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Abstract: The real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and su�cient condi-
tions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of su�cient 
conditions for the existence of such a matrix are known. The authors gave in [11] a map of su�cient con-
ditions establishing inclusion relations or independency relations between them. Since then new su�cient 
conditions for the RNIEP have appeared. In this paper we complete and update the map given in [11].
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1 Introduction
The real nonnegative inverse eigenvalue problem (hereafter RNIEP) is the problem of characterizing all pos-
sible real spectra of entrywise nonnegative matrices. This problem remains unsolved. A complete solution is 
known only for spectra of size n ≤ 4.

A number of realizability criteria or su�cient conditions for the existence of a nonnegative matrix with a 
given real spectrum have been obtained, from di�erent points of view. In [11] the authors construct a map of 
su�cient conditions for the RNIEP, in which they show inclusion or independency relations between these 
conditions. However, a pair of questions were left unsolved and the answers are now known: Soto 2 criterion 
implies Perfect 2+ criterion and the inclusion of Perfect 2+ criterion in Soto-Rojo criterion is strict.

Since 2007 new su�cient conditions for the RNIEP have appeared, [3, 14]. In this paper we discuss new 
relations of inclusion or independency between these new su�cient conditions and the previous ones studied 
in [11].

The paper is organized as follows: Section 2 contains the list of all su�cient conditions that we shall 
consider, in chronological order, and some technical results that we will use in the next section. Section 3 
completes and updates the map given in [11] for the RNIEP.
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2 Su�cient conditions for the RNIEP
In this paper, by a listwe understand a collection Λ = {λ1, . . . , λn} of real numbers with possible repetitions.
By a partition of a list Λwemean a family of sublists of Λwhose disjoint union is Λ. As is commonly accepted,
we understand that a summatory is equal to zero when the index set of the summatory is empty.

We will say that a list Λ is (symmetrically) realizable if it is the spectrum of an entrywise (symmetric)
nonnegative matrix A. In this case A is said to be a realizing matrix.

The RNIEP has an obvious solution when only nonnegative real numbers are considered, so the interest
of the problem is when there is at least one negative number in the list.

In what follows we list the su�cient conditions, or realizability criteria, that we are going to consider,
in chronological order. The �rst result in this area was announced by Sulěımanova in 1949 and proved by
Perfect in 1953.

Theorem 1. (Perfect 2 [12], 1955) Let {λ0, λ1, . . . , λr}, with λ0 ≥ |λi| for i = 1, . . . , r, be realizable by a matrix
with diagonal elements ω0, ω1, . . . , ωr and let Λ = {λ0, λ1, . . . , λr , λr+1, . . . , λn} with −λ0 ≤ λi ≤ 0 for i =
r + 1, . . . , n. If there exists a partition {λ01, . . . , λ0t0} ∪ {λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr} (some or all of
the lists may be empty) of {λr+1, . . . λn} such that

ωi +
ti∑
j=1

λij ≥ 0 for i = 0, 1, . . . , r (1)

then Λ is realizable.

Although Perfect gives the previous theorem for stochastic matrices, the normal form of a stochastic matrix
allows us to give the theorem for the nonnegative case. Note that originally thewi’s are diagonal elements of a
stochasticmatrix. In fact, the realizingmatrixwith diagonal elementsω0, ω1, . . . , ωr can be takenwith all its
row sums equal to λ0 (see Lemma 2). When in the previous theorem the elements of the list {λ0, λ1, . . . , λr}
are all nonnegative there always exists a realization of this list. We will call this condition Perfect 2+, i.e.
Theorem 1 when λi ≥ 0 for i = 0, 1, . . . , r. (See [12, Theorem 3])

The previous theorem has a constructive proof, in the sense that it allows us to construct a realizing
matrix. Brauer’s theorem [4], which allows only one eigenvalue of a complex matrix to be modi�ed without
changing the others, plays a fundamental role in this construction.

Theorem 2. (Brauer [4], 1952) Let A be a complex matrix with spectrum {λ1, . . . , λn}. Let k ∈ {1, . . . , n},
x = (x1, . . . , xn)t be an eigenvector associated to λk and q any n-dimensional vector. Then the matrix A + xqt

has spectrum {λ1, . . . , λk−1, λk + xtq, λk+1, . . . , λn}.

In order to make use of Theorem 1, Perfect [12] gives su�cient conditions under which λ0, λ1, . . . , λr and
ω0, ω1, . . . , ωr are the eigenvalues and the diagonal elements, respectively, of a nonnegative matrix.

Lemma 1. Let Λ = {λ1, . . . , λr}, with λ1 ≥ |λ| for λ ∈ Λ, be realizable. The real numbers ω1, . . . , ωr are the
diagonal elements of a nonnegative matrix with spectrum Λ if
i) 0 ≤ ωi ≤ λ1, for i = 1, . . . , r;
ii) ω1 + · · · + ωr = λ1 + · · · + λr;
iii) ωi ≥ λi and ω1 ≥ λi, for i = 2, . . . , r.

For r = 1 and r = 2 Perfect [12] gives necessary and su�cient conditions. The following lemma recalls the
result described in the introduction of [7] about the equivalence of the row stochastic and the nonnegative
eigenvalue problems. We include the proof of this result here to show that the diagonal elements are pre-
served. This lemma will be required for Section 3 (theorems 9 and 10).
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Lemma 2. Every nonnegative matrix A with spectral radius ρ is cospectral with a nonnegative matrix B pre-
serving the diagonal elements of A and all its row sums equal to ρ. Furthermore, if A has a positive eigenvector
associated to ρ, then B is similar to A.

Proof. Let A = (aij) be a nonnegative matrix with a positive eigenvector x = (x1, . . . , xn)t associated to ρ and
let D be the diagonal matrix whose (i, i) element is xi. Then the matrix

B = D−1AD =
( xj
xi
aij
)

is nonnegative, is similar to A and has the same diagonal elements as A. The matrix B has all its row sums
equal to ρ because e = (1, . . . , 1)t is an eigenvector of B associated to ρ:

Ax = ρx
De = x

}
⇒ Be = D−1ADe = D−1Ax = ρD−1x = ρe.

Now let A = (aij) be an arbitrary nonnegative matrix, then A is permutationally similar to

PtAP =



A11 0 · · · · · · 0
A21 A22 0 · · · 0
...

...
. . . . . .

...
...

...
...

. . . 0
Ak1 Ak2 · · · · · · Akk


with Aii irreducible or 1-by-1 and zero, for i = 1, . . . , k. Let ρi be the spectral radius of Aii. Any irreducible
matrix has a positive eigenvector associated to its spectral radius. Let Bii be the nonnegative matrix obtained
before similar to Aii which preserves the diagonal elements of Aii and all its row sums equal to ρi if Aii is
irreducible and 0 otherwise. Reindexing the matrices {Bii}ki=1, if necessary, we can suppose ρ = ρ1. Let Bi1
be the matrix with the same number of columns as B11 and the same number of rows as Bii, for i = 2, . . . , k,
with all the elements of the �rst column equal to the nonnegative number ρ − ρi and the other columns equal
to zero. Then the matrix

B =



B11 0 · · · · · · 0
B21 B22 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
Bk1 0 · · · 0 Bkk


satis�es the lemma.

Theorem 3. (Kellogg [8], 1971) Let Λ = {λ0, λ1, . . . , λn}with λ0 ≥ |λ| for λ ∈ Λ and λi ≥ λi+1 for i = 0, . . . , n−1.
Let M be the greatest index j (0 ≤ j ≤ n) for which λj ≥ 0 and K = {i ∈ {1, . . . , bn/2c} / λi ≥ 0, λi + λn+1−i < 0}.
If

λ0 +
∑

i∈K, i<k
(λi + λn+1−i) + λn+1−k ≥ 0 for all k ∈ K, (2)

and

λ0 +
∑
i∈K

(λi + λn+1−i) +
n−M∑
j=M+1

λj ≥ 0, (3)

then Λ is realizable.
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Theorem 4. (Borobia [1], 1995) Let Λ = {λ0, λ1, . . . , λn} with λi ≥ λi+1 for i = 0, . . . , n − 1 and let M be the
greatest index j (0 ≤ j ≤ n) for which λj ≥ 0. If there exists a partition J1 ∪ · · · ∪ Jt of {λM+1, . . . , λn} such that

λ0 ≥ λ1 ≥ · · · ≥ λM >
∑
λ∈J1

λ ≥ · · · ≥
∑
λ∈Jt

λ (4)

satis�es the Kellogg condition, then Λ is realizable.

Let K be a realizability criterion. If a list of real numbers satis�es K we say that the list is K realizable. We
denote the set ofK realizable lists as

RK = {Λ ⊂ R : Λ isK realizable}.

In this paper K will be the surname of an author(s). For example, a list satisfying Theorem 4 will be said
Borobia realizable.

Theorem 5. (Soto 2 [13], 2003) Let Λ be a list that admits a partition

{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}

with λ11 ≥ |λ| for λ ∈ Λ, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , r and j = 1, . . . , ti. For each list {λi1, . . . , λiti} of
the partition we de�ne Si as

Sij = λij + λi,ti−j+1 for j = 2, . . . , bti/2c

Si,(ti+1)/2 = min{λi,(ti+1)/2, 0} if ti is odd for i = 1, . . . , r.

Let
Ti = λi1 + λiti +

∑
Sij<0

Sij for i = 1, . . . , r,

and
L = max{−λ1t1 −

∑
S1j<0

S1j , max
2≤i≤r
{λi1}}. (5)

If
λ11 ≥ L −

∑
Ti<0, 2≤i≤r

Ti , (6)

then Λ is realizable.

Theorem 6. (Soto-Rojo [15], 2006) Let Λ be a list that admits a partition

{λ11, . . . , λ1t1} ∪ · · · ∪ {λs1, . . . , λsts}

with λ11 ≥ |λ| for λ ∈ Λ, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , s and j = 1, . . . , ti. Let ω1, . . . , ωs be non-
negative numbers such that there exists a s × s nonnegative matrix B with eigenvalues λ11, λ21, . . . , λs1 and
diagonal entries ω1, . . . , ωs. If the lists {ωi , λi2, . . . , λiti} with ωi ≥ λi2, for i = 1, . . . , s, are realizable, then Λ
is realizable.

By its own nature, the Soto-Rojo criterion trivially contains any su�cient condition: if a list Λ is realizable,
then it is Soto-Rojo realizable with s = 1 and w1 equal to the spectral radius of Λ. There exist in the literature
some other criteria of the same nature. Their interest lies in providing di�erent procedures to realize certain
lists. For example, Soto-Rojo-Manzaneda [16], 2011: which is Soto-Rojo with λ11, λ21, . . . , λs1 not necessary
nonnegative. It also has a symmetric version.

The su�cient conditions of Soto 2 and Soto-Rojo have constructive proofs, which allow us to compute an
explicit realizing matrix. Both use Brauer’s theorem for the construction of a realizing matrix.

In [3] the authors de�ne a special kind of realizability which is closely related to the idea of “negativity
compensation”. This criterion is based on the following three results:
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– Rule 1 : Let Λ = {λ1, λ2, . . . , λn} ⊂ C be a realizable list with λ1 ≥ |λ| for λ ∈ Λ and let λ2 be real. Then for
every ϵ > 0 the lists {λ1 + ϵ, λ2 + ϵ, λ3, . . . , λn} and {λ1 + ϵ, λ2 − ϵ, λ3, . . . , λn}, are also realizable. (See
Guo [6])

– Rule 2 : Let Λ = {λ1, λ2, . . . , λn} be a realizable list with λ1 ≥ |λ| for λ ∈ Λ and let ϵ > 0. Then {λ1 +
ϵ, λ2, . . . , λn} is also realizable.

– Rule 3 : Let Λ1 and Λ2 be realizable lists. Then the list Λ1 ∪ Λ2 is realizable.

Theorem 7. (Borobia-Moro-Soto [3], 2008) Let Λ = {λ1, λ2, . . . , λn} be a list of real numbers. If Λ can be
reached starting from the n realizable lists

{0}, {0}, . . . , {0}

successively applying, in any order and any number of times, either Rule 1, Rule 2 or Rule 3, then Λ is realizable.

The previous theorem, in [3], is given as the concept of C-realizability. As we will see later, Rule 1 can be
relaxed to:
– Rule 1* : Rule 1 except the case {λ1 + ϵ, λ2 − ϵ, λ3, . . . , λn} with λ2 > 0 and λ2 − ϵ < 0.
We de�ne the game criterion as the variation of Theorem 7 obtained by changing Rule 1 to Rule 1*. The C-
realizability criterion was originally introduced in terms of a game with tokens to put inside of an empty
deposit. This rule has been slightlymodi�edhere, because the compensation is used for λ2 ≤ 0, see comments
after Theorem 1.1 in [3].

Let K be a realizability criterion. Following the de�nitions in [2, Section 4] we de�ne the K negativity of
a list Λ = {λ1, λ2, . . . , λn} of real numbers, with λ1 ≥ λj for j = 2, . . . , n, as:

NK(Λ) =


+∞ if {λ1 + δ, λ2, . . . , λn} is

notK realizable ∀δ ≥ 0

min{δ ≥ 0 : {λ1 + δ, λ2, . . . , λn} isK realizable} otherwise

and when Λ isK realizable we de�ne theK realizability margin of Λ as the number:

MK(Λ) = max
{
ϵ ≥ 0 : {λ1 − ϵ, λ2, . . . , λn} isK realizable

and λ1 − ϵ ≥ |λj| for j = 2, . . . , n

}
.

Note that the K negativity of a list measures, in a certain sense, how far the list is from being K realiz-
able. A similar interpretation can be given for the concept ofK realizability margin of aK realizable list. For
properties, closed expressions or bounds of these concepts see [10].

Theorem 8. (Soto p [14], 2013) Let p be an integer with p ≥ 2. Let Λ be a list that admits a partition

{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}

with λ11 ≥ |λ| for λ ∈ Λ, λij ≥ λi,j+1 and λi1 ≥ 0 for i = 1, . . . , r and j = 1, . . . , ti, and {λ11, . . . , λ1t1} Soto p-1
realizable with p ≥ 3. LetNSp−1(Λi) be the Soto p-1 negativity of Λi = {λi1, . . . , λiti} andMSp−1(Λi) the Soto p-1
realizability margin of Λi. Let

γ = max{λ11 −MSp−1(Λ1), max
2≤i≤r
{λi1}}. (7)

If
λ11 ≥ γ +

∑
Λi /∈RSp−1

NSp−1(Λi), (8)

then Λ is (simmetrically) realizable.
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3 Updating the inclusion relations for the RNIEP
In this section we update the nonnegative map given in [11] for the RNIEP:

Sulěımanova = Su
Sulěımanova-Perfect = SP
Perfect 1 = P1
Perfect 2+ = P2+

Ciarlet = C
Kellogg = K
Salzmann = Sa
Fiedler = Soto 1 = F
Borobia = B
Soto 2 = So

– Perfect 2+ does not imply Soto 2 and the dotted line on the map expresses that we did not know if Soto 2
implies (or not) Perfect 2+. Now we know that Soto 2 implies Perfect 2+.

– Soto-Rojo contains all the realizability criteria in the previous map, and now we know that the inclusion
of Perfect 2+, for r ≥ 1, in Soto-Rojo, for s ≥ 2, is strict (see Theorem 10). Note that we exclude Perfect
2+ for r = 0 because it is Sulěımanova, and we exclude Soto-Rojo for s = 1 because, as was commented
before, this trivially includes any su�cient condition.

Therefore, to update the inclusion relations for the RNIEP, we need to place the game and Soto p su�cient
conditions in themap. In [3], the authors prove that the realizability criteria Kellogg, Borobia and Soto 2 imply
the C-realizability criterion and, moreover, that the inclusions are strict. Going through the proofs in [3], it is
easy to see that the authors prove that Kellogg, Borobia and Soto 2 imply the game criterion (theorems 3.2, 3.5
and 3.7). This is due to the fact that any time Rule 1 appears, it is used as Rule 1*.

The same argument used in [3], to prove that Soto 2 implies game, can be used to prove that Soto p, with
p ≥ 3, also implies game.

Theorem 9. Game implies Perfect 2+ and the inclusion is strict.

Proof. We will prove that Rule 1*, Rule 2 and Rule 3 are closed under Perfect 2+ criterion. It is clear that Rule
3 preserves Perfect 2+: the union of two Perfect 2+ realizable spectra is a Perfect 2+ realizable spectrum. Let
us see that rules 2 and 1* also preserve this su�cient condition.

Let

Λ = {λ0, λ1, . . . , λr , λr+1, . . . , λn}

satisfy Perfect 2+: λ0 ≥ λi ≥ 0 and −λ0 ≤ λj ≤ 0 for i = 1, . . . , r and j = r + 1, . . . , n, {λ0, λ1, . . . , λr}
realizable by a matrix A with diagonal elements ω0, ω1, . . . , ωr and there exists a partition {λ01, . . . , λ0t0}∪
{λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr} of {λr+1, . . . λn} such that

ωi +
ti∑
j=1

λij ≥ 0 for i = 0, 1, . . . , r.

From Lemma 2 we can take A with all its row sums equal to λ0. Then e = (1, . . . , 1)t is an eigenvector of A
associated to λ0. Let ε > 0 and prove:
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a) Λε = {λ0 + ε, λ1, . . . , λr , λr+1, . . . , λn} is Perfect 2+ realizable.
Let q = (ε, 0, . . . , 0)t. Note that the matrix

Aε = A + eqt = A +


ε 0 · · · 0
...

...
. . .

...
ε 0 · · · 0


is nonnegativewith diagonal elementsω0+ε, ω1, . . . , ωr andall its row sums equal to λ0+ε. Brauer’s theorem
guarantees that the spectrum of Aε is {λ0 + etq, λ1, . . . , λr} = {λ0 + ε, λ1, . . . , λr}. Hence Λε satis�es Perfect
2+ with Aε and the same partition of {λr+1, . . . λn} as Λ.

b) Λε = {λ0 + ε, λ1, . . . , λr , λr+1 + ε, λr+2, . . . , λn}, with λr+1 + ε ≤ 0, is Perfect 2+ realizable.
The same matrix Aε as in statement a) and the “same” partition of {λr+1 + ε, λr+2, . . . λn} as Λ show that Λε
satis�es Perfect 2+.

c) Λε = {λ0 + ε, λ1, . . . , λr , λr+1 + ε, λr+2, . . . , λn}, with λr+1 + ε > 0, is Perfect 2+ realizable.
Let q = (ε, 0, . . . , 0)t. Hence Λε satis�es Perfect 2+ with

Aε =
(
A + eqt 0

0 λr+1 + ε

)

and the induced partition of {λr+2, . . . λn} from {λr+1, . . . λn} as part of Λ
d) Λε = {λ0 + ε, λ1 + ε, λ2, . . . , λr , λr+1, . . . , λn} is Perfect 2+ realizable.

Case λ1 ≠ λ0. Let x = (x0, x1, . . . , xr)t be an eigenvector of A associated to λ1 and let jmax and jmin be the
smallest indices with

xjmax = max{x0, x1, . . . , xr} = a and xjmin = min{x0, x1, . . . , xr} = b ,

respectively. Note that a > b, because if they were equal then x = ae would be an eigenvector associated
to the two di�erent eigenvalues λ0 and λ1 of A. Without loss of generality we can assume jmax < jmin. Let
q = (q0, q1, . . . , qr)t and p = (p0, p1, . . . , pr)t be de�ned by

qi =



−b ε
a − b if i = jmax,

a ε
a − b if i = jmin,

0 if i ≠ jmax, jmin

and pi =



ε
a − b if i = jmax,

−ε
a − b if i = jmin,

0 if i ≠ jmax, jmin.

Observe that the matrix Aε = A + xpt + eqt

Aε = A +



0 · · · 0 (x0 − b)ε
a − b 0 · · · 0 (a − x0)ε

a − b 0 · · · 0
... · · ·

...
...

... · · ·
...

...
... · · ·

...

0 · · · 0 (xi − b)ε
a − b 0 · · · 0 (a − xi)ε

a − b 0 · · · 0
... · · ·

...
...

... · · ·
...

...
... · · ·

...

0 · · · 0 (xr − b)ε
a − b 0 · · · 0 (a − xr)ε

a − b 0 · · · 0


column jmax column jmin

is nonnegative with diagonal elements

ω0, ω1, . . . , ωjmax−1, ωjmax + ε, ωjmax+1, . . . , ωjmin−1, ωjmin + ε, ωjmin+1, . . . , ωr

and all its row sums equal to λ0 + ε. The application of Brauer’s theorem twice guarantees that the spectrum
of Aε is {λ0 + etq, λ1 + xtp, λ2, . . . , λr} = {λ0 + ε, λ1 + ε, λ2, . . . , λr}:
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First, the spectrum of

A + xpt = A +



0 · · · 0 x0ε
a − b 0 · · · 0 −x0ε

a − b 0 · · · 0
... · · ·

...
...

... · · ·
...

...
... · · ·

...
0 · · · 0 xiε

a − b 0 · · · 0 −xiε
a − b 0 · · · 0

... · · ·
...

...
... · · ·

...
...

... · · ·
...

0 · · · 0 xrε
a − b 0 · · · 0 −xrε

a − b 0 · · · 0


column jmax column jmin

is {λ0, λ1 + xtp, λ2, . . . , λr} = {λ0, λ1 + ε, λ2, . . . , λr}. Note that the matrix A + xpt has constant row sums
equal to λ0. Second, the spectrum of A + xpt + eqt is {λ0 + etq, λ1 + ε, λ2, . . . , λr} = Λε.
Hence Λε satis�es Perfect 2+ with Aε and the same partition of {λr+1, . . . λn} as Λ.
Case λ1 = λ0. From Lemma 2 we can take A as

A =



B11 0 · · · · · · 0
B21 B22 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
Bk1 0 · · · 0 Bkk


with λ0 eigenvalue of B11 and λ1 eigenvalue of some Bii with i ≥ 2. Therefore, there exists an eigenvector x of
A associated to λ1 = λ0 linearly independent of e. Now we can apply the same argument and construction as
in the case λ1 ≠ λ0.

e) Λε = {λ0 + ε, λ1, . . . , λr , λr+1 − ε, λr+2, . . . , λn} is Perfect 2+ realizable.
Let k ∈ {0, 1, . . . , r} such that λr+1 ∈ {λk1, . . . , λktk} and let q be the vector with ε in the position k + 1 and
the rest zeros. The matrix

Aε = A + eqt = A +


0 · · · 0 ε 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 ε 0 · · · 0


is nonnegative with diagonal elements ω0, ω1, . . . , ωk−1, ωk + ε, ωk+1, . . . , ωr and all its row sums equal to
λ0 + ε. Brauer’s theorem guarantees that the spectrum of Aε is {λ0 + etq, λ1, . . . , λr} = {λ0 + ε, λ1, . . . , λr}.
Hence Λε satis�es Perfect 2+ with Aε and the “same” partition of {λr+1 − ε, λr+2, . . . λn} as Λ.

f) Λε = {λ0 + ε, λ1 − ε, λ2, . . . , λr , λr+1, . . . , λn}, with λ1 − ε ≥ 0, is Perfect 2+ realizable.
Let x = (x0, x1, . . . , xr)t be an eigenvector of A associated to λ1 linearly independent of e. The existence of
this eigenvector was proved above. Let jmax , jmin , a and b be as before. Now let q and p be de�ned by

qi =



a ε
a − b if i = jmax,

−b ε
a − b if i = jmin,

0 if i ≠ jmax, jmin

and pi =



−ε
a − b if i = jmax,

ε
a − b if i = jmin,

0 if i ≠ jmax, jmin.
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Note that the matrix Aε = A + eqt + xpt

Aε = A +



0 · · · 0 (a − x0)ε
a − b 0 · · · 0 (x0 − b)ε

a − b 0 · · · 0
... · · ·

...
...

... · · ·
...

...
... · · ·

...

0 · · · 0 (a − xi)ε
a − b 0 · · · 0 (xi − b)ε

a − b 0 · · · 0
... · · ·

...
...

... · · ·
...

...
... · · ·

...

0 · · · 0 (a − xr)ε
a − b 0 · · · 0 (xr − b)ε

a − b 0 · · · 0


column jmax column jmin

is nonnegative with diagonal elements ω0, ω1, . . . , ωr and all its row sums equal to λ0 + ε. Again, the ap-
plication twice of Brauer’s theorem guarantees that the spectrum of Aε is {λ0 + etq, λ1 + xtp, λ2, . . . , λr} =
{λ0 + ε, λ1 − ε, λ2, . . . , λr}. Hence Λε veri�es Perfect 2+ with Aε and the same partition of {λr+1, . . . λn} as Λ.
This shows that game implies Perfect 2+.

The list {6, 1, 1, −4, −4} is not game realizable, see [3], but is Perfect 2+ realizable because the matrix 4 0 2
3/2 4 1/2
0 6 0


realizes {6, 1, 1} and the sum of the elements of each one of the lists {4, −4}, {4, −4} and {0} is nonnegative.
This shows the inclusion is strict.

Theorem 10. The inclusion of Perfect 2+, with r ≥ 1, in Soto-Rojo, with s ≥ 2, is strict.

Proof. The inclusion is clear. The list {8, 6, 5, 5, −4, −4, −4, −4, −4, −4} satis�es Soto-Rojo for the partition
{8, 5, −4, −4, −4} ∪ {6, 5, −4, −4, −4}: {8, 6} is realizable by a nonnegative matrix with diagonal elements 7
and 7 and {7, 5, −4, −4, −4} is realizable because it satis�es the necessary and su�cient conditions given in
[9].

This list is not Perfect 2+: if {8, 6, 5, 5} is realized by A = (aij) with diagonal elements w0, w1, w2 and
w3, we have

w0 + w1 + w2 + w3 = 24, and 0 ≤ wi ≤ 8 for i = 0, . . . , 3.

We can take A with all its row sums equal to 8, see Lemma 2. Then the two possibilities to partition
{−4, −4, −4, −4, −4, −4} such that Perfect 2+ is satis�ed are

{−4, −4} ∪ {−4, −4} ∪ {−4, −4} ∪ ∅ ⇒

{
ω0 = ω1 = ω2 = 8
ω3 = 0

and

{−4, −4} ∪ {−4, −4} ∪ {−4} ∪ {−4} ⇒

{
ω0 = ω1 = 8
ω3 = 8 − ω2

.

The nonnegative character of A implies, in both cases, that A is of the form

A =


8 0 0 0
0 8 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


which contradicts that the spectrum of A is {8, 6, 5, 5}.
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Remark 1. Note that the list {8, 6, 5, 5, −4, −4, −4, −4, −4, −4} given in the previous proof is not Perfect 2+ but
it satis�es Perfect 2, that is Theorem 1.

Recently, Ellard-Šmigoc [5], via a recursive approach to symmetric realizations, have established the equiva-
lence of several of the most general su�cient conditions for symmetric realization. In particular, they prove
the equivalence

C-realizability ⇐⇒
⋃
p≥2
Soto p .

As a consequence we have that game and C-realizability are also equivalent, since⋃
p≥2
Soto p ⇒ game ⇒ C-realizability ⇐⇒

⋃
p≥2
Soto p .

Next we summarize the previous results in a map and we give examples to explain it.

Borobia

C-realizability ≡
≡ Sotos ≡ game

Perfect 2+ Sotos =
⋃
p≥2
Soto p

X = Condition X is not satis�ed

Sotos ∩ Borobia : {3, 3, 1, 1, −2, −2, −2, −2}

Perfect 2+ ∩ game : {6, 1, 1, −4, −4}

Perfect 2+, the strongest criteria of the map, presents the di�culty that it requires the construction of an
(r + 1)-by-(r + 1) matrix with �xed diagonal realizing the given spectrum, which is an open problem.
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