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‘Then loudly cried the bold Sir Bedivere: 

“Ah! my Lord Arthur, whither shall I go? […] 

now the whole Round Table is dissolved 

Which was an image of the mighty world; […]” 

 

And slowly answer'd Arthur from the barge: 

“The old order changeth, yielding place to new, 

And God fulfils Himself in many ways, 

Lest one good custom should corrupt the world. 

Comfort thyself: what comfort is in me?”’ 

 

Morte d’Arthur, in Idylls of the King, Lord Alfred Tennyson 

 

 

 

 

“For serving thee an arm to Arms addrest; 

for singing thee a soul the Muses raise; 

nought lacks me save of thee to stand confest, 

whose duty ‘tis the Good to prize and praise: 

If Heav’en concede me this, and if thy breast 

deign incept worthy of a Poet’s lays; 

as doth presage my spirit vaticine 

viewing thee pace the human path divine […]” 

 

Chant X, The Lusiads, Luís Vaz de Camões 

(translated by Richard F. Burton) 

 

  



 

 



 

 

ABSTRACT 

Pulmonary hypertension (PH) is clinically and physiologically associated with heart failure, 

both with reduced and preserved ejection fraction (HFrEF and HFpEF). In HFpEF, the most 

likely underlying pathophysiological mechanism is an impairment of left ventricular 

relaxation named diastolic dysfunction. The close relationship between PH, diastolic 

dysfunction, and heart failure makes it difficult to clearly distinguish between them in clinical 

practice. Given the challenges around screening and diagnosis of both PH and diastolic 

dysfunction, better diagnostic tools are needed to complement the existing ones.  

Cardiovascular magnetic resonance (CMR) is considered the most accurate imaging modality 

in the assessment of myocardial anatomy and function. Furthermore, CMR offers the 

possibility of qualitatively and quantitatively assess blood flow in large and medium vessels. 

Constant technical innovations push to further develop the current clinical capabilities of 

CMR and enable better and faster diagnosis of cardiovascular diseases. 

In this thesis, we aimed to expand the current clinical capabilities of CMR in the diagnosis 

of pulmonary hypertension and diastolic dysfunction, which are not routinely assessed with 

this imaging modality. 

In Study I, we investigated the effect of body position in pulmonary blood flow distribution 

and documented a new variable, termed pulmonary vascular distensibility reserve, possibly 

related to left atrial pressure. In Study II, we found that CMR has a higher diagnostic yield 

than echocardiography for estimation of elevated pulmonary artery pressure. In Study III, 

CMR estimation of pulmonary artery pressure showed very good agreement with invasively 

measured pressure, and better sensitivity and accuracy than echocardiography. In Study IV, 

we developed a high temporal resolution CMR method to measure transmitral blood and 

myocardial tissue velocities, which had good agreement with echocardiography. Lastly, in 

Study V, we found that a comprehensive CMR method to diagnose and grade diastolic 

dysfunction showed very good agreement with echocardiography. 

These results suggest that novel and established CMR-based methods can diagnose 

pulmonary hypertension and diastolic dysfunction. Therefore, CMR may one day play an 

important role in the diagnostic investigation of these pathologies.  
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1 PULMONARY HYPERTENSION 

 

“The vortex is the point of maximum energy. (…) The vorticist relies on this alone; on the 

primary pigment of his art, nothing else. (…) All experience rushes into this vortex.” 

in Vortex (1914), by Ezra Pound 

 

1.1 GENERAL CONSIDERATIONS 

Pulmonary hypertension (PH) is defined as a mean pulmonary artery pressure (mPAP) of 20 

mmHg or more measured invasively at rest by right heart catheterization (RHC) [1]. PH is 

etiologically diverse and may be associated with a variety of pre-existing auto-immune, 

vascular, pulmonary, and/or cardiac conditions. 

An mPAP of 12-14 mmHg is considered the average pressure in healthy populations, with 

an upper normal limit of 20 mmHg. The current mPAP cut-off has been decreased from the 

previous one of 25 mmHg, i.e. only an mPAP of 25 mmHg or more was considered 

pathological before the current recommendations;  mPAP between 20 and 24 mmHg was 

referred to by some authors as borderline PH [2]. 

There are two widely accepted classifications of PH, one based on clinical etiology and the 

other based on hemodynamic parameters. The clinical classification divides PH into five 

groups, based on the suspected or confirmed cause of disease. The groups are summarized in 

Table 1. Hemodynamically, PH may vary in classification based on mainly three invasive 

parameters: mPAP, mean capillary wedge pressure (mPCWP), and pulmonary vascular 

resistance (PVR). Table 2 summarizes the hemodynamic classification of PH [2]. 

PH is uncommon compared to other cardiopulmonary diseases and the epidemiological data 

is limited; the existing data is mostly based on national population-based cohort studies. In 

Canada, annual incidence was found to be increasing, with about 28.7 new cases per 100 000 

people, with group 2 (PH-LHD) being most common and accounting for a third of total PH 

cases [3]. In the Netherlands, a population-based study found the prevalence of PH to be 

2.6% in the general population, based on echocardiographic data. [4] The burden in 

healthcare systems is considerable, mostly due to hospitalization costs, and early diagnosis 

with proper management are essential to reduce costs and improve outcomes [5]. 

Clinically, PH presents with non-specific symptoms, namely dyspnea, fatigue and possibly 

syncope and chest pain [6]. Beyond the basic symptoms, the clinical presentation is 

dependent on the etiology, e.g. dermatological signs in systemic sclerosis and pulmonary 

signs in lung disease. The pulmonary circulation is in close communication with the right  
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Table 1 - Clinical classification of pulmonary hypertension (PH) 

Group 1 – Pulmonary arterial hypertension (PAH) 

Idiopathic, heritable or acquired PAH 

Persistent PH of the newborn syndrome 

Group 2 – Pulmonary hypertension due to left heart disease (PH-LHD) 

PH due to HFpEF 

PH due to HFrEF 

Valvular heart disease 

PH secondary to congenital heart disease 

Group 3 – Pulmonary hypertension due to lung disease 

Obstructive lung disease 

Restrictive lung disease 

Mixed obstructive and restrictive lung disease 

Hypoxia without lung disease 

Congenital lung disease 

Group 4 – Pulmonary hypertension due to pulmonary artery obstruction 

Chronic thromboembolic pulmonary hypertension 

Other obstructions 

Group 5 – Pulmonary hypertension with unclear and/or multifactorial mechanisms 

Hematological disorders 

Systemic disorders 

Others 

Adapted from Simmoneau, et al. (2019).  
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Table 2 - Hemodynamic classification of pulmonary hypertension 

Pre-capillary pulmonary hypertension 

mPAP > 20 mmHg 

mPCWP ≤ 15 mmHg 

PVR ≥ 3 WU 

Isolated post-capillary pulmonary hypertension 

mPAP > 20 mmHg 

mPCWP > 15 mmHg 

PVR < 3 WU 

Combined pre- and post-capillary pulmonary hypertension 

mPAP > 20 mmHg 

mPCWP > 15 mmHg 

PVR ≥ 3 WU 

mPAP = mean pulmonary artery pressure, PCWP = pulmonary capillary wedge pressure, 

PVR = pulmonary vascular resistance, WU = Wood units. Adapted from Simmoneau, et al. 

(2019). 
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heart, and a concomitant presentation of PH and right-sided heart failure is common and 

carries a higher risk of death. 

The diagnosis of PH starts with a clinical suspicion based on presentation, which then 

motivates a diagnostic workup where non-invasive imaging plays a major role. All patients 

with suspicion of PH have an indication to perform transthoracic echocardiography (TTE) 

[7], which can yield a probability of PH, based on Doppler estimation of elevated PA 

pressure, right ventricle characteristics, and right atrial dimensions. To definitively diagnose 

PH, however, it is necessary to perform a RHC to comprehensively assess the hemodynamic 

parameters of the pulmonary circulation [8]. 

 

1.2 PATHOPHYSIOLOGY 

In vascular physiology, in particular with regards to hypertension, there are two variables 

crucial to explaining PH, namely, compliance and resistance [9]. 

Compliance in a vessel of fixed length L is given by the formula: 

𝐶 =  
∆𝑉

∆𝑃
 (1) 

where C is compliance in ml/mmHg, V is the change in volume in ml and P is the change 

in pressure in mmHg [9]. Therefore, high compliance in a vessel means that it can passively 

increase in volume to accommodate an increasing stroke volume while maintaining a 

relatively low change in pressure. 

Vascular resistance in a vessel of fixed length L and radius r is given by: 

𝑅 =  
∆𝑃

𝑄
 (2) 

where R is resistance in mmHg∙s/L, P is the change in pressure in mmHg and Q is flow in 

ml/s [9]. In the pulmonary circulation, the corresponding formula is: 

𝑃𝑉𝑅 =  
𝑚𝑃𝐴𝑃 − 𝑚𝑃𝐶𝑊𝑃

𝐶𝑂
 (3) 

where PVR is pulmonary vascular resistance in mmHg∙min/L (Wood units), mPAP is the 

mean pulmonary artery pressure in mmHg, mPCWP is the mean pulmonary capillary wedge 

pressure (equivalent to left atrial pressure) in mmHg, and CO is the cardiac output in L/min 

[10]. 
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The pulmonary circulation is comprised of the pulmonary arteries and veins, as well as their 

numerous branches distributed across the lung parenchyma. Compared to the systemic 

circulation, the most striking feature of the pulmonary circulatory system is that it has a high 

compliance, low resistance vessel network [11]. Mean compliance and resistance of the 

pulmonary circulation is 3.8-12 ml/mmHg and 0.11 mmHg.s/ml, respectively, in contrast 

with the systemic circulation, 0.4-3.8 ml/mmHg and 1.0 mmHg.s/ml, respectively [11] [12] 

[13]. Furthermore, while 80% of the total compliance in the systemic circulation is attributed 

to the compliance of the proximal aorta, the opposite is true for the pulmonary circulation, in 

which the numerous distal branches of the pulmonary arteries account for the lion’s share of 

the arterial compliance [11]. 

Resistance and compliance share a hyperbolic relationship [14], as shown in Figure 1. The 

product of resistance and compliance is referred to as RC time, and RC time is a constant in 

both healthy and PH populations [15]. Taken together, this means that a decrease in 

compliance eventually leads to an elevated resistance, yet sharp decreases in compliance may 

occur before any meaningful increases in resistance. 

While the variables discussed above pertain to vascular physiology, they have a profound 

impact on cardiac function as well. Accordingly, the Windkessel model states that right 

ventricular (RV) afterload is dependent on three variables [13] [16]: 

 Resistance, i.e. PVR, accounts for about 75% of total RV afterload and is also 

described as static afterload, since it represents the opposition to flow (as shown in 

equation 2). 

 Compliance, is highly distributed among the numerous distal branches of the 

pulmonary arteries and accounts for about 23% of total RV afterload. It represents the 

pulsatile component of afterload, i.e. the energy required to overcome increased 

pressures and allow flow in the circuit. 

 Impedance, is defined as the effect of the mass of blood on afterload. It is both hard 

to measure and a very small component of RV afterload, 1-2%, and therefore not 

routinely analyzed [11]. 

Lastly, an additional physiological variable of relevance is pulse wave velocity (PWV), 

which refers to the velocity of a pressure/flow wave that propagates through a vessel as a 

result of the passage of blood [17]. Abnormal wave propagation has been documented in PH 

patients, as well as elevation of PWV [18]. The latter is an indicator of decreased compliance, 

as it represents an impaired ability of the vessel to distend. 
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Figure 1 – The inverse hyperbolic relationship between compliance and resistance in pre- 

and post-capillary hypertension. Black data points represent patients with pre-capillary PH 

and red data points represent patients with post-capillary PH. Reprinted with permission of 

the American Thoracic Society, from Thenappan et al. (2015) [14]. 

 

Pre-capillary PH is characterized by a decrease in compliance of the pulmonary circuit, and 

this is one of the physiological hallmarks of the disease (Figure 2) [19] [20]. This is mainly 

due to an increase in arterial stiffness as a consequence of intima disruption, which leads to 

further endothelial dysfunction and remodeling [21]. Loss of compliance means an increase 

in PVR and in right ventricular (RV) afterload, which may in turn lead to RV dysfunction 

and, ultimately, death. 

On the other hand, in post-capillary PH, the defining feature is the elevation of mPCWP, 

which results from a backward propagation of pressure to the pulmonary vasculature from 

the left atrium [22]. In this case, for any given PVR, pulmonary vessel compliance is also 

reduced, leading to the biochemical changes described above. If endothelial remodeling 

occurs only to a lesser extent, the condition is referred to as isolated post-capillary PH. If, 

however, high levels of vessel remodeling occur, then the condition is referred to as combined 

pre- and post-capillary PH. 
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Figure 2 – Summary of the pathophysiology of PH. Vessel stiffness and decreased 

compliance are thought to be the initial changes that trigger endothelial remodeling and 

cardiac adaptions to the increased workload. PA – pulmonary artery, PWV – pulse wave 

reflection, RV – right ventricle, PVR – pulmonary vascular resistance. 
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Vortex formation in the PA, detected by CMR 4D flow analysis, is a pathophysiological 

phenomenon of diagnostic interest for all types of PH. The presence of vortices in aortic and 

ventricular flow has been well documented, but its clinical significance is not always clear 

[23] [24]. In the specific case of the PA, late-systolic to diastolic vortex duration (as a 

percentage of the cardiac cycle) has been shown to be linearly correlated with mPAP in all 

PH subtypes [25] [26].  

Vortex formation is a complex process best described by fluid dynamics, which is outside 

the scope of this thesis. In general terms, vortex formation in PH seems to be dependent on 

two factors; on the one hand, there is an earlier inversion of the PA-RV pressure gradient 

compared to healthy patients. In contrast, in normal conditions, the PA-RV gradient starts as 

negative in early systole (RV pressure is greater than PA pressure), becomes approximately 

0 in mid-systole (equalization of RV and PA pressures) and then positive in late systole (PA 

pressure greater than RV pressure) [27]. On the other hand, this pathological development of 

the pressure gradient over time favors the formation of a luminal boundary layer [28], due to 

a shift in maximal flow velocity from the center of the vessel to the anterior wall, as shown 

in Figure 3. Boundary layers are prone to hosting backward flow that then completes the 

circular formation of a blood flow vortex. 

In PH, not only is a vortex observed, but its duration is highly correlated with mPAP. 

Presumably, vortex formation is a physiological process that preserves some of the kinetic 

energy associated with blood flow in a vessel with reduced compliance and increased 

resistance [25]. Under these conditions, forward blood flow to the distal branches of the PA 

is impaired and kinetic energy is instead partially conserved in the vessel as a vortex. 

The exact methodology used to assess the duration of blood flow vortices in PH is described 

in detail under the Imaging section of this chapter. 
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Figure 3 – Representation of PA-RV pressure gradient (P) inversion and vortex formation 

in both normal individuals and PH patients. The red lines represent the wall of the pulmonary 

artery. The black arrows represent streamlines of PA blood flow. The gray shaded area 

represents the boundary layer that allows a vortex to form. 
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1.2.1 Pulmonary Blood Volume Variation 

In Study I, which focused on normal pulmonary physiology, we use a previously described 

variable referred to as pulmonary blood volume variation (PBVV) [29]. PBVV reflects the 

change in blood volume present in the pulmonary circulation during the cardiac cycle. 

To calculate PBVV, five sets of measurements are required: (1) pulmonary artery flow, (2) 

flow in all four pulmonary veins. With these data, as exemplified on Figure 4, PBVV in mL 

is calculated from the curve resulting from the cumulative integral of the difference between 

arterial and venous pulmonary blood flow. PBVV was shown to be reduced after myocardial 

infarction in a pig model [29]. It was also shown to remain unchanged in systemic sclerosis  

compared to normal controls [30]. 

Figure 4 – Charts detailing how PBVV is 

calculated. From top to bottom, Row 1: Flow 

in the pulmonary artery during one cardiac 

cycle. Row 2: Summed flow of all four 

pulmonary veins during one cardiac cycle. 

Row 3: Difference between the curves in rows 

1 and 2, i.e. the difference between pulmonary 

arterial and venous flow during one cardiac 

cycle. Row 4: Cumulative integral of the curve 

shown in Row 3, PBVV during one cardiac 

cycle. The arrow represents the difference 

between the minimum and maximal value of 

the curve, which corresponds to PBVV in mL. 

Reprinted with permission from Ugander, et 

al. (2009) [29]. 
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1.3 IMAGING 

Imaging plays a central role in screening for PH and is one of the components of a set of tests 

required to paint a complete picture of the patient with PH [31]. 

Whenever a patient’s clinical presentation is suggestive of PH, echocardiography is indicated 

to assess the risk of PH given a set of criteria. Based on the result of this assessment, the 

patient may be referred to RHC, which is required to establish a definitive diagnosis and 

classify PH hemodynamically. For patients where CTEPH is suspected, a V/Q scan is also 

performed [32]. 

1.3.1 Echocardiography 

In transthoracic echocardiography (TTE), screening for PH is based on Doppler measurement 

of the tricuspid regurgitation jet velocity, TR, in m/s [33]. From this value, by applying the 

Bernoulli equation, one can derive the tricuspid regurgitation pressure gradient (TRPG), in 

mmHg, as follows: 

𝑇𝑅𝑃𝐺 =  4𝑇𝑅2 (4) 

 

Figure 5 – Maximal tricuspid regurgitation velocity measurement by Doppler 

echocardiography. This patient had a measured TR of 3 m/s which corresponded to a TRPG 

of 36 mmHg. 
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Systolic pulmonary artery pressure (sPAP), in mmHg, can then be derived by TRPG, by 

adding right atrial pressure (RAP) in mmHg: 

𝑠𝑃𝐴𝑃 =  𝑇𝑅𝑃𝐺 + 𝑅𝐴𝑃 (5) 

mPAP can also be estimated with echocardiography, by applying Chemla’s empirically 

derived equation [34], which uses sPAP as follows: 

𝑚𝑃𝐴𝑃 =  0.61 ∙ 𝑠𝑃𝐴𝑃 + 2 (6) 

RAP estimation by echocardiography yields poor agreement with invasive measurements, 

with an accuracy as low as 34% [35]. Therefore, TR or TRPG are instead commonly used to 

draw conclusions about the probability of PH in a given patient. If a TR is measured as greater 

than 2.8 m/s, the probability of PH is considered intermediate; if TR is greater than 3.4 m/s, 

the probability is considered to be high [36]. However, other echocardiographic signs may 

be considered in this assessment, adding to the probability of PH if they are positive. These 

signs include RV and RA dimensions, PA flow acceleration time, PA diameter and inferior 

vena cava diameter [37]. 

Echocardiography is a useful tool to screen for PH, but is not recommended as the sole tool 

for diagnosis. While correlation between echocardiographic sPAP and invasive sPAP is good 

on a group level (Spearman correlation 0.52-0.69) [38][39], echocardiography may 

considerably over- or underestimate PA pressures compared to RHC in the individual patient 

[40]. There is also some debate in regards to the TR cut-off used to diagnose PA pressures, 

and it has been suggested that a lower cut-off of 2.7 m/s, equivalent to TRPG 30 mmHg, 

would be more adequate to indicate a high probability of PH and a considerable increase in 

mortality risk [41]. 

1.3.2 CMR 

In the routine assessment of PH, CMR may be of value due to the reliability of its volumetric 

measurements [42]. Decreased RV volume, RV stroke volume, RV mass or LV preload are 

indicative of worse prognosis and higher risk of death in PH [43]. T1 mapping techniques 

have also been used to characterize the RV myocardial  tissue, possibly identifying fibrotic 

changes and correlating well with pulmonary hemodynamics [44]. However, these methods 

should be interpreted with caution due to the limitations in spatial resolution. 

Nevertheless, none of these analyses are directly predictive of hemodynamic variables 

associated with PH. Recent advances in phase contrast MR (PC-MR) have made possible to 

evaluate RV and PA flow, with varying degrees of success and accuracy in diagnosing PH. 

The following methods have been described: 
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 PA flow velocity: measuring the average flow velocity in the main PA (Figure 6) has 

been described as a possible predictor of mPAP and PVR [45], given that that flow 

velocity is reduced in PH as a result of vessel changes. 

 PA cross-sectional area change: in vessels with reduced compliance, i.e. impaired 

ability to distend, vessel cross-sectional change as a percentage of the difference 

between maximal and minimal area should be decreased compared to normal. This 

method shows only moderate agreement with mPAP and PVR [46]. 

 Relative onset of retrogade flow (rROF): PC-MR allows for the quantification of 

retrograde flow during the cardiac cycle, if present. One study concluded that in PH 

patients, there is an earlier onset of retrograde flow compared with healthy individuals 

[47]. Although capable of diagnosing PH with high accuracy, this method cannot 

estimate relevant hemodynamic variables (mPAP or others). 

 Multiparametric models: several models that take into acccout multiple variables (PA 

flow, RV stroke volume, cross-sectional area change, etc.) have been suggested to 

predict both PVR and mPAP [48] [49]. 

 Vortex analysis: as shown in Figure 3, vortex formation is related to the 

pathophysiology of PH and can be assessed by CMR 4D flow analysis, with excellent 

predictive power compared to invasive mPAP [25] [26]. 

 

Figure 6 – Measurement of PA flow during the cardiac cycle from a 2D phase contrast image 

stack in a healthy volunteer with the program Segment (Medviso, Lund, Sweden). 
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Among all these methods, estimation of mPAP from vortical blood flow duration in the main 

PA is the method that has shown the best correlation with invasive mPAP. This is the method 

used in the studies included in this thesis. Both phase contrast MR and 4D flow analysis of 

vortical blood flow are discussed in more detail in Chapter 3. 
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2 HEART FAILURE 

 

“As for you, my galvanized friend, you want a heart. You don’t know how lucky you are 

not to have one. Hearts will never be practical until they are made unbreakable.” 

in The Wizard of Oz (1900), L. Frank Baum 

 

2.1 GENERAL CONSIDERATIONS 

Heart failure (HF) is a syndrome characterized by the inability of the heart to perform its 

main physiological function – pumping blood through vessels to meet the metabolic demands 

of the body’s tissues while retaining normal cardiac filling pressures [9]. Symptoms are 

usually non-specific and include dyspnea, peripheral edema and varying degrees of fatigue. 

HF is frequently associated with one of three major etiological groups, namely arrhythmia, 

myocardial disease, or abnormal loading. The first group refers to chronic tachy- and 

bradyarrhythmias that disrupt the heart’s ability to maintain its cardiac output. The second 

group includes common syndromes such as ischemic heart disease (including myocardial 

scar and microvascular dysfunction), infiltration disease (i.e. amyloidosis, hemochromatosis 

and Fabry’s disease), cardiomyopathies and others. The last group refers to chronically 

increased preload or afterload, as it is the case of arterial hypertension, valvular disease and 

fluid overload (for example as a result of kidney failure) [50].  

Clinically, HF is usually subdivided into one of three groups, based on the measurement of 

left ventricular ejection fraction (LVEF): 

 Heart failure with reduced ejection fraction (HFrEF), where LVEF is determined to 

be less than 40% 

 Heart failure with preserved ejection fraction (HFpEF), where LVEF is measured as 

more than 50% 

 Heart failure with mid-range ejection fraction (HFmrEF), with a LVEF between 40 

and 49%, which is considered as a middle ground between the two previous 

conditions 

This subdivision is clinically relevant inasmuch as etiology, complications and therapeutic 

decision-making vary across groups. Furthermore, while HFrEF is characterized by systolic 

dysfunction, HFpEF is most likely predominantly caused by diastolic dysfunction. HFmrEF 

is thought to share characteristics from both systolic and diastolic dysfunction and its 

pathophysiology is incompletely understood [51]. 
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2.2 DIASTOLIC DYSFUNCTION 

Diastolic dysfunction (DD) is defined as an impairment of LV relaxation and consequent 

increase in LV filling pressures. Furthermore, DD is the most likely pathophysiological 

mechanism responsible for HFpEF [51] [52]. In contrast to HFrEF, the diagnosis and grading 

of HFpEF remains challenging, mostly because of the difficulty in clearly defining diastolic 

dysfunction and reliably measuring the physiological variables associated with it [53]. 

Moreover, the current therapeutic alternatives have not shown to reduce mortality in patients 

with HFpEF [54]. 

Heart failure has a total prevalence of 2-3% in the general population, with increasing 

prevalence in older patient cohorts. In the total heart failure population, 44% have preserved 

EF and 28% have DD. Twenty-one per cent of DD patients are asymptomatic [55].  

The physiology underlying DD is complex, involving several biochemical pathways and 

changes in myocardial characteristics, the pulmonary circulation, and both the atria and 

ventricles. Hence, there is no clear general definition of diastolic dysfunction in the literature 

[56] [57]. When diagnosed by echocardiography, DD is usually graded into I-III with higher 

grades representing higher mortality risk [58]. 

2.2.1 Pathophysiology 

According to the Frank-Starling law (Figure 7), the volume of blood ejected from the heart 

(stroke volume) depends on the volume of blood present in the ventricle at late diastole 

(preload, measured as left ventricular end diastolic volume) [9]. During exercise, this means 

that the healthy heart will accommodate more blood during diastole, and eject more blood 

during systole. The former is highly dependent on the ventricle’s ability to relax, i.e. its 

relaxation rate. An increased ventricle relaxation rate allows it to fill at low pressures and 

thus maintain a stroke volume that is adequate for the level of exertion. 

Elevated LV filling pressures (LVP) are therefore thought to be one the primary factors 

affecting diastolic function. Nevertheless, elevated LVP are not synonymous with DD, as 

cases of DD have been recorded with normal LVP. In contrast, normal diastolic function can 

be compatible with elevated LVP [59]. 

Two other LV parameters influence LV filling pressures, namely LV relaxation rate and LV 

chamber stiffness, which reflect not only aspects of the myocardium at a cellular level, but 

also LV geometry [60]. LV relaxation rate is sometimes used as the invasive reference 

method for diagnosing DD and corresponds to the time constant of isovolumetric pressure 

decay (tau, Figure 8). 
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Figure 7 – Graphical representation of the Frank-Starling mechanism. Under normal 

conditions and physical exercise on a healthy individual, the heart ejects more blood (stroke 

volume) in response to a higher preload. Under heart failure conditions, its ability to adapt to 

higher preload is compromised. 

 

Figure 8 – LV pressure-time curve during one cardiac cycle. After aortic valve closure, the 

LV relaxes, resulting in a rapid reduction of pressure over time. The slope of the exponential 

fit of the descending portion of this curve corresponds to tau or LV relaxation rate, which is 

decreased in DD. 
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Figure 9 – Summary of the pathophysiology of elevated LV filling pressures and diastolic 

dysfunction. Factors intrinsic to the LV cause elevated filling pressures and diastolic 

dysfunction, while external factors (such as volume overload) may elevate LV filling 

pressures but not necessarily cause diastolic dysfunction. LA dysfunction (with resulting 

atrial fibrillation and PH), lung congestion and microvascular dysfunction (ultimately 

myocardial ischemia) are consequences of chronic diastolic dysfunction. LV – left ventricle, 

PAH – pulmonary arterial hypertension, LA – left atrium, A-Fib – atrial fibrillation, PH – 

pulmonary hypertension. Adapted from Litwin et al. (2019) [60].  
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Regarding myocardial abnormalities at a cellular level, several mechanisms have been 

proposed as potentially responsible for the myocardial stiffness observed in DD. Delayed 

Ca2+ transport and increased diastolic Ca2+ concentrations could impair the relaxation of the 

cardiomyocyte. Changes in handling proteins and cellular receptors involved with Ca2+ 

transport are thought to be a result of the nefarious effect of reactive oxygen species [61]. On 

the other hand, impaired phosphorlyation of titin, a key molecule in muscle contraction and 

relaxation, was found in HFpEF molecular models [61]. Fibrosis and changes to collagen 

degradation pathways are also a contributor to impaired myocardial relaxation [62]. 

However, none of these changes have been proven to be solely a result of diastolic 

dysfunction, nor is it yet possible to reliably assess them in the clinical setting [63]. 

LV geometry also influences its ability to fully relax. Specifically, increased wall thickness 

and LV mass influence relaxation. If pathologically increased, these two variables may point 

to the diagnosis of LV concentric hypertrophy, which is typically associated with diastolic 

dysfunction [64]. Nonetheless, patients with HFpEF may present with a diverse range of 

cardiac phenotypes, including normal morphology [59]. LV geometry parameters are usually 

assessed by echocardiography or CMR, as detailed in later sections. 

As a consequence of the changes observed in the LV, the left atrium (LA) may undergo 

remodeling in an attempt to preserve LA function. Increased LA volumes and pressure will 

eventually be transmitted backwards to the pulmonary circulation, resulting in pulmonary 

hypertension [22], as described in the previous chapter. Elevated PA pressure is therefore a 

relevant marker in the assessment of diastolic function and translates into worse clinical 

outcomes [65] [66]. Both LA dysfunction and pulmonary hypertension may also result in 

right ventricular hypertrophy, which is another factor that is associated with increased risk of 

death [52]. 

 

2.3 IMAGING 

Echocardiography is recommended as the first line imaging modality for diagnosis of HF and 

is also useful in risk stratification and follow-up [67]. Its main strengths are wide availability, 

relatively low cost and safety, while operator dependency and limited acoustic windows rank 

among the main drawbacks. Echocardiography plays an important role in both HFrEF, with 

measurement of LVEF and characterization of the LV, and HFpEF, with several diastolic 

variables being measured in order to diagnose and grade DD [68]. 

Concurrently, CMR plays an increasingly important role in the diagnosis of HF, becoming 

in recent years the reference standard for measurement of ventricular mass and dimensions 

[68]. Techniques involving gadolinium-based contrast agents combined with T1 mapping are 

useful in characterizing the myocardium and determining etiology [69]. Although the role of 
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CMR in HFrEF is well established, HFpEF represents somewhat of a limitation, since not all 

diastolic parameters are routinely tested with CMR [70]. 

Other modalities, such as SPECT, PET and invasive coronary angiography are also an 

integral part of the diagnostic arsenal in HF, but beyond the scope of this thesis which focuses 

on echocardiography and CMR. 

2.3.1 Echocardiography 

Evaluation of diastolic function by echocardiography involves measuring several variables 

of physiological relevance for diastolic dysfunction, and applying an algorithm (Figure 10) 

that yields a grade of DD based on those variables. Table 3 lists the main variables measured 

in clinical routine and which are necessary to have in order to apply these diagnostic 

algorithms [71]. However, several other variables may be useful to further characterize 

diastolic function in the individual patient [56]. 

The main mitral inflow parameters, peak E and A-wave velocities, reflect the diastolic LA-

LV pressure gradient, and, therefore, left-sided filling pressures. However, numerous other 

clinical and physiological factors may influence the interpretation of these parameters, such 

as age, heart rate, arrhythmia, and LA function. Importantly, advanced age tends to decrease 

peak E-wave velocity and the E/A ratio, while increasing peak A-wave velocity [72]. 

The myocardial tissue velocities, lateral, septal, and average e’, indicate the early diastolic 

lengthening velocity of LV muscle fibers. A decreased average e’ is an early marker of DD 

and suggests a poorer prognosis [73]. Furthermore, average e’ is correlated with tau and 

invasively measured LV end-diastolic pressure [74].  

Left atrial volume index (LAVI) correlates physiologically with LA function. Since the LA 

is subject to high filling pressures in the context of DD, this will result in LA remodeling and 

increase in volume [60]. LA volume is independently correlated with all-cause mortality [75], 

and also of the severity of DD in the individual patient [76]. 

Several authors report that these echocardiographic criteria are reliable and show moderate 

to good agreement with invasive measurements of LV filling pressures and PCWP. 

Echocardiography showed a sensitivity/specificity of 87%/88% compared to invasive 

measurements of PCWP in a multicentric study, with an accuracy of 87% [77]. In another 

study using invasively measured LV end-diastolic pressure as reference, the authors reported 

a sensitivity/specificity of 75%/74% and accuracy of 75% [78]. 
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Figure 10 – Diagnostic algorithm for DD in patients with normal or reduced 

LVEF/myocardial disease as per the 2016 guidelines of the American Society of 

Echocardiography [71]. LVEF – left ventricular ejection fraction, TR – tricuspid 

regurgitation jet velocity, LAVI – left atrial volume index, LAP – left atrial pressure. 
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Table 3 – Main variables used to characterize diastolic function and grade diastolic 

dysfunction by echocardiography. 

Variable Description 
Physiological 

correlate 

Peak E-wave velocity (m/s) 

Peak mitral inflow 

velocity in early 

diastole 

LA-LV pressure 

gradient in early 

diastole 

Peak A-wave velocity (m/s) 

Peak mitral inflow 

velocity in late 

diastole 

LA-LV pressure 

gradient in late 

diastole 

E/A ratio 

Peak E wave velocity 

divided by peak A 

wave velocity 

LV filling pattern 

(normal, impaired 

relaxation, pseudo-

normal or restrictive) 

Septal and lateral e’ velocity (m/s) 

Mitral annular early 

diastolic velocity in 

the septal and lateral 

portion of the 

myocardium 

Correlated with tau 

(LV relaxation rate) 

E/e’ ratio 

Peak E wave velocity 

divided by average e’ 

velocity 

Predicts LV filling 

pressures and 

corrects for effect of 

LV relaxation on E-

wave 

Left atrial volume index (LAVI) 

(ml/m2) 

LA volume indexed 

to body surface area 

Correlated with long-

term elevation of LV 

filling pressures and 

independent predictor 

of death 

Tricuspid regurgitation jet velocity 

(m/s) 

Velocity of the 

tricuspid regurgitant 

jet, used to estimate 

TRPG 

Correlated with left 

atrial pressure and 

representative of 

poorer prognosis if 

severely elevated 

 

  



 

 31 

 

Figure 11 – How the main variables to assess diastolic parameters are measured with 

echocardiography. Top left: Measurement of E-wave and A-wave, with calculation of E/A 

ratio. Top right: Measurement of septal e’ (lateral e’ is measured in a similar way, but on the 

lateral portion of the myocardium). Bottom left: Measurement of TR, as detailed in the 

previous chapter. Bottom right: Measurement of LA volume and calculation of LAVI based 

on the patient’s body surface area. 

2.3.2 CMR 

CMR is the reference method for non-invasive measurement of heart chamber mass and 

volume. It is also an adequate modality for measurement of  LA volume and calculation of 

LAVI [79]. These CMR measures are important components of diastolic function 

assessment. In CMR, LA volume is can be calculated via the area-length method, which is 

analogous to the area-length method by echocardiography. 

Regarding transmitral flow and myocardial annular velocities, CMR has shown worse 

performance, mainly due to lower temporal resolution than echocardiography [80]. While the 

literature shows previous attempts at acquiring these variables with CMR with acceptable 

correlation with echocardiography measurements, there has been an underestimation of the 

values by a considerable margin. This has presented as an opportunity to attempt to develop 

CMR flow measurements techniques with higher temporal resolution that are later described 

in this thesis. 
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Pulmonary flow can reliably be assessed by CMR, but PA pressure is not routinely measured. 

As TR, and by extension TRPG, by echocardiography are estimates of systolic PA pressure, 

CMR methods such as the ones described in the previous chapter [26] could prove useful 

also for the assessment of diastolic function. 

Newer CMR techniques, such as myocardial tagging [81] and elastography [82], have shown 

utility in the diagnosis of diastolic dysfunction. The former allows for detailed 

characterization of myocardial movement during the cardiac cycle (strain, strain rate, 

deformation), which could potentially translate into myocardial stiffness. The latter produces 

stiffness maps based on mechanical wave propagation in the myocardium. These methods 

are fairly recent and would benefit from technical advances to facilitate their use. 

Since no comprehensive CMR method for assessment of DD is available that is comparable 

to the ones relying on echocardiography, one of the aims of Study V was to develop and 

validate such a method, which is further described in the forthcoming section. 
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3 CARDIOVASCULAR MAGNETIC RESONANCE 

 

“Any sufficiently advanced technology is indistinguishable from magic.” 

in Profiles of the Future (1962), Arthur C. Clarke 

 

3.1 BASIC PRINCIPLES 

Magnetic resonance imaging (MRI) is a process by which hydrogen protons that constitute 

the human body are induced into producing a signal that can be read and processed into an 

image. MRI has numerous applications in Physics, Chemistry and Medicine. 

Atomic nuclei of uneven mass number (such as hydrogen, which only has one proton) possess 

an angular momentum, or spin. Conceptually, this means that they are spinning spheres with 

a small electrical charge. If subject to a strong external magnetic field B0, the magnetic 

momentum vector resulting from the spin is given by the equation: 

𝜔 = 𝛾𝐵0 (7) 

where 𝜔 is the precession frequency (also called the Larmor frequency) and 𝛾 is the 

gyromagnetic ratio of the nucleus (a known constant for each element) [83]. 

In any given tissue sample, the average angular momenta of all spins is called net 

magnetization vector (NMV), i.e. a single vector can describe the magnetic properties of all 

spins. At thermal equilibrium, the NMV is aligned with B0. If these spins are subject to 

another magnetic field B1, induced by a radiofrequency (RF) pulse tuned to the Larmor 

frequency of that specific element, they manifest the resonance phenomenon. This magnetic 

field B1 excites the spins and its presence induces an oscillation (precession) that produces a 

signal that can be measured. MR cameras include receptor coils that receive this signal and 

then produce electrical current, based on the Faraday Law of electromagnetic induction. 

When B1 is turned off, relaxation of the spins occurs. There are two components to relaxation 

– a longitudinal one (in relation to B0), in which an increase in magnetization in the 

longitudinal direction takes place characterized by T1, and a transverse one, in which there 

is a decrease in magnetization in the transverse plane, orthogonal to the B0 direction, 

characterized by T2. T1, or spin-spin relaxation time, refers to the time necessary for the 

longitudinal component to reach 63% relaxation. T2, or spin-lattice relaxation time, refers to 

the time necessary for the transverse component to decay to 37% signal. T1 and T2 are both 

important parameters probed by MR pulse sequences to achieve images with desired 

properties or image contrasts. 
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Figure 12 – A: Simplified schematic demonstration of how magnetic fields and RF pulses 

influence spins. At thermal equilibrium, the NMV (red arrow) is aligned with B0. The RF 

pulse causes a deviation from the z axis in a certain angle (flip angle). After the RF pulse and 

until relaxation, the individual spins precess (black circular arrow) and therefore the NMV 

also precesses (red circular arrow). B: Magnetization in the longitudinal direction after the 

RF pulse plotted across time, signaling T1 as the time point corresponding to 63% relaxation. 

C: Magnetization in the transverse plane after the RF pulse plotted across time, signaling T2 

as the time point corresponding to a decay to 37% signal. 

If one irradiates the human body with an RF pulse, all the excited spins will precess at the 

Larmor frequency, making it impossible to receive a signal from a specific volume or portion 

of interest in the body. To solve this problem and achieve spatial encoding, i.e. image a 

specific volume, gradient magnetic fields are employed, which feature varying magnetic field 

strengths along a given direction x. The result is a gradient of Larmor frequencies along the 

direction x, which allows to isolate specific locations according to their specific Larmor 

frequency. Three gradients for each of the spatial directions (Gx, Gy, Gz) may be employed to 

position a slice. 
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After a slice is selected, one needs to be able to distinguish different signals along the 

directional axis, so that an image can be reconstructed. Along the short anatomical axis, the 

signal is located by means of a phase encoding gradient. Phase, along with frequency, is one 

of the fundamental characteristics of a signal. A phase encoding gradient temporarily causes 

a phase shift along the short axis, so that, when the next gradient is turned on (frequency 

encoding), different spins along the short axis of the image will have different accumulated 

phase shifts. 

Along the long anatomical axis (in any projection, axial, coronal or sagittal), the process to 

locate the signal is called frequency encoding, which employs yet another magnetic gradient 

to shift the precession frequency of the spins along its axis. 

 

Figure 13 – Diagram of the sequence structure of balanced steady state free precession 

(bSSFP). RF – radiofrequency, Gz – slice selection gradient, Gy – phase encoding gradient, 

Gx – frequency encoding gradient. 

Each data point, composed by frequency and phase information, is stored in a matrix called 

k-space. This includes all of the MR image data in the frequency domain. To convert k-space 

into an image readable by a clinician, one applies an algorithm called Fast Fourier Transform 

(FFT). There are mathematical aspects to this algorithm that are outside the scope of this 
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thesis; in summary, because of FFT, each pixel of the final image takes frequency and phase 

information from all the pixels in k-space and is assigned a tone on a greyscale.  

In MRI, the RF pulses and gradients (as well as their timings) constitute a pulse sequence, as 

exemplified in Figure 13. A pulse sequence allows the operator to choose which imaging 

parameters should be applied depending on which images will be acquired. The balanced 

steady state free precession (bSSFP) pulse sequence [84], as shown on Figure 13, was 

frequently used in this thesis’ studies to acquire anatomical images and cine stacks (e.g. for 

measurement of LV volume), whereas flow measurements were performed with a velocity 

encoded gradient echo (GRE) pulse sequence. 

 

3.2 CLINICAL APPLICATIONS 

CMR imaging is regarded as the most accurate modality in the assessment of myocardial 

morphology and function [85]. In the last few decades, image quality has dramatically 

improved. Currently, this allows for the non-invasive assessment of myocardial tissue 

characteristics and hemodynamic variables without exposure to ionizing radiation. 

A basic CMR exam begins with scout imaging, for simple anatomical evaluation of the heart 

and thorax, as well as determination of the long and short-axis views. Cine imaging is then 

used for global and regional evaluation of the LV and/or RV wall motion, mass and ejection 

fraction. A short-axis cine stack is used to segment the LV in its epicardial and endocardial 

components and derive LV function parameters, as shown in Figure 14 [86]. 

By employing contrast agents such as gadolinium, one may assess myocardial perfusion 

during the cardiac cycle, which is increasingly relevant in patients with ischemic heart 

disease. Moreover, late gadolinium enhancement imaging, which is acquired 10-15 minutes 

after contrast injection with inversion-recovery sequences, allows to further characterize 

myocardial tissue, both in ischemic heart disease, cardiomyopathy, sarcoidosis and cancer 

[87]. 

Lastly, velocity encoding MR imaging of blood flow can be used to assess hemodynamics in 

blood vessels, cardiac valves and shunts. In the clinical routine, it is common to measure 

aortic and pulmonary flow, by using 2D phase-contrast MR. In this thesis, the featured 

methods were flow measuring techniques that expand the current clinical capabilities of MR. 

LV characterization with cine-imaging was also performed in all studies. 
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Figure 14 – LV segmentation in the open-source software suite Segment (Medviso, Lund, 

Sweden). The green and red lines correspond to the epicardium and endocardium 

respectively, isolating the myocardium from the rest of the image. This segmentation is 

performed on all images of a cine short-axis stack. The analysis yields values for myocardial 

mass, end-systolic and -diastolic volumes, ejection fraction, stroke volume and cardiac 

output. 

 

3.3 FLOW MEASUREMENT METHODS 

3.3.1 2D Phase Contrast MRI 

A complete evaluation of cardiovascular function requires the assessment of blood flow in 

selected vessels or heart chambers. Heart valve function may be impaired by stenosis or 

regurgitation, and shunt identification is essential when evaluating congenital heart disease. 

CMR, particularly 2D Phase Contrast MR, allows the user to quantitatively assess blood flow, 

by measuring stroke volume, blood flow velocity, vessel area change, regurgitant flow, and 

other variables [88]. 

Phase contrast MRI exploits the fact that phase shifts of moving spins are proportional to 

their velocity. This way, not only is it possible to distinguish between static and moving spins, 

but also to quantify through-plane velocity in a given direction in each pixel in the image. 

Concurrently, spins moving at a similar velocity and opposite directions have similar but 

opposite phase shifts. 
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To create a phase shift, slices are sequentially subject to a flow-encoding gradient after 

excitation and before read-out, along spatial directions x and y. Flow-encoding gradients 

consist of sequential bipolar gradients, which causes spins that move in its direction to gain 

phase. Flow-encoding sequences require the operator to define the velocity encoding 

gradient, or more commonly VENC, which corresponds to the maximum velocity encoded 

by the sequence. If the true velocity one is measuring is greater than VENC, aliasing will 

occur, yielding false velocity readouts. On the other hand, always defining high VENC will 

not solve the problem, as it may considerably decrease velocity-to-noise ratio (VNR), 

resulting in poor measurement precision with regards to velocity. 

3.3.2 Sector-wise golden-angle phase contrast (SWIG) 

2D phase contrast MR is routinely used to measure blood flow in a time-resolved fashion, 

across several R-R intervals. However, diastolic flow variables (E, A, e’) can only be 

measured in a very short window of maximal velocity, during a single heartbeat. Doppler 

echocardiography offers temporal resolutions that allow the measurement of these variables, 

but routine CMR methods do not [80]. There have been previous attempts to measure 

diastolic flow parameters with CMR, albeit with limited results. 

Study IV documents the development and validation of a sector-wise golden angle (SWIG) 

radial profile ordering phase contrast sequence that attempts to solve this problem by 

enabling high temporal resolution. Instead of the classic Cartesian k-space ordering, SWIG 

divides k-space into several radial sectors corresponding to a pre-determined number of 

heartbeats (Figure 15). A golden-ratio division of the sectors is then performed as follows: 

∅𝑛+1 = 𝑚𝑜𝑑 [(∅𝑛 +  
𝜋

𝑁
 ∙  

√5 − 1

2
) ,

𝜋

𝑁
] + 𝑠 ∙   

𝜋

𝑁
 (8) 

where s is the current heartbeat, N is the total number of heartbeats, and ∅𝑛 is the nth 

azimuthal angle [89]. 

Compared to Cartesian ordering, the SWIG method presents several advantages, such as 

sampling the center of k-space in every TR, linear sampling density, and considerable 

undersampling that allows high temporal resolution, at the expense of spatial resolution. 

Reconstructed SWIG images are analyzed in Segment (Medviso AB, Lund, Sweden) [90] 

and are compensated for eddy current-dependent phase error with quadratic phase error 

correction. Semi-automated phase unwrapping is also applied. Transmitral and myocardial 

tissue velocities are measured using an in-house developed plugin, which allows to choose 

the image voxel was the highest velocity in either the mitral opening (for transmitral 

velocities) or mitral annulus (for septal and lateral myocardial tissue velocities). 
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Figure 15 – Visual representation of the technical aspects of the SWIG method. A – k-

space spokes are established by performing a golden-angle division of each sector. B – k-

space sectors are acquired in a single corresponding heartbeat. C – Each k-space spoke is 

acquired with alternating positive or negative VENC using a sliding-window technique. 

Each square represents an image with either positive (+) or negative (-) VENC. Each line 

(temporal footprint) represents a pair of positive or negative VENC frames that compose a 

phase-contrast image. Reproduced from Fyrdahl, et al. (2020) with permission. 

 

Figure 16 – Comparison 

between transmitral and 

myocardial tissue velocities 

measured with TTE (A and B) 

and SWIG CMR (C and D). 

The measurements were 

performed in a patient with 

grade I DD. Image reproduced 

from Fyrdahl, et al. (2020) with 

permission. 
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3.3.3 4D Flow Analysis 

In Studies II, III and V, a 4D flow analysis vortex duration method [25] [26] was employed 

to diagnose PH and estimate mPAP. With this method, flow data in the pulmonary artery is 

acquired with 6-10 gapless slices of a 2D spoiled-gradient-echo-based cine phase contrast 

sequence, with VENC 90 cm/s in all three spatial directions, and retrospective ECG gating. 

Images are acquired in approximately an oblique sagittal orientation optimized to cover the 

pulmonary trunk. The result of the acquisition is an image of stack of 20 frames, with a three-

dimensional overview of flow in the pulmonary artery during one cardiac cycle (Figure 17). 

 

Figure 17 – Frame count with a PH vortex in the cardiac cycle. Out of 20 total frames 

comprising one cardiac cycle (R-R interval), only images from six frames are shown as 

pointed by the arrows. A total of 10 frames (pink boxes) had a PH vortex. The white boxes 

represent frames without a vortex. A vortex duration of 10/20 timeframes (50% of the cardiac 

cycle) corresponds to a mPAP of 47 mmHg. RV – right ventricle, LV – left ventricle, PA – 

pulmonary artery, PB – pulmonary bifurcation. Color scale denotes velocity of blood flow. 

Reprinted with permission from Ramos JG, et al. (2020). 

Image analysis consists of automatic background phase correction and phase unwrapping. 

Images are then manually segmented to isolate the right ventricular outflow tract and seed 

3D vectors. Vortex analysis per se usually begins with an overview of pulmonary artery flow 

in streamline visualization. This initial view allows the observer to identify several potential 

vortical formations: (1) a PH vortex, which usually starts inferiorly and slightly distal to the 

pulmonary bifurcation, (2) a bifurcation vortex, composed mostly of helical flow and present 

in most healthy individuals, and (3) a pulmonary valve vortex, which is usually more 

pronounced in patients with an incompetent pulmonary valve [25]. 

Additionally, a PH vortex must obey a set of criteria that strongly point to it being in fact 

representative of PH and not a normal helical structure, such as a bifurcation vortex. A true 

PH vortex: 

 Is composed of notional closed concentrical curves (Figure 18), which reflect the 

nature of a circular vortex with a well defined center, 
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 Starts in mid- to late-systole and ending in early- to mid-diastole, which rules out 

smaller low velocity vortices sometimes observed in late-diastole, and, 

 Is characterized by a moving center, as PH vortices usually start in the inferior portion 

of the main PA and gradually move towards the center of the artery. 

Vortex duration expressed as a percentage of the cardiac cycle is measured by counting how 

many consecutive timeframes in which these criteria apply, and then dividing by the total 

number of timeframes. mPAP is then calculated by applying the previously described 

empirically determined equation [26]: 

𝑚𝑃𝐴𝑃𝐶𝑀𝑅(𝑚𝑚𝐻𝑔) =  
𝑉𝑜𝑟𝑡𝑒𝑥 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (%) + 25.44

1.59
 (9) 

Increased PA pressure by CMR is defined as vortex duration ≥ 10%, which corresponds to 

an invasively measured mPAP > 22 mmHg. 
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Figure 18 – Vortex visualization during one cardiac cycle in a 3D velocity vector view in a 

multi-plane reformatted sagittal slice. Top left: no PH vortex is visualized in early systole. 

Top right and bottom left: a PH vortex is visualized as noted by the white notional 

concentrical curves, with a clear vortical center. Bottom right: no vortex visualized in the 

main PA, as noted by the lack of concentrical curves. Time in milliseconds (ms) denotes time 

after the R-wave trigger of the ECG. RVOT – right ventricular outflow tract, mPA – main 

pulmonary artery. The color scale denotes velocity of blood flow. 
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4 COMPARISON BETWEEN DIAGNOSTIC METHODS 

 

“THE ARCHITECT: Your life is the sum of a remainder of an unbalanced equation 

inherent to the programming of the Matrix. You are the eventuality of an anomaly, 

which despite my sincerest efforts I have been unable to eliminate from 

what is otherwise a harmony of mathematical precision.” 

in The Matrix Reloaded (2003), L. and L. Wachowski 

 

4.1 GENERAL CONSIDERATIONS 

In Medicine, diagnostic tests are tools to gather data – usually physiological variables – with 

the purpose of making a clinical decision. When developing new diagnostic tests, the 

researcher must prove that the new test is at least non-inferior to the existing ones through 

statistical testing. 

The unifying theme in this thesis has been the development of new CMR methods to diagnose 

disease or estimate variables that are already routinely assessed by other diagnostic 

modalities. A crucial step in the validation of these new techniques has been the comparison 

of the diagnostic performance of the new methods with the reference methods, as established 

by the current recommendations. 

 

4.2 ACCURACY AND PRECISION 

Evaluating the quality of a diagnostic test involves consideration of two aspects – precision 

and accuracy (Figure 19). Precision refers to the reliability of the test, i.e. the degree to which 

the test’s result varies with repeated measurement. On the other hand, accuracy refers to the 

validity of the test, i.e. the degree to which the test’s result matches the true value of the target 

variable [91]. 

Assessing reliability (precision) is done by calculating intra- and inter-observer variability, 

which express how much repeated testing alters the result if done by one rater or a second 

rater, respectively. In both cases, two sets of measurements are compared with each other, 

either in absolute terms or as a percentage. This is further detailed in section 4.4 below. 

As far as accuracy is concerned, one intends to know how does the test’s result compare to 

the gold standard measurement. For example, if testing the accuracy of a screening test for 

prostate cancer, the gold standard would be biopsy, since biopsies usually establish the true 
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diagnosis with a very high degree of certainty. Accuracy is also related to sensitivity and 

specificity of a test, which are described in the next section. 

 

Figure 19 – Target grouping to graphically represent accuracy and precision. A – Inaccurate 

and imprecise. B – Precise but not accurate. C- Somewhat accurate, but imprecise. D – 

Accurate and precise. Image used under a Creative Commons license CC BY-SA 3.0, by 

cleanpng, Wikimedia Foundation. 

These traditional definitions of accuracy and precision are not without caveats. If no clear 

gold standard can be defined, for example in the case of subjective scales, it is difficult to 

define accuracy. On the other hand, if we consider precision to be only one of the components 

of reliability, as defined mathematically, intra- and inter-observer variability are not enough 

to define precision. For the purposes of the studies presented in this thesis, however, the 

definitions above are acceptable. 

  

4.3 SENSITIVITY AND SPECIFICITY 

Only rarely do diagnostic tests detect the presence or absence of disease in nearly 100% of 

cases. On the contrary, the varying performance with regards to diagnostic accuracy must be 

considered when interpreting the results of any test to make correct clinical decisions. 

Similarly, no set of symptoms are always present in a certain syndrome. This is true even for 

those who are regarded as being classic symptoms or pathognomonic. 

The proportion of positive or negative test results that represent presence or absence of 

disease, respectively, can be plotted in a 2x2 contingency table as shown in Table 4. 

Sensitivity is defined as the probability that a certain test yields a positive result in a patient 

who has the disease. In clinical terms, sensitivity is useful to estimate the capability of the 

test in ruling out disease, since a test with high sensitivity will yield few false negatives. 

Specificity is defined as the probability that a certain test yields a negative result in a patient 

who does not have the disease. Clinically, specificity is useful to estimate how well a test 

rules in disease, since a test with high specificity will yield few false positives. 
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Table 4 – Contingency table for evaluation of diagnostic performance of a test 

 
 Disease  

 Present Absent  

T
es

t 

Positive result True positive (TP) False positive (FP) PPV = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Negative result False negative (FN) True negative (TN) NPV = 
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

  Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Specificity = 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 A = 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

PPV – positive predictive value, NPV – negative predictive value, A – accuracy  

 

 

Figure 20 – Graphical explanation of sensitivity, specificity and ROC curves. The green 

arrows represent the decision threshold for a test – moving it along the horizontal axis will 

always increase sensitivity and decrease specificity or vice-versa. By plotting sensitivity 

against the false positive rate, one can identify the cut-off threshold that maximizes the test’s 

accuracy. P(TP) – sensitivity, P(FP) – false positive rate or 1-Specificity. Image licensed 

under a Creative Commons license CC BY-SA 3.0, created by Sharpr, Wikimedia 

Foundation. 
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Accuracy, in the context of contingency tables, specificity and sensitivity, is dependent on 

all four variables in the table and is defined as the test’s ability to correctly differentiate 

between presence or absence of disease. 

To avoid arbitrary cut-offs in a given test, the optimal cut-off threshold for a test is established 

by analyzing a receiver operating characteristic (ROC) curve, which plots sensitivity against 

false positive rate, i.e. the probability of getting a true positive result against the probability 

of getting a false positive result. The optimal threshold is the one that confers the optimal 

combination of a high sensitivity and a low false negative rate (and therefore high 

specificity). The integral of this curve (area under the curve) is also an indicator of the 

diagnostic performance of the test, and may be used as a composite comparison of sensitivity 

and specificity between tests. However, in some situations, sensitivity and specificity may 

not be weighted equally, e.g. if the cost of a false positive outweighs the cost of a false 

negative, or vice-versa. In these cases, other approaches to determining ideal cut-off values 

are appropriate. 

 

4.4 STATISTICAL METHODS 

These previous basic concepts pave the way to assessing agreement between two diagnostic 

modalities, which was done in several studies in this thesis, either comparing CMR with RHC 

or CMR with echocardiography. We intended to answer essential questions in these studies 

– whether the results of a test would remain the same if evaluated by two different operators 

(therefore being precise) or by two different methods (therefore being accurate). 

Agreement between two continuous variables can be evaluated using linear regression, if it 

is hypothesized that a linear relationship between them will be observed. In linear regression, 

the value of R2 (correlation coefficient) can be interpreted as the extent to which one variable 

is predicted by the other in a linear fashion. Moreover, the equation resulting from the 

regression may be extracted from a testing cohort and then tested in a validation cohort to 

assess how well the testing variable predicts the outcome variable. 

Bland-Altman analysis is also useful as a measure of the pattern of agreement and for 

assessment of bias. A Bland-Altman chart (such as the one in Figure 25, right panel) is plotted 

with the mean of both variables in the horizontal axis and their difference in the vertical axis 

[92]. The Bland-Altman plot also shows the 95% limits of agreement, with an upper and 

lower limit of agreement defined by mean difference ± 2 standard deviations respectively. 

Such a plot can also identify the presence and frequency of outliers. 

As mentioned previously, comparing the area under the curve of two ROC curves is a direct 

comparison of the accuracy of two diagnostic tests performed on the same patient. This 
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comparison is performed with the DeLong test, to account for the correlation between the 

data, i.e. to compare two areas under the curve that were computed from the same patient 

cohort [93].  

Table 5 – Procedures for agreement analysis. 

Number of variables Type of variable Procedure 

Two 

Categorical 

Cohen’s kappa 

Weighted kappa 

McNemar’s test 

Numerical 

Intraclass correlation coefficient 

Lin’s concordance correlation 

coefficient 

Bland-Altman plot 

Paired t-test 

British Standards reproducibility 

coefficient 

Three or more Multivariate analysis 

Adapted from Watson PF et al. (2010) [94]. 

For categorical variables, agreement may be reported as agreeable cases as percentage of 

total cases. This simple proportion does not, however, account for the effects of chance, 

particularly when the number of total categories is small. This can be accounted for by 

calculating Cohen’s kappa, which factors in the probability of getting an agreement by chance 

[95]. The resulting index lies between -1 and 1, with values closer to one representing higher 

agreement. The unweighted Cohen’s kappa is applied in 2x2 contingency tables, while the 

weighted variant is used when there are 3 or more ordered categories. 
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5 AIMS 

 

“Far away there in the sunshine are my highest aspirations.” 

in Little Women (1868), Louisa May Alcott 

 

The general aim of this thesis was to explore the potential of both routine and innovative 

CMR methods in the diagnosis of heart failure and PH. Given the rising accessibility and 

technical capabilities of CMR, there is an interest in expanding its diagnostic scope, since 

diastolic dysfunction and PH are not currently routinely assessed with CMR. 

For each study specifically, the aims were: 

 Study I: To investigate normal pulmonary vascular physiology and how different 

measures, including blood flow distribution and PBVV, vary with body position, 

 Study II: To independently test and validate CMR mPAP estimation from 4D flow 

analysis vortex duration, compared to echocardiography TR, 

 Study III: To independely test and validate CMR mPAP estimation from 4D flow 

analysis vortex duration, compared to invasive measurements by right heart 

catheterization, 

 Study IV: To develop a high temporal resolution phase contrast pulse sequence for 

evaluation of transmitral blood flow and myocardial tissue velocities, and to compare 

it with TTE, and, 

 Study V: To test the feasibility of a comprehensive CMR method for diagnosis and 

grading of diastolic dysfunction, compared to transthoracic echocardiography. 

  



 

50 

  



 

 51 

6 METHODS 
 

“You know my methods, Watson. Apply them.” 

in The Sign of the Four (1890), by Sir Arthur Conan Doyle 

 

6.1 STUDY DESIGN 

This doctoral thesis focused on using CMR techniques to study normal pulmonary vascular 

physiology, and to evaluate diagnostic measures from CMR relevant to PH and DD. Table 6 

– Diagram of study design for the present thesis, including the main object of study of each 

paper and the main physiological variables of interest. below summarizes the rationale behind 

each study and how they all fit into the big picture. 

Table 6 – Diagram of study design for the present thesis, including the main object of study 

of each paper and the main physiological variables of interest. 

CMR – cardiovascular magnetic resonance, 2D-PC – two-dimensional phase contrast, RHC 

– right heart catheterization, PBVV – pulmonary blood volume variation, PVDR – pulmonary 

vascular distensibility reserve, mPAP – mean pulmonary artery pressure, SWIG – sector wise 

golden angle, PA – pulmonary artery, LAVI – left atrial volume index 
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6.2 STUDY POPULATIONS 

Study populations for studies II, IV and V consisted of clinical consecutive patients with 

indication to perform a CMR exam at the Karolinska University Hospital, Stockholm, 

Sweden. Studies I and IV included healthy volunteers who were recruited to perform MR 

scans and echocardiography at the same hospital. Study III included patients referred for 

RHC who also underwent echocardiography and CMR. Ethical approval was granted for all 

procedures in all studies, and all subjects timely provided written informed consent. 

In Study I, 10 healthy volunteers were prospectively recruited to assess normal physiology 

related to pulmonary blood flow distribution and PBVV. The inclusion criteria were an age 

of 18-65 years old, no significant history of previous disease, and no contraindications to 

CMR. Exclusion criteria were abnormal ECG findings prior to MR scanning, arterial 

hypertension and pregnancy. 

For Study II, we prospectively included 60 consecutive patients referred to a clinical MR 

exam, who also underwent a TTE within 60 days or less (6 [1-20] days between exams). If 

no contraindications to CMR or atrial fibrillation were observed, patients were considered 

for inclusion. 

In Study III, we prospectively included 40 patients with referral to RHC who also underwent 

a CMR exam and a TTE, most of which had suspicion or diagnosis of PH (6 [1-12] days 

between CMR and RHC). 

In Study IV, we included 10 healthy volunteers for an initial pilot study to assess temporal 

resolution who underwent CMR and TTE (24 hours or less of difference between exams). 

Thirty-five consecutive patients were then included to evaluate accuracy and precision of the 

method, who underwent both CMR and TTE (4 [2-15] days between exam dates). 

In Study V, we included 46 consecutive patients referred to a CMR exam because of 

suspected or diagnosed cardiopulmonary disease, who also underwent TTE (3 [0-16] days 

between exams). 

 

6.3 ETHICAL CONSIDERATIONS 

Over the course of this doctoral work, several human subjects, both healthy volunteers and 

patients with cardio-pulmonary conditions, were included in our studies. Most subjects 

underwent CMR, echocardiography and even invasive procedures. This raised ethical 

questions that were considered early on; our conclusions are summarized in this section. 

Some patients suited to be included in our studies suffered from complex clinical conditions, 

from severe heart failure to multisystemic auto-immune diseases, and thus their recruitment 
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could be especially sensitive from an ethical perspective. In this case, the process of informed 

consent played an important role to respect these patients’ autonomy and to ensure that the 

patient understood (1) that extra medical procedures (such as CMR in Study III) were 

completely voluntary and solely part of a research endeavor, and (2) what the procedure 

consisted in, including its benefits, if any, and risks. 

Fortunately, MR scans have few contraindications and do not involve emitting ionizing 

radiation. In accordance with principle 16 of the Declaration of Helsinki [96], we could 

therefore provide improved diagnostic information to our research subjects, while subjecting 

them to very limited risks. Furthermore, even with a limited perceived benefit of 

participating, the vast majority of patients were eager to take part in the research effort in a 

field of study that affects them daily. 

Lastly, in the field of medical imaging research, there are frequent file transfers and 

processing of personal data, e.g. file transfer from the MRI scanner to image analysis 

computers and even personal research computers. These processes raise ethical questions, as 

images may carry personal data that is protected by law. A standard practice in the field, 

therefore, is to anonymize all images that are collected by the researcher. This process 

allowed safe transfer and processing of the image files, without the concern of violating the 

patients’ rights as stated in the Swedish personal data law and the European Union’s 

regulations. 

 

6.4 CARDIOVASCULAR MAGNETIC RESONANCE 

6.4.1 Basic CMR exam and LV Characteristics 

All patients in all studies underwent a 12-lead electrocardiogram (ECG), blood pressure 

measurement and brief history to rule out contraindications to CMR. ECGs were acquired on 

a GE Marquette system (GE, Little Chalfont, United Kingdom). 

All CMR images were obtained in either a Siemens Area 1.5T or Siemens Skyra 3T 

(Siemens, Erlangen, Germany) with ECG gating and phased array receiver coils. 

The CMR protocol included a localizer sequence and 2-, 3-, 4- chamber balanced SSFP cine 

images of the left ventricle as well as a complete short axis (SA) stack. Typical image 

parameters included FOV 380x320 mm2, matrix size 265x142 pixels with 1.5x1.5 mm2 in-

plane resolution, slice thickness 6 mm, bandwidth 930 Hz/Px, repetition time/echo time 

2.78/1.16 ms, temporal resolution 36 ms interpolated to 35 cardiac phases per cardiac cycle. 

LV parameters, which included LV volumes, mass and EF were measured from the cine 

short-axis stack using manual delineations in the software Siemens syngo.Via 4.1 (Siemens 
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Healthcare, Erlangen, Germany) or Segment (version 2.0 R5039, Medviso AB, Lund, 

Sweden) [90]. 

6.4.2 4D Flow Analysis 

4D flow data in the pulmonary artery was acquired with 6-10 gapless slices of a commercially 

available retrospectively gated 2D spoiled-gradient-echo-based cine phase contrast sequence, 

with VENC 90 cm/s in all directions and threefold averaging to avoid breathing artifacts. 

Other protocol parameters included: FOV 340x276 mm2, matrix 192x112 pixels, slice 

thickness 6 mm, bandwidth 449 Hx/Px, generalized autocalibrating partial parallel 

acquisition (GRAPPA) factor of 2, autocalibration signal (ACS) of 22 lines, flip angle 15°, 

TR/TE 6.41/4.10 ms, temporal resolution 77 ms interpolated to 20 cardiac phases per cardiac 

cycle, total imaging duration 6-11 minutes depending on heart rate and number of slices 

necessary to cover the main PA. 

4D flow image analysis was then performed in prototype software Siemens 4D Flow 

(Siemens, Erlangen, Germany). Automatic eddy current compensation and phase-

unwrapping were performed and images were segmented semi-automatically. Initial 

overview of the flow in the right ventricular outflow tract was performed in streamline mode. 

3D vector visualization was then used to detect a blood flow vortex in the main pulmonary 

artery as previously described. As already described in Chapter 3, a vortex was considered 

pathological if (1) defined by notional concentrical curves, (2) localized in the main 

pulmonary artery, and (3) beginning in early- to mid-systole. Vortex duration in percentage 

of the cardiac cycle was calculated based on how many frames the vortex could be visualized 

(out of a total of 20). mPAP was then estimated using the empirically determined equation 

describing the linear relationship between vortex duration and mPAP. 

6.4.3 Step-wise Golden Angle (SWIG) 

SWIG, as previously described, is a high temporal resolution step-wise golden-angle 

through-plane phase-contrast sequence which was developed in-house and validated against 

echocardiography in Study IV. SWIG uses a 150-250 frames/second sliding window, 

temporal footprint 40 ms and VENC 150 cm/s or 30 cm/s for transmitral and myocardial 

tissue velocities, respectively). Typical sequence parameters for transmitral flow included: 

FOV 320x320 mm2, matrix size 64x64 pixels, bandwidth 1560 Hz/pixel, flip angle 20°, 

TE/TR 4.0/6.6 ms. Typical sequence parameters for myocardial tissue velocities included: 

FOV 320x320 mm2, matrix size 64x64 pixels, bandwidth 1560 Hz/pixel, flip angle 8°, echo 

time/repetition time 4.4/6.8 ms. 

Images were then analyzed in Segment (version 2.0 R5039, Medviso AB, Lund, Sweden) 

[90] expanded with a plug-in developed in house. Before velocity measurements, 
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compensation for Eddy-currents was applied using a quadratic fit to background stationary 

tissue. 

 

6.5 ECHOCARDIOGRAPHY 

Comprehensive transthoracic echocardiography was performed on all patients in studies II-

V by an experienced operator using a commercially available system (Epiq, Phillips, 

Amsterdam, the Netherlands). Recordings were obtained from the left parasternal modified 

RV long axis, left parasternal short axis and apical four chamber views. All results were the 

mean of 3 measurements. TRPG in mmHg was calculated from TR jet velocity using the 

Bernoulli equation (4) as previously discussed. Increased PA pressure by echocardiography 

was defined as TR jet velocity > 2.8 m/s, corresponding to an estimated TRPG > 31 mmHg. 

Diagnosis and grading of DD was performed according to the recommendations of the 

American Society of Echocardiography and European Society of Cardiovascular Imaging. 

 

6.6 STATISTICAL ANALYSIS 

Statistical analysis was performed in Microsoft Excel 2016 (Microsoft, Seattle, WA, USA) 

and in the R-programming language in R-Studio 2.1 (RStudio, Boston, MA, USA). 

Continuous variables were reported as mean ± standard deviation if normally distributed per 

the Kolmogorov-Smirnov test, or median and interquartile range if non-normally distributed. 

Categorical variables were presented as percentages. In Study I, the Mann-Whitney U was 

used to perform comparisons between means of independent samples, and the Wilcoxon sign-

rank test to compare means in paired samples. In the remaining studies, linear regression and 

Bland-Altman plots were used to compare the same measurements from different imaging 

modalities, as previously described in Chapter 4. Categorical agreements between DD 

grading methods in Study V was tested with Cohen’s weighted kappa. A p-value of less than 

0.05 was considered statistically significant in all studies.  
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7 RESULTS AND DISCUSSION 

 

“The game of science is, in principle, without end. 

He who decides one day that scientific statements do not call for any further test, 

and that they can be regarded as finally verified, retires from the game.” 

in The Logic of Scientific Discovery (1934), Sir Karl Popper 

 

7.1 NORMAL PULMONARY VASCULAR PHYSIOLOGY AND PBBV 

In Study I, the main finding was the impact of gravity in blood flow distribution and 

pulmonary vascular distensibility. As shown in Figure 21, arterial blood flow distribution is 

shifted towards the dependent lung in the lateral position; in the supine position, we found a 

right/left distribution of 54%/46%, in contrast with 63%/37% in the right lateral position. The 

same held true for venous blood flow distribution (Figure 22), with the dependent lung 

draining more blood in the lateral position. 

 

Figure 21 – Pulmonary blood flow distribution in each tested body position. The white bar 

represents the proportion of blood going to the right lung and the shaded bar represents blood 

going to the left lung. Error bars represent standard error of the mean. P-values yielded by a 

Wilcoxon signed-rank test with even distribution as null hypothesis. Reprinted with 

permission from Wieslander B, et al. (2019). 

Before this study, there was no clear data on blood flow distribution in the pulmonary 

circulation in humans. Studies in dogs, primates and humans, as well as anesthesiology 

textbooks, suggested a right/left distribution of 55%/45% in the supine position and  
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Figure 22 – Pulmonary venous blood flow volume from each lung in each tested body 

position. The white bars represent the right lung and shaded bars represent the left lung. Error 

bars represent the standard error of the mean. P-values yielded by a Wilcoxon signed rank 

test with no difference as the null hypothesis. Reprinted with permission from Wieslander B, 

et al. (2019). 

 

Figure 23 – Percent change in vessel cross-sectional area in the dependent position compared 

to the non-dependent position. The dark grey bars represent cross-sectional area change in 

arteries and the chequered bars represent area change in veins. The p-values refer to the 

hypothesis that the bars have a value different than zero, i.e. that there is a difference in cross-

sectional vessel area when body position is changed. Reprinted with permission from 

Wieslander B, et al. (2019). 
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65%/35% in the right lateral position. All these studies consisted of small sample sizes and 

varying testing conditions (i.e. intubation, use of anesthesia, varying positive airway 

pressures). Study I was the first to use reliable and robust methods to investigate these 

research questions in a healthy human cohort breathing spontaneously. 

In Figure 23, the relative cross-sectional area change of arteries and veins is shown. While 

relative arterial cross-sectional area did not vary between the non-dependent and dependent 

positions for either lung, venous cross-sectional area was higher in the dependent position 

compared to the non-dependent position in both lungs. These observations suggest that 

pulmonary veins distend considerably when under the effect of gravity in the dependent 

position, but the same is not true for pulmonary arterioles. 

 

Figure 24 – Pulmonary vascular distensibility reserve (PVDR) changes with body position. 

PVDR is the relative PBVV change in the right lung (white bars) and left lung (grey bars). 

PVDR is greatly increased in the non-dependent lung on both sides. P-values directly above 

the bars represent the hypothesis that a bar has a non-zero value. P-values above brackets 

reflect the difference between the right and left lung. Reprinted with permission from 

Wieslander B, et al. (2019). 
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Unilateral PBVV as a percentage of unilateral stroke volume (relative PBVV) also varied 

with body position, with a 54% higher relative PBVV in the non-dependent left lung 

compared to the dependent right lung, as shown in Figure 24. This increase in relative PBVV 

in the non-dependent lung was termed lung pulmonary vascular distensibility reserve 

(PVDR). Considering a higher PBVV and a lower venous cross-sectional area in the non-

dependent lung compared to the dependent lung in the lateral position, we suggest that PBVV 

is a measure inversely correlated with pulmonary venous distensibility. This is supported in 

part by previous findings that showed decreased PBVV in pigs with induced LV dysfunction, 

caused by a higher PCWP and consequent pulmonary venous distension [29].  

Measurement of PBVV was shown to be reliable when measured by different observers, with 

an ICC of 0.89 for the left lung in the supine position and 0.98 for the left lung in the left 

lateral position. The Dahlberg error was 1.9 ml (relative Dahlberg error: 8.9%) and 1.2 ml 

(relative Dahlberg error: 3.5%), respectively. 

 

7.2 DIAGNOSIS OF PULMONARY HYPERTENSION BY CMR 

In Study II, 4D flow estimated mPAP by CMR with TR by echocardiography in a clinical 

consecutive population. In Study III, we compared 4D flow estimated mPAP by CMR with 

both RHC mPAP and echocardiography TR, in a clinical population referred to RHC due to 

suspected or confirmed PH. The main finding of both studies was that CMR mPAP correlates 

well with invasively measured mPAP, and moderately with echocardiography TR. 

7.2.1 Estimation of CMR mPAP vs Echocardiography TRPG 

Figure 25 shows a linear model comparing CMR mPAP and echocardiography mPAP and a 

Bland-Altman plot of the same measures, both in patients with both an observable TR and 

vortex duration greater than 15% of the cardiac cycle (corresponding to PH). We observed a 

good correlation (R2 = 0.65, p<0.001) and low mean Bland-Altman bias of 4.06.9 mmHg. 

As shown in Figure 26, CMR more than doubled the diagnostic yield of PA pressure 

estimation compared to echocardiography (35% vs 15%), i.e. CMR found that 35% of 

patients in this cohort had elevated PA pressure, in contrast with only 15% by 

echocardiography. Since a TR jet is not always obtainable [8] and previous studies showed 

discrepancies between echocardiography TR and invasive measurements of PA pressure 

[39], these findings may suggest that CMR has higher specificity for detection of increased 

PA pressure (which was also suggested by the findings in Study III). 

These results assumed a right atrial pressure of 5 mmHg. RAP estimates from 

echocardiography were not used, since its estimation is known to result in poorer agreement 

[35]. 
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Figure 25 – Left panel: Linear regression (solid line) of estimated mean pulmonary artery 

pressure (mPAP) by CMR and estimated mPAP (Chemla equation) by echocardiography. 

Dotted line shows line of identity. Right panel: Bland-Altman plot of estimated mPAP by 

CMR and estimated mPAP by echocardiography in patients with both observable vortex and 

measurable TR. Mean bias 4.06.9 mmHg. 

 

 

Figure 26 – Diagnostic yield for detecting increased pulmonary artery pressure by either a 

4D flow pulmonary artery vortex duration > 15% of the cardiac cycle by CMR 

(corresponding to PH) or a tricuspid regurgitation jet velocity > 2.8 m/s by transthoracic 

Doppler echocardiography in all patients. 
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7.2.2 Estimation of CMR mPAP vs RHC mPAP 

Figure 27 shows a linear model of CMR mPAP compared with invasive mPAP (left panel) 

and a Bland-Altman plot of the same measures (right panel). Estimation of PA pressure with 

CMR showed very good agreement with RHC (R2=0.85) and low Bland-Altman bias of 

1.34.7 mmHg. These results confirm the previous findings by the developers of the vortex 

method in an independent laboratory and different patient population. While the R2 in this 

study was lower than in the first paper, mean Bland-Altman bias and regression parameters 

were similar [25] [26]. 

 

Figure 27 – Left panel: Linear regression (solid line) of estimated mPAP by CMR and mPAP 

by RHC. Dotted line shows line of identity. Right panel: Bland-Altman plot of estimated 

mPAP by CMR and mPAP by RHC. Mean bias 1.34.7 mmHg. 

Compared to echocardiography, CMR showed higher sensitivity and accuracy, as well as 

higher correlation with invasive measures and lower Bland-Altman bias (Figure 28). CMR 

ruled out correctly all cases without PH (Table 7 and Table 8). 

As mentioned in Chapter 1, there are other variables assessed by CMR that may aid in the 

diagnostic investigations in PH. However, none of them showed results comparable to the 

4D flow analysis vortex evaluation method [88], which is thought to correlate directly with 

pulmonary vessel wall properties and compliance. 4D flow analysis shows the ability not 

only to diagnose PH, but also estimate PA pressure with a resolution of approximately 5 

mmHg/frame and better diagnostic parameters than echocardiography. On the other hand, 

misidentification of vortices that do not fill the criteria listed in Chapter 3 may have led to 

false positives. This risk is minimized by proper training (preferably using a training dataset) 

and careful judgement of the properties of each vortex observed in the 3D volume. 
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Figure 28 – Left panel: Linear regression (solid line) of TRPG by echocardiography and 

sPAP by RHC. Dotted line shows line of identity. Right panel: Bland-Altman plot of TRPG 

by echocardiography and sPAP by RHC. Mean bias -5.911.6 mmHg. 

 

 

Table 7 – Contingency table for RHC vs echocardiography TR  

Echo 

Pulmonary hypertension 

Total 

 

Present 

RHC mPAP > 20 

mmHg 

Absent 

RHC mPAP > 20 

mmHg 

 

TR > 2.8 m/s 
21 (56% true 

positives) 

2 (5% false 

positives) 
23 

PPV = 91% 

TR ≤ 2.8 m/s 
6 (16% false 

negatives) 

8 (22 % true 

negatives) 
14 

NPV = 57% 

Total 27 10 37  

 Sensitivity = 78% Specificity = 80% Accuracy = 78%  
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Table 8 – Contingency table for RHC vs CMR Vortex duration  

CMR 

Pulmonary hypertension 

Total 

 

Present 

RHC mPAP > 20 

mmHg 

Absent 

RHC mPAP < 20 

mmHg 

 

Vortex duration 

 10% 

27 (73% true 

positives) 

2 (5% false 

positives) 
29 

PPV = 

93% 

Vortex duration 

< 10% 

0 (0% false 

negatives) 

8 (22% true 

negatives) 
8 

NPV = 

100% 

Total 27 10 37  

 Sensitivity = 100% Specificity = 80% 
Accuracy 

= 95% 

 

 

7.3 DIAGNOSIS AND GRADING OF DIASTOLIC DYSFUNCTION BY CMR 

7.3.1 SWIG Pilot Study 

Study IV featured the development and validation of the SWIG sequence, which uses a radial 

sector-wise golden-angle profile ordering to acquire velocity information with very high 

temporal resolution, which is essential to correctly identify peak velocities of transmitral flow 

and myocardial tissue velocities. 

In the first part of Study IV, different sets of SWIG image stacks with varying temporal 

footprints were acquired, based on the number of TRs – 4, 6, 8, 10 and 12. These images 

were compared with Doppler TTE to evaluate linear correlation and Bland-Altman bias, as 

shown in Table 9. 

The second part of Study IV, which consisted in an in vivo patient study in clinical 

consecutive patients, showed good correlation (R2 = 0.63, p<0.001) and low Bland-Altman 

bias of 0.009±0.037 m/s for myocardial tissue velocities. On the other hand, CMR 

underestimated transmitral velocities, with a Bland-Altman bias of -0.11±0.28 m/s and R2 = 

0.45, p<0.001 (Figure 29). This underestimation by CMR is, therefore, not likely due to 

insufficient temporal resolution, but image planning issues, specifically placement of the 

measurement slice and measurement volume. Further work is warranted to address this issue, 

as specified in Section 7.5. 
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Table 9 – Comparison between CMR SWIG-derived and TTE-derived myocardial tissue 

velocities (s’, e’, a’) at a fixed temporal increment but a variable temporal footprint. 

Temporal footprint 

(number of TRs) 

Temporal 

footprint 

(ms) 

Correlation 

(R2) 

Mean 

difference 

(m/s) 

95% limits of 

agreement 

(± m/s) 

p-value 

4 27.2 0.46 0.01 0.043 0.03 

6 40.8 0.63 0.009 0.034 0.13 

8 54.5 0.72 0.004 0.030 0.41 

10 68.0 0.69 -0.002 0.033 0.71 

12 81.6 0.65 -0.009 0.035 0.14 

P-value yielded by a Mann-Whitney U test with null-hypothesis that there was no difference between 

measurements. Reprinted with permission from Fyrdahl A, et al. (2020). 

 

 

Figure 29 – A) Linear regression and B) Bland-Altman plot of myocardial tissue velocities 

measured with SWIG and Doppler TTE. C) Linear regression and D) Bland-Altman plot of 

transmitral velocities measured with SWIG and Doppler TTE. Reproduced with permission 

from Fyrdahl, et al. (2020). Reprinted with permission from Fyrdahl A, et al. (2020). 
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7.3.2 Comprehensive CMR Method for Diagnosis of Diastolic Dysfunction 

Study V focused on the acquisition of three sets of data – (1) transmitral blood flow velocities 

(E, A, and E/A) and myocardial tissue velocities (septal e’, lateral e’ and average e’) with the 

SWIG sequence; (2) LAVI with the biplane area-length CMR method (CMR BAL); and (3) 

estimation of mPAP with CMR 4D Flow analysis. 

Figure 31 shows the linear regressions and Bland-Altman plots for measurement of 

transmitral and myocardial tissue velocities with CMR compared to Doppler TTE. While 

CMR systematically underestimated E velocities, the estimation of the E/A ratio yielded a 

good R2=0.87 (p<0.001) and low Bland-Altman bias of 00.15. This difference between the 

two modalities is likely do to issues related to planning of the measurement slice and 

measurement volume in CMR and not insufficient temporal resolution. Despite the lower 

agreement of E velocities, CMR still performed correct diagnoses, due to both E and E/A 

contributing to the algorithmic decision-making. 

Estimation of mPAP with CMR showed similar results to the ones from Study II, with a 

comparable R2 and Bland-Altman bias (Figure 30). CMR showed again higher diagnostic 

yield than echocardiography in the estimation of elevated PA pressures. 

 

Figure 30 – Linear regression of the estimated mPAP by CMR and TRPG by 

echocardiography in patients with a measurable TR (n=37). 

Concerning LAVI estimation, CMR measured higher LA volumes than echocardiography, 

which resulted in higher LAVI (Figure 32). These findings are in line with what other authors 

observed in studies comparing LAVI in CMR and echocardiography (CMR BAL vs 

echocardiography BAL) [97]. 
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Figure 31 – Top left: Linear regression of the measurements of the peak E-velocity by 

CMR and echocardiography. Top right: Bland-Altman plot of the measurements of the 

peak E-velocity by CMR and echocardiography. Middle left: Linear regression of the 

measurements of the peak A-velocity by CMR and echocardiography. Middle right: 

Bland-Altman plot of the measurements of the peak A-velocity by CMR and 

echocardiography. Bottom left: Linear regression of the measurements of the E/A ratio by 

CMR and echocardiography. Bottom right: Bland-Altman plot of the measurements of the 

E/A ratio by CMR and echocardiography. Dotted lines denote the line of identity. 
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Figure 32 - Left: Linear regression of the measurements of left atrial volume index (LAVI) 

by CMR and echocardiography. Right: Bland-Altman chart of the measurements of the 

measurements of LAVI by CMR and echocardiography. Dotted lines denote the line of 

identity. 

Table 10 – Agreement between CMR and echocardiography in the diagnosis and grading of 

diastolic dysfunction (blue cells represent agreement). 

 

Normal Indeterminate Grade 1 DD Grade 2 DD Grade 3 DD 

Normal 3 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Indeterminate 1 (2%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 

Grade 1 DD 0 (0%) 0 (0%) 25 (54%) 0 (0%) 0 (0%) 

Grade 2 DD 0 (0%) 0 (0%) 4 (9%) 4 (9%) 0 (0%) 

Grade 3 DD 0 (0%) 0 (0%) 1 (2%) 0 (0%) 7 (15%) 

Echo 

CMR 
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Overall, we observed excellent agreement between CMR and echocardiography (Table 10), 

with a percental agreement of 87% and a Cohen weighted kappa of 0.85 (95% CI: 0.73-0.97). 

In cases with disagreement, CMR always diagnosed DD as more severe than 

echocardiography, due to estimating either higher PA pressures or higher LA volumes. These 

results may suggest that CMR has a higher specificity for diagnosing DD than 

echocardiography, but studies with comparisons against invasive data would have to be 

performed to confirm this hypothesis. 

 

7.4 STRENGTHS, LIMITATIONS AND FUTURE PERSPECTIVES 

Phase-contrast CMR allows non-invasive measurement of flow and flow velocities with a 

high degree of accuracy and without the need for administering intravenous contrast agents. 

One of the general strengths of the studies included in this thesis was the study of flow with 

CMR, both in terms of flow velocity (peak transmitral velocities and PA flow, for example) 

and flow characteristics (PA vortex formation and duration), which directly correlated with 

physiological variables that influence clinical decision making. 

Study I involved experiments related to normal physiology and while the sample size was 

appropriate to draw conclusions about PBVV and PVDR, one would need more healthy 

volunteers in order to establish normal values for those variables. Furthermore, while our 

inclusion criteria allowed for volunteers of all ages, the cohort ended up consisting of young 

subjects, which may not necessarily reflect the physiology of the older population. 

Additionally, while inter-observer variability was low for PBVV, it may be technically 

difficult to acquire adequate image planes from all four pulmonary veins which have varying 

anatomical positions and morphology. 

Study II successfully applied the 4D flow analysis vortex duration method in a different lab 

than the one where it was developed. However, there were some limitations regarding the 

study population, as there was a difference between exam dates of maximally 53 days, with 

a median of 6 [1-20] days. This time difference may be associated with hemodynamic or 

clinical changes, yet several other comparative studies have allowed for even greater time 

differences with no significant impact on the data. Moreover, not all types of PH were present 

in this patient cohort, with a predominance of PAH. 

During the course of this doctoral project, the recommended cut-off value of invasive mPAP 

for diagnosis of PH decreased from 25 mmHg to 20 mmHg. In Study II, an mPAP of 25 

mmHg or more indicated PH. In light of the new recommendations, if a vortex duration ≥ 

10% and TR > 2.7 m/s were considered as indicative of PH, the diagnostic yield would 

change to 42% vs 24%, for CMR and echocardiography, respectively (p<0.001). 
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Study III compared 4D flow vortex analysis against invasive measurements with excellent 

results. Again, not all types of PH were present in similar numbers in this patient cohort and 

there was a time difference between exam dates. Although one observed a very good 

correlation between CMR and invasive measurements, the highest mPAP measured 

invasively was 59 mmHg, which is far from some of the extreme pressures observed in severe 

cases of PH. 

Future studies using the 4D flow analysis method for estimation of PA pressure could also 

include estimation of mPCWP and PVR, for a comprehensive evaluation of pulmonary 

hemodynamics. If these methods were proven to accurately estimate these parameters, a 

comprehensive method for diagnosis of PH (including hemodynamic classification) could 

one day be part of the routine CMR exam. 

Study IV contributed to solving a known problem in CMR flow measurement by introducing 

a sequence that can accurately measure flow with very high temporal resolution. 

Interestingly, a systemic underestimation of transmitral velocities persisted (specifically peak 

E-velocity), while myocardial tissue velocities retained good correlation with Doppler TTE. 

One may hypothesize that this underestimation is not due an insufficient temporal resolution, 

but rather to issues with image slice positioning, which tended to be placed too apically. A 

solution to this problem could be long-axis in-plane acquisition, similarly to the 

measurements by echocardiography. However, there are significant technical challenges to 

overcome by this approach. Further development of SWIG could also include a spatial 

frequency-dependent temporal filter, to further decrease the temporal footprint by limiting 

the number of k-space spokes that contribute towards the central part of the image. 

Lastly, Study V used a combination of the techniques explored in the previous studies and 

therefore shares some of the limitations already described. Since the patient cohort consisted 

of a clinical consecutive population, most subjects were diagnosed with acute myocardial 

ischemia or ischemic heart disease, which likely led to the overrepresentation of Grade I DD. 

In future studies, it would be beneficial to include other conditions in higher numbers (e.g. 

amyloidosis, cardiomyopathy, other infiltrative diseases) and to compare CMR with invasive 

measures of PCWP or LV end-diastolic pressures.  
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8 SUMMARY AND CONCLUSIONS 

 

“DEATH: Do you never stop questioning? 

ANTONIUS BLOCK: No. I never stop.” 

in The Seventh Seal (Det sjunde inseglet, 1957), Ingmar Bergman 

 

Based on the data from all five studies, the main conclusion is that CMR has the potential to 

become a valid alternative for diagnosis and treatment monitoring in both PH and diastolic 

dysfunction. Indeed, CMR-based methods were shown to be useful in the evaluation of flow 

variables of possible diagnostic value (PVDR), and showed very good diagnostic 

performance in the estimation of mPAP and diagnosis of PH, as well as measurement of 

diastolic parameters used in the diagnosis of diastolic dysfunction. 

The study-specific conclusions are the following: 

 Study I: In the lateral position, the distribution of pulmonary blood flow shifts to the 

dependent lung. Furthermore, the non-dependent lung hosts a considerable PVDR, 

possibly related with left atrial pressure. 

 Study II: Estimated mPAP from CMR has good quantitative and moderate 

categorical agreement with TRPG from echocardiography. CMR has higher 

diagnostic yield than echocardiography for detecting elevated PA pressure. 

 Study III: Estimated mPAP from CMR has very good agreement with invasively 

measured mPAP from RHC, and better sensitivity and accuracy than 

echocardiography. 

 Study IV: The novel SWIG sequence shows improved temporal resolution 

compared with other methods, and can measure transmitral and myocardial tissue 

velocities with low-to-moderate bias compared with echocardiography. 

 Study V: A comprehensive CMR method for diagnosis and grading of diastolic 

dysfunction shows very good categorical agreement compared with 

echocardiography.  
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10 META 

 

“Next to the originator of a good sentence is the first quoter of it. 

Many will read the book before one thinks of quoting a passage. 

As soon as he has done this, that line will be quoted east and west.” 

in Letters and Social Aims (1876), Ralph Waldo Emerson 

 

When one works in research for a certain period of time, new habits and ways of thinking 

begin to appear. In particular, I documented semi-rigorously some parameters related to 

meta-research, the study of science itself at the most basic level. These data pertain to the 44-

month period between August 2016 and March 2020: 

 I consumed 3.70.9 cups of coffee per workday. In January of every year, coffee 

consumption increased significantly to 4.11.0 cups per day. My consumption was 

slightly greater than the average coffee consumption in Sweden of 3.2 cups per day. 

 I ate a total of 204 skorpor (cardamom toasties). Yum! 

 During the fall semester of 2019, my colleagues and I played 36 ping-pong matches. 

I won 2 of them  
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and Vladivostok. 

 I wrote approximately 40,000 words, counting only the thesis and the five 

manuscripts. That’s the size of a small novel. 

 According to Todoist, my producitivity app, the most productive month every year 

was September, with 45 tasks completed on average, contrasting with an average of 

30 tasks year-round. 

 I analyzed approximately 562 image stacks, across 210 patients or healthy volunteers. 

I didn’t track time, but if we assume that it takes 1 hour per patient to analyze and 

register all image data, that’s an approximate total of 210 hours of data analysis 
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