.05
Estimated Loading Rate 18.58± 5.90 24.72± 5.18 30.75± 7.38
Cadence (steps/min) 146.83± 7.64 154.96± 8.85 161.24± 11.59
Estimated Cadence 146.81± 7.67 154.93± 8.88 161.39± 11.74

vGRF, vertical impulse, loading rate and cadence as well as the correlation between

these parameters as derived from the model-predicted, and treadmill-measured, vGRF

during comfortable running. The correlation for peak vGRF, loading rate, and ca-

dence are close to one; while vertical impulse has a low correlation factor. RMSE

was calculated by re-running the simulation with the mean estimated stiffness after

convergence from the original estimation process. Estimation errors are quantified by
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Figure 5.5: The pressure-sensor-instrumented treadmill vGRF (black) compared against the
estimated vGRF (blue) from the input-parameter-state estimation algorithm overlaid. (a-n)
Each participant running comfortable.

average RMSE in Table 5.4. The peak vGRF RMSE was similar across tests with a

value of 0.19± 0.04 BW at slow speed to 0.19± 0.05 BW at fast speed. The vertical

impulse had the largest RMSE for the slow case at a value of 0.07± 0.04 BWs, while

the loading rate had high error across all test cases due to the model’s inability to

determine the impact peak. The error values ranged from 5.62±2.69 to 18.12±12.31

BW/s. The algorithm successfully estimated the correct cadence.

5.5 Discussion

The state-input-parameter estimation filter derived by Dertimanis et al. had only

been tested in simulation. The algorithm was originally used for structural/mechan-
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Table 5.3: RMSE for vGRF parameters during comfortable running for each participant.
The corresponding Spearman rank correlation is presented across participants. Bolded num-
bers indicate members of group one.

Participant Peak vGRF Vertical Impulse Loading rate Cadence
(BW) (BWs) (BW/s) (steps/min)

1 0.16 0.04 34.00 0.00
2 0.14 0.02 8.64 0.06
3 0.11 0.05 7.44 0.05
4 0.17 0.07 17.33 0.02
5 0.21 0.06 19.07 0.02
6 0.18 0.02 19.68 0.07
7 0.14 0.03 7.00 0.07
8 0.23 0.11 5.21 0.14
9 0.19 0.03 14.19 0.02
10 0.21 0.02 6.82 0.16
11 0.12 0.06 5.28 0.04
12 0.20 0.03 5.20 0.26
13 0.20 0.10 3.48 0.08
14 0.28 0.04 4.99 0.13
Correlation 0.95 0.50 0.85 1.00

Table 5.4: Average RMSE and standard deviation for vGRF parameters for each test case.

Participant Peak vGRF Vertical Impulse Loading rate Cadence
(BW) (BWs) (BW/s) (steps/min)

Slow 0.19± 0.04 0.07± 0.04 5.62± 2.69 0.18± 0.21
Comfortable 0.18± 0.04 0.05± 0.03 10.67± 7.96 0.08± 0.07
Fast 0.19± 0.05 0.04± 0.02 18.12± 12.31 0.26± 0.35

ical systems subject to Gaussian input. The results from this work show that the

algorithm successfully estimates the unknown input, the uncertain stiffness parame-

ter, and the states for all three running tasks using a single acceleration measurement

when the system is subject to non-Gaussian input. By modeling runners as a me-

chanical system (i.e., MSD), a state space representation is possible, thus allowing

application of the proposed estimation algorithm. The sacrum measurement provides

a good estimate of the motion of the center of mass, allowing for a SDOF model to

track vGRF in near real time.

The estimated input is not the vGRF but rather the force input into the equations

of motion for the model to match the measurements at the sacrum. The estimated

stiffness parameter is a combination of the total stiffness of the system which in-
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corporates shoe choice, running technique, treadmill stiffness, and damping. This

stiffness value could provide a better estimate of the parameter than a value based

on measured vGRF and COM displacement.

The estimation algorithm provides a good estimate of the general waveform of

the vGRF that is represented in the RMSE of the peak vGRF (6.1% − 7.2%, ρ =

0.95 − 0.97), the vertical impulse (8.5% − 13.0%, ρ = 0.50 − 0.60), the loading rate

(24.6%− 39.4%, ρ = 0.85− 0.93), and the cadence (< 1%, ρ = 1.00). Shahabpoor &

Pavic found a 5.6% RMSE for vGRF waveform estimation using a scaled amplitude

method for walking (Shahabpoor & Pavic, 2016). Charry et al. estimated peak

vGRF with a RMSE of 6.0% using only tibial accelerations within a machine learning

algorithm based on individual training data (Charry et al., 2013). Shippen & May

estimated vGRF using full-body optical motion capture resulting in very accurate

estimations (< 3.0%). Wouda et al. estimated peak vGRF with an accuracy of

3.5% and found similar loading rates using artificial neural networks (Wouda et al.,

2017). Pavei et al. used a Newtonian method with double differentiation to get

similar results for vertical impulse and loading rate but used a single subject. Lastly

Nedergaard et al. estimated vGRF from a single accelerometer at the trunk and

a machine learning algorithm resulting in higher errors than the proposed method.

Therefore, the proposed algorithm simplifies the vGRF estimation problem (i.e one

sensor, real-time, and no need for training data) without sacrificing performance.

The proposed method provides comparable RMSE for peak vGRF, vertical im-

pulse, and cadence to other methods; however, the loading rate is underestimated in

cases where the participant heel strikes. The proposed method estimates the loading

rate as if all the participants vGRF has a single peak. The algorithm has decreased
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performance as participant speed increased, which is a combination of the model not

being able to capture the true dynamics and several participants changing from mid

foot to heel striking. This could be corrected by adding degrees of freedom to the

model (i.e. additional masses connected in series through springs and dampers) or in

the choice of covariance matrices.

An important feature of the algorithm is that the process can be completed in

near-real time. It is not necessary to postprocess the data since the algorithm doesn’t

require integration of measurements, measurement coupling, and/or measured vGRF

for parameter quantification. By updating the stiffness in near real time, the ability

to determine vGRF in varying terrain is possible. This could include pavement,

concrete, and trail running with variable slope which isn’t feasible in the laboratory

setting.

However, several limitations still persist. The range of running speeds is small,

the model is a SDOF, and four matrices need to be defined. The running tasks were

performed at slower (< 3 m/s) and thus it is unknown how well the algorithm will

perform at faster running speeds in which case estimation error may be more sensitive

to body type, running technique, and soft tissue artefacts.

The four matrices outlined in section 2.7 are freely chosen based on estimator

performance and/or sensor properties. The process noise covariance was increased for

group two, due to increased variation in their running form. Therefore, the algorithm

relied on the sensor measurements more than the system model (ratio of the noise

to process covariance). Due to running being frequency dependent (non-Gaussian),

the DKF-UKF algorithm provides a sub-optimal estimate of the states and uncertain

parameter but is still comparable to direct measurements of vGRF.
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In conclusion, the proposed state-input-parameter estimation process for mea-

suring vGRF during running tasks in near-real time with the application for high

mileage runners is experimentally validated. Minimal instrumentation and near-real

time estimation point toward future use of this approach for running performance

and fatigue monitoring outside the laboratory setting.
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Chapter 6

Conclusions and future work

In this dissertation the application and development of a fatigue monitoring frame-

work for structural and biomechanical systems was presented. Simulated and exper-

imental results were used to validate the proposed framework to assess the state of

fatigue damage in near-real time for various engineered systems.

The main contributions and conclusions of this work are:

1. Uncertainty quantification and propagation for fatigue monitoring indices de-

rived from state estimates of structural systems were presented in chapters 3

and 4. The uncertainty formulae are presented in section 2.2.3 which are de-

rived from the estimated stresses determined by the state estimation process

and the empirical fatigue material properties, i.e. model error and uncertainty

in the S-N curve parameters. The results were used to monitor the remaining

useful life of structural systems subject to non-Gaussian excitation for near-real

time fatigue damage estimation. It was shown that for some systems, like those

studied in this dissertation, the proposed framework can help to determine an

optimal stopping criteria based on an allowable probability of failure. Results
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were presented for both simulation and real-world applications.

2. For certain systems a fatigue monitoring framework is desirable over the tra-

ditional vibration-based damage detection methods. Often for statically de-

terminant structures small changes in the physical properties (mass, damping,

and stiffness) won’t cause measurable changes in the dynamic properties of

the system until the remaining useful life is small and could potentially have

macroscopic crack growth. A desirable approach is to use state estimation via

the Kalman filter, Unscented Kalman filter, or Model-Based Observer to mon-

itor the accumulation of stress cycles experienced by the structure in order to

estimate fatigue life. This dissertation provides the first experimental valida-

tion that fatigue monitoring could provide higher levels of reliability, larger

lead times and reduced risk of catastrophic failure compared to the traditional

methods when monitoring a structure throughout it’s entire lifetime.

3. The framework is then applied to biomechanical systems where model param-

eters are uncertain/stochastic and input excitation is highly frequency depen-

dent/unknown. The human body is very complex with many masses interacting

yet MSD models have been shown to provide a good estimate of vGRF. How-

ever, traditionally parameters were tuned using forward dynamics simulation

for each individual and across testing procedures. Chapter 5 proposed a state-

input-parameter estimation algorithm to be applied to the vGRF estimation

problem that had previously been used for structural systems in simulation.

The model-data fusion approach automatically personalized to the user in or-

der to estimate the effects of mechanical fatigue for running in non-laboratory

running conditions with minimal instrumentation. It was shown that the SDOF
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MSD model provided a good estimate of several vGRF waveform metrics yet

had poor performance estimating the loading rate.

4. The fatigue monitoring framework can be applied to systems that can be mod-

elled as a MSD system with representative equations of motion, minimal in-

strumentation to measure system response, and an empirical S-N curves with

known mean and variance.

Some aspects that require further investigation are:

• Fatigue damage can cause measurable changes in dynamic properties throughout

the structures serviceable life. In chapter 4 fatigue damage was monitored in

near-real time using a Kalman filter to estimate the state with a constant MSD

model. This resulted in increased model error after crack coalescence due to

reduced stiffness at fatigue critical locations for a statically determinant struc-

ture. Therefore an unscented Kalman filter or extended Kalman filter could

be applied to estimate uncertain model parameters and the state in order to

determine if the increased computational cost is worth the increased fatigue

damage accuracy. For more complex structures the extended Kalman filter or

unscented Kalman filter could reduce error due to non-linearity.

• Apply catastrophe theory to vibration-based damage detection methods. Catas-

trophe theory states that sudden changes in behavior or bifurcations arise from

small changes in the systems state. In chapter 4 fatigue accumulation experi-

mentally followed a linear rule (Palmgren-Miner) where a stopping criteria was

derived based on an allowable probability of failure that provided ample time

before macroscopic failure occurred. However, when interrogating changes in
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vibration characteristics such as natural frequency or mode shapes the remain-

ing useful life had already been significantly reduced. The fatigue monitoring

process seems to follow a stable manifold while damage detection methods fol-

low an unstable manifold. Catastrophe theory could provide novel insight into

the structural health monitoring framework.

• Implement a high fidelity running model for running and walking. In chapter

5 the simplest MSD model (SDOF) was used to determine the feasibility of

estimating vGRF while running using a sacrum accelerometer. Research had

previously shown that SDOF MSD models are not able to capture the impact

peak while running which was experimentally validated in chapter 5; however,

a two mass model can capture the dynamics. A multi-body model could pro-

vide a better estimate of important vGRF waveform properties and the ability

to estimate various unknown model parameters in near-real time. This could

provide a novel wearable technology to mitigate risk of injury while maximizing

performance. Statistical modeling or optimization algorithms could provide in-

sight into how to determine the input parameters necessary for state estimation

processes.

• Combine structural models with the proposed running model to provide a bet-

ter fatigue monitoring framework for estimating remaining life of pedestrian

bridges. By monitoring pedestrians walking/running across the bridge and

measuring the response of the bridge there is increased knowledge of the in-

put excitation on the structure. This could provide a novel method to update

bridge structural models in near-real time to determine the structural health at

any time. This combined model could help with design decisions.
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