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ABSTRACT 

Background: Internet-delivered Cognitive Behavior Therapy (ICBT) is efficacious for a 

number of psychiatric disorders and can be successfully implemented in routine psychiatric 

care. Still, only about half of patients experience a good enough treatment outcome. Using data 

from the early part of treatment to identify patients with high risk of not benefitting from it, 

and target them with additional resources to prevent the predicted failure is a potential way 

forward. We call this an Adaptive Treatment Strategy, and a very important part of it is the 

ability to predict the outcome for a specific patient. 

Aims: To establish a proof of concept for an Adaptive Treatment Strategy in ICBT, and explore 

outcome prediction further by evaluating the accuracy of an empirically supported 

classification algorithm, the time point in treatment when acceptable accuracy can be reached, 

and the accuracy of ICBT-therapists’ own predictions. Preliminary benchmarks regarding the 

clinical usefulness of prediction will be established. 

Studies: Four studies were performed: Study I was a randomized controlled trial (RCT; n=251) 

where patients’ risk of treatment Failure (Red=high risk of failure, Green=low risk) was 

predicted during week 4 out of 9 in ICBT for Insomnia. Red patients (n=102) were then 

randomized to either continuing with standard treatment (n=51) or having their treatment 

individually adapted (n=51). In Study II, the classification algorithm from Study I was 

evaluated in terms of classification accuracy and the contribution of the different predictors 

used. In Study III, data from 4310 regular care ICBT-patients having received treatment for 

either Depression, Social anxiety disorder or Panic disorder were analyzed in a series of 

multiple regression models using weekly observations of the primary symptom measure as 

predictors to classify risk of Failure. As a contrast, Study IV examines ICBT therapists’ own 

predictions on both categorical and continuous treatment outcomes, as they made predictions 

for each of their patients (n=897) during week 4 in the same three treatments as in Study III.  

Results: The RCT was successful in that Red patients receiving Adapted treatment improved 

significantly more than Red patients receiving standard treatment, and their odds of failure 

were nearly cut in half. Green patients did better than Red patients, indicating that the accuracy 

of the classification algorithm was clinically useful. Study II showed that the balanced accuracy 

of the classifier was 67% and that only 11 of 21 predictors correlated significantly with Failure. 

Notable predictors were symptom levels as well as different markers of treatment engagement. 

Study III and IV showed that acceptable predictions could be made halfway through treatment 

using only symptom scores and basic statistics, and that ICBT-therapists predicted outcomes 

better than chance but on average 9.5 % less accurate than the statistical models. Therapist 

predictions reached the clinical acceptance benchmark only for remission in Social anxiety 

disorder. At treatment week four, therapist could predict on average 16% of the variance in 

continuous outcomes, compared to a statistical model explaining 39%. 

 



 

 

Conclusions: We find support for the clinical usefulness of an Adaptive Treatment Strategy in 

ICBT for insomnia, and establish a preliminary benchmark that a classification algorithm with 

at least 67% balanced accuracy should be sufficient for clinical purposes. Simple statistical 

models using only symptom scores can reach clinically acceptable levels of accuracy halfway 

through 12-week ICBT-programs. Previous findings that therapists’ predictions are less 

accurate than statistical models seem to hold also for therapists providing ICBT. However, it 

was also indicated that clinicians’ ratings of adherence and activity do add unique information 

to prediction algorithms. In line with previous findings, the vast majority of useful prediction 

variables were found during early treatment, rather than before treatment start.  
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1 INTRODUCTION 

1.1 THE STATE OF PSYCHOLOGICAL TREATMENT OF COMMON 
PSYCHIATRIC DISORDERS 

There is ample evidence that psychiatric disorders can be treated using psychological 

interventions and, in Sweden at least, psychological interventions have taken the place as first 

choice interventions for a number of conditions (Socialstyrelsen, 2017). Cognitive Behavior 

Therapy (CBT) is perhaps the most thoroughly researched psychotherapy today, and has 

positive effects on a wide variety of psychiatric disorders (Hofmann, Asnaani, Vonk, Sawyer, 

& Fang, 2012) ranging from depression (Cuijpers et al., 2013; Hedman et al., 2014), insomnia 

(Blom, Jernelov, Rück, Lindefors, & Kaldo, 2016; Siebern & Manber, 2011) and social phobia 

(El Alaoui et al., 2015; El Alaoui, Hedman, Ljótsson, & Lindefors, 2015) all the way to 

obsessive compulsive disorder (Andersson et al., 2012; Foa, 2010), and psychosis (Turkington, 

Wright, & Tai, 2013). The last 20 years of research also shows that delivering CBT in the form 

of guided self-help via the internet (ICBT) can be as effective as face-to-face CBT (Carlbring, 

Andersson, Cuijpers, Riper, & Hedman-Lagerlof, 2018; Cuijpers, Donker, van Straten, Li, & 

Andersson, 2010; Hedman, Ljotsson, & Lindefors, 2012; Karyotaki et al., 2017). ICBT for 

common mental disorders has been successfully implemented in routine psychiatric care in 

several countries around the world (Titov et al., 2018) and is rapidly expanding in Sweden and 

elsewhere. 

The evidence for CBT is, like all evidence for treatment of psychiatric disorders, almost 

exclusively based on group level effect sizes and statistically significant mean differences, 

failing to address one key factor: not all patients get better, and quite a few actually worsen. In 

fact, 5-10% of patients both in psychological treatments in general as well as in ICBT leave 

treatment worse off than when they started (Rozental et al., 2014; Slade, Lambert, Harmon, 

Smart, & Bailey, 2008) and, depending on definitions used, 25-65% of patients do not achieve 

a satisfactory treatment outcome. This is quite consistent across many forms of face-to-face 

psychotherapy, as well as CBT, guided self-help and internet delivered CBT (ICBT) for a wide 

range of disorders (Andersson, Carlbring, & Rozental, 2019; Lambert, 2015; Rozental, 

Andersson, & Carlbring, 2019; Slade et al., 2008). Even more worrying is that and clinicians 

are generally unable to predict this (Hannan et al., 2005; Lambert, 2015, 2017). While CBT 

and other psychotherapies are constantly being evaluated in new contexts, versions, and 

populations there is a paucity of research into what works for whom and how failing treatment 

attempts can be salvaged, leaving a gap between what we know of group level versus individual 

effectiveness.  

  



 

 2 

1.2 DEFINING SUCCESS: DICHOTOMOUS CLINICAL OUTCOMES 

Despite many decades of research and clinical practice in psychiatry and psychotherapy, there 

is still no definitive answer to how we should decide when an individual patient has been 

adequately treated. We know that, on average, patients who receive these treatments get better, 

compared to if they had not received the treatment. The pervasive measure of an effective 

treatment is whether it has a large effect size based on mean symptom change compared to no 

treatment,  but how do we decide when better becomes well, and how much better is enough 

for the individual? 

1.2.1 Dichotomizing is problematic but useful 

The gold standard of quantitative analysis is to use variables that are continuous, and preferably 

on ratio scale. It gives high statistical power and enables many different kinds of analyses. If 

given the choice, thoughtful researchers will opt for continuous rather than categorical data. A 

perfect example would be weight in grams. In our field however, things are rarely that simple. 

A continuous measure in our field if often a symptom questionnaire on which a patient scores 

their symptoms and receives a sum reflecting how severe their symptoms are, which is already 

far less exact and reliable than ordinary kitchen scales. 

In the medical and health sciences, researchers often add some form of categorical outcome, 

so that we can, as mentioned earlier, decide when someone has been successfully treated. This 

is often achieved by applying cutoffs to the continuous scale and thereby making it 

dichotomous. This is a gross simplification of reality and can create false dichotomies (Naudet, 

Millet, Michel Reymann, & Falissard, 2014). A real life human being will not feel markedly 

different when scoring one point above a cutoff as opposed to one point below, even though as 

far as psychiatric research is concerned, that person suddenly snapped out of the clutches of 

depression. Nevertheless, for publicly funded clinical practice at least, we do still have to decide 

at what point the suffering of one individual should be considered pathological and be treated. 

Oddly, it is not agreed upon exactly how this should be done. 

1.2.2 Approaches to dichotomizing continuous treatment outcomes 

Jacobson and Truax (1991) aimed to account for pre-treatment symptoms by defining a good 

clinical outcome as a statistically significant decrease in symptoms combined with a post-

treatment score below a certain cutoff. One problem with this is that in clinical reality that 

combination is not necessarily relevant. Treatments are given to patients based on their current 

symptom level; regardless of what it was several weeks or months ago. There is a meaningful 

scientific reason to include significant change in the definition. This assures that a treatment is 

not evaluated as powerful based on trials having patients with low symptoms enter, and 

consequently exit, treatment with low scores. In our clinical reality however, that problem 

should be addressed before treatment, so that treatment is never offered to patients who do not 

need it. Most symptom measures have an established cutoff for clinical versus non-clinical 

symptom levels, but Jacobson and Truax’s definition also requires a definition of a reliable 

change in symptoms from pre- to post-treatment. 
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1.2.2.1 The Reliable Change Index (RCI) and its limitations 

The Reliable Change Index (RCI) is defined as the difference between two scores divided by 

the standard error of difference between scores (Jacobson, Follette, & Revenstorf, 1984). It is 

a way to quantify the minimal difference between two measurements taken with the same 

measure that are beyond the measurement error of that measure. In other words, the minimal 

difference that can be confidently considered real from a statistical point of view. Originally, 

the RCI produces a number that corresponds to the standard normal distribution where 1.96 or 

more refers to the tails of a 95% confidence interval. It can however, and is most often, 

translated in to a measurement specific score by using the formula 1.96*SD1*√2*√(1-rel) 

(Wise, 2004) where SD1 refers to the standard deviation of the measurement at some point 

(usually pre-treatment in your sample, but more on that later) and rel refers to the test-retest 

reliability of the measurement. 

One problem with the RCI is that is has always been somewhat unclear from where the different 

estimates should be drawn when calculating it. The formula requires a standard deviation and 

a test-retest reliability for the scale. However, those estimates can be drawn from many 

different sources, for example from psychometric studies, prevalence studies or more typically, 

the sample being studied, yielding quite different results. This makes the RCI a relative measure 

even within a specific symptom measure, influenced by the variability of the sample being 

studied, when it is clear that the intention is for it to be a static characteristic of a scale. 

Illustrating this, Hiller, Schindler, and Lambert (2012) showed that for the Beck Depression 

Inventory, the calculated RCI’s differed between 6 and 14 points among the 11 published 

randomized controlled trials (RCTs) being compared, which has a massive impact on the 

overall evaluations of these treatments. Using the RCI based on sample estimates is 

advantageous if your sample has low variance at baseline but hindering if your sample has a 

large range of symptom scores at baseline. It is quite unreasonable to think that the 

meaningfulness of a change in an individual’s symptom scores should be affected by the spread 

of symptom scores among other patients being treated at the same time.  

Furthermore, most users erroneously use the Cronbach’s α as the test-retest reliability. 

Cronbach’s α measures reliability between items within a scale not between timepoints. A high 

Cronbach’s α indicates that each item contributes relatively uniformly to the sum of the scale. 

It has absolutely nothing to do with the stability of that scale over time in unchanging 

individuals; how could it? They may be forgiven, since using Cronbach’s α is also what is most 

often recommended when reading about how to use the RCI, but it is still wrong. 

Another important distinction to make is that, as the name suggests, the Reliable Change Index 

is concerned with statistically reliable rather than clinically relevant change. Concluding that a 

patient’s post-treatment levels of depression are not identical to their pre-treatment levels is of 

limited interest in clinical reality. Jacobson & Truax suggested a combination of being reliably 

improved and moving from the clinical to the non-clinical range, which is a reasonable 

combination. It does however create problems with patients with high baseline scores. A patient 

moving from 54 points on the Montgomery-Åsberg Depression Rating Scale-Self report 
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(MADRS-S) to 15 points would be considered a failed treatment (the cutoff for remission is 

10), while many clinicians and patients would likely view such an outcome as quite an 

achievement. The RCI is biased towards labeling regression to the mean and proportionally 

small improvements as response for initially severe patients, and vice versa for patients with 

mild initial symptoms. Remission on its own has the opposite problem. 

1.2.2.2 Proportional Improvement 

Another way to define the magnitude of a change is to look at it as a proportion of a patient’s 

pre-treatment score. This would circumvent the problems with the RCI, namely labeling small 

changes in severe patients as good and relatively large changes in mild patients as no change 

at all. Regarding this, Karin, Dear, Heller, Gandy, and Titov (2018) found two critical pieces 

of evidence in their data of over 1000 ICBT-patients compared to untreated controls. Firstly, 

patients’ change in raw scores were very much dependent on where they started, with each 

category of more severe patients (patients were divided into minimal, mild, moderate, 

moderately severe and severe) showing larger improvements than the last. However, when 

change was expressed as a proportion of each patient’s baseline score, that relationship 

completely disappeared and all clinical severity groups improved, on average 50-55% from 

pre- to post-treatment (the minimal symptoms group did not). Secondly, they found that this 

change in statistical relationship was actually not the case for untreated controls. This means 

that expressing change as a proportion, both compensates for initial severity and results in 

clearer differentiation between treatment-specific and non-specific effects. This is highly 

valuable in an uncontrolled setting such as routine psychiatric care. 

Statistically, proportional improvement should be used only as a qualifier for a dichotomous 

outcome (i.e. a patient is either above or below a certain percentage of improvement) and not 

as a change-score per se in statistical analyses as this produces biased and underpowered results 

(Vickers, 2001). As a basis for the dichotomous outcomes response and remission however, 

percentage change is already widely used in psychopharmacological research and has been 

shown to be reliable and less affected by variability in the sample and baseline severity (Hiller 

et al., 2012). In depression, 50% or more is typically the percentage used in research to define 

response (Hiller et al., 2012; Kuk, Li, & Rush, 2010; Leucht et al., 2017). This mirrors what 

was found by Karin et al. (2018) in a mixed ICBT-sample with depression and anxiety. Rather 

than the spread in the sample or population as the RCI is, percentage improvement is affected 

by the individual patient’s pre-treatment severity (Hiller et al., 2012).  

A proportional improvement of 50% compensates for the problems with the RCI and provides 

a way to dichotomize improvement that considers the individual and differentiates more 

between specific and non-specific effect than other alternatives. Proportional improvement as 

the sole criterion of success has the problem that it is possible to reach remission without having 

a large proportional improvement, and such patients should not be viewed as in need of more 

treatment. Therefore, we believe that the best choice is to combine the two dichotomous 

outcomes remission and response (50% reduction) with an either or criteria to define Success 

and conversely Failure in ICBT. 
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1.3 STEPPED CARE 

In clinical practice, the gap between having effective treatments and successfully treating all 

patients can be handled in different ways. It seems that historically, a failed psychotherapy is 

followed by trying something else, be it another therapist or school of psychotherapy, trying 

medications or physiological interventions, or simply moving on to counseling and care taking 

rather than treatment. This is likely costly and disorderly. One attempt to remedy this is the 

principle of stepped care (Bower & Gilbody, 2005).  

Stepped care means organizing this sequence of evidence-based treatment attempts in a 

standardized way so that the cheapest, least invasive, and most accessible treatment is offered 

first and patients who turn out to need more then move up a step in intensity and cost (Bower 

& Gilbody, 2005). This creates a sort of standardized pyramid where most patients will get the 

cheap and accessible treatments quickly and only the more problematic cases go on to long and 

costly treatments. While the idea may be that the moving from one step to the next could be 

done during, rather than after treatment, in reality that does not seem to be the case, at least in 

psychotherapy (Richards et al., 2012), perhaps due to a lack of methods for accurately 

identifying failing treatments. The idea of stepping itself indicates that one form of treatment 

will be abandoned rather than enhanced even if one does not wait until a planned treatment has 

run its course. Therefore, in stepped care the patients who do end up climbing several of the 

stepped care steps will likely have long treatment periods that will include a number of failed 

treatments attempts. A recent study found that while stepped care was non-inferior to initiating 

the high intensity treatment right away, patients who received stepped care were less satisfied 

than were those receiving the high-intensity treatment right away (Mohr et al., 2019).  

Stepped care may be a step in the right direction, but there is still a dearth of research into its 

effectiveness (Bower & Gilbody, 2005; van Straten, Hill, Richards, & Cuijpers, 2015). Gyani, 

Shafran, Layard, and Clark (2013) performed a large analysis (n>11 000) of the Stepped Care-

based Improving Access to Psychological Therapies program (IAPT). They found that the 

strongest predictor of reliable recovery was having been moved up the steps (i.e. abandoned 

low intensity treatments) followed by the place of treatment having a high average number of 

sessions (again, not indicative of low intensity). This indicates that in the IAPT context at least, 

the entry-level steps are not really doing enough for the patients. 

1.3.1 Accelerated Care: making more of entry level steps 

I believe it is important to focus our energy on making the first step, whatever that may be for 

an individual, more efficacious. Focus should not only be on how intensive it is from a 

caregiver perspective but also factor in how long it takes a specific patient to get well. Starting 

at the appropriate, rather than lowest, step and having the ability to intensify efforts within a 

step can make for a smoother healthcare process. Rather than Stepped Care we should strive to 

create systems for Accelerated Care. There are several areas where we need to improve in order 

to make Accelerated Care possible. One area of improvement is pre-treatment matching of 

individual patients to the most suitable level of treatment so that the individual gets offered the 
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treatment that is most likely to succeed rather than what’s cheapest or quickest.  Another area 

of improvement is during-treatment identification of failing treatments followed by adaptations 

or alterations of ongoing treatments to prevent a failure from happening. Doing this, rather than 

“stepping up” to a different treatment will henceforth be referred to as having an Adaptive 

Treatment Strategy. Obviously, these approaches are not mutually exclusive and ideally both 

should be developed and used in the future. However, both approaches must rely heavily on 

making accurate predictions about outcomes in psychotherapy. In this thesis, we focus 

exclusively on Adaptive Treatment Strategies and predicting outcomes during ongoing 

treatments, but I will present both components briefly. 

1.3.1.1 Accelerated care component 1:  

Choosing the right treatment right away 

A relatively new concept, personalized medicine is concerned with making clinical choices 

based on predictions of treatment suitability and chances of success, or risk of harm for each 

specific individual (Auffray & Hood, 2012). The idea is to select a treatment that has not only 

showed group level efficacy, but that has showed efficacy in patients resembling the current 

patient as closely as possible. So far, personalized medicine has been primarily used in somatic 

rather than psychological treatments. There are however some examples of matching patients 

to treatments in psychological treatments. 

DeRubeis et al. (2014) did a retrospective leave-one-out predictive model to classify optimal 

and non-optimal treatments for patients with depression that had undergone pharmacotherapy 

or CBT. The analysis meant creating n-1 models that were each used to predict the outcomes 

for the one patient left out of each model. They found that about 60% of patients had a 

distinguishable optimal treatment out of the two options, and that if they had been randomly 

assigned to the optimal treatment they fared significantly better then had they not been, 

although with a wide confidence interval (d=.58, 95% CI =.17-1.01). Similarly, Nadine et al. 

(2020) calculated a personalized advantage index for 251 patients, who had received either 

blended face-to-face and internet- CBT or treatment as usual in psychiatric care. They found 

that 29% of the sample had a discernible superior treatment option, though it is unclear how 

often, if ever, treatment as usual was superior for patients. This begs the question if the finding 

is about differential responses to treatment or about treatment-specific versus non-specific 

effects, as treatment as usual is likely, at least for some patients, analogous to a waiting list.  

It is important to note that DeRubeis et al. (2014) predicted suitability to two different 

treatments that are generally found to be equally effective. Treatment matching could 

theoretically also include deciding not to treat at all, or to suggest a treatment with smaller 

group level effects but predicted to be highly suitable for a specific patient. Such decisions 

would however require even stronger predictions. 

For meaningful patient-treatment matching, we need very strong predictors that all have to be 

collected at baseline and there needs to be several effective treatment options readily available 

to which patients can be matched. Such high demands do not fit very well with the current 
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accuracy of our best predictions nor with the way psychological treatments are organized in 

our society today. Adaptive Treatment Strategies, starting a low cost, effective treatment right 

away and then predicting and adapting as you go along seems more implementable, providing 

it works. 

1.3.1.2 Accelerated care component 2:  

Identifying failing treatments and adapting to prevent failure  

(Adaptive Treatment Strategies) 

Michael J Lambert and his colleagues have done several studies using models in which patients 

are compared to previously found trajectories on a key outcome (OQ-45) and then labeled as 

on track or not on track (Lambert, 2015). Based on five previous studies with the OQ-measure 

Lambert found that 85-100% of patients who would go on to deteriorate could be identified 

during treatment, whereas in one of these studies less than 1% of deteriorating patients were 

identified by their therapist (Lambert, 2015). Hannan and colleagues found that using what 

they call lab-test data (questionnaire instead of clinician’s judgement) for following treatment 

progression they could identify 85% of treatments that would go on to fail by treatment session 

three (Hannan et al., 2005). In a systematic review of 24 studies, Lambert, Whipple, and 

Kleinstäuber (2018) found that in two thirds of the studies, having an adaptive treatment 

strategy in place was superior to the normal psychotherapy process delivered by the same 

therapists. 

Lambert and colleagues have found that monitoring patient progress and giving feedback to 

therapists about progression does not really enhance treatments for patients who are on track 

but rather that the enhancement effect was isolated to those who were not on track (i.e. failing 

treatments; Lambert, 2015; 2017).  

These classifications based on the OQ-measure show great predictive power even though 

Schibbye et al. (2014) did show that, at least in ICBT, disorder specific symptom scales were 

superior to the OQ-45. The OQ measures are also commercial products and as such, the extent 

of their use might not accurately reflect the usefulness of the scales. It is also important to 

define what we want to measure and why. Using either measures as the OQ scales or disorder 

specific ones as the PHQ-9 will lead to different definitions of not only how much change we 

want to see but also what parameter we are actually interested in changing in psychotherapy. 

Monitoring and assessing progress on a different measure than the one that will later be used 

to define the outcome is likely inferior to monitoring the actual outcome of interest. 
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1.4 OUTCOME PREDICTION IN PSYCHOTHERAPY 

1.4.1 Everyday clinical predictions are common but unreliable 

In a clinical setting, predictions are made every day and critical clinical decisions are made 

based upon these predictions. In most cases however, these predictions are made based on 

clinical expertise and intuition and rely far less on statistical methods (Dawes, Faust, & Meehl, 

1989). In some ways it can be argued that the 5-10% deterioration and 30-60% non-response 

rates seen in psychotherapy research (Andersson et al., 2019; Lambert, 2017) are likely actually 

based on data where patients have already been clinically matched to treatments, and likely had 

some adaptive elements to their care. Studies have inclusion and exclusion criteria that, while 

still trying to preserve generalizability, at least partly reflect our best attempts at maximizing 

treatment gains and minimizing unsuccessful treatment attempts and harm. An assessing 

clinician will probably not recommend a treatment that they see as unlikely to succeed. Most 

would also agree that therapists do already try to gauge how treatments are progressing and do 

try to avoid failures if they see them coming. The problem is that we as clinicians do not know 

what works for whom, and we do not see treatment failures coming. At least not well enough. 

In a large review of almost 60 years of research in comparing clinical versus actuarial prediction 

on a wide variety of tasks ranging from future academic performance to risk of future violent 

acts, Ægisdóttir et al found that using statistical methods rather than clinical judgement was 

consistently more accurate (Ægisdóttir et al., 2006). Our intuition as clinicians seems to be 

flawed and often outperformed by more data-driven methods, yet we are often unwilling to 

choose actuarial predictions over our own judgement (Dawes et al., 1989). Dawes argues that 

we currently know enough about the fallibility of our clinical expert judgement to warrant a 

serious discussion on whether or not it is ethically defensible to make clinical decisions based 

on expertise and intuition alone (Dawes, 2005).  

1.4.2 Predictors at baseline 

Most research in this field is focused on identifying several relatively independent individual 

predictors (e.g. age, gender, income) and almost exclusively at baseline. While often 

theoretically reasonable, such predictors often turn out to be irrelevant in ICBT when examined 

(Andersson, 2018). For instance, the idea that ICBT is for non-complex or mild psychiatric 

cases does not seem to hold up. Edmonds, McCall, Dear, Titov, and Hadjistavropoulos (2020) 

found that concurrent psychotropic medication did not predict worse outcomes and Flygare et 

al. (2019) found that comorbidities, apart from personality disorders, did not make for worse 

outcomes in typical Swedish ICBT for depression. It is even unclear if being severely ill or 

mildly ill to begin with makes for better or worse outcomes. 

1.4.2.1 Baseline severity as a predictor of treatment outcome 

Baseline severity of the disorder is often described as showing inconsistent results, sometimes 

predicting better outcomes, sometimes worse outcomes and sometimes not predicting anything 

(El Alaoui et al., 2016). However, that is affected greatly by the definitions used for success 
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(for instance responder vs remitter, clinical or statistical significance and whether you combine 

several criteria or not), and is perhaps much less inconsistent than one might think. Table 1 

describes a number of studies assessing how baseline severity of symptoms relates to various 

positive outcomes depending on symptoms. Based on the table, it is possible to draw the 

conclusion that more severely ill patients are in fact easier to treat and respond better to CBT 

and ICBT. However, this is biased by the definition of response, which is either using the 

Reliable Change Index or using raw scores on a symptom measure. 

Instead, these findings could be understood as an artefact of the outcomes being used. High 

scores before treatment, means having many points to lose (and to regress towards the mean) 

but is naturally also associated with still having many points after treatment. Therefore, 

responder should be positively associated with high intake severity, and remitter should be 

positively associated with low initial severity. There are of course exceptions. Rozental, 

Andersson, and Carlbring (2019) found the opposite; that high initial severity was in fact 

associated with non-responder status in an individual patient data meta-analysis of 2866 

patients receiving ICBT in 29 different RCTs. This means that, in the contexts that the sample 

comes from, high initial severity was altogether a bad thing. This could however, be biased by 

type of symptom, as the sample consisted of patients with many different disorders or problems, 

perhaps with different quality of severity measure. For example, having an anxiety disorder, 

which was likely associated with coming from the studies in the sample that addressed anxiety 

disorders, had a much stronger predictive value for non-responder. Similarly, Furukawa et al. 

(2017) found that rate of improvement did not interact with baseline severity in an individual 

patient data meta-analysis of CBT for depression versus pill-placebo (n=509), and that result 

does not share the same potential sources of bias.  
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Table 1: Studies finding that initial severity is both negatively and positively associated 

with “good outcomes” depending on the outcome 

Study Disorder 

Large improvement  

 

is more likely when initial 

symptoms were high 

Low symptoms after 

treatment  

is more likely when 

initial symptoms were 

low 

Catarino et al (2018) 
Depression & 

Anxiety 
X X 

Edmonds et al (2018) 
Depression & 

Anxiety 
X  

Andersson et al (2015) OCD X X 

El Alaoui et al (2016) Depression X X 

Hadjistavropoulos, Pugh, 

Hesser, and Andersson 

(2016) 

Depression & 

Anxiety 
X  

Stjerneklar, Hougaard, and 

Thastum (2019) 
Anxiety  X  

El Alaoui, Hedman, et al. 

(2015) 
Social anxiety  X  

Nordgreen et al. (2012) Social anxiety X X 

Bower et al. (2013) Depression  X  

Mojtabai (2017) Depression  X 

Karin et al. (2018) 
Depression & 

Anxiety 
X  

Notes: OCD= Obsessive Compulsive Disorder, Stjenreklar, Hougaard and Thastrum (2019) studied 

adolescents, Bower et al (2013) is an individual patient-data meta-analysis. 
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1.4.2.2 Predictors found at the Internet Psychiatry Clinic where the studies in this thesis 

were conducted 

El Alaoui et al. (2016) used multilevel modeling to identify predictors of rate of recovery and 

endpoint levels of depression in a large cohort sample from the Internet Psychiatry Clinic’s 

Depression treatment (n=1738). They found that treatment credibility and adherence were 

important predictors as well as having a full time employment, both in terms of rate of recovery 

and endpoint symptom scores. Higher levels of depression at intake predicted higher rates of 

recovery but also higher endpoints (perhaps due to regression to the mean). History of 

psychotropic medication was a negative predictor of outcomes in terms of both rate and 

endpoint.  

In Social phobia treatment (n=764) high levels of adherence and credibility ratings predicted 

faster rates of recovery whereas high over-all functioning predicted slower improvements. 

Family history of social phobia symptoms was a predictor of higher adherence to treatment (El 

Alaoui, Ljótsson, et al., 2015). In a long-term analysis of predictors in social phobia treatment 

(n=446), a family history of social phobia was a predictor of poor outcomes whereas high initial 

severity predicted higher rates of change (El Alaoui, Hedman, et al., 2015). It is possible that 

in the short term, identifying strongly with the descriptions of social phobia is good for 

treatment engagement but in the long-term, patients with strong predispositions for social 

anxiety tend to relapse more. 

In treatment of Panic disorder, having a high age of onset and having low levels of work life 

impairment predicted better outcomes, whereas the previous findings that comorbid 

Depression or Generalized anxiety disorder would impair outcomes were not found in this 

context (El Alaoui et al., 2013). 

1.4.3 Grouping cases and using group membership as the predictor 

Another way to create predictors is to use various forms of statistical grouping methods to 

identify subgroups or phenotypes of individuals and then use that group membership as the 

predictor of outcome.  

Deckersbach et al. (2016) used agglomerative hierarchical cluster analyses and k-means 

clustering to identify subgroups in a sample of patients with bipolar disorder. They found two 

distinct groups (More chronic & less chronic) that had different likelihoods of recovery. 

Bucholz, Hesselbrock, Heath, Kramer, and Schuckit (2000) used latent class analysis to attempt 

to identify subgroups or phenotypes in antisocial personality disorder. What they found was 

that the main feature of their classes were that each class tended to be more severe than the next 

rather than distinct in any other meaningful way.  

Lutz et al. (2017) identified classes of change patterns in the first four weeks of ICBT using 

piecewise growth mixture modeling, and found that class membership increased variance 

explained (adj. r2) from 21.5% to 34% over baseline predictors. The regression analysis did 

account for baseline severity, but it was not compared to using the first four weeks’ of change 
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in severity as the only predictors. The predictive value of this early-pattern-of-change class-

membership beyond simply adding the extra measurement points on the outcome variable is 

unknown. 

Saunders, Cape, Fearon, and Pilling (2016) used latent profile analysis on intake data for over 

16 000 outpatients with depression and anxiety, and identified eight replicable latent profiles 

of patients using a number of key baseline characteristics. These classes then showed 

significant associations with response and remission after treatment. However, baseline 

symptom severity on depression (PHQ-9) and anxiety (GAD-7) were among the characteristics 

used to build the profiles.  If one only orders the profiles found according to their baseline 

PHQ-9 severity, and orders their outcome graph accordingly, a distinct linear slope appears. 

High baseline severity means that the patient is less likely to recover during treatment. That is 

an important predictor, but it is lost in the mix, and furthermore if there actually is an additional 

value of the other variables in the profiling model, we cannot see it. 

While theoretically enticing, grouping approaches have some drawbacks. For one: grouping 

methods do not always automatically indicate how “real” a solution is (often there is no p value 

or simple effect size to guide the researcher). There is also a possible problem in clustering 

cases based on continuous variables as such variables should theoretically be evenly spread 

and not have clear jumps in levels, thereby creating the same problem as with dichotomizing 

the outcomes. 

Clustering studies, as well as the more traditional prediction studies, indicate that symptom 

severity could be the one of the stronger starting points for making meaningful individual level 

predictions.  

1.4.4 The big leap to big data and big models 

Previous research has not been able to find strong and consistent baseline predictors that have 

a large impact on whether or not a patient will benefit from treatment. This could be because 

of two main problems: 1) we are not using analyses that are sophisticated enough to find the 

signal 2) we are looking in the wrong places, i.e. at irrelevant or too weak predictors. The 

problem could certainly be a combination of the two. 

Some ways are being used to try to solve this. One way is by measuring complex things like 

genetic markers (Andersson et al., 2019) and brain imaging (Månsson et al., 2015). Another is 

by analyzing the data in more complex ways, such as using machine learning (Lenhard et al., 

2018), growth mixture modeling (Lutz et al., 2017) or latent profile or class analysis (Saunders 

et al., 2016). There is evidence of data mining and machine learning (i.e. completely data-

driven) analyses accurately predicting future occurrence of quite complex psychological 

phenomena such as suicidal ideation (Niculescu et al., 2015) and psychosis (Koutsouleris et 

al., 2009). The main drawback of the idea of measuring something complex is of course that it 

is time consuming and expensive. Another drawback is that it often requires a lot of 

preprocessing and can create overfitted models that are far less robust when samples are as 

small as they usually are (Flint et al., 2019). The idea of analyses that are more complex 
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however, might be more achievable in routine care as by now, computational power is so high 

compared to the complexity of the data, and that data is mostly collected and stored digitally. 

There is also a third potential solution. 3) We are looking at the wrong time. Perhaps it is not 

possible to know if a psychotherapy will help a patient before treatment even starts, or perhaps 

the possibility of knowing that is not close enough within reach to be viable compared to 

changing when we look instead. 

1.4.5 Moving away from baseline and into treatment 

1.4.5.1 Early Change, Sudden gains or Rapid Response 

A notable finding in psychotherapy research is that somewhere between 60 and 75 % of 

symptomatic improvements in psychotherapy happen within the first 3-4 weeks of treatments 

(Wilson, 1999) and that such gains can be maintained through treatment (Haas, Hill, Lambert, 

& Morrell, 2002). This is sometimes referred to as rapid response. Also of importance is the 

phenomenon of sudden gains, defined first by Tang and DeRubeis (1999) as a change between 

one session and the next that was:  

“… large (a) in absolute terms, (b) relative to depressive symptom severity before 

the gain, and (c) relative to symptom fluctuations preceding and following the 

gain.”(Tang & DeRubeis, 1999)(p 895 §9). 

They suggest that a gain should be of a certain absolute magnitude (they used 7 points on the 

BDI somewhat arbitrarily but one could make the argument that a Reliable Change Index score 

could be used) and of a certain relative magnitude (25 % of the patients previous score). They 

use a third criterion, which is stability, defined as the mean of the scores from the three sessions 

prior to the gain be significantly higher than the mean of the three sessions after the gain using 

simple inferential statistics. A sudden gain does not have to be early. 

O'Mahen, Wilkinson, Bagnall, Richards, and Swales (2017) found that experiencing a sudden 

gain was associated with greater improvements during online behavioral activation treatment 

for perinatal women suffering from depression. Lewis, Simons, and Kim (2012) also found that 

change in depression over the first five sessions predicted better outcomes overall. Mulder, 

Joyce, Frampton, Luty, and Sullivan (2006) found that even over the course of six months, 

initial rapid response predicted recovery in the long term for depression. Schlagert and Hiller 

(2017) also found that those who had an early response to treatment for depression had better 

post-treatment outcomes. 

There are however, some potential problems with the concept of sudden gains. For one, 

measuring the level of change between before, through well after, the sudden gain itself does 

confound the conclusions that sudden improvements are good with the fact that any 

improvement is good, and sudden improvements are improvements. A patient who improves a 

lot at some point will have improved a lot by the end of treatment, provided they do not relapse 

after that sudden improvement. Additionally, O'Mahen et al. (2017) found that 33% of those 
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with a sudden gain hade more than one sudden gain. This begs the question of how sudden a 

sudden gain is. Are these patients really improving suddenly or just improving steeply? This is 

an important distinction since the theoretical underpinnings of the sudden gains phenomena 

was originally, and is still the idea of a breakthrough in psychotherapy. Rapid and consistent 

improvements do not really signify a “breakthrough”. These studies do not actually show that 

the early response or sudden gain is associated with any increases in improvement rates above-

and-beyond that early response in itself, which had already happened. Is that what we are 

looking for? If we want to theorize around the idea of a breakthrough in psychotherapy, then 

probably not. However, if we only want to make guesses about future symptom levels, then 

absolutely. They show that early response seems stable and is not associated with later relapse, 

which would have indicated fluctuations in symptoms rather than a true improvement. In 

contrast, Forand and Derubeis (2013) found that high anxiety at intake was associated with 

rapid improvement in depression but actually not to overall improvement in depression, 

perhaps indicating that rapid improvements can happen without continued improvements. Most 

data does however indicate that an early and sudden or large improvement is not often followed 

by increases in symptoms. 

Another problem with using sudden gains as a predictor in an Adaptive treatment strategy is 

that, by the definition by Tang and DeRubeis, a minimum of seven sessions needs to go by 

before a sudden gain can be recognized. Three sessions before and after, as well as the sudden-

gain-session. Considering the length of many CBT and ICBT protocols, sudden gains is not 

very useful within an Adaptive treatment strategy unless the stability-criterion is changed.  

Based on data from the Internet Psychiatry Clinic, Schibbye et al. (2014) aimed to clarify the 

general finding that early change is a predictor of outcome. General outcomes (CORE-10 and 

OQ-45) were compared to disorder specific outcomes (MADRS-S, LSAS-SR and PDSS-SR) 

in regular care ICBT patients being treated for depression, social anxiety or panic disorder. 

They estimated that four weeks in to treatment seemed the optimal time point in terms of 

balancing predictive power against the time left in treatment to have any use of the prediction. 

They also found that disorder specific measures outperformed general ones. Specifically, 

Schibbye et al. (2014) found that when predicting themselves, the OQ-45 did worse than the 

CORE-10, which in turn did worse than all the disorder specific measures, and that disorder 

specific measures can explain 34-43% of outcomes at week 4. 

1.4.5.2 Treatment activity and on-boarding 

Besides assessing early changes in symptoms, moving away from baseline and into the 

treatment itself gives us the opportunity to examine how the patient interacts with, and 

perceives, the treatment. This is both mostly impossible to examine before treatment starts, and 

at the same time strongly believed to be an important factor for success; we all believe that 

doing the treatment causes the results. One way to capture a precursor to on-boarding before 

treatment could be through an attitudes questionnaire about the treatment in question. Schroder 

et al. (2015) developed an attitudes questionnaire regarding online psychological treatments, 
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and ratings on this from baseline was later found to moderate outcome (Schroder, Jelinek, & 

Moritz, 2017). Still, most indicators of on-boarding will be from during the treatment. 

There are several examples of adherence predicting good outcomes (El Alaoui, Ljótsson, et al., 

2015; El Alaoui et al., 2016; Mojtabai, 2017; Nordgreen et al., 2012; Salomonsson et al., 2019), 

though adherence is often operationalized with a rough proxy such as number of modules 

completed or messages sent. In stark contrast, Kraepelien, Blom, Lindefors, Johansson, and 

Kaldo (2019) did a high resolution operationalization where they assessed both quantity and 

quality of component specific compliance and overall compliance. They found that overall 

compliance with treatment predicted symptom reduction in depression and worry, panic, social 

anxiety, stress, or insomnia in a comorbid sample being treated with a tailored ICBT-

intervention. They also found that component specific compliance predicted reduction in 

targeted symptoms in social anxiety, stress, and insomnia, but not for stress and pain, while 

component specific compliance with stress and insomnia components actually predicted further 

reductions in depression. Thus, in some conditions, doing the specific interventions that are 

believed to be directly targeting the mechanism of change is driving the improvements whereas 

in other conditions, such as depression, just “doing treatment” may be as effective as doing 

behavioral activation specifically according to the findings by Kraepelien et al. (2019). 

Regardless, whether or not a patient is doing the treatment as prescribed, or at least being 

actively engaged with the treatment should be an important predictor, at least theoretically. 

Conversely, Stjerneklar et al. (2019) found that none of their proposed therapy process 

variables (such as, alliance, number and length of contacts etc.) was associated with outcome.  

A basic problem with adherence or process-variables in psychotherapy research has to do with 

timing. Adherence has often been measured at post treatment, simultaneously with outcomes, 

meaning that even a strong association would not be able to provide insight into causality, or 

be used as predictors for new patients. Completers may improve, but improvers may also 

complete.  

1.4.5.3 Deciding the timing of outcome predictions 

There are several factors to take into account when choosing a time-point for the prediction of 

outcome if the goal is to intervene with at-risk patients. If predictions are made too soon, they 

will be weak, whereas if they are made too late, they will be useless, as there is no time left to 

intervene.  

In most prediction models (i.e. where only baseline parameters are used), the value of adding 

a parameter can be mathematically justified if it significantly increases predictive power, which 

the researcher must weigh against the risk of overfitting and the burden of collecting the data. 

In the context of this thesis however, added parameters sometimes represents time lost in 

treatment and therefore a decrease in time left to help the patient. Schibbye et al. (2014) found 

a decrease in variance explained by their model after week 4, which was a sound reason to 

make prediction at week 4 rather than later. However, that decrease may have been a chance 

finding. If predictive power simply increases in a linear fashion, then using that as a guide for 
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deciding when to predict is only helpful if combined with some form of minimally acceptable 

accuracy in order to identify the earliest possible time-point for a meaningful prediction. 

When predicting how a patient will fare within a certain treatment, one could take into account 

whether or not the patient has had time to be exposed to said treatment. One way of doing this 

is to make sure that you allow for all patients working at the prescribed pace to be exposed to 

the treatment component that is assumed to be the main mechanism of change. Most protocols 

include some basic orientation, rational and goal setting in the very beginning of treatment, so 

the prediction should be made after this is out of the way. How many weeks after into treatment 

this will be will vary from protocol to protocol, but will likely be a few weeks into treatment. 

It is also important that there is adequate time left in treatment to intervene once a patient is 

identified as at-risk. If the key component of the treatment takes several weeks to work, then 

there must several weeks left in treatment when predictions are made.  

Another important consideration is how long unsuccessful patients stay in treatment before 

they drop out. That is, if there is a substantial increase in patients dropping out at a certain 

point in treatment, then one can argue that prediction needs to happen before this, to enable 

clinicians to intervene before it is too late. 

1.5 HOW ACCURATE DO PREDICTIONS NEED TO BE WITHIN AN ADAPTIVE 
TREATMENT STRATEGY? 

1.5.1 Predictability of psychotherapy and ideal levels of accuracy 

There is very little to go on when assessing if the accuracy obtained by a classifier is good or 

bad. Better than chance is a very low bar to set, and perfect is probably impossible not only 

from a computational point of view, but also from a theoretical point of view. How much of 

the outcome of the treatment of a patient do we really believe is already set in stone less than 

halfway through that treatment? The diversity of all of the things that might happen between 

the time a patient starts treatment and the outcome is measured at the end of it is too large for 

it to be reasonable to assume that we could get anywhere near 100% accurate in our predictions. 

Especially in ICBT, where there is a huge gap between the supposed mechanisms of the 

treatment and what is actually being delivered to the patient. For instance, we believe that a 

patient suffering from depression will improve if they increase their daily positively reinforced 

activities, reduce negatively reinforced activities and ascribe less credence to their negative 

thoughts. We then try to achieve this by having the patient read about it, hoping they will a) 

believe us and b) act accordingly. Of course, there are infinite ways these scenarios can play 

out, not to mention that the patient can also improve or deteriorate regardless of the treatment 

(Bruce et al., 2005). How could we possibly know for sure what the end will look like a third, 

of half way through the therapy? Thus, an observed accuracy somewhere in the 90-100% range 

should be viewed with skepticism, as it is probably a computational error or incorrectly 

designed model, much like if you find a person that is three meters tall, it is more likely that 

you measured that person incorrectly, than it is that the person is actually three meters tall. For 

example, Hannan et al. (2005) state in the abstract that their lab-test identified 100% of the 
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patients who would deteriorate. This is however only equivalent to 100% sensitivity and not at 

all analogous with 100% accuracy. The balanced accuracy of that lab test was actually about 

65% based on the confusion matrix in Table 1 in that article. 

1.5.2 The Decision-Threshold Approach in clinical decision making 

In medical research, some attempts have been made to define criteria or principles for deciding 

to prescribe treatments, to go on with further testing, or not offer any health care. This is based 

largely on simple probability theory. A patient may or may not have a disease, and there are 

associated benefits and risks with 1) running additional tests, 2) treating a disease that isn’t 

there and, 3) not treating a disease that is there. In the late 70’s, Pauker and Kassirer (Pauker & 

Kassirer, 1975; Pauker  & Kassirer 1980) attempted to formalize the decision making process 

in medical treatment. They suggest a “decision-threshold approach” where a dichotomous 

decision should be made based on whether a threshold probability of the disease has been 

reached. They define the “indifference point” as the point in probability where the expected 

value of treatment is the same as not treating. They suggest the formula T = 1/(B/C +1) where 

T is the threshold probability and B is the benefit of treating a diseased patient minus treating 

a non-diseased person, and C is the cost of not treating a diseased patient minus the cost of not 

treating a non-diseased person. Cost here refers to potential harm, but therapist time or 

monetary expense can also be taken into account. I believe that psychotherapy research is quite 

far away from being able to apply this reasoning. This is because we, as mentioned before do 

not really know much about the harms of treating (Rozental et al., 2014) or of not treating 

(though, we do know that waiting is in itself bad (Cunningham, Kypri, & McCambridge, 2013; 

Furukawa et al., 2014) and, rarely actually have several treatment options available. Instead, 

we have the option of attempting to treat now with the treatment we have or putting the patient 

on a waitlist (i.e. sending a referral) for maybe getting a more high intensity treatment 

somewhere else, probably much later.  

Another factor to consider is how accurate the clinician wants the prediction to be before they 

are willing to act. Eisenberg and Hershey (1983) conducted an empirical study where clinicians 

where asked to decide on treatment, further tests, or neither based on differing ranges of 

probabilities that a patient had the disease. The best estimation of this range found in their 

diverse sample of patients and diseases being assessed lied in the 65-70% range (Eisenberg & 

Hershey, 1983) (i.e. clinicians want to be about 65-70% sure that the treatment is appropriate 

in order to prescribe it). These results, although preliminary and dated, give some idea about 

what should be the minimal accuracy required from a classification algorithm used for deciding 

on offering or denying treatment. On the other hand, those ratings were from a range of tests 

and treatments of different diseases. As such, many of those tests were likely more harmful, if 

given needlessly, than we assume psychotherapy to be if intensified needlessly. For instance, 

giving chemotherapy to a patient without cancer is probably worse than if a therapist decides 

to give extra attention to a patient who did not need it. Therefore, in psychotherapy we might 

dare to be a bit more generous with intensifying treatments as long as the costs in terms of 

therapist time are not too great. 
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1.5.3 High vs low-risk decisions 

One can argue that the types of clinical decisions that we want to make should affect the 

certainty that we try to achieve in order to make such a decision. For instance, it would be far 

bolder to suggest that a non-gold-standard treatment is a better choice for a specific patient than 

to suggest that a specific patient needs extra help in an ongoing treatment. However, we must 

still ascertain that the cost of intensifying treatment has some value (i.e. that treatment effects 

are in fact enhanced by more time spent). This poses a very salient problem with patient-to-

treatment matching using predictions. Namely, what is the alternative? Are there more than 

one treatment available to the patients, from which to choose? Can the models tell us that the 

patient would be better off not getting any treatment at all rather than getting an efficacious 

treatment for which they seem unsuitable? In this thesis, we focus entirely on what I would 

argue is a very low-risk decision, namely allocating some extra resources to patients who seem 

to be struggling with an ongoing, gold-standard treatment. 

1.6 THE ADVANTAGES OF ICBT FOR RESEARCH ON PREDICTION AND 
ADAPTIVE TREATMENT STRATEGIES 

There are a few commonly cited advantages of ICBT over CBT and other evidence based 

treatments. One is time spent by therapists where, generally, a therapy session is 45-60 minutes 

whereas the average ICBT therapist spends markedly less time per week on a patient 

(Andersson et al., 2008). This is especially important since there is a general lack of qualified 

CBT therapists, making efficiency critical not only to save money but to make treatment 

accessible at all (Larsson, 2009). This makes guided ICBT a natural early step in a stepped care 

model (i.e. evidence based and low intensity from the care providers perspective; Bower & 

Gilbody, 2005; Gyani et al., 2013; Mohr et al., 2019; Richards et al., 2012) but could also 

evolve into an ideal area for Accelerated Care. The format also means that there is variation 

between the time spent by therapists on their different patients. Patients who are easy going 

maybe only get five minutes a week, whereas patients who are struggling might get up to 40 

minutes. It is hard to imagine a therapist in face-to-face treatment sending their patient home 

after five minutes because they are doing so well in treatment and giving the saved up 40 extra 

minutes to their most difficult patient. In ICBT, this is possible! 

ICBT also has an advantage when it comes to quantitative analyses since ICBT, even in routine 

care, tends to have highly structured formats and contents, as well as a myriad of structured 

data, collected from both patients and therapists. ICBT also has the potential of including 

automated measures, assessments and even predictions since all the data being generated is 

already electronic and contained within the treatment database.  
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2 THE AIMS OF THE THESIS 

The aims of the thesis were: 

a) To establish a proof of concept for an Adaptive Treatment Strategy in ICBT by 

1) Providing evidence of successful predictions of treatment Failure in ongoing 

treatments 

2) Providing evidence of successfully implemented Adaptive Treatment through a 

randomized controlled experiment where half of those predicted to fail receive 

additional support and adaptations by their therapits in order to prevent the 

predicted Failure 

b) To establish three, much needed, baselines for the accuracy of outcome predictions in 

Adaptive Treatment Strategies 

1) How accurate are therapists themselves if asked to make these kinds of 

predictions? 

2) How soon in treatment could we make clinically acceptable predicitons based 

solely on weekly symptom measures and simple statistical models? 

3) What is the minimal clinically supported accuracy for predicting treatment 

Failure in an Adaptive Treatment Strategy? 

3 THE EMPIRICAL STUDIES 

3.1 METHODS 

This section will cover some of the methods used across more than one study in this thesis. 

3.1.1 Participants, recruitment and assessments 

While Study I and Study II report on a randomized controlled trial whereas Studies 3 and 4 

report data from regular care at the Internet Psychiatry Clinic, in Stockholm, Sweden (the 

clinic), the recruitment and assessment procedures were still essentially the same across all four 

studies. Patients self-refer by filling out an online questionnaire at the Internet Psychiatry 

Clinic’s public website, after which they are invited to a face-to-face assessment at the clinic. 

The assessment is usually conducted by a specialist physician in training, supervised by a 

psychiatrist. It includes psychiatric history, and a MINI psychiatric interview (Sheehan et al., 

1997), current medications and assessment of inclusion and exclusion criteria, which are 

specified in each paper. All participants were adults, fluent in Swedish, able and willing to 

partake actively in the treatment during the coming months and did not have a severe 

psychiatric or somatic comorbidity that needed to be given precedence. 

3.1.2 The Internet-delivered Cognitive Behavior Therapies 

In total, there are four different treatments used in this thesis, all of which are now implemented 

in regular care at the Internet Psychiatry Clinic. They are all diagnosis specific and target one 

(1) diagnosis each: In studies 1 and 2, Insomnia is treated in the context of an RCT and in 
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studies 3 and 4; Major depressive disorder, Social anxiety disorder and Panic disorder are 

treated in regular care. All of the treatments are delivered via the same internet platform. They 

are all based on written texts, worksheets and questionnaires that are divided into modules 

(chapters). These modules are usually meant to take one week to complete, but the therapist is 

always the one that unlocks the next module whenever a patient has sent in a homework report 

and received feedback. Patients have a specific psychologist assigned to them, who monitors 

and communicates with the patient via written text messages in an e-mail-like system within 

the platform. Communication is asynchronous, and therapists respond within 48 hours. Patient 

fill out weekly online assessments that includes questions about suicidal ideation. If a patient 

reports suicidal ideation, they are flagged within the system and is contacted via telephone as 

soon as possible for assessment and if needed, crisis referral.  

3.1.3 Symptom measures 

For Insomnia, Primary outcome was the Insomnia Severity Index (ISI), a 7 item scale ranging 

from 0 to 28 points (Bastien, Vallières, & Morin, 2001). The scale is reliable and sensitive to 

change (Bastien et al., 2001; Morin, Belleville, Belanger, & Ivers, 2011). Response was defined 

as a decrease in ISI score of at least 8 points rather than using the RCI as this is a commonly 

used convention for this measure (Morin et al., 2011). The cut-off for remission was less than 

8 points (Morin et al., 2011). 

For Depression, we used the Montgomery-Åsberg Depression Rating Scale Self-report version 

(MADRS-S; Montgomery & Asberg, 1979; Svanborg & Asberg, 1994, 2001). Scores range 

from 0-54 points. Test-retest reliability is high (ICC=.78; Fantino & Moore, 2009) and the RCI 

in our sample comes out at 8 or more points change and the cut-off for remission is a score of 

10 or less at post treatment (Fantino & Moore, 2009). 

For Social anxiety disorder, we used the Leibowitz Social Anxiety Scale-Self report version 

(LSAS-SR; Baker, Heinrichs, Kim, & Hofmann, 2002; Fresco et al., 2001).  Scores range from 

0 to 144 points. Test-retest reliability is high (r=.83), but there is high variation in the sample 

and the range of the measure is large, making the RCI 28 or more points change. We used a 

score of 34 or less at post treatment as the remission cut-off (von Glischinski et al., 2018). 

For Panic disorder, we use the Panic Disorder Symptom Scale-Self Report (PDSS-SR). PDSS-

SR has 7 items and scores range from 0 to 28 points. Test-retest reliability is high (ICC=.81; 

Houck, Spiegel, Shear, & Rucci, 2002) and the RCI came to 6 or more points. A score of 6 or 

less was used for defining remission (Monkul et al., 2004). 
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3.1.4 Definition of Success and Failure 

In this thesis, the criteria for a successful treatment is that a patient’s post-treatment symptom 

scores in their self-rated primary outcome measure EITHER falls below the clinical threshold 

for remission OR that the reduction in symptoms is of a certain magnitude. In studies 1 and 2, 

this reduction is 8 points on the Insomnia Severity Index and in Study III this is a 50% reduction 

compared to pre-treatment. In Study IV, both the RCI-criterion and the 50% reduction-criterion 

are tested, and the criteria for remission for each diagnosis, but Success/Failure is not defined 

because therapists did not answer that specific question. 

3.1.5 Classification accuracy measure 

Table 2: Confusion matrix 

  Actual 

  Failure Success 

Predicted Failure True Positive False Positive 

Success False Negative True Negative 

To understand classification accuracy, we must consider the aptly named confusion matrix 

(Table 2). If the outcome and the prediction are both dichotomous/binary (Yes/No), then there 

are four possible outcomes, illustrated in a 2x2 table (Table 2). If a classifier predicts that the 

patient will fail and then the patient actually does fail, that is a True positive. What is Positive 

or Negative is completely dependent of what outcome is considered the one (1) in the equation. 

In this thesis, Failure is always the one (1), so even though Failure is a bad thing it is a Positive 

in the analyses. 

Accuracy, defined as the ratio of correct classifications, is a commonly used performance 

metric in classification analyses, but it is misleading as it does not account for classes of 

differing sizes. For instance if Deterioration happens in 5% of the sample, then never predicting 

Deterioration will yield a 95% accuracy, even though you miss all actual cases of Deterioration.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The primary accuracy measure used in this study is instead Balanced Accuracy (BACC), 

which does account for the distribution of the classes. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
+

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) /2 

Balanced accuracy ranges from 0 to 1 where .50 is completely random and 1 is perfect. This is 

used because a) it is a single value, b) it is expressible as a percentage, c) it is clinically easy to 
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understand, and d) it compensates for uneven class distribution. If using the same example as 

with Accuracy above, the Balanced Accuracy would be 47.5% rather than 95%, which is more 

fare considering, again that not a single deteriorating patient was found. If for instance Failure 

happens exactly 50% of the time, then Accuracy and Balanced Accuracy will be identical and 

both are valid measures. 

3.1.6 Ethical considerations 

All studies were approved by the Regional Ethics Board in Stockholm, Sweden. In Study I and 

II, patients provide written informed consent and in Study III and IV were data from regular 

care was used, patients are informed that their results may be used for research purposes and 

are given the option to opt-out.  

In Study I, we identified patients who we believed would have a poor treatment outcome, and 

then we did nothing in half of those cases. Doing this is ethically problematic. We still 

considered this defensible for a number of reasons: First, we did not know that our classifier 

was correct and that those predicted to fail really would fail, nor did we know that the adapted 

treatment would help the patient if provided, and the only way to answer that question was 

through performing this experiment. Additionally, we did not remove or deny anything that 

would otherwise have been given, but gave all patients gold-standard treatments and level of 

care for their Insomnia. In fact, at least when the trial was initiated, evidence based treatment 

for Insomnia was largely unavailable to the public in Sweden, so conducting the study was 

overall likely a positive thing for persons suffering for insomnia and even for patients in the 

Red-Standard group (i.e. predicted to fail, but not given adapted treatment). 

Therapists in Study IV were of course informed of what was going on when they made their 

predictions, but not asked to actively consent as the study was deemed part of their duties to 

develop and improve the clinical procedures that we use.  However, in consideration of their 

integrity, we did not perform any analyses on treatment effects for different therapists or 

prediction accuracy for individual therapists, but only on their confidence in their predictions, 

and therapists identities are masked in the manuscript. All other tests were on group level. 
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3.2 STUDY I:  
PROOF OF CONCEPT FOR AN ADAPTIVE TREATMENT STRATEGY IN 
ICBT: A SINGLE-BLIND RCT WITH INSOMNIA PATIENTS 

3.2.1 Aim and hypothesis 

In this study, we aimed to provide a proof of concept for an Adaptive Treatment Strategy in 

ICBT-i. The Adaptive Treatment Strategy had two parts: a) predict which patients were likely 

to fail treatment and b) adapt the treatment for the patients predicted to fail. 

3.2.2 Methods 

The Adaptive Treatment Strategy was tested in a randomized controlled trial, where a 

prediction was performed for all patients, and the patients predicted to fail were randomized to 

continued standard treatment, or to an adapted treatment. The study included 251 adult patients 

with diagnosed Insomnia and at least 11 points on the Insomnia Severity Index who started 

ICBT-i with standard treatment for three weeks. During week 4, a semi-automated 

classification algorithm was used to classify patients as Green (likely Success) or Red (likely 

Failure). Green patients continued with standard treatment, whereas Red patients were 

randomized either to continue the Standard treatment or to receive an Adapted treatment for 

the remainder of the treatment period. The adaptation of the treatment started with a telephone 

assessment to analyze the patients’ difficulties and needs, after which the therapist presented 

the patient with a plan for the remainder of the treatment period. Adaptations were strictly 

Insomnia focused but could otherwise entail anything from extra telephone calls or in-person 

appointments, to reordering modules or sending daily SMS reminders. 

The primary outcome was change over time in insomnia symptoms measured with the 

Insomnia Severity Index. Two latent growth curve analyses were performed, the first assessing 

the difference between Green and Red-Standard groups during the whole treatment, and the 

second assessing the difference between the Red-Standard and Red-Adapted groups during the 

time after randomization. Secondary outcomes were response, remission, deterioration and, of 

course, Failure. 

3.2.3 Results 

About 40% of patients were classified as Red (102 Red and 149 Green) and 51 of these received 

the Adapted treatment. On average, the adapted treatment took an additional 14 minutes per 

week for the therapist to deliver for the remaining five weeks of treatment. This includes the 

initial telephone assessment (usually about 30 minutes). Green patients were more satisfied 

with the treatment (p<.001) but the Red groups were similarly satisfied and the overall 

satisfaction was good to excellent. 

Green patients improved more than did Red-Standard patients (p<.001), but not more than Red-

Adapted patients once their treatment had been adapted. Once treatment was adapted, Red-

Adapted patients improved significantly more than Red-Standard patients (p<.001) and 

actually even more than Green patients during that period (p<.001). Fewer Red-Adapted 
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patients than Red-Standard patients became Failed treatments (37 % vs 64 % failures, OR=.33, 

p<.01).  

3.2.4 Conclusions 

We found proof for the concept of an Adaptive Treatment Strategy in ICBT-I since a) treatment 

Failures could be predicted and b) predicted treatment failures could be avoided if treatment 

was adapted. We also found that this adaptation did not require an inordinate amount of time 

from the therapist. However, not all those predicted to succeed actually did, nor did all those 

predicted to fail actually do so, and nor did all those who received adapted treatment actually 

benefit. This means that predictions were far from perfect and that the adaptations used in this 

study could not always avoid a poor treatment outcome.  

3.3 STUDY II:  
CLINICALLY SUFFICIENT CLASSIFICATION ACCURACY AND KEY 
PREDICTORS OF TREATMENT FAILURE FROM THE RCT 

3.3.1 Aim and hypothesis 

Aim to establish a clinically sufficient level of accuracy by performing an in-depth analysis of 

the classification algorithm used in the RCT (Study I), and to explore if alternative classifiers 

that would be easier to implement might be as accurate or better. We also wanted to explore 

the 21 input predictors used in the RCT-algorithm to see if, and how strongly, they really relate 

to Failure and if they could be combined in ways that make predictions stronger or require 

fewer predictors to reach the same results. 

3.3.2 Methods 

The algorithm in the RCT (Study I) classified 149 patients as Green and 102 patients as Red, 

out of which 51 were randomized to adapted treatment. The 51 patients randomized to adapted 

treatment were manipulated after classification and cannot be included in this study. The 200 

patients included in this study (149 Green + 51 Red) should all have received the same level of 

care in the same treatment. If the classifier was 100% accurate, all 149 Green patients and none 

of the 51 Red patients should have a successful treatment outcome.  

The RCT-classifier had several separate steps before the final classification which were all 

evaluated using the Balanced accuracy and compared to two alternative classifiers that would 

be simpler to implement, but had not been validated in the RCT. One alternative classifier used 

only the patient ratings from the RCT-classifier and the other instead used linear regression and 

symptom measures from the first three weeks of treatment (that is the same method as we used 

in Study III). 

The 21 predictors were first examined with correlations to Failure, and then used in four logistic 

regression models to predict Failure (the absence of both responder and remitter status). The 

first model used all patient rating from the RCT-classifier (12 predictors). The second model 

used only the clinician ratings (9 predictors). The third model used all predictors (patient + 
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clinician ratings = 21 predictors). After that, fourth model was built using only predictors that 

had a significant correlation to the outcome Failure (11 predictors), which should be more 

parsimonious and require less data collection. For comparison, we then built a model using 

only the observations on the ISI from screening until week three (the same type of model as in 

Study III). 

3.3.3 Results 

The Balanced Accuracy of the RCT-classifier was 67% (95% CI: .61-.74), whereas the 

prospective alternative classifiers produced a Balanced accuracy of 62% (95% Confidence 

intervals did however overlap). Out of the 21 predictors, only eleven correlated significantly 

with Failure. The logistic regression model using all predictors could explain 56% of the 

outcome variance, whereas the various simpler models explained between 16-47%. Important 

predictors were patient rated stress from baseline, treatment credibility from week 3, depression 

change by the third week, and insomnia symptoms at week 3 as well as clinician rated attitudes 

towards homework and sleep medication that were made after week 3. 

3.3.4 Conclusions 

We found that a Balanced Accuracy of 67% could serve as a preliminary benchmark for clinical 

usefulness of predictions in an Adaptive Treatment Strategy. Simpler models, using less data, 

generally performed slightly worse, but do have the advantage of being easier to implement, 

and should be developed further, perhaps with more advanced statistical models. Most of the 

important predictors were collected during rather than before treatment, highlighting the 

advantage of letting patients start treatment and monitor early progress. Relevant predictors 

were, of course symptom severity, but also depressive symptoms, and various markers of 

treatment engagement such as early activity, attitudes towards the rational of treatment 

homework and treatment credibility ratings, indicating that patients who are not on-board with 

the treatment after three weeks probably need extra support in order to benefit. 

3.4 STUDY III:  
PREDICTING TREATMENT FAILURE IN REGULAR CARE ICBT FOR 
DEPRESSION AND ANXIETY USING WEEKLY SYMPTOM MEASURES 

3.4.1 Aim and hypothesis 

We aimed to assess at what treatment week a clinically acceptable level of accuracy that 

clinicians would be willing to act on could be reached using only basic statistics and weekly 

symptom measurements. This could then be used for prediction, as it is simple to implement, 

as well as serve as a benchmark for more complicated prediction paradigms, which must be 

better than this one to be worth extensive additional data collection and/or complex data 

management and modeling procedures. 
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3.4.2 Methods 

Data from the Internet Psychiatry Clinics three main treatments, Depression (n=2052), Social 

anxiety disorder (n=1103), and Panic disorder (n=1155) was used. Patient rated symptom 

scores on their respective primary outcome measure (MADRS-S for Depression, LSAS-SR for 

Social anxiety disorder, and PDSS-SR for Panic disorder) was used as predictors of post-

treatment symptom scores in a series of multiple linear regression models. Models were built 

consecutively, adding one weekly observation at a time (i.e. Screening, Screening + Pre, 

Screening + Pre + Week 1 etc.).  

In the first step, we compared using the raw sums of the measures as the predictors compared 

to using a change score each week (calculated from Screening) to see which could explain more 

end-point variance for each treatment. Then, the best version for each treatment was used to 

predict final symptom scores for each patient in hold-out test-samples consisting of random 

subsets of patient that were left out of the model building datasets to be used later for validation 

(Depression, n=390, Social Anxiety, n=281, Panic, n=292).  

The predicted score was then compared to cutoffs for remission and response and calculated 

into a predicted Failure (neither remitter nor responder) or success. Predicted Failure was 

compared to the observed outcome for each patient, resulting in a Balanced accuracy, which 

was compared to pure chance. As a benchmark for Clinical acceptability, we used information 

from an old experiment by (Eisenberg & Hershey, 1983) where they essentially found that 

clinicians became more likely to act according to a prediction once it became at least 65% 

accurate. We compared against this benchmark by declaring that the lower bound of a 95% 

confidence interval around the Balanced accuracy should start on at least 65%. 

3.4.3 Results 

On average, half of the 4310 treatments were Failures according to our definitions (50.5% in 

Depression, 77.3% in Social anxiety disorder and 24.3% in Panic disorder), whereas only just 

over 4% deteriorated, which is less than in previous research. The Balanced accuracy indicated 

that predictions were better than chance even before treatment started. The Clinical 

Acceptability benchmark (95% CI min ≥ 65%) was reached at week five for Social anxiety 

disorder (95% CI low bound=.67) while Depression and Panic disorder were only close at that 

time (95% CI low bound =.645 and .642 respectively). By week six, Depression and Panic 

disorder reached the benchmark (95% CI BACC low bound = .66 & .65). Point estimates of 

Balanced accuracy at week 6 varied between 72-75%.  

3.4.4 Conclusions 

Failure can be predicted with a clinically acceptable level of accuracy (65% or above) after 5-

6 weeks in 12 week long ICBT for Depression, Social anxiety disorder and Panic disorder using 

only weekly measurements on the respective primary outcome measure and a basic linear 

multiple regression model. Predictions quickly become better than chance but further increases 
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are not very big using this model. Further improvement might require using more data as 

predictors, more sophisticated models, or both. 

3.5 STUDY IV:  
ACCURACY OF THERAPISTS’ PREDICTIONS IN ICBT FOR DEPRESSION 
AND ANXIETY IN ROUTINE PSYCHIATRIC CARE 

3.5.1 Aims and hypothesis 

We aimed to assess the accuracy of ICBT-therapists own guesses when asked to make 

predictions on several relevant clinical outcomes, both categorical and continuous, and see if 

they are overly optimistic when making predictions. We also wanted to see if they differ in 

how confident they are in such predictions and if confidence in the prediction relates to how 

likely it is to be correct. 

3.5.2 Methods 

During about one year, fourteen different therapists at the Internet Psychiatry Clinic filled out 

a prediction questionnaire during the fourth week of treatment for all of their patients, which 

was in total 897 consecutive patients. The predictions were made within a questionnaire in the 

treatment platform at the clinic. Therapists answered a number of questions such as: 

Will the patient be "cured" from his/her [depression, social phobia, panic disorder] - that is 

to say do you think that the patient's symptoms post treatment will be at a level comparable to 

a person without [depression, social phobia, panic disorder]? 

□ Yes 

□ No 

How do you think the patient will have changed in their [depression/social anxiety/panic 

disorder] measured with [measure] from pre-measurement to post-measurement? 

□ Deteriorated in a clinically meaningful manner 

□ No change so large that it can be considered clinically meaningful 

□ Improved in a clinically meaningful manner 

 

Exactly how many points on [symptom measure] do you guess the patient will be improved or 

changed from pre-measurement to post-measurement? 

□ Improved, number of points:________ 

□ Deteriorated, number of points:_______ 

Remission was defined as a post-treatment score below the clinical cutoff (Section 3.1.3), and 

responder was defined in two ways, using the Reliable Change Index (RCI) and using 50% 

reduction as a criterion. Deterioration was defined using the RCI*.84 rather than 1.96 and non-

response was the absence of all of these. Therapists’ predictions were then compared with the 

observed outcomes for these patients using confusion matrix statistics and the Balanced 

accuracy for categorical outcomes and simple regression for continuous outcomes. Categorical 
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predictions were compared to two simple benchmarks, apart from comparing to pure chance 

(i.e. 50%): the Clinically acceptable benchmark that we derived from (Eisenberg & Hershey, 

1983) and used in Study III, as well as the Balanced accuracies of a predictive statistical model 

using symptom measures and multiple regression (those observations are from the appendix 

for Study III). 

3.5.3 Results 

For the categorical outcomes, therapists were more accurate than chance when predicting 

remitters. For responders (both RCI and 50%), they were better than chance in Depression and 

Social anxiety disorder. Overall, therapists were on average 9.5% less accurate than statistical 

models using only symptom ratings across remission and response-predictions. Amongst 

predictions that could be compared to the statistical benchmark based on Study III, the point 

estimates of Balanced accuracy of the therapists ranged from 53-73%, whereas the statistical 

benchmark had point estimates ranging from 66-81%. The clinical acceptance benchmark of a 

95% confidence interval starting at 65% Balanced accuracy was only reached by therapists for 

predicting remission in social anxiety treatment, but was reached by the statistical model in all 

treatments. Deterioration was never correctly predicted by therapists. 

For continuous symptom outcomes, therapists’ predictions could explain 13%, 16 % and 18 % 

of the variance in the outcome in Depression, Panic disorder and Social anxiety disorder 

respectively which can be compared to previous findings with simple regression explaining 

41%, 34% and 43% of the variance respectively for the same treatments at the same clinic 

(Schibbye et al., 2014). 

Regarding optimism, therapists predicted positive categorical outcomes about twice as often as 

they occurred, with one notable exception being remission in Social anxiety disorder, which 

was predicted as often as it occurs. Additionally, they predicted larger mean changes in 

continuous outcomes than were observed, though again not for Social anxiety disorder.  

Therapist varied quite a lot in how confident they were in their predictions. Both within 

therapists and between therapists, with some therapists being consistently very confident or 

doubtful while others had hugely different confidence levels between their different patients. 

How confident the therapist was in their prediction did however not correlate with how correct 

they were neither for categorical nor continuous outcomes. 

3.5.4 Conclusions 

Therapists delivering ICBT can often predict outcomes for their patients better than chance but 

most likely not as accurately as statistical models. As has been found in other contexts, 

therapists are overly optimistic about the prognosis their patients. ICBT therapists differ in how 

confident they are when making predictions, but this does not seem to be related to how correct 

those predictions are.  Whether therapists are better at categorical or continuous predictions is 

still unclear, though their predictions of categorical outcomes were closer to statistical models.  
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3.6 SUMMARY TABLE REGARDING PREDICTING FAILURE DURING WEEK 4 

We decided to make predictions during week 4 in Study I (and II) based on previous research 

and clinical judgement regarding time left in treatment vs. predictive accuracy. Table 3 

summarizes what we find in this thesis regarding predicting Failure during week 4 in treatment 

(i.e. using data collected during week 3 or earlier), and how this relates to the two benchmarks 

we used/created in this thesis. The Clinically sufficient benchmark is what we found in Study 

II. Therefore, we have access to a 95% CI around the Balanced accuracy to use instead of the 

more arbitrary decision that the low bound of a CI should exceed the point estimate required 

by the benchmark as we do with the Clinically acceptable benchmark in Study III. For one 

thing, doing that would mean that Study II both creates and then fails to meet the Clinically 

sufficient benchmark. 

Table 3: Balanced accuracy when predicting Failure by Week 4 

Study and 

disorder 

Method for 

prediction 
BACC 

CI  

Low 

CI  

High 

Clinical 

acceptability 

benchmark  

(CI low ≥65%) 

Clinically 

sufficient 

benchmark  

(CI low ≥61%) 

Study I & II 

Insomnia 

Multicomponent 

classification 

algorithm 

67% 61 74 No Yes 

Study I & II 

Insomnia 

If automated  

(all patient ratings) 
62% 55 69 No No 

Study I & II 

Insomnia 

Linear regression 

with only ISI 
62% 55 69 No No 

Study III  

MDD 

Linear regression 

with only MADRS-S 
67% 62 72 No (not until week 6) Yes 

Study III  

SAD 

Linear regression 

with only LSAS-SR 
70% 64 75 No (not until week 5) Yes 

Study III  

PD 

Linear regression 

with only PDSS-SR 
63% 57 69 No (not until week 6) No 

Notes: BACC= Balanced accuracy, MDD= Major depressive disorder, SAD= Social anxiety disorder, PD= 

Panic disorder, ISI= Insomnia Severity Index, MADRS-S= Montgomery-Åsberg Depression Rating Scale-Self 

report, LSAS-SR= Liebowitz Social Anxiety Scale-Self report, PDSS-SR= Panic Disorder Severity Scale- Self 

Report 
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4 DISCUSSION 

This thesis had two main aims. Firstly, to establish a proof of concept for an Adaptive 

Treatment Strategy in ICBT where failing treatment attempts are identified early and treatment 

is then adapted in order to avoid the predicted failure. Secondly, to establish some preliminary 

minimal benchmarks regarding the timing and accuracy of such outcome predictions. These 

were the following: How accurate is an empirically supported classification algorithm and are 

all of its constituent parts important? How early in treatment can an accuracy that might be 

accepted by a therapist be reached with very basic prediction procedures? How accurate are 

therapists themselves are when making such predictions?  

4.1 MAIN FINDINGS 

In Study I, we found that once adaptations had started, Red patients receiving adapted treatment 

improved significantly more than those Red patients who did not receive adapted treatment, 

and in fact even more than Green patients, who had already improved a lot more by the time 

of randomization. The odds of Failure amongst those receiving adapted treatment was only a 

third of the odds amongst those predicted to fail who did not get adapted treatment, and the 

proportion of failures amongst Red patients was close to be cut in half by adding the adapted 

treatment. The Green group were still more likely to become remitters than Red patients with 

adapted treatment, but in other respects the groups were equal. 

This proof of concept was still only in Insomnia treatment. Insomnia is a relatively specific 

problem where we have relatively substantial evidence that engaging in the proposed 

mechanism of change (i.e. sleep restriction and stimulus control) produces positive outcomes 

(Blom, Jernelöv, et al., 2015; Harvey, Dong, Bélanger, & Morin, 2017; Kaldo, Ramnerö, & 

Jernelöv, 2015; Kraepelien et al., 2019). This could make it easier for therapists to make 

adapted treatment efficient. In treatment of depression or anxiety, it is perhaps more likely that 

the adapted treatment diverts on a tangent from the main focus of the therapy and thus produces 

less convincing results, while perhaps being helpful in an area that we are not measuring as the 

main outcome, though that remains to be tested.  

We still do not know if all Red cases could have been helped, if the adapted treatment had been 

better. It is unlikely that every patient will benefit from treatment even with perfect predictions 

and exceptional treatment adaptations. For one thing, this would imply that every patient was 

assessed perfectly in the first place, which is unlikely. 

I mention in the introduction that before one considers an Adaptive treatment strategy, it is 

important that the average effect of the treatment is acceptable. If patients do not do well 

overall, then the treatment need to be changed overall, not just for some. Was the treatment in 

the RCT good enough overall to begin with? This was not directly examined, but by averaging 

the within group effect sizes, we can get an idea of this. The within group Cohen’s d was 1.24 

for the Red-Standard group and 2.05 for the Green group. Given that there should have been 

twice as many Red-Standard patients we can take (1.24+1.24+2.05)/3 and get a quite 
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speculative within group effect size of 1.51 for the whole group if no-one had received the 

adapted treatment. This is well within the bounds of a large effect size. Similarly, if we account 

for the missing Red-Adapted group and assume that as many of those would have Failed 

treatment we would get 32+32+34 Failures (Table 3 in Study I) out of 251 patients, which 

means a 61% Success rate for the treatment if no-one had received the adapted treatment. That 

is certainly good enough according to current standards. This indicates that we did not need to 

overhaul the entire treatment, but that the treatment was good enough on it’s own to warrant 

the use of an Adaptive Treatment Strategy instead. The reason this was not examined as part 

of Study I is that we already had good reason to believe that the treatment was good enough 

based on previous RCTs of the same treatment (Blom et al., 2016; Blom, Tillgren, et al., 2015; 

Kaldo, Jernelöv, et al., 2015).  

Let us speculate even further and ask how good the treatment might be if we implemented this 

and every Red patient receives the adapted treatment. Using the same, slightly flawed, logic as 

above we would get an effect size of Cohen’s d = 1.81 and a 72 % success rate for the treatment 

overall. An effect size increase of .30 and an 11 % reduction in treatment Failures overall is 

quite good considering it only took another 14 minutes per remaining week per Red patient, 

and only 40% become Red. That means less than six minutes of extra work per patient-week 

for the remaining weeks across all patients, or just under four more minutes of work per 

treatment week averaged on all patients and the whole treatment.  

In Study II, we found that a Balanced Accuracy of 67 % is potentially clinically sufficient for 

predicting treatment failure in an Adaptive treatment strategy based on it having been used in 

a fruitful way in a randomized trial of an Adaptive treatment strategy for ICBT-i. Each step in 

the RCT-classifier seems to function well enough not to warrant omission of steps in future 

applications of the algorithm. The simpler alternative classifiers did not do quite as well as the 

original RCT-classifier. However, they would require far less input data.  

The alternative classifier using only symptom scores was close to being as accurate as the full 

RCT-version but in the logistic regressions, using only symptom scores seemed markedly 

worse than using more of the carefully selected predictors used in the trial. Ideally, symptom 

scores and trajectories can be combined with more process-related variables in even more 

fruitful ways. The most influential predictors of Failure was symptom severity and 

psychological distress on one hand and several indicators of treatment engagement on the other. 

I will now discuss the various indicators of engagement or on-boarding with treatment, as that 

is less obviously connected to the outcome than symptom severity is. 

Our finding that alliance was correlated with positive outcome is in line with previous research 

(Flückiger, Del Re, Wampold, & Horvath, 2018). However, it is important to note that working 

alliance did not remain a significant predictor in any of the logistic regression models when 

other, potentially more specific, factors such as attitudes to CBT homework, willingness to 

taper sleep medication and treatment credibility ratings were controlled for. This could also 

reflect that the working alliance inventory measures things that may be less salient in ICBT, 

such as bonding with the therapist (Berger, 2017). Perhaps we need to measure alliance in a 
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different way in ICBT, when one can argue that the treatment content is its own entity and that 

the patient most likely separates this from the therapist, making a therapeutic triad rather than 

dyad. 

The finding that treatment credibility was a relevant predictor that added unique input in all 

regression models in which it was included is well in line with previous findings from Social 

anxiety disorder and Depression (Boettcher, Renneberg, & Berger, 2013; El Alaoui, Ljótsson, 

et al., 2015; El Alaoui et al., 2016; Hedman et al., 2012). An interesting note is that in face-to-

face psychotherapy, the results have been the opposite; that therapeutic alliance has a stronger 

influence on outcomes than expectations (Constantino et al., 2017; Flückiger et al., 2018). 

We found a significant association between weekly ratings on changes in knowledge or 

understanding and attitudes towards your symptoms predicting better outcomes. Berg et al. 

(2019) on the other hand, found that baseline declarative knowledge of CBT and depression 

actually predicted lower treatment gains in ICBT, even controlling for previous psychotherapy. 

While knowledge increased during treatment, increased knowledge did not correlate with 

treatment gains. Knowledge in Berg et al (2019) is not completely analogous to our findings 

since we did not measure declarative knowledge about CBT-i, but rather the personal 

experience of “having learned something new” or “changed my perspective”. Perhaps Berg et 

al.’s (2019) findings can be understood as an effect of either knowing but not doing, or that the 

proposed therapeutic mechanisms are not functional for that patient. Theoretically, we aim to 

teach the patients how to be their own therapist. This is something that is often said about CBT. 

If that truly is what prevents relapse, then perhaps it is not surprising that the combination of 

knowing a lot about CBT but still having significant symptoms and seeking treatment is a bad 

sign. Either the patient is not doing as CBT prescribes, or the solution proposed by CBT does 

not work for that patient. This might be reflected in our data as well if low ratings on the 

Knowledge-item perhaps reflects the patient “having heard it all before”, which begs the same 

question: why then, is the patient not sleeping? Whether this would be because the proposed 

mechanism is not functional for that patient, or that the patient is very unlikely to try, is an 

empirical question in need of further examination. 

Recently, similar findings have been made on a larger sample than in Study II, in the context 

of ICBT for depression. Zagorscak, Heinrich, Schulze, Bottcher, and Knaevelsrud (2020) 

found that the strongest predictor of later improvements amongst over a thousand patients 

treated with ICBT for depression were, by far, early improvements in symptoms. However just 

like we did, they also found associations with stress at baseline and early usage of treatment 

components and mid-treatment working alliance (specifically for task/goal ratings) albeit 

weaker than for symptom severity. This mirrors the results from Study II closely, which is 

especially promising considering the treatment was for Depression and not Insomnia, which is 

not only a different condition, but also arguably the most heterogeneous psychiatric disorder. 

Zagorscak et al. (2020) also found that expectations before treatment were not directly 

associated with symptom developments, but only if they were followed by high alliance ratings 

at mid-treatment (specifically task/goal alliance).  
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If early on-boarding in treatment, reflected by high activity, acceptance of the rationale and 

willingness to try the main treatment components, is predictive of outcomes when measured a 

few weeks into treatment, perhaps we could look for predictors of this at baseline. In line with 

this, Levallius, Clinton, Hogdahl, and Norring (2020) recently found that the personality traits 

Openness to Experience and Conscientiousness were associated with more overall 

improvement and higher remission rates in ICBT for bulimic eating disorders. It is easy to 

imagine that early adherence to treatment components and rationale could be associated with 

both of these traits.  

Interestingly, Probst et al. (2020) found that factors that were external to psychotherapy (such 

as not feeling able to talk to loved ones about your problems or feeling betrayed or rejected) 

were more prominent predictors of not being on track in treatment than were for instance 

working alliance. Perhaps this external load on the patients would also be strong predictors in 

our studies, but we do not measure this in any sophisticated way. In Study II, there are two 

clinician rated domains that come close to this, where clinicians indicated if they had 

knowledge of any external or internal factors in the patient’s life right now that might interfere 

with either their sleep or their ability to adhere to treatment. That was however, rather a blunt 

instrument considering most other predictors used were validated self-report measures. Perhaps 

adding a general measure of current psychosocial chaos could improve the classifiers used in 

this thesis substantially, as well as inform clinicians about what the patient is currently dealing 

with.   

In Study II, clinicians rated various indicators of adherence or on-boarding with treatment. 

Lenhard et al. (2019) have constructed a clinician-assessment (The Internet Intervention Patient 

Adherence Scale) which consist of items very similar to the domains rated by clinicians in 

Study I & II, such as whether the patient in on schedule, is willing to try the interventions, is 

actively engaged, is communicating frequently and is motivated. They find that this scale was 

predictive of outcome whereas other proxies for adherence such as number of logins, login 

time, how much the patient had written, and how many modules they had completed were not. 

Our and their findings indicate that clinicians know a lot more about whether the patient is 

actively engaged in treatment or not than we can capture with any of these rough proxies, at 

least so far. One possible future avenue for this is natural language processing or other 

text/language based machine learning methods, where the contents of patient and therapist 

messages and well as written work sheets could be mined for compliance/adherence/on-

boarding indicators (Boman et al., 2019; Nadkarni, Ohno-Machado, & Chapman, 2011). The 

findings by Kraepelien et al. (2019), where messages and work sheets were rated by experts, 

suggest that such indicators can be gleaned from those sources and that they do predict 

outcomes. Having machines do this instead could save a lot of time and resources.  

Establishing this benchmark for a classifier with potential to fuel a successful Adaptive 

treatment strategy is sorely needed. Take for instance a recent example of predicting psychiatric 

outcomes using machine learning and routine data from intake where the machine learning 

algorithm could predict non-response with an area under the curve of .65 (Wolff et al., 2020). 
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The authors unfortunately conclude that this was a poor accuracy, but based on Study II in this 

thesis, we might say that this is likely good enough to be usable in an Adaptive treatment 

strategy that could reduce non-response without overburdening the clinicians. Yes, we need to 

aspire to make even better predictions, but we also need to move forward with deploying the 

predictions that we already can make in a clinically meaningful way.  

It is possible that a classifier with the same accuracy or higher could be built using less input 

data if it combines a linear model of the symptom trajectory with the other important factors 

from the RCT-classifier. Of note is that the full RCT-version of the classifier was better as a 

classifier and using all predictors produced the strongest logistic regression model, even though 

almost half of the input variables did not have a statistically significant relationship with 

Failure. Furthermore, those that did correlated with Failure, did so weakly to moderately. These 

findings point to statistical significance as a hard rule for selecting predictors might leave out 

predictors that can contribute in a meaningful way when combined with several others. This 

must be weighed against the burden of collecting the data and the risk of overfitting the model.   

In Study III, clinically acceptable predictions, i.e. the benchmark based on Eisenberg and 

Hershey (1983), could be made at week 5 in Social anxiety disorder treatment and one week 

later in treatment for Depression and Panic disorder using only their respective primary 

symptom measures and a basic multiple regression analysis. At the time these acceptable 

predictions could be made, the adjusted r2 of the regression models were around .60-.70, in 

contrast to the full logistic regression model in Study II which had a pseudo r2 of .56 and was 

the strongest model in that study. 

Regrettably, Study III was carried out before we had the benchmark of clinically sufficient 

established in Study II. However, it is simple to compare our findings from Study III to the 

benchmark found in Study II. The benchmark used in Study III was that the lower bound of the 

confidence interval should be at least 65%. In Study II however, the observed Balanced 

Accuracy of 67% refers to the point estimate. That confidence interval actually started at 61 %. 

Starting with just matching Study II with a point estimate of 67% or above, the model in Study 

III reached this after three weeks in Depression (67%, CI=62-72) and Social Anxiety disorder 

(70%, CI=64-75), and after four weeks in Panic disorder (67%, CI=61-73). If we instead say 

that the lower bound of the confidence interval needs to be 67%, which is just above the clinical 

acceptability benchmark that we actually used in Study III, we have to wait another four weeks 

in Depression, another two weeks in Social anxiety disorder, and another three weeks in Panic 

disorder treatment. This would place the prediction during the sixth week of treatment in Social 

anxiety disorder and as late as during the eighth week of treatment in Depression and Panic 

disorder. Doing this is however, maybe not that reasonable since this would mean that Study I 

& II, where this benchmark comes from, would fail to meet it. It also highlights that data from 

the first few weeks of treatment brings a lot of useful information for prediction, but that future 

weeks do not add quite as much, especially considering they represent time lost to intervene. 

Regarding the idea of using these predictions in an Adaptive treatment strategy, we might again 

ask if the treatments were good enough as a whole to begin with. Based on the criteria of 
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Success/Failure that we used, perhaps that should not be said for the treatment for Social 

anxiety disorder, which had a Success rate of only 23%. While this treatment has a smaller 

effect size than Depression and Panic disorder, I do not believe that the treatment is very bad. 

The within group effect size found in the effectiveness trial was large (d = 0.86) as post-

treatment and maintained at six months follow-up (d = 1.15) after all (El Alaoui et al., 2015). 

A reasonable explanation is a combination of a perhaps slightly less effective treatment and an 

outcome measure (LSAS-SR) that does not function well with our definitions of response (50% 

reduction) and where achieving remission is relatively unlikely. Since all of these findings are 

from an uncontrolled setting, we cannot assume that the treatment for Social anxiety really is 

any less effective than the other two. In fact, Social anxiety disorder has been found to have 

lower rates of spontaneous remission than Depression and Panic disorder (Bruce et al., 2005), 

which could very well account for this discrepancy in effects. The MADRS-S and the PDSS-

SR are more similar to each other than either one is to the LSAS-SR in terms of score range, 

number of items and factor structure (the LSAS has been found to have anywhere between 2-

8 factors; see Caballo, Salazar, Arias, Hofmann, & Curtiss, 2019 for a brief and up to date 

summary). While the LSAS-SR is widely used, and can works well for an individual clinician 

to get a comprehensive picture of a specific patient, it might be less suitable for the type of 

quantification applied in this thesis. 

In Study IV, we found that therapists are often better than chance when predicting categorical 

outcomes and definitely better than chance for continuous outcomes. However, we also find 

that whenever we can compare, statistical models seem to do better. When the balanced 

accuracies of therapists are better than chance, these are clearly driven by high sensitivity and 

lowered by a low specificity (Table 1 in Study IV). i.e. therapists assume that most patients 

will do well, and are often right, but this is perhaps mostly because the treatments are good. 

We make the point in the manuscript that therapists are not necessarily doing their best because 

they have no incentive. This still means that their performance reflects how they are thinking 

about each patient at the time. If anything, performing these predictions likely made therapists 

more aware of the progress of their current patients rather than less. It is still important to note 

that this idea that therapists are blinded by optimism and have no idea what is going to happen 

with their clients is not at all fare. Looking back to the introduction of this thesis, (Section 1.4.1) 

I make the point that patients have already been selected into treatment by being thoroughly 

assessed before starting treatment. According to quarterly reports, just over 50% of all who 

sign up at the clinic actually start treatment. They are also almost entirely self-referred. What 

we are really examining is the ability of therapists to guess which patients will not benefit, 

among patients who were all deemed likely to benefit, and who all wanted this specific 

treatment. Additionally, all of these patients were retained in treatment and did not drop out or 

deteriorate to the point where the clinic aborted the treatment and referred them elsewhere. All 

of these patients continued the full course of a treatment into which they had been carefully 

selected. If therapists saw the failures coming, they would intervene, and we may not have the 

data from such cases. Perhaps this can partially explain that deterioration was never correctly 
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predicted by therapists, if deteriorating patients are in fact referred elsewhere if they are 

detected.  

What this means for the clinic is that, despite out best efforts, many patients steadily go through 

treatment as planned, flying under the radar, and end up with arguably unsatisfactory outcomes, 

at least compared to the lofty standards for success that we use in this thesis. 

This study is also important as a benchmark to which we can hold up more advanced decision 

support tools, statistical models or machine learning algorithms. This is important in the same 

way as it is important to evaluate a therapy against an active control rather than a waiting list. 

For instance, Kessler, Chalker, Luedtke, Sadikova, and Jobes (2020) used a rather advanced 

machine-learning ensemble to allocate optimal treatment for suicidal ideation among 148 U.S. 

soldiers. They found that this could increase 3-month remission of suicidal ideation with 13.6 

% (albeit with a wide confidence interval between 0.9 - 26.3%). This was however, 13.6 % 

better than random assignment to treatments, and random assignment to treatments is hardly a 

gold standard comparator, and unlikely to be the norm in clinical settings today. This makes 

those 13.6 % hard to interpret. 

Based on previous research, we had reason to believe that severity at baseline and early 

symptom changes was going to be the most powerful and consistent predictors of treatment 

outcome. The results from the studies in this thesis generally support this, though Study II 

shows some other potentially important predictors apart from symptom severity. Firstly, that 

severity of other related symptoms such as and general psychological distress, stress, and 

depressive symptoms are relevant predictors. The second major group of relevant predictors 

were all some form of indicators of what I like to think of as “on-boarding” with treatment. 

Factors such as early activity, attitudes towards and willingness to adhere to central treatment 

components and rationale, finding the treatment credible and reporting a good working alliance 

as well as reporting that the treatment so far has altered your thoughts or knowledge about your 

symptoms. However, neither the classifier nor the logistic regression model in Study II take 

full advantage of the available primary symptom ratings (ISI) at the time of prediction, and the 

model that used ISI-data was not that much less powerful than were the far more complicated 

models that accounted for all these other variables.  

It is important to remember that the symptom rating not only correlates to the outcome; it is the 

outcome, just at an earlier point in time. Therefore, all of these findings need to be taken 

together with careful consideration of what our outcome definitions are. If we were trying to 

predict something other than the outcome on the primary symptom measure, perhaps such as 

absenteeism or satisfaction ratings, the situation would be completely different. Based on the 

studies in this thesis, there is no reason to believe that early observations on the primary 

symptom measure would be optimal predictors of anything other than late observations on the 

exact same measure. However, Schibbye et al. (2014) did actually find that disorder specific 

symptom measures were better predictors than the generalized OQ-45 and CORE-10 measures 

even when predicting themselves. 
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4.1.1.1 Summary of main findings 

Is the concept of Adaptive treatment strategies in ICBT viable, based on the results of this 

thesis? Yes, at least in Insomnia treatment! 

Can clinically acceptable predictions of treatment Failure in treatment for Depression and 

Anxiety be made with only symptom scores and simple statistics? Yes, halfway through 

treatment, but the benchmark for this is old and very preliminary 

Can clinically sufficient (based on the RCT for Adaptive treatment) predictions of treatment 

Failure be made during Week 4 in treatment for Insomnia using basic data and simple models? 

Yes, and some predictors could probably be excluded, while some factors might be expanded! 

Can clinically sufficient (based on the RCT for Adaptive treatment) predictions of treatment 

Failure be made during Week 4 in treatment for Depression and Anxiety using only symptom 

scores and simple models? Yes, probably, but it is unclear what is the best way of comparing 

to a benchmark for Balanced accuracy! 

Can therapists themselves make clinically sufficient (based on the RCT for Adaptive treatment) 

predictions of treatment Failure during Week 4 in treatment for Depression and Anxiety? No, 

probably not, but therapist predictions do add unique information that could be used together 

with other data! 

Is it important to leave baseline and instead make predictions a few weeks into treatment? Yes, 

no predictors from baseline were strong enough to make these predictions without adding more 

data from the treatment period! 

4.1.1.2 What could we have done differently in the RCT based on our findings? 

Based on our findings, it is possible that the classification algorithm in Study I could be 

improved in some ways before we use it again:  

1) By adding a linear function of all available measurements on the ISI to the classifier.  

2) By having therapists provide their own best guess for change score, response and 

remission for the patient.  

3) By ignoring some of the seemingly unimportant clinician rated domains and instead 

perhaps having clinicians make more detailed ratings on the domains that were important. For 

example by doing as in Kraepelien et al. (2019) and separating adherence and homework into 

how much the patient has done on one hand and how well the patient has done it on the other. 

4) By removing some seemingly unimportant patient-rated variables (such as beliefs and 

attitudes about sleep at baseline) and perhaps replace with other variables such as the 

personality traits conscientiousness and openness to experiences, and some indicator of 

current psychosocial chaos as well as attitudes towards the treatment format. It would also 
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likely be possible to quantify early activity in treatment using activity-logs in the database 

and the contents of worksheets etc. 

4.1.2 Causal inferences based on this thesis 

Causality is important to keep in mind then interpreting the results and their implications as we 

are using several causally colored words throughout the studies in this thesis even when the 

design of the investigation does not permit causal inferences. Specifically the word Response 

or Responder is problematic in this context. The only place in this thesis where we can make, 

or have any interest in making, causal inferences is in Study I, and even then only specifically 

about the effect of the adapted treatment (i.e. the differences between the two Red groups after 

randomization). There, we want to be able to say that the adapted treatment caused a steeper 

improvement trajectory and caused more patients to have a Successful outcome. The design of 

Study I, it being a randomized controlled trial with adequate power, successful randomization, 

and good adherence to the study protocol, thankfully allows for such causal inferences. 

Anywhere else in this thesis and the papers, the word Reponder is used because it is a 

commonly used term to describe a certain magnitude of change over the course of treatment, 

and we believe that we are introducing enough new terms as it is. A more stringent word might 

be Improver as the only thing we really know is that their symptoms are improving over time. 

Similarly, the word success or failure also implies that we know what the treatment did to the 

patient, which we mostly do not. What we know is what happened to their symptoms. Along 

that line, the word Failed treatment could possibly have been replaced with something along 

the lines of “still not well enough” or “not improved enough” or “non-recovered” but all of 

those have their own problems and we believe that the impact of the word Failure is useful 

when we use it to study treatment outcomes that we produce. I would urge the reader to think 

“good enough” when thinking about the definition of Success used here. I should mention that 

there are ways to use correlational data to examine causality, but it is very, very difficult and 

requires very bold assumptions and really good measurements of potential confounders, 

colliders, mediators and covariates as well as preferably no attrition and perfectly representative 

data (Rohrer, 2018). Considering the state of psychological science regarding the empirical 

evidence of our theoretical models, exactness of measurements and understanding of 

psychotherapy mechanisms, making causal inferences based on correlational data should 

probably not be attempted yet. 

4.2 ADAPTIVE TREATMENT AND ITS EFFECTS 

As I mentioned earlier, we only tested applying an Adaptive treatment strategy on Insomnia 

patients, and therefore wave not yet provided any evidence that this would work in other 

treatments. The idea that allocating more time and effort to patients who are struggling is not 

controversial, and it is easy to imagine that patients in treatment for depression or anxiety would 

also benefit from getting an Adaptive treatment, but that need to be empirically examined in 

future studies. We have also not yet examined exactly what therapists did in the adapted 

treatment and which adaptations produced positive changes or did not help at all. Previous 

research suggests that support might lead to greater improvements via increased engagement 
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in core treatment activities (i.e. adherence/compliance; Kaldo, Ramnerö, et al., 2015), which 

was the main reasoning behind the way we carried out the adaptive treatment strategy in Study 

I. However, it is possible that in some circumstances, the best thing to do could be to address a 

comorbid problem, or help the patient communicate with social services and so on in order to 

increase the likelihood of a good treatment outcome.  

In Study I, we accounted for how much time therapists spent and gave some examples of things 

they did, but we have also collected detailed data on what they did differently with each patient, 

which is yet to be analyzed. Doing this could not only help guide future therapists trying to 

provide an adapted treatment. It is also possible that we can find some adaptations that could 

have been automated or solved beforehand. For instance, some patients felt that calculating 

new sleep windows was too difficult and confusing. This could be built into the program instead 

of being something that the therapist steps in and does only if an adapted treatment is initiated.  

It is also possible that some patients simply need more time, rather than a big change to the 

treatment. In fact, Dunlop et al. (2019) found that when sequentially adding medication or CBT 

after a treatment with medication or CBT, patients who had responded to the first treatment but 

not achieved remission were the most likely to respond to the second treatment as well, 

regardless of which treatment came first and second. On the other hand, those who had not 

responded to one type of treatment did not tend to respond to the other. Therefore, perhaps 

changing treatment did not really help, but those who had started to respond in one treatment 

continued to do so when given more treatment. 

How to plan, and what to do in, an adapted treatment is beyond the scope of this thesis but a 

crucial question for future research. 

4.3 ETHICAL CONSIDERATIONS OF ADAPTIVE TREATMENT STRATEGIES 

Turning over the decision making to mathematical models in such a sensitive area as psychiatry 

is not without some ethical dilemmas, though some would argue that not doing it is more 

ethically questionable (Dawes et al., 1989). As I mentioned in the introduction, it would be an 

entirely different thing to let an algorithm decide which patients to abandon or to deny treatment 

in the first place, rather than decide which patients should get extra support. This means that 

the results and preliminary benchmarks that we present here are inextricably linked with the 

type of decision that we made, and cannot be translated directly into for instance be used to 

deny patients treatment without serious ethical consideration. Yes, letting machines into 

clinical decision-making can be scary. But left to their own devices, humans come up with silly 

ideas about causation that never hold up to any empirical scrutiny. Humans did however also 

invent empirical scrutiny. Before disparaging the idea of letting machines influence decisions 

in psychiatry, we should remember that we are the ones who made these machines, and at least 

in this thesis, we are not suggesting actually letting the machines make decisions without 

clinician oversight.   

In this thesis, we used the Balanced accuracy and did not weight or prioritize one type of correct 

classification relative to another. Moving forward, this field will likely mature to the point 
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where the decision-threshold or another similar approach can be used fruitfully. This will bring 

with it a lot of ethical dilemmas, when risks and poor treatment outcomes can be weighed 

against costs and resources in a more exact way. The benchmark from Eisenberg & Hershey 

(1983) was based on clinicians having reservations about acting on uncertain predictions 

mainly out of concern for the patient as there were clear risks and side-effects of proceeding 

with treatment. In our case, it is almost impossible to imagine any downside to the individual 

patient of being misclassified as Red and getting extra help, especially considering the patient 

has a lot of influence of what that help will be. In Adaptive treatment strategies in ICBT as we 

have used them here, the deciding factor is not risk to the patient, but a lack of resources, where 

therapists reallocate their time to those who need it most. In this thesis, we focus on having an 

optimal balance between correct Red and Green classifications, but at some point, we should 

instead ask ourselves how many patients we can afford to classify as Red before we are no 

longer able to provide the adapted treatment in a useful way. 

4.4 LIMITATIONS 

The limitations of each study is reported in their respective manuscripts. Here I will discuss 

some of the more broad limitations that encompass the entire thesis, or limitations that arise 

between the different studies themselves. 

4.4.1 Dropout 

Attrition was not a major problem in any of the studies in this thesis, but it can still bias the 

results, especially when we are looking at Failure, which is often a minority outcome, and we 

are not accounting for dropout, which is another minority, but one that could easily be related.  

In the context of adaptive treatment strategies, dropout should be considered its own outcome, 

and is something very relevant to predict and avoid (Karin, Dear, Heller, Crane, & Titov, 2018). 

If a patient is best off dropping out of an ongoing treatment, then clearly something is very 

wrong with the treatment or the patient was not properly diagnosed/assessed beforehand. That 

is unlikely in our treatments, since we have rigorous assessment procedures and rather well 

evaluated treatments. Thus, dropout should probably always be seen as a kind of Failure, 

something to be avoided. Therefore, using the logic in this thesis, dropout should be predicted. 

We do not do this at all in any of the studies in this thesis, which is a gap that needs to be filled 

by future research. An upside with trying to avoid dropout is that, in contrast to a post-treatment 

symptom score, it is possible to stop a patient from dropping out or to get them back into 

treatment, at least in some cases. As I mentioned in the introduction (Section 1.4.5.3), it can be 

useful just to assess when during treatment dropouts tend to happen, so that this can be used to 

weight predictive accuracy against, in order to make predictions when they are as accurate as 

possible but before it is too late to catch those who will otherwise drop out. 

4.4.2 Variations in outcomes across studies 

The cutoff for remission on the PDSS-SR is different by 1 point between Study III and Study 

IV (7 points or less in Study III and 6 points of less in Study IV). This is because I found better 
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evidence along the way and made sure that each manuscript was as accurate as possible, even 

though this does affect comparability between these studies. That effect is likely negligible 

considering Study III only uses this as one of the criteria for Failure whereas Study IV uses this 

cutoff to look directly at remission. In addition, a difference of one point is in itself probably 

not very consequential for the proportions of remitters in Panic disorder treatment. Regardless 

of which cutoff is used, they are all based on empirical data on the clinician rated version of 

the scale, so neither of them is ideal for my purposes.    

Another variation in outcomes that limits comparisons between studies is that therapists in 

Study IV were not asked to predict Failure defined in the way that we do in this thesis. The 

reason for this is that when the questionnaire for the therapists was designed, we had not 

finished deciding on our main definition of failure. The separate categories such as remission 

and response have been used for many years by countless researchers so those were the only 

things we asked therapists to guess. Study III and Study IV can still be compared via the 

appendix from Study III where those categories are also predicted. 

4.4.3 The definition of Success as either response or remission 

We made the decision not to use Jacobson and Truax’s definition of clinically relevant change 

when defining Success in this thesis, which may be controversial. However, Jacobson and 

Truax’s criteria was built to include a sort of guarantee of a causal effect of the actual treatment, 

which a) it does not and b) is not important in this context.  I believe that our definition, where 

a patient is EITHER below the remission cutoff OR has a substantial, rather than statistically 

significant, reduction in symptoms is currently the best way to classify success for ICBT for a 

mood disorder, when a few basic assumptions or criteria are taken into consideration: 

1) We already know that the treatment is efficacious and are not concerned with 

proving that the treatment has an effect per se neither on a group nor individual 

level. In treatment research in general, it is important to prove that there is a statistically 

significant change over time, and therefore the “either or” statement used in this thesis 

is controversial. A remitter status at post-treatment or a 50% reduction can either or 

both occur without meeting criteria for statistical difference if the patient has low scores 

at pre-treatment. In the context of this thesis however, the concept of interest is whether 

the individual patients expected outcome needs to be boosted to be satisfactory post 

treatment. A patient that is nearly sub-clinical now, does not need to be boosted for the 

remainder of treatment and I would argue nor does a patient that will likely end up with 

a very large, much larger than average, proportional reduction in symptoms. Those 

patients should not be given extra support or adapted treatment. If we believed that the 

average or above average effect of the treatment or remission at post was an 

unsatisfactory result on the individual level, we should be overhauling the entire 

treatment rather than building systems for helping the ones with the worst outcomes. 

2) The patients were not already healthy when treatment started. The prediction 

occurs during treatment, not before. Along the same line, it is important to remember 

that this criterion of success is applied during treatment and must not influence the 

sample starting treatment in any way. It is obvious that a treatment’s success-rate could 

be dramatically changed by changing the inclusion criteria. Only include very healthy 
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individuals and the success-rate will increase substantially if success is defined as in 

this thesis (this is what Jacobson and Truax wanted to avoid). The concept under study 

is meant to be added to a clinical context that should already have sound practices for 

avoiding offering treatments to healthy individuals. Therefore, an important 

assumption is that the treatment was considered necessary by a mental health 

professional to begin with. 

One might also argue that by using the 50% reduction instead of the RCI we are opening 

ourselves up to labeling measurement error as a success for milder cases, as we are not 

including the measurement error of the scale in the equation. As a thought experiment, let us 

use the MADRS-S depression measure. It has a remission cutoff of 10 points or less (Fantino 

& Moore, 2009) and in our sample, the RCI comes out at 8 or more points change. This means 

that for any patient to have a 50% improvement that does not also include at least the RCI (and 

thereby covering for the measurement error), they have to have a pre-treatment score of 15 or 

less. For them, a 50% reduction, which does no longer include the RCI, will instead put them 

below the cutoff for remission. All instances of a 50% reduction not being a reliable change 

will be among remitters (this is true for LSAS-SR and the PDSS-SR as well. This is one of the 

advantages of using either response or remission as the rule. 

4.4.4 The clinical implications of prediction that focuses on identifying 
cases rather than supporting theory 

In this thesis, we primarily focus on discerning the who (i.e. identifying cases who will end up 

with a certain outcome). Only in Study II do we examine specific factors that could help explain 

why a patient is heading towards failure. Still, the why and the how is largely beyond the scope 

of this thesis. There is a very important, but sometimes overlooked, implication of this 

individual-identification-paradigm as opposed to identifying important success-factors from 

which to learn. The prediction algorithms used in this thesis can only tell the user who will fail. 

This means that the only real way of applying such findings in clinical practice is to take the 

same observations off each patient and put them into these exact, or very similar, algorithms in 

order to get the prediction for that patient. This actually means that perhaps the most important 

barrier to implementation of such findings is how difficult, or expensive, it is to collect the 

input data. Complex prediction models based on routine data may be time consuming to 

develop, but once developed, they can produce predictions for new patients quickly and with 

no additional data collection. 
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4.5 DIRECTIONS FOR FUTURE RESEARCH 

 By using the criteria that a 50% reduction in symptom severity is a good enough clinical 

outcome regardless of the severity of remaining symptoms, I am touching upon an idea 

that proportional differences in symptoms over time within an individual are as 

important as absolute severity levels after treatment. That perhaps a patient who has 

halved her symptoms might feel cured even if her symptom level is still in the clinical 

range according to our cutoffs. This is a very interesting empirical question. The data 

we have today guiding our cutoffs for remission are usually based on comparing 

individuals to the average score in healthy populations. It is possible that patients vary 

in how high or low scores they would give themselves even when they are feeling well, 

perhaps based on personality, social comparison or previous experiences. It would be 

interesting to assess patients after treatment and ask them if they feel cured or 

successfully treated or treated well enough and see if those ratings are more associated 

with current symptom scores, absolute changes, or proportional changes in symptom 

severity. 

 The classifier used in Study I and II was cumbersome to use and could perhaps be 

automated. The findings that many input predictors did not have a meaningful 

relationship to the outcome indicates that the classifier could be made simpler by 

omitting some data, though this would need to be empirically tested.  

 We suggest that matching patients to treatments demand things that we do not have 

(such as several treatment alternatives and very strong predictions). However, another 

avenue of research could be lowering the standard level of support in ICBT within an 

adaptive treatment strategy. We started with normal levels of support (about 15 minutes 

per week) and intensified for patients who were not responding. Some emerging 

evidenve suggests that ICBT can work without therapist support, at least for some 

(Karyotaki et al., 2017). Therefore, it is possible that the avaliability of treatment could 

be increased if treatments were initiated without any therapist support, and then 

intensifications could start from there. The first step being no therapist, followed by 

minimal therapist support and so on. 

 We still no not know much about what kind of treatment adaptations are helpful for 

patients, and if this differs depending on why the patient was struggling in the first 

place. We will investigate this based on data from Study I, but considering the relevant 

sample consists of only 50 people, larger studies are required to investigate which 

adapations works for whom in more detail. Also, this is still limited to Insomnia and 

needs to be tested in other conditions as well. 

 We still do not know what works for whom, but considering we still do not even really 

know why CBT works at all (Cuijpers, Reijnders, & Huibers, 2019), matching every 

patient to their optimal treatment is perhaps still too lofty a goal to have. What we have 

proposed here is a much more low-hanging fruit; using the best and most available 

treatments we have, focusing on what happens with patients during those treatments, 
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and helping those who are struggling. This need to be replicted in other settings and 

other conditions. 

 An important avenue for future research based on this thesis is to use more advanced 

prediction models to examine if equal of greater accuracy could be reached using only 

data that is routinely collected, so that no additional burden is laid upon patient or 

therapists just to make the prediction. Ideally, this would be done in an automated 

manner that could be integrated into the ICBT-platform, allowing therapists to have 

quick access to reliable predictions about their ongoing patients. 

5 CONCLUSIONS 

In conclusion, we find support for the concept of an Adaptive Treatment Strategy in Internet-

delivered Cognitive Behavior Therapy for Insomnia, where failing treatment attempts can be 

identified three weeks into treatment and where these poor trajectories can be changes for the 

better by adapting their treatments for the remaining weeks of treatment. We also find that a 

classification algorithm with at least 67% balanced accuracy should be clinically sufficient for 

such purposes if the context is similar in terms of the risks and benefits of classification. 

Furthermore, we find that it is unclear if such an accuracy can be reached confidently after just 

three weeks of treatment if only primary symptom measures are used as predictors in simple 

statistical models, though it is possible that we can. Either way, it is possible that even slightly 

less accurate predictions would be preferable considering how much easier they would be to 

implement. Additional direct comparisons are warranted to explore this further. Simple 

statistical models using only symptom scores can however, reach clinically acceptable levels 

of accuracy halfway through 12-week interventions for Depression, Social anxiety and Panic 

disorder. Previous findings that therapists themselves are less accurate than statistical models 

seem to be true also for therapists in Internet-delivered interventions, though we do find that 

clinician input such as rating adherence and activity does add unique information to prediction 

algorithms and that therapists own predictions are better than chance and could add to 

predictive models. The vast majority of useful information for making the predictions in this 

thesis were collected during treatment rather than before, indicating how this approach stands 

apart from the more common practice of predicting based on pre-treatment data. 

Big data, machine learning, biomarkers and other sophisticated methods for data collection and 

prediction analysis should, and almost definitely will, be able to outperform the methods used 

in this thesis. Still, it is important to remember that such methods are not magic, that we can 

already achieve clinically useful predictions if we just start making them, and that successful 

Adaptive Treatment Strategies are possible even with simple statistical models based on non-

complex data.  The question is not if methods that are more complex can be more accurate than 

the ones used in this thesis. The question is if they can achieve this in a way that is practical 

enough, and economical enough, to be implementable in routine psychiatric care.   

Otherwise, what is the point?
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