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ABSTRACT 

 

The overall aim of this thesis was to determine epigenetic changes in peripheral immune cells 

from Multiple Sclerosis (MS) patients. MS is a chronic inflammatory neurodegenerative 

disease, which initially presents itself during young adulthood. Big consortia have identified 

over 230 different polymorphisms contributing to the risk of developing disease, with many 

of these polymorphisms located in immune genes. However, the odds ratios of these 

polymorphisms are small and many known environmental risk factors are contributing to the 

disease. This indicates that the risk may partially be conferred through epigenetic changes 

such as DNA methylation.  

In this thesis, we investigate the role of DNA methylation in different peripheral immune 

cells using genome-wide DNA methylation arrays. We first characterized DNA methylation 

patterns in four different immune cell types form relapsing-remitting (RRMS), secondary-

progressive (SPMS) patients and healthy controls (HC) and compared them with each other. 

Here we found a shared signature between all cells types, and in SPMS we found a specific 

neurodegenerative signal, while in MS patients, we saw lymphocyte signaling and T cell 

activation being affected. The top changes in CD4+ T cells indicate a change in 

the VMP1/MIR21 locus. We functionally investigated this and found lower miR-21 

expression and an increase of miR-21 target genes. Because the most numerous methylation 

changes were found in CD19+ B cells, we further investigated CD19+ cells in a second larger 

cohort. After meta-analysis, the changes in B cells indicate differences in metabolism and 

activation between RRMS and HC. To analyze the shared pathway data, we developed a 

method to cluster pathways, which we further developed into an R package called 

GeneSetCluster. 

We investigated the effects of dimethyl fumarate (DMF) and rituximab treatment on DNA 

methylation in CD4+ and CD14+ cells. The different treatments had a different cell type 

specific signature as well as different kinetics. After DMF treatment, we found changes in 

reactive oxygen species (ROS) signaling and T cell subtype associated genes. Furthermore, 

we identified a polymorphism associated with treatment outcome and ROS production that 

does not associate with disease susceptibility. After rituximab treatment, we found 

differences in activation, metabolism and motility associated genes.  

Our findings collectively underline the importance of investigating epigenetic changes in 

multiple cell types to identify novel, potentially modifiable, mechanisms involved in the 

etiology and pathogenesis of complex diseases like MS. 
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1 MULTIPLE SCLEROSIS 

1.1 DISEASE AND SYMPTOMS 

Multiple Sclerosis (MS) is a chronic inflammatory disease, it is located in the central nervous 

system (CNS), and MS is defined by the autoimmune destruction of myelin, which results in 

the loss of neurons (1, 2). It is the second most common debilitating disease in young adults, 

and it affects around 2.5 million people worldwide. Patients are usually diagnosed between 

20-40 years of age, with women being affected nearly three times as often as men (3). The 

disease is characterized by an immune response against myelin, which is a lipid-rich layer 

produced by oligodendrocytes. Myelin insulates axons to allow for fast transmission of 

electrical impulses within the nervous system as well as providing metabolic support for the 

axons. This immune response causes the breakdown of the blood brain barrier (BBB), 

infiltration of immune cells into the CNS and subsequent development of inflammatory and 

demyelinating lesions in both brain and spinal cord (4). Later in the disease course, there is 

notable neurodegeneration and severe brain atrophy, tough brain atrophy can be observed in 

the initial stages also. 

MS symptoms can vary greatly depending on the localization of the lesions in the CNS and 

can include changes in sensation, muscle weakness, muscle spasms, difficulties with 

coordination and balance, problems in speech, visual problems, fatigue and acute or chronic 

pain syndromes, bladder and bowel difficulties, cognitive impairment, or depression. The 

patient disability is measured using the Expanded Disability Status Scale (EDSS) (5). Using 

modern magnetic resonance imaging (MRI) we can detect these lesions in the brain (Fig. 1), 

these are classified either with different time pulses or with contrast enhancing agents.  

Lesions detected using longer pulses are classified as T2 lesions, and three or more new T2 

lesions in a 2 year period predicts unfavorable for patient outcome (6). The most commonly 

used contrast-enhancing agent in MS is Gadolinium-based, which normally is unable to pass 

through the BBB unless there is an active or chronic lesion in the brain (7). 

The initial diagnosis of most MS patients (~85-90%) is the relapsing-remitting form of MS 

(RRMS). However, there is a preclinical phase where the disease is ongoing but does not 

present itself with symptoms yet (8). The initial clinical event is called a clinically isolated 

syndrome (CIS), but after the second relapse, patients are diagnosed with RRMS (Fig.1). The 

RRMS form of the disease presents itself with recurring episodes of acute neurological 

symptoms (relapses) followed by recovery (remission). While inflammation is present in all 

stages of MS, it is more pronounced in RRMS than in the progressive phase. The RRMS 

stage is currently quite successfully treated with several disease-modifying therapies, 

described below, which broadly target the immune system and treatments are sometimes 

accompanied by severe adverse effects (9). However, after roughly 15-20 years (10, 11)the 

majority of RRMS patients convert to a more progressive form of MS called secondary-

progressive MS (SPMS). SPMS is noted for the accumulation of axonal damage, neuronal 

loss and the persistent increase in neurological disability. The remainder of the patients exert 

a different disease course, called primary-progressive MS (PPMS), which presents itself with 

a more severe disease course from onset without the complete or partial recovery phase and 

displays less inflammation while still causing a lot of nerve damage. Recently the first drugs 
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became available for disease stages other than RRMS, recently ocrelizumab was approved 

for PPMS and siponimod was approved for SPMS patients.  

 

 
Figure 1. Multiple Sclerosis (MS) disease course. This figure displays the disease course of the 

average MS patient starting with relapsing-remitting phase and later on progressing to the secondary 

progressive phase of the disease. A relative contribution of inflammatory and neurodegenerative 

mechanisms throughout the disease course is depicted schematically.  

 

2 EPIDEMIOLOGY 

2.1 GENETICS 

While the exact cause of MS remain unknown, current epidemiological data establish MS as 

a complex disease with a strong genetic and environmental component. Family members of 

MS patients have a higher chance of developing MS, with monozygotic twins (MZ) 

displaying a concordance rate of ~15-25% compared to 2-5% in dizygotic twins, indicating 

the importance of genetic as well as environmental factors (12, 13). The first discovered and 

still the strongest genetic risk factor lies within the Human Leukocyte Antigen (HLA) 

locus(14), specifically a class II allele of the HLA-DRB1 gene, HLA-DRB1*15:01. Large 

international consortia (15, 16) conducted genome-wide association studies and custom-

designed arrays, which have identified over 230 non-HLA single nucleotide polymorphisms 

(SNPs) which predispose for MS. Many of these lie in genes associated with T-cell related 

signaling pathways, as well as multiple variants and alleles of the HLA locus itself (17). The 

class II HLA molecules are expressed on antigen presenting cells (APCs) and present peptide 

antigens to CD4+ T cells, thus playing a crucial role in the antigen-specific immune response.  
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2.2 ENVIRONMENTAL FACTORS 

In MS, the relatively low concordance rate in MZ twins indicates a possible role for the 

stochastic nature of the adaptive immune system regarding molecular mimicry, but also the 

environmental exposure as crucial to disease development. Epidemiological studies have 

identified environment risk factors such as lack of vitamin D/sun exposure, smoking, elevated 

Body Mass Index (BMI) in early life and Epstein-Barr virus (EBV) infection (18). 

Interestingly, many of these environmental cues seem to act during a susceptible window 

encompassing childhood and adolescence (4, 19). This has been observed in migration 

studies, where a reduced risk in migrants moving from a high- to a low-risk area was seen if 

they moved during the first two decades of life (19). Conversely, the migration from a low- 

to a high-risk area did not alter the risk of MS in the migrants, however, the increased risk 

was seen in their children. Even though these environmental risk factors are well studied in 

their association with MS, other environmental factors such as the gut microbiome, including 

the brain-gut axis are attracting more attention recently (20, 21). Furthermore melatonin 

levels (22) also appear to influence MS disease.  

 

3 THE ROLE OF IMMUNE CELLS IN MS PATHOLOGY 

The autoimmune response in MS is a result of the interaction of many cell types. Although 

multiple immune cells have been implicated in the immunopathology of MS, this thesis focuses 

on T and B cells and monocytes, and thus their role in MS is briefly described in the following 

sections. 

3.1 ROLE OF T CELLS 

The CD4+ T cells, also known as T helper cells, help regulate or suppress immune cells by 

releasing cytokines, which assist in activating cytotoxic T cells, B cell antibody class switching 

and macrophages. In MS, relevant subtypes are the pro-inflammatory Th1 and Th17 cells and 

the repressive regulatory T cells (Tregs). Activation of CD4+ T cells occurs by binding of the 

T cell receptor (TCR) that recognizes a peptide antigen presented by the HLA molecule on a 

professional APCs, though a second and third activation signals are needed as well. The CD4+ 

cells then express cytokines such as IFNγ and IL17A, which in turn create a positive feedback 

loop leading to the activation of more CD4+ T cells. MS is associated with an unbalanced ratio 

of Tregs vs Th1 and Th17 (23). In addition, Tregs function has also been shown to be impaired 

in MS (24, 25). Tregs play a critical role in maintaining peripheral immune tolerance by 

suppressing autoimmune responses. Interesting is that in the MS GWAS several Treg related 

genes were found including IL-2 signaling, CD25, and CD127 (26). CD4+ T cells help in 

disrupting the BBB and the production of cytokines attracting monocytes and neutrophils, 

together which form MS lesions (27). The role of CD4+ T cells in MS is well established in 

part due to the animal model of M-like disease experimental autoimmune encephalomyelitis 

(EAE), where transfer of activated myelin oligodendrocyte glycoprotein (MOG)-specific CD4+ 

T cells is enough to cause demyelinating disease (28). 
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CD8+ T cells are much more predominant in active MS lesions than CD4+ T cells, and they are 

the primary cytotoxic effector cells that drive myelin destruction. Measuring TCR variability 

in brain lesions indicate a limited range of TCRs, the cause for this could be local T cell 

expansion at the site of inflammation (29). Higher frequencies of CD8+ T cells correlate with 

axonal damage (30). In MS lesions, 25% of the CD8+ fraction produce IL17, a characteristic 

of mucosal-associated invariant T (MAIT) cells (31), MAIT cells are reported to be important 

for regulating Th1 responses and the number of MAIT cells is reduced in the peripheral blood 

of MS patients, indicating that these cells might have several anti-inflammatory properties (32).  

3.2 ROLE OF B CELLS 

B cells have been getting more interest in the immunopathology of MS over the last few years. 

B cells have many functions, these include antibody production, where differentiated B cells 

undergo affinity maturation and start to produce antigen-binding proteins. B cells are also 

APCs, and have roles in antigen presentation, where soluble autoantigens bound on the B cell 

surface are presented to T cells. Part of this APC function is autoantigen transport, where B 

cells capture specific antigens and transport them to the lymph nodes. Finally, B cells also 

produce several pro and anti-inflammatory cytokines (33). In some autoimmune diseases, B 

cells generate pathogenic autoantibodies, however, there is no conclusive evidence of such 

autoantibodies playing a pathogenic role in MS (34), and antibodies alone are also not capable 

of inducing EAE, indicating that in MS the role of B cells is related to cytokine production and 

APC function. Despite this, the IgG oligoclonal bands in the cerebral spinal fluid (CSF) of MS 

patient are a useful clinical biomarker for MS diagnosis (35). CXCR13, a chemokine specific 

for B cells is found in the CSF, and has a positive correlation with relapse rate (36). 

Similar to T cells, there are many subtypes of B cells, with the memory B cells gaining 

increasing evidence in the context of MS. These are long-lived B cells, which remain after the 

initial inflammation, and that can evoke an enhanced response to reinfection, particularly in 

response to viruses (37). Only treatment with drugs which target memory B cells appear to be 

beneficial in MS. Tabalumab, which inhibits B cell activating factor (BAFF), depletes mature, 

but not memory B cells, and has no clinical effect in MS (38). Meanwhile, rituximab treatment 

is a highly successful MS drug and depletes both mature B cells and memory B cells (39). The 

number of memory B cells in the blood of MS patients has also been reported to be reduced 

after dimethyl fumarate (DMF) treatment (40) and fingolimod treatment results in a reduction 

of memory B cell migration into the CNS (41), where the memory B cells are the most 

numerous B cells (42). Furthermore, it is in the CNS where the EBV transformed B memory 

cells reside (43). Memory B cells are also reported to activate brain-homing autoreactive CD4+ 

T cells (44), via interacting with HLA-DR on the CD4+ T cell surface.  

3.3 ROLE OF MONOCYTES/MACROPHAGES 

Monocytes and macrophages are both APCs and part of the innate immune system, and their 

main functions are phagocytosis, antigen presentation and cytokine production. T cells recruit 

monocytes and macrophages to the CNS following BBB disruption. Preventing the 

accumulation of macrophages delays the initiation of EAE and results in a less severe disease 

course (45). Their contribution to MS could be due to the production of reactive oxygen species 

(ROS), which are potent immune regulators. With the different ROS being integral to many 
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processes in the immune system, including T cell activation, proliferation and apoptosis (46). 

DMF has been reported to dampen the monocyte response by altering its ROS production (47). 

Furthermore, active lesions are characterized by myelin-filled macrophages, which 

phagocytose myelin debris following T cell mediated destruction (48).  

 

4 TREATMENT 

Currently several treatment options exist for patients with RRMS, some are broadly targeting 

drugs such as interferons, others are more specific, such as natalizumab, which stops 

lymphocytes from passing the BBB by which it prevents CNS inflammation (49). Fingolimod 

(50) and siponimod (51) both target the sphingosine-1-phosphate receptor to trap 

lymphocytes in the lymph nodes, preventing their contribution to the autoimmune response, 

fingolimod also inhibits histone deacetylases (HDACs) in the brain. Glatiramer acetate is a 

mixture of several synthetic polypeptides that are believed to inhibit the binding of myelin 

proteins to HLA (52). DMF has several effects, though the exact beneficial means are 

unknown but seems to be involved in modulation of ROS signaling, which is essential in 

BBB, macrophage and monocyte functioning (53). Rituximab, ocrelizumab, ublituximab and 

ofatumumab are monoclonal antibodies against B cell marker CD20 (54). B cell depletion 

with anti-CD20 leaves the antibody-producing plasma cells remain unaffected, highlighting 

the importance of the antigen presenting role and cytokine production of the B cells as 

possible drivers of MS. B cell depletion seems to work by modulating T cell responses, 

reducing inflammatory cytokines and depleting the EBV reservoir (55). Despite the 

numerous available treatments for RRMS, most patients end up switching from first line 

treatment to a second or later choice, indicating that proper selection of initial treatment is 

difficult due to heterogonous nature of MS (56). 

 

5 EPIGENETICS 

The British embryologist C.H. Waddington coined the term epigenetics in 1942 as pertaining 

to epigenesis or the epigenotype (57). Currently, it is defined as the study of heritable changes 

in gene function that do not involve changes in DNA sequence. This means it covers 

mechanisms that make up the phenotypical state of a cell despite the same genetic background 

(Fig. 2A). The best known epigenetic mechanisms include DNA methylation, histone 

modifications and non-coding RNAs. Dysregulation of these regulators at any level can 

influence disease risk and severity. Despite over 230 SNPs currently known to affect MS risk, 

the odds ratio of these SNPs is small, indicating that there is a role for environmental risk 

factors. As epigenetics lies at the molecular interface between the genetic background and 

environmental exposure, it might provide further insights into MS risks and pathogenesis. 

5.1 DNA METHYLATION 

DNA methylation is the covalent addition of a methyl group to the 5th carbon of cytosine, 

known as 5-methylcytosine (5mC), and is usually occurs in a CpG dinucleotide context (Fig. 
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2B). CpG indicates that it is a cytosine followed by a phosphate followed by guanine that is 

methylated. Non-CpG methylation also occurs but is restricted to specific cell types such a 

pluripotent stem cells and CNS resident cells (58). A single CpG within a cell appears either 

methylated, hemi-methylated or de-methylated and estimations indicate that within the human 

genome there are roughly 28 million CpGs (59).  

The chemical addition and removal of a methyl group to cytosine is performed by several 

different enzymes. DNA methyltransferases (DNMTs) act in the establishment of de novo 

methylation (DNMT3A and DNMT3B) or preservation of the methylation status during cell 

division (DNMT1). DNA methylation within CpG rich promotors of genes is associated with 

transcriptional repression (Fig. 2C/D) (60), while higher methylation in gene bodies positively 

correlates with expression, likely due to blocking the binding sites of alternative promotors and 

altering the kinetics of transcription. Furthermore, studies suggest that methylation can also 

influence splice variants.  

Meanwhile, in addition to passive mechanisms, DNA de-methylation can occur by the ten-

eleven translocation family of proteins (TETs), which oxidize 5mC to 5-hydroxymethyl 

cytosine (5hmC), followed by further downstream metabolization. 5hmC has been 

demonstrated to be stable and to functionally regulate the genome with higher abundance in 

certain tissues such as lungs, testes and CNS [41]. Higher levels of 5hmC in the body of genes 

correlate positively with transcription. The role of DNA methylation is highly complex and 

depends on genomic context, specific tissue and time-dependent events. 

 

 
 

Figure 2. Chromosomal organization and DNA methylation. A) The organization of a chromosome, 

with the chromatin, nucleosome, with histone modifications, down to the DNA sequence where the 

chemical modification of cytosine takes place. B) The different bases with the different methyl groups 

attached. C) An unmethylated promoter with methylated gene body CpGs that results in expression. 

D) A methylated promoter of a gene that is not expressed. 
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5.2 EPIGENETIC METHODS 

The methyl group can be distinguished either by methylation-sensitive enzymes or by 

chemical treatments such as bisulfite conversion, which chemically alters un-methylated 

cytosines to uracil, further amplified to thymine, with the ratio of C / T in the post-bisulfite 

downstream analysis representing the methylation level. Here it is important to realize that 

the level of methylation in a single cell is usually binary, but samples represent a mixture of 

many cells. Therefore this methylation measurement represents the average of the cells 

measured, and this also means that the difference in methylation levels found might represent 

a difference between cell mixtures.  

Current high-throughput methods allow for genome-wide profiling of DNA methylation with 

a relatively small amount of DNA required. As a result, high throughput methods are well 

suited for clinical studies where MS immune or CNS cells are compared with healthy controls 

to identify differentially methylated positions (DMPs) and regions (DMRs). The most 

commonly used genome-wide methods include microarray approaches such as Illumina 

450K (450K) and Illumina EPIC (EPIC). Common sequencing-based methods, including 

whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing 

(RRBS). Other available techniques include enrichment approaches like the Agilent 

Sureselect Methyl-seq or immunoprecipitation approaches such as methyl-CpG sequencing 

(meDIP-seq) or methyl-CpG binding domain sequencing (MBD-seq). Locus specific 

techniques include pyrosequencing, qPCR and methylation-specific PCR. 

The ratio of C / T following bisulfite treatment in methylation data is calculated for every 

CpG as a beta (β) using the following formula: 

𝐵𝑒𝑡𝑎𝑖 =  
𝑚𝑎𝑥(𝑌𝑖, 𝑚𝑒𝑡ℎ𝑦, 0)

𝑚𝑎𝑥(𝑌𝑖, 𝑢𝑛𝑚𝑒𝑡ℎ𝑦, 0) +  𝑚𝑎𝑥(𝑌𝑖, 𝑚𝑒𝑡ℎ𝑦, 0) +  𝛼
 

 

This beta can be transformed in to log2 space as a M value, which is calculated as: 

𝑀𝑖 = 𝐿𝑜𝑔2 (
𝑚𝑎𝑥(𝑌𝑖, 𝑚𝑒𝑡ℎ𝑦, 0) +  𝛼

𝑚𝑎𝑥(𝑌𝑖, 𝑢𝑛𝑚𝑒𝑡ℎ𝑦, 0) +  𝛼
) =  𝐿𝑜𝑔2 (

𝐵𝑒𝑡𝑎𝑖

1 − 𝐵𝑒𝑡𝑎𝑖
) 

where 𝑌𝑖 , 𝑚𝑒𝑡ℎ𝑦 and 𝑌𝑖, 𝑢𝑛𝑚𝑒𝑡ℎ𝑦 are the intensities measured by the ith methylated and 

unmethylated probes (61). In the formula, the α is a constant offset added to the intensity 

value of methylation arrays to regularize the beta value when intensities are low. While the 

beta value is attractive due to the direct biological interpretation, it has a bounded range, and 

this creates problems with the assumption of a Gaussian distribution of many statistical tests, 

on the other hand, M value is more statistically valid in differential analysis. However, the 

M value is more challenging for biological interpretation.  

5.3 ANALYSIS PIPELINES 

The platform of choice for most human studies used the 450K array while recent ones have 

updated to the EPIC array. Illumina arrays are used due to the low costs and low amount of 

input DNA required. The array design started in 2008 with the Illumina 27K which had 
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~27 000 probes with a type I probe chemistry. This was followed up in 2011 with the 450K 

array, which has ~480 000 probes, covering ~99% of all refseq genes and was mostly focused 

on CpG islands. Due to the large number of additional probes required, the additional probes 

were designed with new chemistry for specific for type II probes. In 2016 Illumina released 

the Illumina EPIC array, which removed ~50 000 probes from the 450K design due to the 

proximity to SNPs, while the EPIC array has ~400 000 additional probes. These additional 

probes are designed to mostly cover enhancers regions, as identified by FANTOM5 (62). We 

recently demonstrated that the EPIC array could also be used in mice, with over 19 000 

probes mapping to the mouse genome (63).  

As mentioned above, there are two types of probe chemistry in the Illumina design, the type 

I probe design has one bead for the methylated state and another for the unmethylated state 

(Fig. 3). The type II probe design has a single bead, which determines the methylation state 

by using fluorophore coupled single base extension after hybridization (64). The methylation 

levels are then measured using red and green fluorescence. The type II probes have a higher 

variance, less accuracy and are less sensitive to extreme methylation signals (65). Due to this, 

several specialized normalization pipelines have been established using peak-based 

correction. A commonly used pipeline includes quantile normalization, followed by beta 

mixture in-quantile normalization (BMIQ) (66). The remaining batch effects, such as slide 

or position on the slide, can be identified with a data reduction method such as principal 

component analysis (PCA). The identified effects should then be corrected for using batch 

correction tools such as combat (67).  

While running a differential analysis, we aim to compute p-value to address the statistical 

significance of the differences. When comparing, for example, MS cases with healthy 

individuals to identify statistically significant differences, several potential independent 

variables have to be considered and controlled for. These covariates are elements that can 

affect the methylation level that could increase the heterogeneity of the clinical signal. These 

can include age, gender, and treatment history, among others, but this depends on the exact 

statistical question and cohort design and the power to detect interactions. A proper way to 

statistically control for this is to set up a linear model to regress out the effect of the covariate 

so that only the dependent variable remains.  

The output of a statistical test is a p-value, and the p-value represents the probability of a type 

1 error, a false rejection of the null hypothesis, meaning that there is no difference between 

the groups tested. Therefore, if the p-value is smaller than 0.05 than there is a less than 1 in 

20 probability that the null hypothesis is true, meaning there is a high probability that it needs 

to be rejected because there is a difference between the tested groups. Usually, the 

significance cutoff is set for 0.05, however, if we preform 450 000 tests on the 450K array, 

this would mean that there could be up to 22 500 type 1 errors if there is no adjustment for 

multiple tests. Adjusting for multiple testing refers to the re-calculating of the probabilities 

obtained for the number of times the test was performed. There are several methods for this, 

but the common methods include Bejamini Hochberg for False-Discovery Rate or Bonferroni 

for Family Wise Error rate correction (68). We usually select CpG sites with an adjusted p-

value < 0.05. 
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Figure 3. Illumina methylation array probe design (64). Blue is a single bead, the red box is the 

CpG locus and the orange line is the bisulfite converted DNA. A) The design of the Illumina EPIC 

slide. B) The design of the type I probes, which has one bead for the methylated strand and a 

separate bead for an unmethylated strand. C) The design of the type II probes, where there are both 

methylated and unmethylated signals on the same bead. 

 

6 EPIGENETIC STUDIES IN MS 

6.1 IMMUNE CELL STUDIES 

The first genome-wide DNA methylation study in MS from Baranzini et al. used RRBS 

covering > 1.7 million CpGs in CD4+ T cells of three MS-discordant MZ twin pairs (69). The 

study found very few DMPs but these had large variations within twin pairs, none of which 

passed genome-wide significance or were shared between the pairs. However, due to small 

sample size, heterogeneity of the individuals, and low genome coverage of their sequencing 

data, as well as their focus on large differences, several important sites may have been missed. 

Handel et al. (70) investigated the role of DNA methylation of the HLA-DRB5 and HLA-

DRB1 locus in peripheral blood mononuclear cells (PBMCs). They compared patients 

classified as either benign or malignant based on EDSS, but none of the CpGs investigated 

showed any significant effects between the two groups. There was a non-significant trend 

towards more HLA-DRB5 DNA methylation in the malignant than the benign group.  

Graves et al (71) used Illumina 450K to analyze CD4+ T cells from 30 RRMS patients and 

compared them to 28 healthy controls. Notably, contrary to Handel et al. (70) the authors 

found strong methylation differences in the HLA locus and especially the HLA-DRB1 gene. 

In CD4+ T cells the HLA-DRB1 locus displayed strong hypomethylation, and in addition, 55 

non-HLA differences were reported. Interestingly, a large portion (54%) of the non-HLA 

differences map to genes that have previously been reported in the context of MS. In the 



 

18 

follow-up study in CD8+ cells from the same cohort, Maltby et al. (72) could not confirm the 

changes in HLA-DRB1, and none of the CD8+ differences mapped to MS reported genes. 

Only one gene overlapped between the studies, the MORN1 gene but with different CpGs in 

the two studies, indicating different epigenetic MS signatures between CD4+ and CD8+ T 

cells. Maltby et al. also studied CD19+ cells and found a larger number of DMPs compared 

to CD4+ cells or CD8+ cells (73), with over 7000 sites having a nominal p-value < 0.05 and 

Δβ > 0.1. They found a large DMR in the LTA gene, which encodes the Lymphotoxin-alpha 

(LT-α) protein. LT-α is a TNF family member produced by lymphocytes that promotes 

lymphocyte proliferation and immune activation via NF-κB (74). Increased LT-α has been 

implicated in MS before (75). Other reported genes belong to the NF-κB cascade, as well as 

IL21R, a receptor involved in B cell proliferation (76). 

Bos et al. (77) analyzed CD4+ and CD8+ T cells sorted from peripheral blood, as well as 

matching whole blood of MS patients and healthy controls using the Illumina 450K array. 

This study also highlighted the importance of separating different immune cell 

subpopulations in DNA methylation studies, with only a few overlapping CpGs between the 

cell types. The biggest differences were seen in the TMEM48 transcription start site (TSS), a 

gene involved in a nuclear pore complex. Nominally significant CpGs in the first exon of 

APC2 were found, a gene involved in microtubule and beta-catenin binding. Additionally, 

the DNHD1, also involved in microtubule movement, displayed several CpGs throughout the 

gene. Interestingly, this study revealed a strong hypomethylation of CD8+ cells in patients 

with duration over 7 years or lower, compared to those with a duration above 8 years. Rhead 

et al. (78) combined the data from Bos et al. with those of Maltby et al. and saw significant 

differential methylation in 4 different loci, namely those in the MOG/ZFP57, HLA-DRB1, 

NINJ2/LOC100049716, and SLFN12 genes.  

Neven et al. (79) investigated methylation of the Alu, LINE-1 and SAT-α, which are known 

as estimators of global DNA methylation levels, and together form around 33-35% of the 

entire genome. In total, 51 MS patients and 137 matched healthy controls were compared and 

showed significant hypermethylation of these repetitive elements. Lower levels of Line-1 

methylation was associated with a lower EDSS while higher levels of Alu methylation 

associated with a lower EDSS. 

Kulakova et al. (80) investigated DNA methylation using 450K in PBMCs from 14 RRMS 

and 8 PPMS patients compared with 8 healthy controls. More than half of the differential 

CpGs found had higher levels of methylation found in RRMS and PPMS when compared 

with controls, but PPMS genes also had higher levels of methylation than RRMS. 

Interestingly the ESRRG gene, a potential transcription factor for DMNT1, was found 

differentially methylated in RRMS. PPMS which is thought not to have a sizeable immune 

component, still had differential methylation of the immunological genes HLA-F, MTPN, 

VIPR2 as well as autophagy gene ATG16L2. These data indicate that the methylation profiles 

of PBMCs from PPMS are distinctly different from that of RRMS.  

Souren et al. looked in PBMCs from 45 monozygotic twin pairs discordant for MS using the 

EPIC array (81). After adjusting for cell-type composition, no genome-wide significant 

changes were detected, but the top genes included ZBTB16, TMEM232, SEMA3C, YWHAG, 

and MRI1. Epigenetic changes in ZBTB16 and TMEM232 were validated in a cohort of four 
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CD4+ samples analyzed with WGBS. ZBTB16 is a GC response gene, which is not covered 

by the 450K array and while the TMEM232 gene had a large DMR the function of this 

transmembrane gene is currently not known. In the CD4+ cohort, they also identified a 

prominent DMR in the intronic CTCF/YY1 bound regulatory region in FIRRE. In the specific 

setup of this study, they could also identify a signature associated with interferon (IFN) 

treatment, one of the most commonly used MS modifying treatments. The IFN analysis 

showed 212 genes associated with the top DMP located in the RSAD2, MX1, IFI44L and 

PLSCR1 genes, which are reported to be higher expressed in the blood cells of IFN-treated 

MS patients. 

The strongest genetic risk factor in MS is the HLA-DRB1*15:01 haplotype, which confers a 

3-fold increase in MS risk and in the paper of Kular et al. we investigated the role of DNA 

methylation in the HLA-DRB1*15:01 gene (82). In the analysis of MS compared with 

healthy controls in CD14+ monocytes we identified a DMR in exon 2 of the HLA-DRB1 

gene, where HLA-DRB1*15:01 carriers had lower methylation and a higher expression of 

the HLA-DRB1 gene. We used causal inference testing to establish a causal link between 

genetic background, DNA methylation levels and HLA-DRB1 expression. Causal inference 

testing identified seven DMRs that could mediate the genetic risk, six of which we could 

confirm using CD4+ T cells, CD8+ T cells and CD19+ B cells. We further used two-sample 

Mendelian randomization to determine the causal link between genetic variation in the HLA-

DRB1 gene, its methylation and expression levels. This is the first study in MS demonstrating 

that DNA methylation can mediate the risk of developing the disease. 

Few studies up to date investigated changes in the epigenome after treatment in MS patients. 

MS treatment is centered on the dampening of the immune response and reducing the 

inflammation in the CNS. DMF has several functions which are still being investigated, but 

a central effect is that it releases nuclear factor erythoid 2-related factor 2 (NRF2) from 

KEAP1 and results in the upregulation of ROS related genes and influences the polarization 

of T cell subtypes (83). Matlby et al. looked for the changes in CD4+ T cells between baseline 

and 6 months of treating with DMF, and identified four genes, SNORD1A, SHTN1, MZB1 

and TNF (84). Ntranos et al. compared DMF treated patients with both glatiramer acetate 

patients as well as treatment naïve patients (85). Here they found hypermethylation of MIR21 

locus in CD4+ T cells from the DMF treated patients. They also show that the 

hypermethylation of MIR21 also occurs in cells in vitro in a dose-dependent manner. 

6.2 EPIGENETIC INTERACTION WITH ENVIRONMENT 

Several studies have looked at the influence of the environment on the epigenome in the 

context of MS.  

One of the top environmental risk factors is smoking. Smoking is a risk factor that has been 

associated with many diseases, and in MS it is associated not only with an increased risk of 

developing MS [32], but also with faster progression and clinical disability [33]. The odd 

ratios of several genetic risk factors increase significantly due to the interaction with smoking 

(86). Studies in the Nordic countries, such as Sweden, where oral tobacco is popular suggest 

that this effect might be independent of the nicotine and might be due to immune activation 

in the lungs. Marabita et al. investigated the effect of smoking on PBMC DNA methylation 
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in MS patients (87). Notably, although smoking in MS induced methylation changes on the 

same CpGs as in healthy individuals, the amount of smoking had significantly more 

pronounced impact on methylation changes in MS patients, as demonstrated, e.g. a CpG in 

the AHRR gene, among others. This implicates interaction between smoking and disease 

processes in impacting the epigenome. Interesting is that the Ahr pathway, where AHRR 

belongs to, is a known regulator of Th17 and Treg subsets (88).  

Vitamin D, which has a strong associated with MS (89), is activated in the skin under exposure 

of UV from sunlight and has a protective role via dampening inflammatory actions of APCs, 

T and B cells. Vitamin D receptor (VDR) is a nuclear receptor, whose binding sites in 

lymphoblastoid cell lines are enriched near loci that associate with autoimmune diseases and 

with genes, which are differentially expressed between MS and controls (90). In EAE vitamin 

D supplements can dampen the severity of disease due to reduced proliferation of CD4+ T cells 

(91). Using MBD-seq and ChARM arrays, it was demonstrated that vitamin D-

supplementation in rats results in hypomethylation in CD4+ cells and their reduced activation 

state and pro-inflammatory phenotype.  

Previous studies have indicated that a risk factor for MS is a high BMI in early life. Castro et 

al. investigated the effect of BMI on the epigenome of peripheral monocytes (92). High BMI 

MS patients had hypermethylation of several genes, including NRXN1, TP63 and FZD7, 

which indicates a negative regulation of anti-proliferative genes. Using lipidomic profiling 

of plasma samples identified the presence of increased ceramide species in MS patients with 

high BMI. Ceramide species are a precursor to sphingosine-1-phosphate, whose receptor is 

the target of fingolimod (50) and siponimod (51). Similar DNA hypermethylation changes in 

these genes could be detected after ceramide treatment in cell cultures, but only if the 

ceramide concentration was similar to those high BMI MS patients. Furthermore, a high BMI 

correlates with an increase in monocytes and a decrease in brain volume of MS patients.  

A contribution of EBV to MS has been debated for a long time, as nearly all MS patients are 

EBV positive compared to 90-95% of the general population (93), though the odds ratio for 

developing MS increases significantly if the patient has a history of infectious mononucleosis 

(94). Furthermore, EBV infects memory B cells in the CNS (43). Interestingly, the EBV viral 

load is modulated by HLA alleles, with an increased presentation with HLA-DRB1*1501 and 

lower load with HLA-A*02, which matches with HLA-DRB1*1501 being a negative risk 

factor, while HLA-A*02 has a protective effect (95). Ong et al. studied EBV transformation 

of lymphoblastoid cells lines (LCLs) to investigate the interaction between EBV infection 

and MS (96). They saw that despite that EBV transformation results in predominantly 

hypomethylation, the regions around the MS risk loci were less likely to be hypomethylated 

than randomly selected regions, though they argue that this could be in part due to the 

constitutive B cell utilization of these regions.  

Several studies have tried to use DNA methylation to set up a clock that aims to capture the 

biological age of a tissue rather than the chronological age (97, 98). Theodoropoulou et al. 

looked at the effect of epigenetic aging as measured by DNA methylation in MS and found 

that epigenetic age is different between men and woman for different cell types (99). While 

the Age Acceleration Residual indicated a decelerated aging in MS woman, likely due to 

differences in cell frequencies, the Phenotypic Age Residual indicated accelerated 
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phenotypic aging in MS patients. Age is an important covariate in many diseases and in MS 

the risk for progression triples after the age of 50 (100). The potential for increased risk of 

progression after the age of 50 could be due to the accelerated aging of the immune system 

(inflamaging) caused by long-term chronic inflammation (101).  

6.3 CNS STUDIES 

Neurological diseases such as MS are challenging to study in a clinical setting due to the limited 

accessibility of the CNS. Nonetheless, several studies have investigated epigenetic changes of 

the CNS tissue from MS patients. The first study to do so by Mastronardi et al (102) studied 

citrullination of myelin basic protein (MBP), a major constituent of myelin in the CNS, which 

can display differential post-translational modifications. Citrulination of MBP by the peptidyl 

arginine deaminase 2 (PAD2) gene is increased in Normal Appearing White Matter (NAWM) 

of MS patients, and this is thought to contribute to loss of immune tolerance. In NAWM 

biopsies from MS patients, the PAD2 promoter was hypomethylated, and this effect appears to 

be MS specific with no differences seen in the thymus gland or in white matter from other 

neurological diseases. The PAD2 expression and promotor hypomethylation effect were also 

seen in PBMCs of MS patients by Calabrese et al. (103) though the role of PAD2 in PBMCs 

still has to be determined. 

Huynh et al. (104) used 450K to investigate at genome-wide DNA methylation changes in 

pathology-free NAWM brain regions from MS patients compared to unaffected controls. In 

a cohort of 23 MS patients and 19 healthy controls, they found 539 significant DMRs in MS 

brains compared to controls, and the DMRs were preferentially found in genomic locations 

associated with enhancers. DNA was found to be hypomethylated at the TSS but was 

hypermethylated in gene body CpGs. Hypermethylated and lower expressed genes include 

MBP, SOX8, a gene associated with sex determination (105), NDRG1, a gene involved in 

oligodendrocyte response to stress and BLCL2, an anti-apoptotic BCL2 family member. 

Meanwhile, proteolytic processing related genes LGMN and CTSZ were hypomethylated and 

expressed at higher levels. An important note is that the used methodology cannot distinguish 

between 5mC and 5hmC, enriched in neurons, which might contribute to some of the 

differences seen in the NAWM. Nevertheless, this study still highlights the numerous 

epigenetic changes in the CNS of MS patients influencing its homeostasis and its ability to 

repair itself after damage. 

We recently published a paper where we studied DNA methylation of neurons from post-

mortem brain tissue from MS patients and non-disease controls (106). Due to the high 

proportion of 5hmC in neurons, we investigated both 5hmC and 5mC. We also deconvoluted 

for glutamate and GABA neuronal fractions, the two main types of neurons. Interestingly, MS 

neurons were characterized by a sustained hypo-5mC and hyper-5hmC methylation, clustering 

mainly in gene bodies and associating with decreased gene expression. Altered genes belong 

to processes involved in synaptic plasticity, axonal guidance and CREB signaling pathway. We 

identified a reduction of CREB activity in MS samples, which could be confirmed with 

immunofluorescence of brain slides.  
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6.4 OTHER EPIGENETIC REGULATION 

There are abundant well-established methods to study DNA methylation, but 5mC is far from 

being the only level of epigenetic regulation. In the nucleus, the negatively charged DNA is 

tightly wrapped around a positively charged octamer complex of four dimer proteins called 

histones (Fig.2 A), and together they form a structure called a nucleosome, which controls the 

accessibility of the chromatin. The tails of the histones or the specific histones variants 

themselves can undergo changes, which can affect how accessible genetic loci are to the 

transcriptional machinery. This N-terminal tail can undergo a multitude of simultaneous post-

translational modifications (PTM). The acetylation of histone H3 is associated with 

transcriptional activation and is acetylated by histone acetyltransferases (HATs) and HDACs. 

HDACs are not only blocked by the MS drug fingolimod, but it has also been demonstrated 

that EAE can be treated by the use of HDAC inhibitors (107, 108). Furthermore, SNPs in genes 

encoding HDACs have been suggested to predict brain volume in MS patients (109). Recent 

work by Roy et al. demonstrated that the methionine is absorbed by CD4+ T cells, which serves 

as a donor for S-adenosyl-L-methionine (SAM) (110). Restriction of methionine in the diet of 

mice reduced H3K4 methylation in Th17 genes, and they demonstrate that restriction of 

methionine alters the expansion of pathogenic Th17 cells, which subsequently reduces EAE 

severity.  

Another regulatory level sometimes included in the term epigenetics comprises non-coding 

RNAs, which can include long non-coding RNAs (lncRNA), some of which have shown to be 

deregulated in the serum of RRMS patients (111), as well as small non-coding RNAs 

(sncRNA). Among the most studied sncRNAs are microRNAs (miRNA). MiRNA are 

transcribed in the nucleus where they form a hairpin structure, which is transported to the 

cytosol, where Dicer cleaves it into single-stranded RNA. The 3p or the 5p strand are then 

incorporated together with the Argonaute (Ago) protein into a RISC complex. They are 20-25 

bp long RNAs which use a 6-8 base seed sequence to identify and bind target mRNAs, with 

one miRNA being able to target several mRNAs, and control protein levels within the cell and 

tissues (112). MiRNA act intracellularly but can also be found in extracellular biofluids, such 

as plasma and CSF.  

They are currently intensively investigated for their biomarker potential, e.g. miR-150 is 

increased in the CSF of MS patients and correlates with more active disease and clinical 

parameters such as CSF cell count, immunoglobulin G index, and presence of oligo clonal 

bands (113). As of 2019, the role of miRNA in MS has been studied in over 61 studies with 

over 500 miRNAs reported as dysregulated. Piket et al. reviewed these studies (114), and the 

results indicated that the top miRNA-affected pathways in MS are linked to TGF-β-, B cell 

receptor-, PTEN-, MERK/MAPK-, PI3/AKT- and NF-κB signaling. Furthermore, the data 

indicated that the circulating miRNAs have a promising potential as MS biomarkers. However, 

the data also demonstrated noticeable inconsistencies among the results, which could be due to 

the heterogeneity among the methodologies, samples and cohorts used.  
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7 CHALLENGES 

A growing body of evidence suggests that epigenetics plays a role in the development and 

progression of MS but finding changes and markers, which are validated, has been a major 

issue. Several different studies have been performed, as described above, yet the studies have 

widely different results with minimal overlap. The disparity between the studies might have 

resulted from several different issues. The epigenetic marks found in different tissues and cell 

types are going to be highly diverse, and the potential low power of the study in question, the 

genetic variation, environmental factors as well as or on-going disease processes or therapy 

will further influence the different results.  

7.1 COMPARING AMONG STUDIES 

A large problem in comparing cohorts is the statistical analysis used to find differences, with 

every study using different pre-processing and normalization techniques for the data analysis, 

and, while the pipeline outlined above is common, several studies use different approaches. 

For instance, Graves et al. used a two-sided Kolmogorov–Smirnov (KS) test to find differences 

(71), which accompanied by a step-wise filtration process to remove probes associated with 

either gender or treatment in a subgroup of patients. Most of the other studies use a linear model 

that includes age and sex as covariates. Some studies use cell type deconvolution to remove 

the effects of different cell mixtures (115), but other studies do not. Furthermore, some studies 

with low power to detect changes do not reach statistical significance; therefore, they use a 

different cutoff to report results. The use of different linear models with corrections for different 

covariates and different statistical cutoffs for calling significant results poses difficulties with 

comparing the outcomes of different studies.  

7.2 INTEGRATING STUDIES 

An approach to integrate the efforts conducted in the different studies is to use meta-analysis 

(116), which combines the evidence from different independent studies. There are several ways 

to compare the evidence from different studies, either their p-value or the effects of the findings. 

A combination of the p-values can be done using several different methods, but a common one 

is to use the Fisher's combined probability test. An effects based meta-analysis can be 

conducted using either a fixed-effects or a random-effects model. A Fixed effect model 

considers that the effect of the covariates in the studies are comparable across all populations, 

while a random-effects means that the effect of covariates can vary between populations. As a 

result, if it possible to accept the assumptions, the fixed-effect model provides higher statistical 

power; however, considerable heterogeneity between studies, meaning inconsistent patterns 

between the compared cohorts, often requires the use of a random-effects model.  

7.3 META-ANALYSIS OVER PAIRED DATA OMICS DATA 

A recent addition to the meta-analysis toolbox comprises a method called OmicsNPC from the 

STATegra R package (117). This tool uses information from multiple omics layers and utilizes 

both permutations and non-parametric combinations to combine data with minimal 

assumptions. These layers could be paired data from several different cell types or the same 

samples analyzed with different technologies. The permutations are used to normalize between 

cohorts, making all the distributions on the same scale. When using the same samples in 
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multiple groups, it is essential to preserve local correlation by permuting the same way across 

all modalities. After permutations, a permuted p-value is generated based on the ranking of the 

statistic of interest with the permuted statistics. The permuted p-values are combined using one 

of several different non-parametric combination methods: Tippett, Fisher or Liptak. Each has 

its own specific assumptions and different rejections of the null hypothesis.  

 

Figure 4. The different rejection limits of the different OmicsNPC tests. The green line indicates that if 

one of the Liptak p-value is too large, it will be rejected. Remade with permission from the original 

authors(117) 

An interesting property of the Stouffer-Liptak method, Tl= ∑ ϕ
-1(1-λb

i ), is that there has to be 

minimal evidence for rejecting the null hypothesis in all studied combinations, or the test result 

would not be significant (Fig. 4). Practically, this means that if the studied change/gene is 

significant in all cohorts or modalities, it will be significant using the Stouffer-Liptak test. 

However, if the studied change/gene were not significant in one of the cohorts or modalities, 

then the null hypothesis would not be rejected even with overwhelming evidence from the other 

studied cohorts or modalities.  

7.4 FUNCTIONAL RELEVANCE 

Moreover, the functional relevance and causality of epigenetic changes need to be considered. 

Not only which genomic loci contain differences but also how sizeable are these differences, 

as MS typically exerts small changes in DNA methylation. The direction of the change can 

also mean different things depending on the affected genomic feature, e.g. promoter 

methylation correlates with transcriptional repression, gene body methylation correlates with 

transcriptional activity while methylation around splice sites can influence splice variants 
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(118). There is the question of whether studies should focus on DMPs or DMRs, as changes in 

DNA methylation are often correlated between the neighbouring CpGs, however here 

technology might limit what we can detect. The cross-talk with other regulatory mechanisms 

should also be taken into consideration when assessing the functional relevance, such as genetic 

background, histone modifications, ncRNAs and transcription. Because of potential variation 

in all these levels, it is challenging to assess the functional consequences of changes without 

proper in vitro or in vivo reporter systems.  

To assess the functionality of the differences found, current studies use the closest gene as an 

identifier of functions. The Illumina arrays have a manifest which maps every CpG to a specific 

gene. While several CpGs are mapped to several genes, usually for interpretative purposes the 

closest is used. This could lead to problems where the gene affected by the differential 

epigenetic marks is not used in functional analysis. These genes are then typically used for gene 

set enrichment or pathway analysis tools, such as Ingenuity Pathway Analysis (IPA) (119), 

GREAT (120), GSEA (121), among others. These tools make use of curated collections of 

gene-sets such as Gene Ontology (122) or KEGG (123) to identify those relevant (statistically 

significant) gene-sets associated with the trait of interest. However, GSA outcomes may 

become challenging to interpret when the number of gene-sets identified is very large or if the 

results from different collections of gene-sets, i.e. different experiments, are combined. An 

additional challenge appears when identified gene-sets have a high gene content overlap, which 

could result in nearly identical gene-sets with different functional labels. 
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8 THESIS AIMS 

 

The overall aim of this thesis was to characterize the changes in DNA methylation in immune 

cells from MS patients during disease development, disease progression and treatment, and 

from them to infer functional pathways of importance for MS pathogenesis: 

 

Study I 

To investigate DNA methylation patterns across four different peripheral immune cell types 

during the development and progression of MS. 

 

Study II  

To investigate changes in DNA methylation between MS cases and controls and characterize 

the role of DNA methylation in the dysregulation of miR-21 in CD4+ T cells in RRMS patients. 

 

Study III 

To develop an R tool which offers a simple approach to gain biological insights from one or 

more gene-set analysis results or tools. 

 

Study IV 

To utilize epigenetic marks in peripheral immune cells following DMF treatment in RRMS 

patients to gain insights into the mechanisms of the treatment. 

 

Study V 

To characterize in depth the changes in DNA methylation of peripheral CD19+ B cells between 

RRMS patients and healthy controls, as well as to investigate the effects B cell depletion on 

other peripheral immune cells. 
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9 RESULTS 

9.1 STUDY I 

In this study, we profiled DNA-methylation of four different peripheral immune cells (CD4+ 

and CD8+ T cells, CD14+ monocytes and CD19+ B cells) in RRMS and SPMS and matched 

healthy controls (HC) using the Illumina 450K array. The RRMS patients constituted of a 

mixture of newly diagnosed patients, and patients who were on a drug washout for a period of 

around 6 months, all who had non-active disease as confirmed with MRI. From every patient, 

we sorted all four immune cells, though due to the quality and quantity of the DNA, not every 

cell type was analyzed for every patient.  

Differential methylation analysis detected 30, 666 and 1 511 significant DMPs in CD8+, CD14+ 

and CD19+ samples between RRMS, SPMS and HC in a linear model that included age and 

sex as covariates. Because of the high overlap of the results between the different cell types, 

and in order to increase the detection power, we combined the evidence of the multiple cell 

types in a non-parametric way using OmicsNPC. We developed a permutation scheme that 

retained the local correlation between cell types and ran the pipeline with 10 000 permutations. 

This resulted in 1976 DMPs from all four cell types (Fig 4). We confirmed the shared nature 

of the probes by testing the direction change in HC vs RRMS, and RRMS vs SPMS and saw 

that the direction was shared more often than expected by chance, as well as a very high 

correlation of the t statistic between the different comparison for the 1976 shared probes. The 

additional discovery power was confirmed in a small independent cohort of HC and RRMS 

samples from CD14+ samples run on the Illumina EPIC array. Furthermore, we saw an 

enrichment of the shared DMPs in MS susceptibility loci as identified by the latest MS GWAS. 

 

Figure 5. Overview of the omicsNPC function used in study 1. (124) A) Overview of the omicsNPC 

pipeline. Data was permuted 10,000 times using random labels that were consistent between individuals 

with the different cell types to maintain the correlation between the cell types. The permuted p-values 

were combined using the Liptak-Stouffer test, and the Liptak score was used for determining the shared 

p-value. B) Number of significant differentially methylated positions (DMPs) in individual and 

OmicsNPC analysis 



 

 29 

Next, we clustered the shared DMPs into changes that were either specific for the MS samples 

in general (RRMS and SPMS), changes that were specific for SPMS samples or changes with 

no clear pattern between the samples or the different cell types. The functional annotation of 

the MS cluster implicated lymphocyte signaling, T cell activation and migration. The SPMS 

cluster implicated myeloid cell functions and metabolism, as well as an interesting signature 

coming from neurodegenerative genes, which we could confirm in a whole blood cohort of MS 

samples. In conclusion, OmicsNPC allowed for the detection of changes between cases and 

controls despite limited power of the study. Our findings provide new insights into the 

molecular mechanisms underlying MS pathogenesis and particularly disease progression. 

9.2 STUDY II 

In this study, we investigated the functional changes of the top DMP found in the CD4+ analysis 

of the DNA methylation data from study I. In CD4+ T cells, we did not identify genome-wide 

significant DNA methylation changes; however, among the top most significant hits we 

identified a DMR in the MIR21/VMP1 locus, where RRMS samples had higher methylation 

than HC or SPMS.  
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Figure 6. Overview of the DNA methylation changes surrounding the VMP1/MIR21 locus. (125) 

We replicated the findings using a meta-analysis between our data and that of the independent 

cohorts from Bos et al. (77) and Graves et al. (71). Here both a p-value based and an effects-

based meta-analysis confirmed the higher methylation in RRMS. Using the CD4+ T cell 

methylation data from the GOLDN cohort (126), we excluded a substantial effect of a genetic 

variation in this locus, known to be one of the MS risk loci, on DNA methylation only. The 

GOLDN data also confirmed that there was no effect of smoking on MIR21/VMP1 DNA 

methylation, while DNA methylation levels did correlate with lymphocyte count and age. 

Using qPCR, we confirmed that the DMR only had an effect on miR21 levels but not on VMP1, 

with lower expression levels of miR21 in RRMS patients, which we could validate in an 

independent cohort. Using the data from the RNA sequencing of the same samples used for 

DNA methylation (127) we could confirm the higher expression of miR21 target genes. Thus, 

our findings suggest epigenetic silencing of mir-21 in CD4+ T cells, leading to a reduced miR-

21 mediated silencing of target mRNAs. 

9.3 STUDY III 

In this study, we further developed the tool used in studies I, IV and V. GeneSetCluser is an R 

package we developed to help in understanding the results from pathway analysis. When we 

ran IPA on the genes mapped to the DMPs from the OmicsNPC analysis, we struggled to 

interpret the results due to the same genes appearing repeatedly enriched in the multiple 

significant gene-sets. To aid in the interpretation, we used the overlap of genes in order to 

calculate a distance score between the different gene-sets to cluster them into more easily 

interpretable clusters. After the usefulness of this methodology in studies I and IV, we further 

developed this into an R-package which we called GeneSetCluster. GeneSetCluster can be used 

to cluster together data from a single gene set enrichment run as well as multiple experiments 

and conditions. The package was designed to be able to use information from all databases and 

tools and can convert between gene ID from multiple sources and species. Data can be 

visualized using a heatmap, an example of how these results look from study IV can be seen in 

figure 7B, and networks and can aid in the interpretation of gene-set enrichment results. Our 

method is currently available in an R-package from GitHub 

(https://github.com/TranslationalBioinformaticsUnit/GeneSetCluster). 

9.4 STUDY IV 

In this study, we investigated the molecular effects of DMF treatment on the monocyte 

response and changes in CD4+ T cells. To this end, selected patients, which started DMF 

treatment at the MS clinic of the Karolinska University Hostpital and who met the 2010 

McDonald criteria for RRMS. Patients were characterized at baseline, 3 months and 6 months 

after DMF treatment. 

Nrf2 is a target of DMF but the precise effects remain elusive. We saw that there was an 

increase of intracellular ROS after 3 months, which increased further after 6 months. Changes 

in expression, measured using microarrays, showed enrichment of the GO term: Regulation of 

response to oxidative stress. DNA methylation was measured on the Illumina EPIC array and 

analysis of DMF treatment in CD14+ cells after 3 and 6 months in RRMS patients indicated 

that the methylome changes occur around 3 months but go back to baseline after 6 months. 
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Conversely, the changes in CD4+ T cells do not appear until 6 months after the start of 

treatment.  

When stratifying the patients into DMF responders and non-responders, using 24 months of 

follow-up data, we identified a SNP in the ROS-generating NOX3 gene. This SNP is associated 

with both treatment response and ROS production, interestingly though this gene is not 

significantly associated with the risk of MS. The NOX3 gene displayed different expression 

based on the genotype of the SNP as well as different methylation levels.  

 

Figure 7. Effect of DMF treatment on DNA methylation in CD4+ T cells. Figure adapted from (128) 

The delayed DNA methylation changes in CD4+ T cells around 6 months did coincide with the 

changes of naïve and effector memory T cells in DMF responders, even though the total 

number of T cells was down in DMF responders. The changes in CD4+ T cell subtypes were 

supported by the identified differentially methylated genes, enriched in pathways such as 

HIPPO signaling and T cell differentiation, and the increase of Th17 associated plasma 

cytokines in DMF responders after 6 months. This data implicate monocyte-derived processes 

involved in DMF treatment and identify a NOX3 SNP that may indicate drug response and 

treatment outcome. 
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9.5 STUDY V 

In study I we saw that the majority of DNA methylation changes between RRMS and HC 

occurred in CD19+ B cells. Due to this finding coupled with the increasing interest in the role 

of B cells in MS due to the highly effective B cell depleting drugs such as rituximab, we decided 

to further explore the epigenetic changes in CD19+ B cells. To that end, we analyzed a second 

larger cohort of CD19+ samples, which was collected from all patients treated in the local MS 

clinic. DNA methylation was measured using the Illumina EPIC array, which we compared 

with the results from study 1 using four different meta-analysiss approaches. These included 

two different fixed effects and one random-effects model as well as a combination of both data 

sets where batch effects were removed with ComBat. We identified 3 003 different DMPs with 

a significant adjusted p-value in all four different pipelines. The functional annotation of the 

epigenetic changes in CD19+ B cell indicates alterations of multiple processes in MS. These 

include changes associated to phosphoinositides, glucose and lipid metabolism, as well as 

changes associated with the regulation of cell cycle, apoptosis and differentiation of B cells, 

and changes in cell adhesion. Interestingly, the latter involved changes in multiple molecules, 

typically known as axon guiding genes.  

 

Figure 8. Methylation changes in CD19+ B cells sorted from peripheral blood of relapsing-remitting 

Multiple Sclerosis (RRMS) patients and healthy controls (HC). Cohort 1 (purple), measured using 
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Illumina 450K arrays, Cohort 2 (orange), measured using Illumina EPIC arrays, and Meta (dark green) 

A) Volcano plots illustrate differences in DNA methylation between RRMS and HC. Hyper- and hypo-

methylated CpGs with p-value < 0.001 are indicated in light red and light blue, respectively, while 

darker red and darker blue indicate CpGs with adj. p-value < 0.05. B) Heatmap of the 3 003 probes with 

an adj. p-value < 0.05 (the scale represents Z-score). C) A circular Manhattan plot for Cohort 1 (inner 

circle), Cohort 2 (middle circle) and the meta-analysis (outermost circle).  

In this study, we also investigated the effect of B cell depletion with rituximab on CD4+ T cells 

and CD14+ monocytes in 17 RRMS patients where we measured DNA methylation at baseline 

and after 6 months. The patients had significant depletion of B cells after 6 months, but there 

were no genome-wide significant DMPs in either CD4+ or CD14+ cells. Nonetheless, the top 

hits in both CD4+ and CD14+ were associated with activation of immune cells. Functional 

analysis of the changes in CD4+ cells after rituximab treatment were associated with immune 

activation, and involved in, among other things, Th17 differentiation and IL17 signalling. The 

CD14+ associated changes indicated changes in genes associated with the epigenetic switch 

between pro-inflammatory and anti-inflammatory macrophages as well as monocyte motility 

and activation.  

This data confirm widespread DNA methylation changes in CD19+ cells from RRMS patients 

compared with healthy individuals and inform about the functional consequences that associate 

with MS disease. Accordingly, B cell depletion results in a reduction of activation signals for 

T cells and monocytes in genes associated with activation, differentiation and motility.  
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10 CONCLUSIONS AND FUTURE PERSPECTIVES 

In this thesis, we have used several cohorts and methodologies to investigate the role of DNA 

methylation in the development, progression and treatment of MS. We investigated both 

patients with RRMS and SPMS and compared those to healthy controls. We initially looked at 

the four major cell types from PBMC, namely CD4+, CD8+, CD14+ and CD19+ cells, where 

we could identify a DNA methylation signature shared between the different cell types, which 

we investigated more thoroughly using OmicsNPC. Interestingly, using OmicsNPC we 

identified DNA methylation changes in neurodegenerative genes in SPMS patients. In CD4+ 

cells, the top hits indicated changes in the VMP1/MIR21 locus, which we functionally 

investigated and found lower miR21 expression in RRMS patients, which resulted in a higher 

expression of miR21 target genes. Because of the numerous DNA methylation differences 

found in CD19+ cells, we further explored changes in CD19+ cells in a second larger cohort. 

We compared the two different cohorts using several different meta-analysis approaches and 

this resulted in identifying many processes altered in CD19+ cells, including metabolism and 

activation. To analyze the pathway data from the different studies, we developed a method to 

cluster pathways based on the genes inside them, which proved very useful, therefore we have 

further developed this into an R package called GeneSetCluster. 

While epigenetic alteration are stable, they could be affected by changes in the cellular 

environment, so we investigated changes of the epigenome in MS patients after disease-

modifying treatments. The treatment with DMF identified that the changes happen in a cell 

type specific manner, where each cell type has its own specific kinetics. DMF treatment 

resulted in changes in ROS production in monocytes and led to changes in Th17 associated 

genes in CD4+ T cells. Interestingly, we identified a SNP, which associated with ROS 

production and treatment outcome but not with MS susceptibility.  Rituximab treatment, which 

unlike DMF, has an indirect effect on the cells studied, resulted in changes associated with a 

lack of B cell interaction. In CD4+ T cells, we found epigenetic changes in Th1, Th17 and Treg 

associated genes. In CD14+ monocytes, we identified changes in metabolism and motility as 

well as changes in epigenetic genes associated with switching between pro- and anti-

inflammatory macrophages.  

Epigenetic changes, such as the cell type specific DNA methylation changes detected above, 

might provide useful biomarkers for diagnostic, prognostic and therapeutic purposes. The 

reliable quantification of genome-wide DNA methylation levels, which are relatively stable 

and insensitive to handling, make it highly suitable for the clinical setting. For example, 

identification of neurodegenerative signals from in peripheral cells from SPMS patients, offers 

a great potential for insight into diseases, such as MS, where the target tissue is inaccessible. 

The identification of MS associated epigenetic marks will increase in the future when larger 

cohorts are studied with more varied cell types. Furthermore, the rise of new epigenetic 

technologies capable of measuring DNA methylation at a single-cell resolution will allow for 

even more detailed investigation of epigenetically distinct cell mixtures associated with disease 

(129). 

Because changes in epigenetic marks are associated with both disease and treatment, this offers 

promising prospects in correcting dysregulation that can potentially alter the course of MS. 

Besides investigating the epigenetic changes after treatment, changing the epigenetic marks 
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themselves might be a viable strategy for treating MS as well. Epigenetic drugs are classified 

as either, globally altering the epigenome by targeting readers, writers and erasers (HATs, 

HDACs, DMNTs, TETs, etc.) or by altering epigenetic states of specific loci in the genome. 

Global drugs include e.g. the two drugs called azacitidine (AZA, 5-azacitidine) and decitabine 

(DAC, 2’-deoxy-5-azacitidine), which are cytosine analogues that block DMNTs during 

replication leading to demethylation. Two different studies have demonstrated an ameliorating 

effect of these drugs in EAE (130, 131).  

Locus specific methylation changing drugs offer a more exciting approach as they would 

present less adverse effects and more specificity than global drugs. The recently discovered 

ability of CRISPR/dCAS9 to edit the genome in addition to the TALENs and zinc fingers 

proteins offers promising tools to edit the epigenome as well (132, 133). These tools, known 

as EpiEffectors, are fusions of DNA recognition elements fused with catalytic domains of DNA 

methylation related enzymes. The DNA recognition capabilities of guide RNAs (gRNAs) used 

in CRISPR/dCAS9 allow for easy targeting of specific sequences. In contrast, TALENs and 

zinc finger proteins require the design of specific proteins complexes, though CRISPR/dCAS9 

has been noted for its potential number off-target effects, which seem less prevalent using the 

other tools. Current research is investigating the stability of the modified epigenetic marks, as 

well as methods to deliver epigenome-editing tools to target specific tissues and cells (134). 

While more research into epigenome-editing tools is necessary, it is easy to see the potential 

benefits of such technologies. 

The epigenetic studies discussed here, demonstrate changes in epigenetic marks between MS 

patients and healthy controls, however, the interpretation of these epigenetic changes remains 

challenging. More investigations are required to gain a functional understanding of the dynamic 

chromatin changes, so that the causal link between genetic background and environment in the 

context of MS can be understood. Such studies will lead to a better understanding of risk factors 

and pathogenic mechanisms of MS and can lead to robust biomarkers and useful therapeutic 

targets. 
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