
 

1 

 

   

  

  

  

  

  

  

  

Assessing the impact of co-occurrence frequency and diversity in statistical 

learning accounts of language processing  

  

RUSSELL TURK  

  

A thesis submitted in partial fulfilment of the requirements of Nottingham Trent 

University for the degree of Doctor of Philosophy  

  

September 2019  

  



 

2 

 

 

Abstract 

Language is heralded as one of the foremost human achievements and is vital in 

scaffolding the successful development of many other skills. Yet, the mechanism 

by which language is acquired is still poorly understood. One possible account is 

Statistical Learning Theory, an explanation of language acquisition that has 

grown in popularity over the past three decades. The central tenet of Statistical 

Learning Theory is that learners are guided by statistical regularities in their 

environment and can utilise these to develop an implicit understanding of their 

natural language. Current theory holds that transitional probabilities are the best 

predictor of learner performance in statistical learning tasks. However, little has 

been done to investigate alternative statistical measures. This thesis presents 

two such metrics: Bigram frequency and bigram diversity and contrasts them 

with transitional probability in predicting task performance. Through the 

repurposing of primed lexical decision and sequence learning tasks, I present a 

novel approach to examining the impact of statistical priming on task 

performance in a naturalistic dataset. Model comparison using Bayesian 

multilevel modelling suggests that transitional probability is not as reliable a 

predictor as was previously believed. Moreover, I demonstrate that bigram 

frequency may represent a better metric for predicting task performance in these 

tasks. The current work highlights the importance of considering alternative 

metrics of statistical regularity when describing the underlying mechanisms of 

language acquisition and showcases alternative methods of examining statistical 

learning performance.  



 

3 

 

Contents 
1 INTRODUCTION ........................................................................................................................................ 11 

 REPRODUCIBILITY AND CODE ................................................................................................. 12 

2 LITERATURE REVIEW ............................................................................................................................ 14 

 LANGUAGE ........................................................................................................................................ 20 

 CRITICISMS ....................................................................................................................................... 26 

 TRANSITIONAL PROBABILITY ................................................................................................. 33 

 THE CASE FOR BIGRAM FREQUENCY.................................................................................... 39 

 THE CASE FOR BIGRAM DIVERSITY....................................................................................... 45 

 RESEARCH IN NATURAL LANGUAGE .................................................................................... 48 

 THIS THESIS ..................................................................................................................................... 52 

3 PROOF OF CONCEPT ............................................................................................................................... 53 

 PREPARATION ................................................................................................................................. 53 

 EXPERIMENT 1: BIGRAM FREQUENCY. ................................................................................ 54 

3.2.1 Participants. .............................................................................................................................. 54 

3.2.2 Materials. .................................................................................................................................... 55 

3.2.3 Procedure. .................................................................................................................................. 57 

3.2.4 Choice of analysis .................................................................................................................... 58 

 RESULTS ............................................................................................................................................. 59 

3.3.1 Data preparation. .................................................................................................................... 61 

3.3.2 Specifying the models ........................................................................................................... 64 

3.3.3 Cross-validation. ..................................................................................................................... 66 

3.3.4 Bayes factors. ............................................................................................................................ 68 



 

4 

 

3.3.5 Model summary. ...................................................................................................................... 71 

 DISCUSSION ...................................................................................................................................... 73 

 EXPERIMENT 2: BIGRAM DIVERSITY .................................................................................... 74 

3.5.1 Participants. .............................................................................................................................. 74 

3.5.2 Materials. .................................................................................................................................... 74 

3.5.3 Procedure. .................................................................................................................................. 77 

3.5.4 Results ......................................................................................................................................... 77 

3.5.5 Data preparation. .................................................................................................................... 78 

3.5.6 Specifying the models .................................................................................................... 81 

3.5.7 Cross-validation ............................................................................................................... 82 

3.5.8 Bayes factors ...................................................................................................................... 83 

3.5.9 Model summary ................................................................................................................ 84 

 DISCUSSION ...................................................................................................................................... 85 

 GENERAL DISCUSSION ................................................................................................................. 86 

4 ADDRESSING METHODOLOGICAL LIMITATIONS ...................................................................... 92 

 PREPARATION ................................................................................................................................. 92 

 EXPERIMENTS ................................................................................................................................. 93 

 EXPERIMENT 3 ................................................................................................................................ 94 

4.3.1 Participants ............................................................................................................................... 94 

4.3.2 Materials ..................................................................................................................................... 95 

4.3.3 Procedure ................................................................................................................................... 97 

 RESULTS ............................................................................................................................................ 98 

4.4.1 Data preparation ..................................................................................................................... 99 



 

5 

 

4.4.2 Specifying the models ......................................................................................................... 102 

4.4.3 Cross-validation .................................................................................................................... 103 

4.4.4 Bayes factors ........................................................................................................................... 105 

4.4.5 Model summary ..................................................................................................................... 106 

 DISCUSSION .................................................................................................................................... 108 

 EXPERIMENT 4 ............................................................................................................................. 108 

4.6.1 Participants ............................................................................................................................. 109 

4.6.2 Materials ................................................................................................................................... 109 

4.6.3 Procedure ................................................................................................................................. 111 

4.6.4 Results ....................................................................................................................................... 111 

4.6.5 Data preparation ................................................................................................................... 112 

4.6.6 Specifying the models ......................................................................................................... 114 

4.6.7 Cross-validation .................................................................................................................... 115 

4.6.8 Bayes factors ........................................................................................................................... 116 

4.6.9 Model summary ..................................................................................................................... 117 

 DISCUSSION .................................................................................................................................... 118 

 GENERAL DISCUSSION .............................................................................................................. 120 

5 ADJUSTED TIMINGS 1 ........................................................................................................................... 126 

 PREPARATION ............................................................................................................................... 126 

  EXPERIMENTS .......................................................................................................................... 127 

 EXPERIMENT 5 .............................................................................................................................. 127 

5.3.1 Participants ............................................................................................................................. 127 

5.3.2 Materials ................................................................................................................................... 128 



 

6 

 

5.3.3 Procedure ................................................................................................................................. 130 

 RESULTS ........................................................................................................................................... 130 

5.4.1 Data preparation ................................................................................................................... 130 

5.4.2 Specifying the models ......................................................................................................... 133 

5.4.3 Bayes factors ........................................................................................................................... 135 

5.4.4 Model summaries ................................................................................................................. 136 

 DISCUSSION .................................................................................................................................... 140 

 EXPERIMENT 6 .............................................................................................................................. 141 

5.6.1 Participants ............................................................................................................................. 141 

5.6.2 Materials ................................................................................................................................... 141 

5.6.3 Procedure ................................................................................................................................. 143 

 RESULTS ........................................................................................................................................... 144 

5.7.1 Data preparation ................................................................................................................... 145 

5.7.2 Specifying the models ......................................................................................................... 148 

5.7.3 Cross-validation .................................................................................................................... 149 

5.7.4 Bayes factors ........................................................................................................................... 150 

5.7.5 Model summary ..................................................................................................................... 151 

 DISCUSSION .................................................................................................................................... 152 

 GENERAL DISCUSSION ............................................................................................................... 153 

6 ADJUSTED TIMINGS 2 ........................................................................................................................... 159 

 PREPARATION ............................................................................................................................... 159 

 EXPERIMENTS ............................................................................................................................... 160 

 EXPERIMENT 7 .............................................................................................................................. 161 



 

7 

 

6.3.1 Participants ............................................................................................................................. 161 

6.3.2 Materials ................................................................................................................................... 161 

6.3.3 Procedure ................................................................................................................................. 163 

 RESULTS ........................................................................................................................................... 164 

6.4.1 Data preparation ................................................................................................................... 164 

6.4.2 Specifying the models ......................................................................................................... 167 

6.4.3 Define priors ........................................................................................................................... 168 

6.4.4 Run Models .............................................................................................................................. 169 

6.4.5 Bayes factors ........................................................................................................................... 171 

6.4.6 Model summary ..................................................................................................................... 172 

 DISCUSSION .................................................................................................................................... 173 

 EXPERIMENT 8 .............................................................................................................................. 175 

6.6.1 Participants ............................................................................................................................. 175 

6.6.2 Materials ................................................................................................................................... 175 

6.6.3 Procedure ................................................................................................................................. 177 

6.6.4 Results ....................................................................................................................................... 178 

6.6.5 Data preparation ................................................................................................................... 178 

6.6.6 Specifying the models ......................................................................................................... 181 

6.6.7 Define priors ........................................................................................................................... 181 

6.6.8 Run Models .............................................................................................................................. 182 

6.6.9 Cross-validation .................................................................................................................... 183 

6.6.10 Bayes factors ........................................................................................................................ 184 

6.6.11 Model summary .................................................................................................................. 185 



 

8 

 

 DISCUSSION .................................................................................................................................... 186 

 GENERAL DISCUSSION ............................................................................................................... 187 

7 META-ANALYSIS ..................................................................................................................................... 190 

 PREPARATION ............................................................................................................................... 191 

 META-ANALYSIS ........................................................................................................................... 191 

7.2.1 Participants ............................................................................................................................. 193 

 RESULTS ........................................................................................................................................... 193 

7.3.1 Define priors ........................................................................................................................... 197 

7.3.2 Run models .............................................................................................................................. 200 

7.3.3 Cross-validation and Bayes factors ............................................................................... 201 

7.3.4 Model Summary .................................................................................................................... 205 

 DISCUSSION .................................................................................................................................... 206 

8 SEQUENCE LEARNING.......................................................................................................................................... 213 

 PREPARATION ............................................................................................................................... 214 

 SEQUENCE LEARNING ............................................................................................................... 214 

 BIGRAM FREQUENCY AND TRANSITIONAL FREQUENCY .......................................... 218 

 EXPERIMENT 9: EIGHT TARGETS ......................................................................................... 219 

8.4.1 Participants ............................................................................................................................. 219 

8.4.2 Design ........................................................................................................................................ 219 

8.4.3 Materials ................................................................................................................................... 220 

8.4.4 Procedure ................................................................................................................................. 222 

 RESULTS ........................................................................................................................................... 223 

8.5.1 Data Preparation ................................................................................................................... 224 



 

9 

 

8.5.2 Cross-validation .................................................................................................................... 226 

8.5.3 Bayes Factors .......................................................................................................................... 227 

8.5.4 Model Summary .................................................................................................................... 228 

 KEY COMPARISONS ..................................................................................................................... 229 

  DISCUSSION ................................................................................................................................... 238 

 EXPERIMENT 10: SIXTEEN TARGETS ................................................................................. 242 

8.8.1 Participants ............................................................................................................................. 242 

8.8.2 Design ........................................................................................................................................ 242 

8.8.3 Materials ................................................................................................................................... 243 

8.8.4 Procedure ................................................................................................................................. 247 

 RESULTS ........................................................................................................................................... 247 

8.9.1 Multi-level Model .................................................................................................................. 250 

8.9.2 Cross-validation .................................................................................................................... 251 

8.9.3 Bayes Factors .......................................................................................................................... 252 

8.9.4 Model Summary .................................................................................................................... 253 

 KEY COMPARISONS ................................................................................................................. 254 

 DISCUSSION ................................................................................................................................. 265 

  CHAPTER 7: REVISITED ........................................................................................................ 266 

 GENERAL DISCUSSION ........................................................................................................... 267 

9 DISCUSSION ...................................................................................................................................................... 272 

 METRICS OF STATISTICAL LEARNING: OVERVIEW ...................................................... 273 

9.1.1 Transitional probability ..................................................................................................... 273 

9.1.2 Transitional (Bigram) frequency ................................................................................... 274 



 

10 

 

9.1.3 Bigram Diversity ................................................................................................................... 275 

 SUMMARY OF EXPERIMENTAL FINDINGS ........................................................................ 276 

9.2.1 Chapter 3 .................................................................................................................................. 276 

9.2.2 Chapter 4 .................................................................................................................................. 278 

9.2.3 Chapter 5 .................................................................................................................................. 279 

9.2.4 Chapter 6 .................................................................................................................................. 279 

9.2.5 Chapter 7 .................................................................................................................................. 280 

9.2.6 Chapter 8 .................................................................................................................................. 280 

 DISCUSSION .................................................................................................................................... 281 

 

  

  



 

11 

 

1 INTRODUCTION  

Language is an essential aspect of human culture and interaction. It allows for 

the efficient exchange of knowledge and scaffolds the acquisition of many key 

skills. The ability to acquire language is therefore one of the most important that 

humans develop; yet, the precise mechanisms of language acquisition have not 

been identified. One interesting hypothesis is that humans are attuned to the 

statistical distributions of their environment and that these allow them to make 

sense of the constant sensory barrage they are exposed to daily.   

In Chapter 2 I give an overview of the statistical learning literature as it applies 

to language before discussing the major criticisms that can be levelled at the 

paradigm. Following this, I introduce transitional probability - the dominant 

metric of statistical regularity within the statistical learning literature - and 

consider the strengths and weaknesses of using this statistic. I then suggest two 

new frequency-based measures of statistical distribution and contrast these 

with transitional probability, making a case for a less cognitively effortful 

mechanism of statistical learning. Finally, I highlight some of the challenges of 

working with naturalistic stimulus-sets and propose methods of overcoming 

these obstacles.  

Building on these ideas, Chapters 3 and 4 detail four lexical decision 

experiments as a proof of concept for assessing previously learnt statistical 

associations in natural language. By working with adults, and utilising an 

existing corpus of language, I manage to maintain the statistical properties of 

language whilst foregoing the need for extensive familiarisation phases. These 

are further developed in Chapters 5 and 6 where I address some of the potential 
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methodological limitations in the experiments and build on the arguments for a 

frequency-based mechanism of language acquisition. Each set of experiments is 

presented as a pair in which the first examines the impact of bigram frequency 

and the second bigram diversity. Although information for both metrics is 

calculated in all the experiments, the initial design choice was to examine and 

test them individually and, as such, I have retained this format throughout. In 

Chapter 7, however, I aggregate data from all the experiments and investigate 

the impact of both bigram frequency and diversity in a meta-analysis. Finally, I 

present two novel sequence learning tasks to test the acquisition of new 

information before discussing the implications for statistical learning research 

as it applies to language acquisition.  

 REPRODUCIBILITY AND CODE  

This thesis was written to be entirely reproducible. All the analyses in this work 

have been conducted in R (R Core Team, 2019) and all the code needed to 

reproduce the analyses and results have been included in blocks like the one 

below:  

rstan_options(auto_write = TRUE)  

options(mc.cores = parallel::detectCores())  

  

All code can be copied from this document into the main R console and, in doing 

so, it is possible to recreate/verify the findings presented herein. All data used 

in the analyses can be downloaded from GitHub using the following URL:  
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https://github.com/russellturk/Thesis_Data; simply set your working directory 

(in R) as the folder containing the data and you should be able to run the code 

with no problems.  

Although the code is included there is no requirement to reproduce any of the 

analyses and doing so is not necessary in order to understand this work. Finally, 

though it is possible to replicate all the findings - and I certainly invite you to do 

so, if you wish - some of the larger models can have quite long runtimes, so some 

discretion is advised. Running the code presented above can help the models 

compile more quickly if you have multiple cores available but the overall 

runtime will still depend on the size of the model.  

https://github.com/russellturk/Thesis_Data
https://github.com/russellturk/Thesis_Data
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2 LITERATURE REVIEW  

 

Language has been described as a hallmark of the human species (Christiansen  

& Kirby, 2003) and a defining part of our social identity (Nowak, Komarova, & 

Niyogi, 2002). Children begin acquiring, and reproducing, language sounds from 

a very young age and do so with a regularity that transcends cultural boundaries 

(Kuhl, 2004); furthermore, they demonstrate an implicit knowledge of language 

structure long before they can express a formal understanding of syntactical and 

grammatical rules - language, it seems, is ubiquitous, universal, and 

quintessentially human. As such, mastery of their natural language is a central 

part of every child’s development. How then do humans acquire this mastery at 

such a young age? Language is a complex, multifaceted construct which, 

formally at least, is poorly understood by many speakers - even those born into 

a language may struggle to articulate its myriad rules with anything 

approaching clarity. Despite this lack of formal understanding however, humans 

regularly produce utterances (mostly) in accordance with the rules of their 

natural language and can recognise even minor violations to these rules, for 

example, I goed to work or can you explain me it would be easily identified as 

incorrect by the average English speaker even if they were unable to explain 

which of the formal rules had been violated. However, a similar sense of 

wrongness would also be elicited by the phrases costs a leg and an arm and 

when you come to it, cross that bridge despite them being perfectly acceptable 

grammatical constructs (Widdowson, 1989). This suggests that learners may  

  I NTRODUCTION   



 

15 

 

not rely on formal rule-based systems of language - though these may be 

acquired through explicit instruction - since the latter two examples are only 

violations of the commonly accepted word-order rather than of grammaticality.  

It is therefore more likely that language is acquired implicitly; the naive linguist 

being exposed to their native language(s) can derive meaning and structure 

from the endless streams of speech and/or text. This is, I believe, effectively 

illustrated by the following quotes:  

Language is my mother, my father, my husband, my brother, my sister, my whore, my 

mistress, my checkout girl. Language is a complimentary moist lemon-scented 

cleansing square or handy freshen-up wipette. Language is the breath of God; language 

is the dew on a fresh apple, it’s the soft rain of dust that falls into a shaft of morning light 

as you clutch from an old bookshelf a half-forgotten book of erotic memoires; language 

is a creak on the stair, a spluttering match held to a frosted pane; it’s a half-remembered 

childhood birthday party, the warm wet, trusting touch of a leaking nappy, the hulk of 

a charred Panzer, the underside of a granite boulder, the first downy growth on the 

upper lip of a Mediterranean girl, its cobwebs long since overrun by an old Wellington 

boot. (Stephen Fry, A bit of Fry & Laurie)  

  

We open our mouths and out flow words whose ancestries we do not even know. We 

are walking lexicons. In a single sentence of idle chatter, we preserve Latin, Anglo-Saxon, 

Norse; we carry a museum inside our heads, each day we commemorate people of 

whom we have never heard. More than that, we speak volumes - our language is the 

language of everything we have read. Shakespeare and the Authorised Version surface 

in supermarkets, on buses, chatter on radio and television. (Penelope Lively, Moon 

Tiger)  
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Language is present in the majority of human interaction; it provides the 

framework within which we interact and the means by which we express those 

interactions. It has been suggested that language shapes the way we think and 

how we interpret our environment (Reines & Prinz, 2009; Whorf, 1956). It is a 

fundamental part of our experiences and, as such, provides a wealth of exposure 

through which it is possible to gauge the underlying patterns and structures 

required for effective communication.  

Yet, despite the universality of language, the underlying mechanisms are still 

poorly understood. Take the parsing of complex speech streams into individual 

lexical items - an important aspect of vocabulary acquisition that can be 

performed by infants as young as five and a half months (Johnson & Tyler, 

2010). Unlike written language, infants experience speech streams with no 

uniform pauses or ‘white spaces’ to indicate word boundaries (Cole & Jakimik, 

1980). This is most apparent when listening to an unfamiliar language where, 

rather than words, we hear a continuous stream of sound.   

It is therefore essential to develop a strategy that enables the identification of 

lexical boundaries within larger linguistic structures. One possibility is that 

humans adopt a strategy of learning words in isolation before applying them to 

longer speech streams (Nemko, 1984). Such a strategy is useful for identifying 

object-labelling words - where a concrete target exists, and can be referred to 

independently of a wider context - but fails to account for how very young 

children can rapidly learn to recognise novel words when no referent is 

available or how they can extract this meaning from within sentences (Saffran, 
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Aslin, & Newport, 1996). Additionally, Aslin, Woodward, LaMendola, and Bever, 

(1996) demonstrated that when asked to teach specific words to their children 

many mothers did not present them in isolation, with the majority opting to 

place the target word at the end of longer utterances - such as *dog* in the 

phrase "Look at the dog.". The same mothers also added emphatic stress in 

order to draw attention to the target words suggesting that prosodic cues may 

play a part in infant word segmentation. However, prosodic preferences have 

been demonstrated to be language specific and are therefore unlikely to 

constitute a universal explanation of word segmentation (Höhle, Bijeljac-Babic, 

Herold, Weissenborn, & Nazzi, 2009; Kooijman, Hagoort, & Cutler, 2009).  

In fact, any explicit strategy of word-learning must contend with what Quine 

(1960) described as the indeterminacy problem. The learner has no way of 

inferring the meaning of a vocalisation without access to shared contextual 

information - which cannot be assumed to be possessed by infants. Take, for 

instance, the example of a parent vocalising the word dog whilst pointing to the 

self-same canine; to the proficient English speaker the referent is obvious due to 

a prepossession of the concept of ‘dog-ness’. To the naive observer the inference 

is not so straightforward; perhaps the speaker is referring to some part or 

feature of the dog, this particular dog, four-legged mammals more generally, or 

even some function fulfilled by the dog (e.g., pet or friend). Behaviourally there 

is no way of identifying which, if any, of these interpretations is correct, and 

multiple encounters with the same referent do little to disambiguate word and 

meaning. It is therefore unlikely that language is learnt by pairing isolated 

words with their physical counterparts, particularly since many words do not 
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directly relate to concrete examples in the environment. How then do infants 

successfully acquire language?  

An explanation that has gained traction in recent years is Statistical learning 

theory. The concept of Statistical learning can be traced back to Miller and 

Selfridge (1950) who identified that the statistical relationships between words 

in common usage correlated with participants’ memory for wordlists. In the 

latter part of the 20th century Statistical learning theory experienced something 

of a resurgence when Saffran et al. (1996) published their seminal study 

suggesting infants can track the transitional probabilities of syllables in an 

artificial language; since then these findings have been replicated with both 

children and adults using a number of different paradigms (Aslin, Saffran, & 

Newport, 1998; Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Johnson & 

Tyler, 2010; Saffran et al., 1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 

1997).  

Given the evidence, it is uncontroversial to describe humans as being adept at 

recognising patterns within the environment; in fact, pattern recognition is one 

of the few remaining domains where humans outperform computers in terms of 

accuracy (Jain, Duin, & Mao, 2000; Schur & Tappert, 2016). It has been proposed 

that humans become attuned to, and can track, the statistical patterns in their 

natural language(s) and use this information to build up a lexical and 

grammatical repertoire to aid in the production and comprehension of novel 

linguistic structures. This process eliminates the need for target-referent 

tracking in language acquisition, since the target does not necessarily have to be 

present for learning to occur (though referential information may still provide 
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semantic benefits) and allows for the acquisition of abstract concepts such as 

love, or hate, for which there may be no immediate environmental reference. 

The underlying premise is that, by tracking statistical regularities within the 

environment, information can be extracted and implicitly applied to the 

generation and recognition of novel data. This is the central tenet of statistical 

learning - that learning occurs with no conscious effort - specifically, that 

learners can become attuned to the statistical regularities in their environment. 

With regards to language, this information can be the relationship between 

symbols and sounds, the ordering of individual speech sounds into units of 

meaning, or words into sentences that can be used to build up a lexical and 

grammatical repertoire to aid in the production and comprehension of novel 

linguistic structures.  Furthermore, acceptable grammatical structures can be 

iteratively modelled through interaction with, and imitation of, expert language 

users.  

As such statistical learning is, at its core, a powerful mechanism for the 

acquisition of patterns from external data. This ability has been the subject of 

extensive research over the last couple of decades and has been demonstrated 

across a number of different modalities including shape (e.g., Kirkham,  

Slemmer, & Johnson, 2002), music (Daikoku, Yatomi, & Yumoto, 2014; Koelsch,  

Busch, Jentschke, & Rohrmeier, 2016; Liu & Kager, 2011;  Hay, Pelucchi, Estes, &  

Saffran, 2011; Saffran, Johnson, Aslin, & Newport, 1999), tactile stimuli (Conway 

& Christiansen, 2005) and, most pertinently, psycholinguistics where studies 

have demonstrated that learners are capable of using distributional statistics for 

a number of complex language-related tasks including word segmentation and 
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sentence parsing  ( Saffran et al., 1996; Thiessen & Erickson, 2013; Toro, Sinnett, 

& Soto-Faraco, 2005; Vouloumanos, 2008); the acquisition of vocabulary and 

lexical information (Goodman, Dale, & Li, 2008; Harris, Barrett, Jones, & 

Brookes, 1988; Schwartz & Terrell, 1983); and the discrimination of 

grammatical structures (Reeder, Newport, & Aslin, 2017; Theakston, Lieven, 

Pine, & Rowland, 2004).  

 LANGUAGE  

Statistical learning theory has been used extensively in the study of language, 

particularly regarding word segmentation. This is an essential early task 

whereby infants need to extract meaningful units from continuous speech - a 

process made more difficult by the lack of pauses between words. Probably the 

most prominent example of statistical learning in word segmentation is 

provided by Saffran, Aslin, and Newport (1996). This study was instrumental in 

kickstarting statistical learning theory and defining the common methodologies 

employed in its investigation. Saffran and colleagues generated a mini-language 

of four tri-syllabic nonsense words (bidaku, padoti, golabu, and tupiro) made up 

of twelve consonant-vowel pairs (syllables). These were then pseudo-randomly 

concatenated into speech streams lasting two-minutes and consisting of six 

hundred tokens (The randomisation was constrained so that no word 

immediately followed itself in any speech stream). The stimuli were formulated 

using a text-to-speech synthesiser to remove all boundary information except 

for distributional information. Thus, the only cue available for the segmentation 

of the speech stream was the statistical disparity in intra- and inter-word 

transitions. For instance, the intra-word transition from bi to da or from la to bu 
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are characterised by probabilities of 1.0 - that is, the two syllables only ever 

occur together in the specified order - whereas inter-word transitions varied 

between .25 and .33. Using the head-turn preference procedure (Fernald, 1985) 

infants were assessed on their ability to differentiate between the familiar 

stimuli and part-word stimuli generated by combining two syllables of the 

familiar words with one syllable of an adjacent word in the speech stream (e.g., 

dotigo or labutu); these part-words therefore violate the statistical structure of 

the language by having internal transitions that are not equal to 1.0.  

Preferential listening was then measured for stimuli presented to either side of 

the infant, with longer listening times taken as an indication of preference. They 

found that infants showed a preference for the part-words which was 

interpreted as preference for novelty – implying that the infants had learnt 

something about the language and were now ‘familiar’ with it. They therefore 

concluded that infants must be capable of extracting words from longer 

utterances based on statistical cues.  

This ability must be learned since it cannot be assumed that individuals are 

born with an innate knowledge of the statistical regularities of their natural 

language. To borrow an example from Saffran (2003), pretty and baby are both 

words which exist in English, but ttyba (which spans the boundary between 

pretty and baby) is not. Saffran suggests that infants utilise the statistical 

structure of language in their environment to inform their discovery of word 

boundaries in fluent speech. In English, the syllable pre can only be followed by 

a relatively small set of syllables, including tty, tend, and cedes; in natural, infant 

directed, speech (to infants) pre is succeeded by tty roughly 80% of the time.  
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However, since tty occurs at the end of a word, it can potentially be followed by 

any syllable that can be used to initiate an English word. The chance that tty is 

followed by ba, as in pretty baby, is therefore much lower (roughly 0.03%). This 

disparity is considered indicative that pretty is an English word, and ttyba is not. 

Individuals can therefore use these cues to discern the likelihood of two or more 

syllables constituting a word in their natural language. This is echoed by 

Perruchet and Pacton (2006) who suggest that learning may involve 

preferentially selecting chunks of sound that occur with high probability and 

recognising them as individual word-units. These word-units can form 

standalone words or be combined to produce structures that are more complex. 

Since pre and tty occur with a relatively high frequency they will be chunked 

together as a single unit which can then be used as a reference for parsing novel 

speech; allowing infants to build up a lexicon of statistically related word-units.  

This mechanism has proven to be fairly robust and, as previously noted, it has 

been suggested that children as young as five and a half months possess the 

ability to extract individual words from continuous speech using little more than 

the statistical regularities of the language (Johnson & Tyler, 2010); furthermore, 

infants begin to demonstrate an awareness of these regularities after very short 

exposure times (Saffran, Aslin & Newport, 1996). Johnson & Tyler (2010) 

replicated the findings of Saffran and colleagues by testing infants’ segmentation 

ability after two and a half minutes of exposure to a four-word artificial 

language and found that infants showed a preference for words compared to 

cross-boundary part-words. It can be argued that this demonstrates an implicit 

use of the statistical structure of language which cannot be explained by rule-
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based learning. In fact, statistical learning paradigms have been used to 

demonstrate that learning can take place in isolation from both context and 

grammar (Jusczyk & Aslin, 1995; Saffran, Aslin & Newport, 1996; Saffran, 

Newport & Aslin, 1996; Saffran, Newport, Aslin, Tunick & Barrueco, 1997; Aslin, 

Saffran, Newport, 1998; Pelucchi, Hay, & Saffran, 2009) and that participants 

ranging from very young children (e.g., Johnson & Tyler, 2010; Pelucchi, Hay, & 

Saffran, 2009) to adults (e.g., Koelsh, Busch, Jentschke, & Rohrmeier; 2016; 

Saffran, Johnson, & Aslin, 1999) are capable of tracking the distributional 

properties of a language even when encoding and testing are temporally 

separated (e.g., Durrant, Taylor, Cairney, & Lewis, 2011; Kim, Seitz, Feenstra, & 

Shams, 2009). In fact, children and adults show remarkably similar statistical 

learning ability; Saffran, Johnson, Aslin, & Newport (1999) tested adults and 

eight-month-old infants using sequences of tones (based on the original 

language in Saffran, Aslin, & Newport, 1996) and found that both groups were 

capable of discriminating between familiar and novel sequences – It should be 

noted, however, that adults are generally tested on their familiarity with the 

stimuli through the use of alternative-forced-choice tasks whereas infant studies 

focus on preferential looking (or listening) times.   

However, linguistic development is more than just the extraction of words from 

speech. Gómez and Gerken (1999) exposed infants to two artificial grammars 

consisting of five CVC words (JIC, PEL, RUD, TAM, and VOT). Both grammars 

produced utterances beginning and ending with the same word but differing on 

the order of internal word-pairs. Infants were trained on one of the grammars 

and then tested on their ability to discriminate between unfamiliar utterances 

drawn from the training grammar and utterances from the alternate grammar 
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and a marked preference was observed for the familiar grammar. This is also 

demonstrated by Chambers, Onishi, & Fisher (2003; see also Chambers, Onishi,  

& Fisher, 2010; Dell, Reed, Adams, & Meyer, 2000; Goldrick, 2004; Goldrick & 

Larson, 2008; Onishi, Chambers, & Fisher, 2002; Seidl, Cristià, Bernard, & Onishi, 

2009; Warker, Dell, Whalen, & Gereg, 2008; Warker, Xu, Dell, & Fisher, 2009) 

who used a similar procedure to demonstrate that participants can learn 

phonotactic regularities during familiarisation and can apply these to novel 

stimuli during testing. As with the aforementioned studies, infants are assumed 

to be attending to the distributional statistics of the grammar in the absence of 

other cues. Since there was no overlap in utterances between familiarisation 

and testing, it can be inferred that the preference for the trained grammar 

cannot be attributed to memory for the previously encountered utterances. This 

suggests that infants are capable not only of extracting words from speech but 

can also begin to build-up rules relating to word order and higher-level 

grammatical structures. To further illustrate, both adults and children have been 

shown to adopt familiar patterns in their own utterance production (Bock, 

1986; Pickering & Ferreira, 2008), matching the distributional patterns of 

experienced language to their own speech. This structural priming has been 

demonstrated to be independent of both vocabulary and context (Bock, 1989; 

Bock & Loebell, 1990) and thus cannot be attributed to mimicry of existing 

utterances. Impressively, this ability is robust enough that infants less than 

twelve-months old can make grammatical generalisations when only 83% of the 

familiarisation strings conform to underlying statistical structure of the 

language (Gómez & Lakusta, 2004).  
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Furthermore, evidence from statistical learning paradigms has identified a 

potential link between performance on statistical learning tasks and the 

processing and comprehension of natural language (Conway, Bauernschmidt, 

Huang, & Pisoni, 2010; Misyak & Christiansen, 2012). This is particularly true of 

participants who display atypical language development; these participants 

tend to perform poorly on statistical learning tasks and struggle to generalise 

between the familiarisation and testing phases (Plante, Gómez, & Gerken, 2002; 

Grunow, Spalding, Gómez, & Plante, 2006; Richardson, Harris, Plante, & Gerken, 

2006; Tomblin, Mainela-Arnold, & Zhang, 2007). This deficit is characterised by 

the need for longer exposure times; for example, Evans, Saffran, and Robe-

Torres (2009) investigated whether children with Specific Language 

Impairment varied in their ability to discriminate between familiar and 

unfamiliar pseudowords using a two-alternative forced-choice paradigm. They 

demonstrated that after twenty-one minutes of exposure typically developing 

children perform significantly better than chance whereas children with specific 

language impairment do not. However, after forty-two minutes of exposure both 

the typical and SLI children were able to perform the task at better than chance. 

Additionally, Riches, Tomasello, and Conti-Ramsden (2005) investigated the 

effect of increased frequency of presentation and demonstrated that children 

with SLI performed better on a verb comprehension test when the number of 

exposures was increased. The same pattern of results was not present in 

typically developing matches however, suggesting that children with SLI may 

possess a less efficient statistical learning mechanism which requires a greater 

number of presentations in order to achieve comparable levels of learning. 

Interestingly, this deficit appears to transcend modalities; Tomblin et al. (2007) 
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were able to demonstrate that reduced performance on a pattern learning task 

was strongly associated with grammatical difficulties whereas Conway, Pisoni, 

Anaya, Karpicke, and Henning (2011) observed that visual sequence learning 

correlates with language outcomes for children with cochlear implants. It has 

therefore been suggested that certain language impairments may arise from a 

general deficit in statistical learning (Hsu & Bishop, 2010) and that this leads to 

slower learning of statistical regularities. It has therefore been suggested that 

certain language impairments may arise from a general deficit in statistical 

learning (Hsu & Bishop, 2010).  

 CRITICISMS  

There have been several criticisms relating to the validity of the early statistical 

learning literature. Endress and Mehler (2009b) demonstrated that learners 

could not reliably segment word-units from continuous speech, and that they 

were just as likely to identify novel word-units as familiar providing they had 

the same statistical structure as the target items. This suggests that participants 

were able to learn the statistical nature of the language but were unable to 

effectively match this to the phonemic properties of the word. They claim that 

co-occurrence statistics alone are insufficient for the segmentation of words in 

spoken language - though they do note that may not be the case for written 

stimuli - and that prosodic cues may be necessary to delineate word boundaries.  

Moreover, they claim that early statistical learning experiments (e.g. Fiser & 

Aslin, 2002; Hauser, Newport, & Aslin, 2001; Saffran, Johnson, Aslin, & 

Newport,1999; Toro & Trobalón, 2005; Turk-Browne, Jungé, & Scholl, 2005) did 
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not adequately demonstrate word segmentation; rather, they indicate an ability 

to discriminate between familiar and unfamiliar statistical structures across 

word sub-units and only with the inclusion of non-statistical cues are learners 

able to extract complete word-units (see also, Endress & Mehler, 2009a). Since 

natural language contains a wealth of information - including, but not limited to, 

prosodic cues, onset stress, and phonotactic regularity - that is not present in 

artificial languages, it is unsurprising that these cues would contribute to word 

segmentation.  

This is somewhat echoed by Johnson and Tyler (2010) who suggest that 

distributional statistics may simply act as a stepping-stone to learning language-

specific segmentation cues (see also, Saffran, Werker, & Werner, 2006). This 

would allow infants to start building a representation of their natural language 

prior to gaining an understanding of the phonotactic properties of the language. 

Additionally, they claim that the languages used in these early studies lack the 

complexity of naturalistic speech and that this may aid in word-segmentation 

through the introduction of additional regularities; specifically, the majority of 

studies utilise fixed word-lengths of two or three syllables (e.g., Johnson & 

Jusczyk, 2001; Saffran, Aslin, & Newport, 1996; Thiessen & Saffran, 2003). Upon 

varying the length of targets within the stimulus-set, it was demonstrated that 

infants were less successful at the segmentation task when word-length is held 

constant. This throws into question the ability of statistical learning theory to 

scale-up to naturalistic settings (van Heugten & Johnson, 2010). To address the 

discrepancy between natural and artificial languages Pelucchi, Hay, and Saffran 

(2009) introduced  
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(non-Italian) infants to a subset of words from Italian to capture “virtually all of 

the complexity of natural language” (p. 3). This subset comprised four target 

words (fuga, melo, pane, and tema) embedded in grammatically correct Italian 

sentences (e.g., La zia Carola si è esibita in una fuga colla bici verde). They 

demonstrated that infants were still able to discriminate between familiar and 

novel Italian words despite the added complexity of the stimulus. However, the 

target words in this study were characterised by internal transitional 

probabilities of 1.00 - so, for example, fu and ga only ever occur together in the 

familiarisation phase. This is an extreme example of co-occurrence that rarely 

appears in natural language and, in contrast to the more realistic transitional 

probabilities found in the non-target stimuli, may have provided additional cues 

to learning.  

The second major criticism of early statistical learning studies is that they fail to 

accurately represent the statistical distributions found in natural languages. 

This is, broadly speaking, an artefact of the time constraints inherent to studies 

of learning. More complex languages necessarily require longer familiarisation 

periods than may be practical in the majority of experimental research Erickson 

and Thiessen (2015). This is a particular problem for studies involving infants 

and/or young children whose attentional capabilities are limited (e.g., McCall & 

Kagan, 1970). This often leads to mini-languages comprising four to six words 

with perfect within-stimulus transitions and unrealistic cross-boundary  

statistics.  

Frank, Goldwater, Griffiths, & Tenenbaum (2010) noted that the artificial 

languages used in previous statistical learning tasks have been relatively limited 



 

29 

 

and that this may contribute to learning by inflating the statistical relationships 

between syllables. It has been suggested that increasing the number of unique 

syllables (and thus the number of possible words) will increase the difficulty of 

the word segmentation task. By using three, four, five, six, and nine-word 

languages they demonstrated a negative relationship between language 

complexity and segmentation efficiency after two and a half minutes of 

familiarisation. To highlight this disparity, in their seminal study, Saffran, 

Newport, & Aslin, 1996) report inter-syllable and cross-boundary transitional 

probabilities of 1.0 and less than .33 respectively (Transitional probabilities are 

discussed in more detail below). In comparison, naturally occurring transitional 

probabilities are often considerably lower. If we consider the common English 

bigrams dog food or bank holiday, we see transitional probabilities of .02 

and .03, several orders of magnitude smaller than those reported by Saffran and 

colleagues. Figure 2.1 shows the distribution of transitional probabilities for all 

bigrams in the British National Corpus with a frequency of greater than ten; it is 

apparent that the transitional probabilities in these studies do not adequately 

reflect those found in a large, naturalistic dataset.  

library(ggplot2)  

  

df <- read.csv("trans_prob_illustration.csv")  

  

ggplot(df, aes(trans_prob)) + geom_density() + xlim(0, 1) +  ylim(0, 

40) + theme_minimal()  
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Figure 2.1: Density plot showing the distribution of transitional probabilities for all bigrams in 

the British National Corpus with a co-occurrence frequency greater than ten. Density, shown 

on the y-axis, indicates the proportion of bigrams with a given transitional probability, as 

shown on the x-axis. Most bigrams have a transitional probability of less than .10 illustrating 

that the distributional statistics used in existing statistical learning paradigms do not 

accurately represent those found in natural language.  

 

The intention of this work is not to undervalue the contribution of these early 

studies to the understanding of how infants might begin to parse words from 

continuous speech streams. Indeed, the simplification of natural language is 

undeniably necessary if we are to make causal claims as to role of distributional 

statistics. However, it could be argued that by sanitising the input learners are 

exposed to it no more represents the language experience than do non-linguistic 

sequences (such as shapes or tones). Therefore, if we are to build upon the 

foundations laid by these early studies, it is necessary to investigate the 
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identified phenomena in more linguistically rich stimulus-sets. This has been 

somewhat addressed in subsequent investigations (e.g., Frank et al., 2010) but 

not to the extent of using natural language corpora as experimental stimulus-

sets (something that I shall discuss in more detail below).  

Words in real languages have a more flexible statistical structure than those 

seen in experimental languages; this leads to richer and more varied word 

composition in which elements (e.g., phonemes, graphemes, or syllables) can be 

repeated. This is not the case with most of the mini languages developed for 

statistical learning paradigms. For example, in Saffran, Aslin, and Newport 

(1996) words are generated by concatenating three of twelve unique syllables 

which may have led to more predictable word boundaries (since the onset of a 

repeated syllable necessarily indicates a new word). Furthermore, the increased 

statistical flexibility exhibited by natural languages means that the difference 

between within- and between-word transitional probabilities is likely to be less 

pronounced than those seen in experimental languages. Indeed, some words 

may even include internal transitions with a lower probability than those seen 

at word-boundaries. It has, in fact, been suggested that although a reductionist 

approach to statistical learning is the norm in experimental paradigms it may, 

paradoxically, prove detrimental to language learning more generally. For 

example, Kidd, Piantadosi, & Aslin (2012) describe how infants prefer stimuli 

that are neither too complex nor too simple suggesting that a certain amount of 

complexity may aid in statistical learning. Similarly, Gerken, Wilson, & Lewis 

(2005) demonstrated that children can use distributional statistics to identify 

grammatical gender only when there are additional statistical cues to category 
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membership. This implies that the presence of redundant distributional 

information may scaffold the learning of grammatical rules. This phenomenon is 

also seen in infant learning of musical structures (Thiessen & Saffran, 2009) 

where children under eight-months old learnt either the lyrics or the melodies 

of a musical piece more efficiently when they were presented together rather 

than as distinct components. This may be due to overlapping sources of 

information serving to reinforce otherwise ambiguous associations (Thiessen & 

Erikson, 2015) which provides a benefit that outweighs the increased cost of 

processing the additional information (Teinonen, Aslin, Alku, & Csibra, 2008). 

Furthermore, infants have the ability to learn non-adjacent dependencies - a-X-b 

relationships where b is predicted by a, but X is an unrelated element that takes 

a number of forms (e.g., Creel, Newport, & Aslin, 2004; Frost & Monaghan, 2016; 

Gebhart, Newport, & Aslin, 2009; Gómez & Maye, 2005; Newport & Aslin, 2004; 

Van Heughen & Shi, 2010). Gómez (2002) claims that greater variability for 

element X aids in the learning of the a-b relationship, possibly by reducing the 

likelihood of developing strong a-X or X-b representations. This reinforces the 

idea that additional complexity in the stimulus-set can aid in the learning of 

statistical structures if it does not introduce conflicting information. It is 

possible then that by sanitising naturalistic stimulus-sets we remove some of 

the statistical information necessary to facilitate learning and, it could be 

argued, that to truly ascertain the efficacy of the statistical learning mechanism 

it must be studied in complex, naturalistic, stimulus-sets.  

Finally, there is some discrepancy as to whether longer listening times (in the 

head-turn preference paradigm) represent a preference for novelty (e.g., 

Chambers, Onishi, & Fisher, 2003; Saffran, Aslin, & Newport, 1996) or familiarity 
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(e.g., Gómez & Gerken, 1999; Seidl et al., 2009). This is an unfortunate artefact of 

research with infant participants which could be construed as allowing the 

preferential interpretation of data to support a favourable conclusion. The 

research presented over the coming chapters circumvents this issue by using 

adult participants; this confers the advantage of allowing more precise 

measures of familiarity than could realistically be observed in an infant 

population.  

 TRANSITIONAL PROBABILITY  

Despite the growing body of research, clear evidence is yet to be provided as to 

exactly what distributional information is being attended to. The most prevalent 

theory is that individuals are accessing transitional probabilities (Fiser, 2009) - 

the probability of an item occurring given that another item has already 

occurred - and there is a wealth of evidence suggesting this may be the case. 

Further to the seminal study by Saffran, Aslin, and Newport, several studies 

have used transitional probabilities to describe the statistical learning 

mechanism. Saffran, Newport, Aslin, Tunick et al. (1997) exposed both children 

and adults to Saffran, Aslin, and Newport’s (1996) artificial language by playing 

it in the background whilst they engaged in a computer-based illustration task. 

They demonstrated that, when adults were asked to indicate which of two novel 

stimuli sounded more like the familiarisation language, participants performed 

significantly better than chance; furthermore, infants showed a marked 

preference for the unfamiliar stimuli. Similarly, Thiessen and Erickson (2013) 

showed the same pattern of learning with infants as young as five-months.  
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Furthermore, Thompson and Newport (2007) used a language of eighteen CVC 

nonsense-words to show that participants are also sensitive to the transitional 

probabilities across phrase boundaries. Over the past two decades researchers 

have continued to find transitional probabilities to be a robust indicator of 

performance across several different tasks and languages (e.g. Aslin et al., 1998; 

Conway & Christiansen, 2005; Daikoku et al., 2014; Frank et al., 2010; Goodman 

et al., 2008; Hay et al., 2011; Johnson & Tyler, 2010; Kirkham et al., 2002; Koelsh 

et al., 2016; Liu & Kager, 2011; Newport & Aslin, 2004; Reeder et al., 2017;  

Saffran, Johnson et al., 1999; Saffran, Newport, & Aslin, 1996; Saffran, Newport, 

Aslin, Tunick, & Barrueco, 1997; Theakston et al., 2004; Thiessen & Erickson, 

2013; Toro et al., 2005; Vouloumanos, 2008). Table 2.1 shows a cross-section of 

studies chosen at random from the statistical learning literature. This includes 

several studies of statistical learning as well as the chosen paradigm, participant 

sample, type of stimuli used, and the distributional statistics investigated. A 

marked preference for transitional probability and related probabilistic 

measures of statistical distribution can be seen, with very few studies examining 

alternate measures. This represents only a small proportion of the statistical 

learning literature but, due to the sampling procedure chosen, should provide a 

fair assessment of the distribution of metrics reported in previous research.1                                                

  

 
1 33, 102 studies were identified using Nottingham Trent University’s Library OneSearch 

function using the search term Statistical learning and the filters: Psychology, Years: 1996-
2019, Peer-reviewed journals. These were then exported to Excel and allocated a random 
number using the =RAND() function and sorted from low to high. The first 24 items were then 
selected as being representative of the literature.  



 

 

Table 2.1: Summary of  a selection of statistical learning studies including the study paradigm, participants, stimuli, and the distributional statistic used  
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This wealth of evidence would suggest that transitional probability does in fact 

constitute a robust predictor of learning performance and has contributed to it 

becoming the preferred metric of statistical distribution. In addition, it has been 

claimed that transitional probabilities insulate the learner against the under-

segmentation of high frequency pairs (Aslin et al., 1998) whilst still 

incorporating the raw frequency of co-occurrence. For example, if both the and 

dog are high frequency items, a learner utilising a frequency-based mechanism 

may struggle to disambiguate the two, rendering them as a single item in the 

lexicon. Since transitional probabilities also account for the presence of other 

items, high frequency pairs are still represented but a learner is less likely to 

suffer under-segmentation errors. For this reason, raw co-occurrence frequency 

has largely been overlooked in statistical learning paradigms.  

However, transitional probabilities cannot reasonably account for several 

effects highlighted in the existing literature. Saffran, Newport, and Aslin (1997) 

exposed both children and adults to either twenty-one or forty-two minutes of 

their artificial language (Saffran, Aslin, & Newport, 1996) and found that both 

groups performed better on a two-alternative fixed-choice test after the longer 

exposure time. Crucially, the forty-two-minute condition was achieved by 

repeating the twenty-one-minute sequence. This means that the longer 

condition maintained the same transitional probabilities as the shorter 

sequence. However, the frequency of the items was doubled in the forty-two-

minute sequence. Therefore, the improvement in statistical learning 

performance cannot convincingly be attributed to differences in transitional 

probability.  
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Furthermore, Dell et al. (2000) tested participants on their ability to read 

sequences of four CVC words (e.g. sef-gem-mek-heg) in one of four conditions. 

These conditions varied on the legal onsets and codas (the sounds at the 

beginning and end of a syllable) of words within each sequence and whether 

the participants were informed of these rules. Over the course of the 

experiment, participants demonstrated an adherence to the phonotactic 

structure of over 97%, regardless of condition. This shows that participants 

were able to align themselves to the underlying structure of the language even 

when not explicitly aware that such structure existed. Most interestingly, 

however, is that fact that the presentation of items within the sequence was 

randomly generated within frequency constraints. That is, individual words 

were restricted to only appear either eight, twelve, or twenty-four times within 

a ninety-six-sequence set but different concatenations were generated for each 

participant. This means that, although the transitional probabilities remain the 

same within items, they cannot be reliably tracked across items – that is, each 

participant encountered marginally different inter-item transitional 

probabilities – making a transitional probability hypothesis less tenable. 

Crucially, the identification of the onset-coda relationship could also be 

explained using a frequency hypothesis. Unfortunately, data on whether 

participants were more error-prone on the lower frequency items is not 

available as this would allow some measure of discrimination between the two 

hypotheses.  
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 THE CASE FOR BIGRAM FREQUENCY  

However, Erickson and Thiessen (2015) argue that the explicit computation of 

transitional probabilities is less psychologically plausible than a frequency 

based chunking mechanism since the latter is more flexible when switching 

between different units within the language (e.g. phonemes, syllables, or 

words). This is consistent with evidence from computational models such as 

PARSER (Perruchet & Vinter, 1998) and MOSAIC (Model of Syntactic 

Acquisition in Children; Freudenthal et al., 2015). Freudenthal and colleagues 

used a modified version of MOSAIC to model errors in children’s speech based 

on a frequency driven chunking mechanism. By assigning a co-occurrence 

threshold to individual words MOSAIC creates lexical entries for common 

phrases (e.g. go here, make that) leading to a reduction in output errors. 

Through this they successfully demonstrate that co-occurrence frequencies 

contribute to the development of formalised grammar. It is not implausible then 

to suggest that existing research, which describes the effects of transitional 

probability, may be tapping into a simpler, frequency-based mechanism of 

learning which is being masked by transitional probabilities. Unfortunately, 

current paradigms are incapable of differentiating between the two effects. 

There has been some attempt to contrast the relative contributions of 

transitional probability and frequency to statistical learning; for example, 

Endress and Langus (2017) examined participants’ ability to learn sequences of 

shapes and pictures of everyday objects and concluded that transitional 

probabilities were weighed higher than frequency in French, Italian, and  
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Spanish/Catalan speakers. However, the transitional probabilities used in their 

study are .5 and .33. As discussed above, these are much higher than those seen 

in naturalistic stimulus-sets and may result in a biased estimate in favour of 

transitional probability; a fact that endures throughout much of the statistical 

learning literature.  

The acceptance of transitional probabilities has arguably led to a state-of-play 

in which research has neglected to examine other potential variables in favour 

of transitional probabilities - though there have been calls to reconsider this 

position (e.g., Slone & Johnson, 2018). This is surprising given that frequency 

has been described as ubiquitous in language acquisition (Ambridge, Kidd, 

Rowland, & Theakston, 2014), yet comparatively little has been done to 

investigate the effects of frequency in statistical learning (e.g., Oganian, Conrad, 

Aryani, Heekeren, & Spalek; 2015; Schuler, Reeder, Newport, & Aslin, 2017) 

despite claims by Erikson and Thiessen (2015) that this may be a more 

psychologically plausible mechanism than a probabilistic account. The lack of 

plausibility attributed to transitional probabilities may be due to the potential 

computational effort required to track and calculate them - as noted by Saffran 

et al. (1996).  

The transitional probability for any given pair of stimuli can be expressed as: 

 

𝑃(𝑤𝑡|𝑤𝑡−1) =
𝑃(𝑤𝑡 , 𝑤𝑡−1)

𝑃(𝑤𝑡−1)
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Where wt represents the second item in a given two-item sequence and wt-1 

represents the initial item. The formula therefore shows that the probability P 

of the second item, given the occurrence of the first item, is equal to the 

probability of the two-item sequence divided by the probability of the initial 

item.  

It is therefore necessary to know the probability of the first stimulus as well as 

the probability of the two-stimulus combination. These in turn require 

calculations based on frequency of the stimulus and total size of the stimulus 

set. In isolation, these do not represent particularly effortful calculations; 

however, each new interaction between learner and stimulus-set changes the 

probabilistic representation of the entire set. Consider the following example, in 

which the transitional probability of the bigram AB is calculated for the binary 

sequence:  

𝐵𝐵𝐴𝐴𝐵𝐴𝐵𝐴  

Using the previously presented formula it is apparent that 𝑃(𝐵|𝐴) = .52 since A 

is followed by itself once, by B twice, and by the end of the sequence. If we 

increase the sequence, as would happen with unfolding sentences or 

conversations:  

𝐵𝐵𝐴𝐴𝐵𝐴𝐵𝐴𝐵  

 
2 Here, P(B|A) is shorthand for the probability of B occurring if the previous item in the 

sequence is A.  
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The transitional probability of AB now becomes 𝑃(𝐵|𝐴) = .75, since A is still 

followed by itself once but is now followed by B three times (and is no longer 

followed by the end of the sequence). However, note that this changes the 

distribution for other associated stimuli within the sequence. For example, 

𝑃(𝐴|𝐵) changes from .75 to .60 despite there being no change in the frequency 

of the bigram BA. It then becomes apparent that in a large, constantly evolving 

stimulus set - such as that represented by language - transitional probabilities 

must be constantly maintained in order to provide a meaningful metric to judge 

inter-stimuli associations.  

Given the additional complexity of calculating transitional probabilities, this 

raises two questions: (1) If a simpler (frequency-based) mechanism can 

facilitate effective learning, what benefit (if any) arises from the use of a more 

complex one? and (2) do learners require an accurate probabilistic 

representation of the stimulus-set to learn its inherent properties? There has 

been little attempt within the statistical learning literature to address these 

questions. However, decision-making in other domains (e.g., medicine) shows 

that both domain experts and naive participants consistently perform better 

when problems are framed in terms of frequency rather than probability  

(McDowell, Galesic, and Gigerenzer, 2018). Moreover, work by Tversky and 

Kahneman (1973) on classic reasoning tasks suggests that individuals prefer to 

make decisions based on heuristics rather than probability, even when 

probabilistic information is made available and that presenting problems in 

terms of frequency reduces cognitive bias (Kahneman, Slovic, & Tversky, 1982) 

and errors arising from the conjunction of two related events (Hertwig & 
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Gigerenzer, 1999; Tversky & Kahneman, 1983). While a representation of the 

stimulus-set based on transitional probability is more accurate, therefore, it 

may not provide a learning benefit commensurate to the increased 

computational complexity.  

Contrast this with a frequency-driven account of statistical learning in which 

learners make decisions based on the frequency of items within the set. In such 

an account, the addition of more items requires only that the learner update the 

frequency of that item rather than their probabilistic representation of the 

entire stimulus set. To revisit the previous example, extending the sequence 

increases the frequency of AB from two occurrences to three and has no effect 

on the frequency of the other bigrams within the sequence. That is not to say 

that a frequency-based representation is the best (or even an accurate) 

representation of the stimulus-set but that it presents the less cognitively 

effortful of the two mechanisms and therefore, potentially, a more plausible and 

parsimonious account of statistical learning.  

Frequency-based accounts of learning are not a new concept; there is a wealth 

of evidence documenting frequency-based effects across several diverse areas. 

Frequency has been shown to have a faciliatory effect on both serial- and free 

recall tasks (Balota & Neely, 1980; MacLeod & Kampe, 1996; Hulme, Roodenrys, 

Schweickert, Brown, Martin, & Stuart, 1997; Stretch & Wixted, 1998). Moreover, 

data from reading research has shown that higher frequency words and phrases 

result in increased fluency, shorter fixation periods and better parafoveal 

preview effects (Dahan, Magnuson, & Tanenhaus, 2001; Gerhand, & Barry, 

1998; Inhoff & Rayner, 1986; Raynor & Duffy, 1986) as well as better sentence 
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comprehension and production (Arnon & Snider, 2010; Diessel, 2007). Word 

frequency is also considered to be a major predictor of word naming and lexical 

decision performance (Grainger, 1990; Perea & Carreiras, 1998; Schilling, 

Rayner, & Chumbley, 1998). These effects are often accounted for by 

experiential models of learning, in which frequency of occurrence is considered 

an indicator of prior experience. Descriptions of how this experience manifests 

generally fall into three broad categories (though their exact nature varies 

across individual models); stronger representations of more frequent items 

(e.g., Bybee, 1998; Tomasello, 2000) stronger connections between frequently 

co-occurring items (e.g., Rumelhart, Hinton, & McClelland, 1986), or 

larger/more enhanced representations for frequently occurring items (Jones, 

2016, Jones & Macken, 2018). It is easy to imagine a cognitive architecture in 

which repeated exposure to words and associations across words could create 

new associative knowledge or increase the strength of the associated 

representations, and/or the links between those representations. It is less clear 

how (or why) probabilistic information would be represented in such a system 

since this would require not only the individual representations but also an 

overarching representation of all previously experienced language from which 

to calculate transitional probabilities. Though it is possible that developing 

these probabilistic representations is, in fact, useful for scaffolding learning the 

question remains as to whether the utility of doing so is commensurate to the 

extra effort involved in building and maintaining such a system.  

Furthermore, it has been demonstrated that children who display atypical 

language development, such as those with SLI, can learn the implicit statistical 
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structure of a language after longer exposure periods but not shorter ones 

(Evans et al., 2009). Since the transitional probabilities of the language do not 

change based on length of exposure there is no reason to assume that they are 

responsible for the improvement in performance. Frequency, on the other hand, 

does increase in relation to the length of the exposure - participants are 

exposed to twice as many instances of each stimulus in a forty-two-minute 

sample than in a twenty-one-minute sample of the language - it is therefore 

more plausible to suggest an effect of frequency in learning rather than one of 

transitional probability.  

However, it is undeniable that transitional probability provides additional 

information beyond that which can be explained by a frequency-based model of 

learning. The transitional probability of any given bigram stems from an 

interaction between the frequency of the bigram AB and the number of 

potential candidates for what can follow A. For example, to calculate P(B|A) one 

needs to know how often the bigram AB occurs as well as how often A is 

followed by other items. It therefore becomes necessary to introduce a second 

distributional metric - which we will term bigram diversity - to examine the key 

components of transitional probability.  

 THE CASE FOR BIGRAM DIVERSITY  

It is recognised that predictability is an important facet of language processing 

which draws heavily on the statistical regularities of the text (Bates &  

MacWhinney, 1987; Glenberg & Gallese, 2012; Goldberg, Casenhiser, &  
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Sethuraman, 2005; Pickering & Garrod, 2004; 2007; Van Berkum, Brown, 

Zwitserlood, Kooijman, & Hagoort, 2005) to aid reading speed and 

comprehension (Conway, Bauernschmidt, Huang, & Pisoni, 2010). Since the 

predictability of a language is directly related to the probability of Y following X 

in the sequence XY it follows therefore that a larger number of potential 

competitors for stimulus Y would serve to reduce predictability and thereby 

prove detrimental to response fluency. However, despite the demonstrable 

impact of SL mechanisms they have been mostly ignored in the wider literature.  

Bigram diversity is defined here as the number of items that potentially follow a 

word in a two-word sequence (e.g., the number of candidates for 𝑋 that follow 

the word 𝐴 in the sequence 𝐴𝑋). A more concrete example can be seen in the 

bigram credit card which occurs a total of 508 times throughout the British 

National Corpus (2007) giving it a bigram frequency of 508. The word credit 

however is followed by 109 different words including account, agreement, and 

note; it therefore has a bigram diversity of 109. Like bigram frequency, this also 

has the benefit of requiring less computational effort than transitional 

probability since learners are only required to keep track of the number of 

contexts in which a word appears rather than the relative frequencies of those 

contexts. This can be likened to the concept of contextual diversity; which can 

be derived by counting the number of contexts – for example, the number of 

documents within a given corpus - in which the item occurs (Adelman, Brown & 

Quesada, 2006). Furthermore, since the number of words that co-occur with A 

is likely correlated with the number of contexts in which it appears, it follows 
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that the observed effects of contextual diversity may be similar to those of 

bigram diversity.  

Adelman et al. (2006; also, Adelman & Brown, 2008) demonstrated that both 

lexical decision times and word-naming performance improve for more 

contextually diverse items independent of individual word frequency, 

suggesting that participants develop a stronger lexical representation for items 

that occur in multiple linguistic contexts. Likewise, increased diversity in 

caregiver speech improves vocabulary acquisition in children (Hurtado, 

Marchman, & Fernald, 2008; Jones & Rowland, 2017; Rowe, 2008); Yu and 

Smith (2007) suggest that having access to multi-context cues may help 

learners solve the indeterminacy problem (Quine, 1960) - possibly through the 

development of context-independent lexical representations. Being able to 

disambiguate lexical representations from their observed context(s) may 

facilitate response fluency  

(as in Adelman et al., 2006), particularly if the paradigm is context independent. 

Given these trends, we would expect higher diversity bigrams to provide a 

faciliatory effect to learning.  

However, it is also claimed that predictability is an important facet of language 

processing (Bates & MacWhinney, 1987; Glenberg & Gallese, 2012; Goldberg et 

al., 2004; Pickering & Garrod, 2004, 2007; Van Berkumet al., 2005). Since 

bigram diversity is essentially an indicator of predictability it follows that a 

larger number of potential competitors for stimulus 𝑋 in the bigram 𝐴𝑋 would 

serve to reduce predictability and thereby prove detrimental to response 
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fluency - a trend we would also expect if learning is guided by transitional 

probability. Given the competing nature of these predictions the role (if any) of  

bigram diversity remains unclear.  

 RESEARCH IN NATURAL LANGUAGE  

The case for using natural language corpora to study statistical learning is one 

of ecological validity (Erickson & Thiessen, 2015; Romberg & Saffran, 2010).  

Much of the statistical learning literature, particularly pertaining to linguistic 

stimuli, is concerned with the ability of learners to detect distributional 

patterns in relatively small artificial grammars. It has been argued that these 

languages lack the complexity required to allow for valid conclusions as to how 

learners are able to process distributional statistics within natural language 

(Frank et al., 2010; Johnson & Tyler, 2010), something that may be particularly 

true in studies that utilise very short utterance lengths. It is not unreasonable 

therefore to suggest that learning under the simplified conditions of artificial 

grammars cannot adequately represent performance in more naturalistic 

arenas. This is less of a problem for frequency-based accounts since the 

frequency of the item is only affected by the size of the stimulus-set to the 

extent that the number of occurrences is likely to increase as a function of the 

overall exposure to the language whereas transitional probabilities cannot 

discriminate based on the length of exposure - a two-minute sample of Saffran, 

Aslin, and Newport’s mini-language retains the same transitional probabilities 

as a ten-minute sample.  
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It has also been claimed that performance in statistical learning tasks may be 

influenced by existing statistical biases arising from an overlap in speech 

sounds between artificial and natural languages (Siegelman, Bogaerts, Elazar, 

Arciuli, & Frost, 2018); making it impossible to dissociate learning from existing 

statistical preconceptions. This leads to poor internal consistency since 

performance for individual stimuli can be predicted by their similarity to real 

world examples. Given that the limited stimulus-sets in artificial grammars are 

characterised by inflated statistical associations and potentially vulnerable to 

existing linguistic bias, any conclusions regarding the efficacy of statistical 

learning can only be tentative until the effects are replicated with naturalistic 

stimulus-sets. Natural language corpora represent an opportunity to extend the 

contribution of artificial grammar research by enabling the design of 

naturalistic, yet quantifiable stimulus-sets. Databases of real-world language 

allow for the extraction of distributional statistics that resemble participants’ 

existing representations. Using stimuli from these corpora, rather than an 

artificial grammar, retains the complexity and diversity of natural language, 

whilst allowing for the accurate tracking of distributional cues.  

However, examining statistical learning in a natural language corpus requires 

an unconventional approach to testing. Traditionally, statistical learning 

paradigms consist of a familiarisation phase - where participants are exposed to 

an unfamiliar stimulus-set - and a testing phase. For example, the Headturn 

preference procedure (Fernald, 1985) is commonly used to assess statistical 

learning in infants (e.g., Anderson, Morgan, & White, 2003; Evans et al., 2009;  

Johnson & Jusczyk, 2001; Johnson & Tyler, 2010; Lew-Williams & Saffran, 2012;  
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Maye, Werker, & Gerken, 2002; Saffran, 2001; Saffran, Aslin, & Newport, 1996; 

Saffran & Wilson, 2003; Thiessen & Saffran, 2003) where the stimuli are 

presented aurally. During this procedure the infant is usually seated with a 

caregiver in the centre of a sound-attenuated cubicle with a fixation light to 

either side and another directly in front of them. Following the familiarisation 

phase test items are presented from either the left or right side of the cubicle; 

infant looking behaviour is then taken as a measure of learning. Alternatively, 

older participants can be presented with discrimination tasks (e.g., Fiser &  

Aslin, 2002; Saffran, Johnson & Aslin, 1999; Toro, Sinnett, Soto-Faraco, 2005; 

Turk-Browne, Jung, & Scholl, 2005) where they are presented with several 

(usually two) options and asked to indicate which they find most familiar, 

based on the previous familiarisation phase. Variations on this task include 

asking participants to indicate whether a novel sequence follows the same 

‘rules’ as those presented during familiarisation (e.g., Conway & Christiansen, 

2005; Milne, Petkov, & Wilson, 2017) or to predict some outcome or 

continuation of the sequence (e.g., Monroy, Gerson, & Hunnius, 2017; Romberg 

& Saffran, 2013). More recently, novel approaches to assessing statistical 

learning have been developed (e.g., Isbilen, McCauley, Kidd, & Christiansen, 

2017) but these too are vulnerable to the limitations of artificial grammars.  

The foremost concern with natural language stimuli is that it they are 

unsuitable for use with any of the aforementioned methodologies. While it is 

possible to use an abstracted domain to manipulate familiarity based on 

exposure within (for example) an artificial grammar, it is not possible to do the 

same when using natural language datasets where participants already have 
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considerable prior knowledge. Therefore, when dealing with natural language 

stimuli, one solution may be to use non-native language stimulus-sets since 

these are comparable to in both size and complexity whilst circumventing the 

problem of familiarity. However, compared to native languages exposure to 

non-native stimuli is necessarily pauce and does not provide comparable 

opportunity for the encoding of their statistical associations without the need 

for prohibitive familiarisation periods. As such, it may be preferable to find new 

ways of assessing learning whilst still retaining the complexity of the native 

language and avoiding a lengthy familiarisation process.  

One solution is to reframe existing language tasks to examine the effects of 

statistical learning. One such task, which has been used extensively within the 

word-recognition literature, is the primed lexical decision task. This task 

involves asking participants to discriminate between word and non-word 

stimuli and has been shown to be sensitive to a broad range of variables (e.g., 

Perea, Marcet, Vergara-Martínez, & Gómez, 2016) including structural- (e.g. 

Dijkstra, Hilberink-Schulpen, & van Heuven, 2010) and associative-priming 

effects (e.g., Perea & Gómez, 2010). There is ample evidence that individual trial 

performance can be affected by a previously shown prime. Examples can be 

seen in work by Lester, Feldman, and del Prado Martin (2017), who used data 

from the Semantic Priming Project (Hutchison et al, 2013) to show that 

responses to a target word vary as a function of syntactic similarity; or Yap, 

Hutchison, and Tan (2016) who showed semantic priming to be a reliable 

predictor of lexical decision performance.  
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It is theoretically possible that a statistical priming effect could be elicited by 

manipulating the prime-target relationship based on the natural distributional 

statistics of a language. This should allow for the examination of the previously 

learned statistical associations inherent in natural language whilst avoiding the 

oversimplification of artificial grammars or the lengthy familiarisation periods 

necessary with more complex languages.  

 THIS THESIS  

Over the course of the next five chapters the current work attempts to address 

issues of complexity and ecological validity in statistical learning research by 

taking a novel approach to stimuli generation. The experiments presented 

herein draw on the British National Corpus as a source of naturalistic stimuli 

and assess the influence of distributional statistics on task performance in a 

simple, primed lexical decision task. Following this, I will present two novel 

sequence learning tasks   

Furthermore, I will compare the relative merits of transitional probability, 

bigram frequency, and bigram diversity in predicting task performance. 
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3 PROOF OF CONCEPT  

CHAPTER OVERVIEW  

Over the course of this chapter I shall:  

• Assess the viability of using lexical decision tasks to investigate statistical 

learning performance in naturalistic stimulus-sets  

• Use lexical decision data to inform Bayesian multi-level models of word 

recognition performance  

• Compare different statistical models of task performance using both leave-

one-out and Bayesian methods  

• Detail the most accurate model for both bigram frequency and bigram 

diversity and briefly discuss the theoretical implications  

    

 PREPARATION  

The following code excerpt initialises the packages necessary to run the analyses in 

this chapter and introduces some global settings in the interest of reproducibility.  

library(formatR)  

library(readr) library(brms) 

library(GGally) 

set.seed(100)  
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The studies presented in this chapter are intended to act as a proof of concept and 

highlight the sensitivity of the task to the inherent associations within natural 

language. In a departure from traditional statistical learning paradigms participants 

will not be required to learn any new information, thus eliminating the need for a 

lengthy familiarisation period. Instead, the task attempts to access previously learnt 

associations and demonstrate their influence on response times. Experiment 1 

examines these associations by manipulating bigram frequency whereas Experiment 

2 assesses the impact of bigram diversity.  

 EXPERIMENT 1: BIGRAM FREQUENCY.    

Experiment one used a lexical decision task to assess the extent to which bigram 

frequency affects word recognition. The aim of the experiment was to show any 

statistical priming effect that may result from high frequency word pairs within 

natural language.  

3.2.1 Participants.  

Thirty participants (24 females) aged between 18 and 60 years (M= 34, SD= 11.56) 

were recruited from within Nottingham, UK; all participants reported English as their 

first language and reported having no language difficulties. Participants took part in 

both experiments; research participation credits were offered for participation where 

applicable. Participants who responded correctly to fewer than 80% of trials on the 

lexical decision task (N=3) were excluded from the analysis.  
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3.2.2 Materials.  

The experimental stimuli consisted of ninety bigrams and ninety non-word stimuli 

(paired with real-word primes) between three and eight letters long. Non-word 

stimuli were created by transposing letters from the target items (e.g., SIHGT, PTAH, 

WHSOE). Each non-word was paired with a unique real word prime chosen pseudo-

randomly from the BNC - primes were constrained to not appear more than once 

across the two experiments. Bigrams were extracted from the BNC by using a python 

script to parse the .xml version of the corpus into word pairs before writing them to a 

database and tallying the number of occurrences. This resulted in a list of 12,293,349 

unique bigrams. A further script was used to remove any bigrams with a frequency of 

less than .1 per million. The remaining corpus was then filtered to exclude any 

bigrams containing acronyms, initialisations, contractions, hyphenations, non-

standard or non-English words, names, numerals, or words with fewer than three 

letters.   

Data was also obtained for frequency (Leech, Rayson, & Wilson, 2001), concreteness 

(Brysbaert, Warriner, & Kuperman, 2014), and number of letters for the target words 

in each bigram; bigram diversity was also calculated but was free to vary across 

stimuli and not used in the initial analysis. The bigrams used in the experiment were 

selected to include an equal number of high, low, and zero frequency items; examples 

of each are given in Table 3.2. For illustrative purposes, mean values are also 

provided for bigram frequency, transitional probability, and individual word 

frequency for both prime and target as they appear per million words in the BNC, as 

well as target length and concreteness; values are expressed as logarithms where this 

was used in the analyses. Stimuli from each level of bigram frequency were balanced 
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so as to not differ significantly on any of the aforementioned characteristics using 

independent-samples t-tests (each p > .05) with the exception that, when compared 

with high frequency bigrams, low frequency bigrams differed significantly on the 

number of letters in the target word (p=0.04); full stimuli lists are available in the 

appendices, descriptive statistics for each level are presented in table 3.1 and 

example bigrams are shown in table 3.2.  

  

Table 3.1: Group means and standard deviation (in parenthesis) for High, Low, and Zero frequency bigrams.  
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Table 3.2: Example stimuli, including descriptive statistics, for Experiment 1 

   

3.2.3 Procedure.  

Participants were presented with letter strings and were asked to indicate whether 

the string constituted a real English word by pressing either ‘z’ or ‘m’ on a standard 

QWERTY keyboard; key mapping was systematically varied so that half of all 

participants used ‘z’ to indicate a word and ‘m’ to indicate a non-word whilst half 

responded with ‘m’ for words and ‘z’ for non-words. Strings were presented for a 

maximum of 3000ms or until the participant responded and were preceded by a 

250ms prime. These times are slightly longer than those traditionally used in lexical 

decision but were chosen to give participants the best possible chance of encoding 

the prime since it was unclear whether any statistical priming effect might exist. All 

prime-target pairs mapped exactly onto bigrams from the stimuli lists whereby the 
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first word of the bigram acted as a prime for the second word. A fixation point was 

presented in the centre of the screen for 500ms prior to both the prime and target 

words. The prime was presented for 250ms and the target for a maximum of 3000ms 

or until the participant responded. A blank white screen was presented for 0ms 

between each aspect of the trial. Prime-Target pairs were presented in two 

counterbalanced blocks and the order of presentation for trials was randomised for 

each participant. A graphical representation of the experiment can be seen in Figure  

3.1.   

 

Figure 3.1: Diagram of the experimental procedure in Experiment 1.  

  

3.2.4 Choice of analysis  

The experiment was originally designed with the intention of comparing performance 

across frequency groups (high, low, and zero) using a one-way ANOVA since this 

considered the most appropriate analysis given my existing knowledge. However, 
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there is little theoretical justification for the use of arbitrarily defined levels for 

bigram frequency or diversity since they exist on a continuous scale in natural 

language. As such, I made the decision to conduct the analyses using Bayesian multi-

level models rather than ANOVA. This enabled me to account for participant and item 

effects and to draw conclusions based on model fit rather than point estimates 

provided by p values. It is not my intention to address the arguments surrounding 

Bayesian vs. Frequentist approaches here since that would require a tome of its own 

and is beyond the scope of the current work. Suffice to say, the use of Bayesian 

modelling allows the examination of evidence for the null hypothesis rather than only 

the experimental hypothesis (see figure 3.2) and for the integration of priors derived 

from these first experiments to increase the efficiency of later models.  

 RESULTS  

Data was first trimmed to exclude incorrect responses, then those more extreme than 

three standard deviations from the participant’s mean (Madan, Shafer, Chan, & 

Singhal, 2016), finally responses faster than 200ms or slower than 1500ms were 

removed (Perea, Marcet, Vegara-Martínez, & Gomez, 2016). Following this procedure 

5.78% of the remaining correct trials were removed across participants. Individual 

trial data (N=1828) was then analysed with Bayesian multi-level modelling using the 

brms package in R, full details of which are documented below.  In addition to Bigram 

frequency and transitional probability, target-word frequency, concreteness, and 

number of letters as well as participant age were included as covariates. Unless 

otherwise stated, the following applies to all models: Monte Carlo Markov Chain 

(MCMC) sampling was achieved using the No-U-Turn Sampler (NUTS, Hoffman & 
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Gelman, 2014) implemented in Stan (Carpenter et al., 2017) using the RStan package 

(Stan Development Team, 2017); each model had four chains of 2000 iterations with 

a burn-in of 1000 iterations; and, all models used half Student-t priors with three 

degrees of freedom. Where specified, priors are expressed using the notation N(µ, σ) 

where µ is the mean and σ is the standard deviation of a normal distribution (N).  

 

Figure 3.2: Valid statements based on p-values and Bayes factors. The p-value and the Bayes factor 

allow fundamentally different statements concerning the null hypothesis. The p-value can be used to 

make a discrete decision: reject or retain the null hypothesis. The Bayes factor grades the evidence that 

the data provide for and against the null hypothesis. Adapted from Hoekstra, Monden, von 

Ravenzwaaij, & Wagenmakers (2018)  

 

 

.05 

Reject the null hypothesis 

Do not reject the null 

hypothesis 

Ambiguous Evidence 

Evidence against 

Evidence in favour > 3 

1 

< .3 
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The future predictive power of the models was assessed using Leave-One-Out Cross 

Validation (LOO-CV). LOO-CV is calculated by removing one observation from the 

data and training the model on the remaining n-1 observations; this process is 

repeated n times (where n is the total number of observations). The LOO-CV statistic 

is obtained by averaging across all iterations to obtain the expected log predictive 

density (elpd), this value is then converted to the deviance scale by multiplying the 

elpd by -2 allowing it to be interpreted in the same manner as Akaike Information 

Criteria (AIC) or equivalent (see Gelman, Huang, & Vehtari, 2014 for a discussion of 

information criteria in Bayesian model selection). Additionally, Bayes Factors were 

also computed using the built-in function in brms to show the likelihood of each 

model when compared to the others (see Rouder, Haaf, & Vandekerckhove, 2018 for 

an overview of Bayes Factors). The analyses resulted in some extreme Bayes factor 

values; since the aim is to show the likelihood of one model over another it was 

judged sufficient to express these values as being > 999 or < .001 as applicable.  

3.3.1 Data preparation.  

Data was read into R and assessed for normality and multicollinearity (See figure 

3.3). Bigram frequency, transitional probability, and response time were log 

transformed prior to the analysis to achieve an approximation of a normal 

distribution; a small constant was added to all the values to avoid errors resulting 

from trying to calculate log(0).  Descriptive statistics were also calculated for each 

variable and are shown in table 3.3.  
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df <- read_csv("Exp1_data.csv") ggpairs(data = df, columns = c(4:5, 7:8, 

 12:13)) +  theme(panel.grid = element_blank()) 

df$log_word_freq <- log(df$word_freq + .000001)  

df$log_bigram_freq <- log(df$bigram_freq + .000001)  

df$log_trans_prob <- log(df$trans_prob + .000001)  

df$log_response_time <- log(df$response_time + .000001)  

 

Table 3.3: Means, standard deviations (SD), range, and inter-quartile range (IQR) for variables in 

Experiment 1    

 



 

 

 

Figure 3.3: Matrix showing the correlations between predictors in Experiment 1. Also shown are the scatterplot showing the 

correlations and the distribution of values for each predictor.  
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It is interesting to note the lack of correlation between bigram frequency and 

transitional probability. Given that bigram frequency is a key component of the 

transitional probability calculation, one might expect the two to be highly 

correlated. However, transitional probability is weighted by the relative 

frequency of the bigram compared to all other bigrams starting with the same 

first word – for example, the transitional probability for the bigram chocolate 

mousse is weighted according to the relative frequencies of other bigrams that 

include chocolate in the first position, including chocolate fountain, chocolate 

covered, and chocolate lover. This weighting means that bigrams with the same 

frequency can have wildly different transitional probabilities. Equally, bigrams 

with the same transitional probability such as premier league and instances of  - 

which have transitional probabilities of .35 – can have vastly different 

frequencies (879 and 270, respectively). Thus, although we might imagine some 

correlation between the two metrics no such relationship exists, as shown in 

figure 3.3.  

3.3.2 Specifying the models  

Firstly, a baseline model was run for the purpose of comparison. This model 

includes none of the predictors or anticipated covariates; if the baseline model 

fits the data better than the experimental models then we can conclude that there 

is either no effect of bigram frequency or transitional probability or that the task 

is not sensitive enough to detect any effects that may exist. As well as the baseline 

model, four additional models were also run. A covariate only model was used 

for comparative purposes – if this model is found to be the best predictor of the 
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data then it can be inferred that neither bigram frequency nor transitional 

probability are influencing response time in the lexical decision task. 

Additionally, three experimental models were used to assess the effects of A) 

bigram frequency, B) transitional probability, and C) both bigram frequency and 

transitional probability; these models are set out below.  

base_model_1 <- brm(log_response_time ~ 1, data = df,  save_all_pars 

= TRUE) 

cov_model_1 <- brm(log_response_time ~ age + concreteness + letters 

+ word_freq, data = df, save_all_pars = TRUE, silent = TRUE,  

refresh = 0) 

model_1a <- brm(log_response_time ~ log_bigram_freq + age +  

concreteness + letters + word_freq + (1 | subject) + (1 | item), 

data = df, save_all_pars = TRUE, silent = TRUE, refresh = 0)  

model_1b <- brm(log response_time ~ log_trans_prob + age +  

concreteness + letters + word_freq + (1|subject) + (1|item),  

data = df, save_all_pars = TRUE, silent = TRUE, refresh = 0)   

model_1c <- brm(log_response_time ~ log_bigram_freq +  

log_trans_prob + age + concreteness + letters + word_freq +  (1 

| subject) + (1 | item), data = df, save_all_pars = TRUE,  

silent = TRUE, refresh = 0)  
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Model B, the transitional probability model, failed to converge after 1000 

iterations and was rerun using a maximum treedepth of 15; this allows for more 

efficient evaluation of the model parameters. A very accessible description of 

treedepth in Monte Carlo models can be found at:   

https://www.weirdfishes.blog/blog/fitting-bayesian-models-with-stan-

andr/#a-note-on-divergences.  

model_1b <- brm(log response_time ~ log_trans_prob + age +  concreteness 

+ letters + word_freq + (1|subject) + (1|item),  data = df, 

save_all_pars = TRUE, silent = TRUE, refresh = 0,      control = 

list(max_treedepth = 15))  

  

Note: It is possible to view a summary of any of the models by using 

summary(model_name) but I have not done that at this point because the model 

comparisons are more interesting at this stage of the analysis. I revisit the 

individual models after cross-validation and Bayes factor comparison.  

3.3.3 Cross-validation.  

Model comparison was performed using leave-one-out cross-validation with the 

loo() function in R (Vehtari, Gelman, & Gabry, 2017); smaller LOOIC values 

indicating less variance from the observed values and therefore represent a 

better description of the data than higher values. Information criteria for all the 

models are displayed in Table 3.4.  

cv_base1 <- loo(base_model_1)  

cv_cov1 <- loo(cov_model_1)  

cv_m1a <- loo(model_1a)  
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67  

  

cv_m1b <- loo(model_1b)  

cv_mlc <- loo(model_1c)  

  

Table 3.4: Leave-one-out information criteria comparing the statistical models of word recognition 

performance for Experiment 1. The table shows the population- and group-level predictors for each 

model as well as the information criteria and standard deviation (in parenthesis).  

  

Cross-validation shows that the baseline model fits the data least well of the five 

models presented here whereas the covariate only model provides a reasonable 

improvement in predictive value compared to the baseline. All three 

experimental models perform better than both the baseline and covariate 

models suggesting that the lexical decision task is in fact sensitive enough to 

pick up on improvements to task performance stemming from participants’ use 

of statistical information. Of the experimental models, Model A (Bigram 

Frequency) performs marginally better at predicting the data than the other 

models; however, since the models differ by less than 1.96 times the leave-one-

out criterions standard deviation (as a heuristic for 95% confidence) it cannot 

be concluded that there is any meaningful difference in the predictive accuracy 

and as such, an alternative method is necessary to distinguish amongst them. 

High variance (as shown by the large standard deviations around each LOOIC) is 

not unusual in leave-one-out cross-validation; since each training set comprises 
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n-1 samples there is necessarily a large amount of overlap between iterations – 

since each training set differs from another by only one datum – which leads to 

highly correlated estimates and therefore higher variance (Hastie, Tibishirani, & 

Friedman, 2009).  

3.3.4 Bayes factors.  

Bayes factors were also computed using the bayes_factor() function and allow 

for direct comparison of the models in terms of a likelihood ratio.  

bf_covbase1 <- bayes_factor(cov_model_1, base_model_1, silent = TRUE)  

bf_1abase <- bayes_factor(model_1a, base_model_1, silent = TRUE)  

bf_1bbase <- bayes_factor(model_1b, base_model_1, silent = TRUE)  

bf_1cbase <- bayes_factor(model_1c, base_model_1, silent = TRUE) 

bf_acov <- bayes_factor(model_1a, cov_model_1, silent = TRUE)  

bf_bcov <- bayes_factor(model_1b, cov_model_1, silent = TRUE)  

bf_ccov <- bayes_factor(model_1c, cov_model_1, silent = TRUE)  

bf_1ba <- bayes_factor(model_1b, model_1a, silent = TRUE) bf_1ca <- 

bayes_factor(model_1c, model_1a, silent = TRUE) bf_1cb <- 

bayes_factor(model_1c, model_1b, silent = TRUE)  

 

The resultant Bayes factor represents the strength of evidence for one 

hypothesis over another – assuming both hypotheses are equally likely - which 

can be interpreted as a ratio of BF:1, with possible values for Bayes factors 

ranging from zero to ∞. For two competing hypotheses a Bayes factor of 20 

would therefore suggest that the data are 20 times more likely under the first 

hypothesis than the second. Conversely, a Bayes factor of .05 would indicate that 
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the data are 20 times more likely under the second hypothesis whereas a Bayes 

factor of one would indicate equal support for both hypotheses. These ratios are 

used here to directly compare the likelihood of each model and can be seen in 

Table 3.5. More extreme Bayes factors indicate a greater likelihood of one model 

over another given the observed data; the strength of evidence for a given Bayes 

factor is somewhat subjective but guidance on their interpretation is provided 

by Raftery (1995) who describes four categories of evidence: weak  

(BF = 1-3), positive (BF = 3-20), strong (BF = 20-150), and very strong (BF > 

150); it is these criteria that I shall be subscribing to in my analyses. 

Furthermore, where the analysis results in a Bayes factor of less than one, the 

strength of evidence for the null hypothesis can be ascertained using 1/BF; for 

example, if BF = .169 then 1/BF = 5.92 which can be regarded as positive 

evidence for the null hypothesis using Raftery’s guidelines. Note that, in the 

current analyses, I am using Bayes factors to compare two experimental models 

rather than contrasting an experimental and null hypothesis. In this case, a 

Bayes factor of less than one represents support for the first model and those 

greater than one for the second model.  It is also worth noting that when BF = 3 

this is roughly equivalent to p = .05 in a frequentist framework; therefore, any 

Bayes factor of greater than three would be regarded as significant using this 

interpretation (Dienes, 2014).  
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Table 3.5: Between model comparisons for Experiment 1 using Bayes factors. Comparisons 

relate to the strength of evidence for models in the left most column over those listed at the 

top of the table.  

 

 The Bayes factors displayed in Table 3.5 show the strength of evidence for one 

model over another in the form of a ratio. For example, the data support Model A 

(Bigram Frequency) over the Base and Covariate models by a ratio of over 999:1 

– a pattern we see repeated for all the experimental models - confirming that the 

experimental models are markedly better than both the baseline and covariate 

models given the observed data. Furthermore, there is a difference in the 

likelihood of Model A (bigram frequency) over Models B and C since the Bayes 

Factor in both cases is less than .001. This suggests that, although the models 

display the same predictive power (as measured using leave-one-out cross-

validation), bigram frequency is a more plausible predictor of response time 

than transitional probability. It is also worth noting that Model C, which includes 

both bigram frequency and transitional probability, is less likely than the 

transitional probability model but only by a factor of around five, which would 

be considered positive but not strong evidence in favour of single experimental 

variable. This could be because transitional probability and bigram frequency 

are both capturing an element of frequency information and suggests that it is 

unlikely that participants are attending to both sets of statistical regularity.  
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3.3.5 Model summary.  

A full summary of the model can be obtained using:  

summary(model_1a)  

Based on cross-validation statistics, all the models display similar predictive 

performance (i.e. how well they can generalize to new data). However, 

interpretation of the Bayes Factors using the thresholds set out by Raftery  

(1995) suggests the strongest evidence for Model A (bigram frequency) when 

compared to all other models. Given these results, we conclude that bigram 

frequency and not transitional probability has the most value in predicting 

response times for lexical decision in a statistical priming paradigm. Full details 

of Model A (Bigram Frequency) are shown in Table 3.6.  

Table 3.6: Summary statistics for Model A (Bigram Frequency) expressed on a natural logarithmic 

scale 

 



 

72  

  

In the table, Estimate and Est.Error are functionally equivalent to the 

unstandardized coefficients and standard error seen in non-Bayesian multiple 

regression. The upper and lower credible intervals presented are analogous to 

frequentist confidence intervals but are based on different assumptions of the 

data. A 95% confidence interval can be summarised by the statement “in 100 

experiments, it can be reasonably expected that 95 of the 100 confidence 

intervals will include the true value of a given parameter Y” thus, the confidence 

intervals are random intervals within which the true (fixed) value of Y falls. This 

is different to a credible interval which considers there to be no one true value 

of Y and can be summarised as “a probability distribution centred on the 

Estimate in which 95% of values fall within the credible interval”. Based on this 

definition, any credible interval which does not include zero can be interpreted 

as being a meaningful predictor in the model – since 95% of values drawn from 

the posterior distribution fall exclusively above or below zero. Also shown in the 

table are Rhat, which represents a comparison of the within- and between-chain 

parameter estimates to assess model convergence and Eff.Sample which shows 

the effective number of independent samples drawn by the Monte Carlo Markov 

Chain after adjusting for autocorrelation. In a perfect, uncorrelated model these 

values would be Rhat = 1 and Eff.Sample = 4000, respectively.  

Also, of note is the notation [0, .01] which is used in the table to indicate that a 

value falls within a given range – for example, [1, 2] indicates that the value falls 

between zero and .01 (not inclusive). In the model summary tables, it is not 

appropriate to use the notation < .01 since the value of any given parameter is 

not bounded at zero. That is, a notation of < .01 would include all values ranging 
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from .0099 to -∞. Furthermore, brms output returns values truncated to two 

decimal places which can result in values of -.00 or .00 when such values are 

impossible given that they represent parameters in a probability distribution. 

Therefore, the notation [0, .01] more accurately represents the value as being 

less than .01 but greater than zero.   

 DISCUSSION  

These findings represent an important development in understanding how 

learners interact with the distributional information in language. Firstly, the 

data show that participants demonstrated a sensitivity to the statistical 

associations of the bigrams as evinced by the difference in likelihood between 

the experimental and covariate models. This, in turn, suggests that learners can 

track these distributions within natural language and that the strength of the 

associations are retained and can be retrieved at a later time. The results also 

suggest that there is some validity in the use of existing language tasks to assess 

pre-learned associations. Secondly, the data suggests that there is a case for 

bigram frequency as a metric of distributional information with participants 

responding to targets from higher frequency bigrams more quickly. Finally, I 

was surprised to see that although the transitional probability model does 

represent an improvement over the baseline and covariate only models, it 

performs less well than the bigram frequency model. This is particularly 

noteworthy given the weight of evidence within the literature suggesting that 

this should not be the case. Moreover, including transitional probability in the 

model with bigram frequency also results in poorer model performance; this 
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implies that there is little to be gained from the diversity component of 

transitional probability, something we now investigate in Experiment 2.  

    

 EXPERIMENT 2: BIGRAM DIVERSITY  

The design and procedure were identical to the first experiment with the 

exception that bigram diversity was manipulated rather than bigram frequency. 

The nature of bigram diversity is such that the manipulation in this experiment 

focuses on the prime rather than the target word of the bigram.  

3.5.1 Participants.  

The same thirty participants (24 females) as the previous experiment took part 

in another lexical decision task. Participants were aged between 18 and 60 

years (M= 34, SD= 11.56), were recruited from within Nottingham, UK. English 

was the first language for all participants, with no language difficulties reported. 

Participants were offered research participation credits where applicable and 

those who scored lower than 80% on the lexical decision task (N=3) were 

excluded from the analysis.  

3.5.2 Materials.  

Measuring bigram diversity required examining the number of words that 

follow a prime word (‘followers’) in the BNC. For example, armed is followed by 

forty unique words in the BNC and therefore has forty followers and a bigram 

diversity of 40. The stimulus-list for experiment two comprised of ninety 
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bigrams and ninety non-word pairs (non-words paired with a real-word prime) 

which were selected from the same stimulus pool as in the first experiment and 

organised into high, low, and zero diversity items (defined as words with no 

followers in the BNC). Since I am not aware of any studies previously using 

bigram diversity as a measure, these levels were based on similar values used in 

studies of word frequency effects. Levels of diversity were compared using 

independent-samples t-tests and balanced to not differ significantly on word 

frequency, concreteness, number of letters, and phonemes, all ps > .05 with the 

following exceptions: The high diversity list differed significantly from both the 

low and zero diversity list on both concreteness (low: p < .001, zero: p < .001) 

and number of letters (low: p = .03, zero: p <.01); this is due to the unusual 

nature of the words in the low and no diversity condition as well as the 

theoretical decision to prioritise controlling individual word frequency as the 

largest predictor of word recognition performance (Brysbaert & New, 2009; ;  

Ferrand et al., 2010; Keuleers, Diependaele, & Brysbaert, 2010;  Keuleers, Lacey, 

Rastle, & Brysbaert, 2012; Yap & Balota, 2009). Non-words were generated by 

transposing the middle letters of the target items from the bigram list. Both 

word and non-word targets were between three and eight letters long. Though 

these categories were not used in the analysis, descriptive metrics are included 

here for illustrative purposes (See table 3.7). Bigram frequency was not 

controlled across stimuli since attempting to do so resulted in a prohibitively 

small stimulus-pool, as such bigram frequency was free to vary across items.  

Example stimuli are displayed in table 3.8.  
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Table 3.7: Group means and standard deviation (in parenthesis) for High, Low, and Zero diversity 

bigrams.  

   

Table 3.8: Example low diversity stimuli for Experiment 2 including descriptive statistics for bigrams 

and target words.  
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3.5.3 Procedure.  

The procedure was identical to that of Experiment 1. Participants were once 

again presented with letter strings and asked to decide whether they were 

observing a real English word or a non-word. They were then instructed to 

press either ‘z’ or ‘m’ on a standard QWERTY keyboard to indicate their 

decision. Key mapping was systematically varied so that odd numbered 

participants used ‘z’ to indicate a word and ‘m’ to indicate a non-word whilst 

even numbered participants were required to press ‘m’ for words and ‘z’ for 

non-words. Strings were presented until a response was made or for 3000ms if 

no response was made. Prime-target pairs mapped exactly onto bigrams from 

the stimuli lists whereby the first word of the bigram acted as a prime for the 

second word. A fixation point was presented in the centre of the screen for 

500ms prior to both the prime – which remained on screen for 250ms - and 

target words. Stimuli were organised into two counterbalanced blocks and trial 

order was randomised within each block.  

3.5.4 Results  

Accuracy was comparable for both word and non-word trials, with all 

participants scoring over 80% on both. Data from experiment two was trimmed 

and analysed using the same procedure as the first experiment, a total of 2.04% 

of correct trials were removed (this did not change the pattern of results). All 

response time data were log-transformed; response times for each participant 

were then analysed using Bayesian multi-level regression. Individual trial data 
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(N = 2170) was used to predict log-transformed response times in a lexical 

decision task using random-intercept models. Individual participants and items 

were included as group-level effects. Bigram diversity and transitional 

probability were included as population-level effects, both individually (Models 

A & B) and in conjunction (Model C). Target-word frequency, concreteness, 

target-word length, and participant age were also included as covariates. Leave-

one-out cross-validation statistics were used to compare model fit, with smaller 

values considered indicators of goodness-of-fit. Log-transformed values were 

used for bigram diversity, word frequency, transitional probability and 

response time; a constant of one was added to all values to avoid errors 

resulting from items with values equal to zero.  

3.5.5 Data preparation.  

Data was read into R and analysed in the same manner as Experiment 1, figure 

3.4 shows the correlations between predictors. The Bigram diversity, 

transitional probability, and response time variables were log-transformed 

prior to the analysis; a small constant was added to all the values to avoid errors 

resulting from trying to calculate log(0). Descriptive statistics for each of the 

variables are shown in table 3.9.  
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df2 <- read_csv("Exp2_data.csv) ggpairs(data = df2, columns = 

c(5:6, 8:9, 14)) +  theme(panel.grid = element_blank())  

df2$word_freq <- log(df2$word_freq + 1)  

df2$diversity <- log(df2$diversity + 1) 

df2$trans_prob <- log(df2$trans_prob + 1) 

df2$response_time <- log(df2$response_time + 1)  

  

Table 3.9: Descriptive statistics for Experiment 2 including means standard deviations (SD), and inter-

quartile range (IQR)  

 

  



 

 

 

 Figure 3.4: Correlation matrix for Experiment 2.  Correlation coefficients show that there is no multicollinearity between the predictors. 
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 3.5.6 Specifying the models  

Models3 were run in the same way as Experiment 1 and consist of a baseline, 

covariate and three experimental models. Models A, B, and C examined bigram 

diversity, transitional probability, and both variables respectively; all models 

included participant age, target word frequency, concreteness, and number of 

letters as population-level effects and participant and item as group-level effects.  

base_model_2 <- brm(response_time ~ 1, data = df2, save_all_pars = 

TRUE, silent = TRUE, refresh = 0)   

cov_model_2 <- brm(response_time ~ age + concreteness + letters + 

word_freq, data = df2, save_all_pars = TRUE, silent = TRUE, 

refresh = 0)   

model_2a <- brm(response_time ~ diversity + age + concreteness + 

letters +  word_freq + (1 | subject) + (1 | item), data = df2,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)   

model_2b <- brm(response_time ~ trans_prob + age + concreteness + 

letters +  word_freq + (1 | subject) + (1 | item), data = df2,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)  

model_2c <- brm(response_time ~ diversity + trans_prob + age + 

concreteness  + letters + word_freq + (1 | subject) + (1 | item), 

data = df2,  save_all_pars = TRUE, silent = TRUE, refresh = 0)  

 
3 Throughout this document I will be referring to specific statistical models using the term Model  
(e.g., Model A) and models more generally using the uncapitalized model (e.g., model comparison).  
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 3.5.7 Cross-validation  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in Table 3.10.  

cv_base2 <- loo(base_model_2)  

cv_cov2 <- loo(cov_model_2)  

cv_m2a <- loo(model_2a)  

cv_m2b <- loo(model_2b)  

cv_m2c <- loo(model_2c)  

  

Table 3.10: Leave-one-out cross-validation statistics for Experiment 2. Also shown are the population- and 

group-level predictors for each statistical model  

 

Interestingly, cross-validation shows that the covariate only model demonstrates 

better predictive accuracy than both the experimental and baseline models 

suggesting that the inclusion of bigram diversity and/or transitional probability in 

these models is detrimental to predictive accuracy. However, all three 

experimental models fall within +/- 1.96 times the standard error of the covariate 

model, making any conclusions unreliable for the observed data. Therefore, as in 

Experiment 1, Bayes factors were used to help further differentiate between the 

models.  
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 3.5.8 Bayes factors  

Bayes factors were used for model comparison and can be seen in Table 3.11.  

bf_covbase2 <- bayes_factor(cov_model_2, base_model_2, silent = TRUE)  

bf_2abase <- bayes_factor(model_2a, base_model_2, silent = TRUE)  

bf_2bbase <- bayes_factor(model_2b, base_model_2, silent = TRUE)  

bf_2cbase <- bayes_factor(model_2c, base_model_2, silent = TRUE)  

bf_acov2 <- bayes_factor(model_2a, cov_model_2, silent = TRUE)  

bf_bcov2 <- bayes_factor(model_2b, cov_model_2, silent = TRUE)  

bf_ccov2 <- bayes_factor(model_2c, cov_model_2, silent = TRUE)  

bf_2ba <- bayes_factor(model_2b, model_2a, silent = TRUE)  

bf_2ca <- bayes_factor(model_2c, model_2a, silent = TRUE)  

bf_2cb <- bayes_factor(model_2c, model_2b, silent = TRUE)  

  

Table 3.11: Bayes factors showing comparisons between statistical models for Experiment 2  

 

Surprisingly, the covariate only model is more likely than all the experimental 

models. This suggests that bigram diversity does not influence response times in a 

lexical decision paradigm. However, the inclusion of transitional probability further 

reduces the likelihood of the model, this is unexpected given the wealth of evidence 
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suggesting that transitional probability is associated with statistical learning 

performance.  

 3.5.9 Model summary  

Experiment 2 showed that both bigram diversity and transitional probability were 

ineffective at predicting response times. Looking at the covariate model (Table 

3.12) however, concreteness and word frequency are negatively associated with 

response times - i.e., as concreteness and word frequency increase, response time 

decreases - whereas age and number of letters are positively associated. It is well 

documented in the lexical decision literature that these three covariates have a 

reliable effect on speed of word recognition (Murray & Forster, 2004; New, 

Ferrand, Pallier, & Brysbaert, 2006; Yap & Balota, 2009). Given that we see no 

further benefit of the experimental variables it can be suggested that, based on 

these data, bigram diversity and transitional probability provide no benefit in 

facilitating word recognition speed.  

summary(cov_model_2)  
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 Table 3.12: Summary of the covariate only model for Experiment 2 

 

 DISCUSSION  

Results from Experiment 2 suggest that there was no effect of either bigram 

diversity or transitional probability on participant response times. This was 

unexpected since there is a well-documented effect of transitional probability in 

statistical learning tasks; it is possible however, that the effect of transitional 

probability is too small to be detected by the lexical decision task, though this 

seems unlikely given that Experiment 1 was able to effectively identify a statistical 

priming effect. Similarly, there is a convincing amount of evidence that contextual 

diversity influences performance in these types of task. If, in fact, bigram diversity 

was acting as a measure of predictability we would expect to see a positive 

relationship with response time since more predictable transitions should elicit 

quicker responses. Conversely, if bigram diversity is more akin to contextual 

diversity in its relationship with response time then we would predict faster 
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response times for more diverse items. Given that we see neither effect here it is 

tempting to conclude that bigram diversity is not a meaningful metric of 

distribution within a natural language stimulus-set.   

Finally, since it was not controlled across the different levels of bigram diversity it 

could be argued that bigram frequency constitutes a potential confound in this 

experiment since the high diversity stimuli also have a higher bigram frequency 

than the low and zero diversity stimuli. However, if this were the case then we 

would expect to see an effect of bigram diversity like that seen for bigram 

frequency in Experiment 1. Given that we see no effect of bigram diversity, we can 

reasonably rule out any confounding effect of bigram frequency.   

 

 GENERAL DISCUSSION  

Throughout this chapter I have presented two experiments designed to assess the 

plausibility of using lexical decision to examine statistical learning in a large 

natural language stimulus set. Experiment 1 demonstrates that it is possible to use 

statistical priming to reduce response time, implying that participants can tap into 

previously learnt associations within their natural language. Moreover, Experiment 

1 highlighted that bigram frequency constitutes a better predictor of task 

performance that the more commonly utilised transitional probability. This is a 

surprising result which questions how learners are developing these statistical 

relationships during language acquisition.  
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As we can see, the most effective model at predicting word recognition speed 

suggests that there is a small, but non-trivial, contribution to task performance for 

bigram frequency. Furthermore, as we would expect, individual word frequency 

and concreteness also facilitate lexical identification. That is, more common items, 

with easily identifiable referents, are more quickly identified as real English words 

than more nebulous, and less frequent ones. This is reflected in both the word 

recognition and memory literature which suggests that participants perform better 

with both concrete words (e.g., de Groot, 1989; de Groot & Keijzer, 2008; Kanske & 

Kotz, 2007; Zhang, Guo, Ding, & Wang, 2006) and those with a higher frequency 

(e.g., Brysbaert, Mandera, & Keuleers, 2017; Morrison & Ellis, 1995; Rayner & 

Duffy, 1986). Also of note is the fact that word length (e.g., Balota, Cortese, Sergent-

Marshall, Spieler, & Yap, 2004; New, Ferrand, Pallier, & Brysbaert, 2006; O’Reagan 

& Jacobs, 1992) and participant age (e.g., Houx, Jolles, & Vreeling, 1993; Wingfield, 

Lindfield, & Goodglass, 2000) were demonstrated to be inhibiting factors to word 

recognition in the wider literature.  

As previously discussed, bigram frequency has been dismissed due to its potential 

correlation with frequency - the claim being that higher frequency words will co-

occur more frequently by virtue of being more common. However, when word 

frequency (and other common covariates) is partialled out, as in the current study, 

there is still an identifiable effect of bigram frequency that can be presumed to be 

independent of the more widely recognised word frequency effect. This, if nothing 

else, demonstrates that more consideration needs to be given to alternative 

measures of statistical regularity.  
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These experiments not only provide proof of concept but also go some way 

towards addressing several the criticisms I laid out in the previous chapter. Firstly, 

they demonstrate that statistical learning theory may be applicable to natural 

languages whereas previously studies have focused on small-scale artificial 

grammars with unrealistic distributional statistics - transitional probability is 

particularly vulnerable to inflation in smaller stimulus sets, which may explain its 

lack of impact in these experiments. Moreover, Siegelman et al. (2018) 

demonstrated that it is impossible to examine statistical learning without 

introducing own-language biases into the task. By working within a natural 

language stimulus-set it is possible to eliminate this bias as a confound by 

examining it directly.  

Experiment 1, particularly, demonstrates the lack of impact from transitional 

probability when bigram frequency is considered. It is suggested that any effect of 

transitional probability in previous studies may be the result of over inflation or 

could potentially be masking a frequency effect. That being the case, it can be 

suggested that since bigram frequency and transitional probability differ primarily 

on their predictive weighting there is little to be gained from the diversity 

component of the latter. This is something we see again in Experiment 2 which 

shows no effect of either bigram diversity or transitional probability. That said, it is 

surprising to see no effect of transitional probability since we would expect the 

frequency component of transitional probability to facilitate recognition speed 

even in the absence of a diversity effect. This prompted a review of the 

experimental procedures to isolate any potential confounds that may explain this 
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seeming lack of sensitivity to the statistical priming effect. As such, a few potential 

methodological issues were identified.  

Firstly, some of the zero-diversity stimuli in the second experiment were proving 

problematic. Since the primes, by necessity, did not appear within the BNC (e.g. 

abaya, canorous, glabrous, hodiernal) there was some question as to whether 

participants might be distracted or confused by their unusual nature, this is 

consistent with work by Diependale, Brysbaert, and Neri (2012) who found that 

responses in lexical decision are more reliable when the stimuli are known to the 

participants. It was therefore decided to re-run experiment two using a slightly 

modified stimulus list which replaced these words with more familiar ones.  

Additionally, in Experiment 1 there was a large amount of variance stemming from 

the individual target items; in an attempt to address this, a further experiment was 

conducted in which the target words were held constant across the high, low, and 

zero frequency bigrams in such a way that participants see three separate trials 

where they are asked to identify the same target word after viewing a different 

prime. For example, one set of high, low, and zero frequency items might be: steam 

engine, port engine, and mouse engine. Although this has the potential to introduce 

practice effects - since participants will already have been exposed to the target 

word in previous trials - it should go some way towards reducing the inter-item 

variance seen in the first two experiments.  

Holding the words constant across all three levels of either bigram frequency or 

bigram diversity was deemed necessary since, in the experiments detailed in this 

chapter, I was unable to completely control for variation in key metrics such as 

concreteness, number of letters, and individual word frequency. Although steps 
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were taken to minimize group differences on these dimensions significant variation 

was observed for the number of letters in the target word (Experiment 1 & 2), and 

concreteness ratings (Experiment 2). On top of this, bigram frequency and 

diversity were free to vary across stimuli due to the concern that restricting them 

further would result in a prohibitively small stimulus-list and therefore an 

unreasonably small number of experimental trials. As previously noted, the 

original experiment was designed with an eye to comparing bigram frequency and 

diversity across different categorical groups; in that case, an ideal scenario would 

be to match all stimuli perfectly on all other dimensions in order to isolate the 

effects of bigram frequency and diversity from those of the covariates. This turned 

out to be impossible even in the relatively large sample of the BNC and so, as a 

compromise, the target items were held constant across the three levels but varied 

amongst themselves within each level; this would have allowed a direct 

comparison of individual items from each level and represented a purer test of 

differences between the groups. However, the change of statistical analysis from 

one-way ANOVA to multi-level model allowed for a better account of the covariates 

and the isolation of individual effects within the model.   

In Chapter 4 I present an attempt to replicate the results from the first two 

experiments whilst also attempting to address the aforementioned limitations.  
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CHAPTER SUMMARY  

Over the course of this chapter I have shown that: 

• Statistical learning effects are still present in large-scale naturalistic stimulus-

sets  

• Lexical decision tasks may be an appropriate method for evaluating statistical 

learning in naturalistic language stimuli  

• Bigram frequency may represent a better frequency-based metric of 

statistical learning than transitional probability in word recognition 

performance  

• Predictability, as represented by bigram diversity and transitional probability, 

does not appear to influence response times in lexical decision  

• There are several potential methodological issues with the current 

experiments that need to be addressed to improve the reliability of the data  
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4 ADDRESSING METHODOLOGICAL LIMITATIONS  

CHAPTER OVERVIEW  

Over the course of the coming chapter I aim to:  

• Build on the findings of Chapter 3 by addressing the methodological 

limitations highlighted therein  

• Assess the replicability of the statistical learning effects shown in the 

previous experiments using Bayesian multi-level modelling  

• Test the fit of statistical models of task performance using leave-one-out 

cross-validation and Bayes factor comparison  

• Detail the most likely model for both Experiments  

    

 PREPARATION  

The following code excerpt initialises the packages necessary to run the analyses in 

this chapter and introduces some global settings in the interest of reproducibility.  

library(formatR)  

library(readr)  

library(brms)  

library(GGally)  

Set.seed(100)  
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 EXPERIMENTS  

In the previous chapter I presented two experiments with the aim of establishing 

whether bigram frequency and bigram diversity constitute a useable distributional 

statistic for predicting learning in a natural language dataset. Experiment 1 

successfully identified a priming effect for bigram frequency that surpasses that 

demonstrated by the more commonly used transitional probability. This 

demonstrates that participants were able to access representations of the 

statistical associations within the bigrams - though, as discussed previously, the 

exact form these representations take is yet unknown - and use them to improve 

task performance.   

However, there was a large amount of variation in performance across both 

individual items and between participants. This is a recurrent problem in 

psycholinguistics that cannot be addressed by simply balancing the words on any 

number of dimensions (e.g., word frequency or concreteness). The language-as-

fixed-effects fallacy (Clark, 1973) suggests that, even when perfectly balanced, two 

words may differ qualitatively and experientially by participant. In fact, the only 

way we can be certain that each trial is qualitatively identical to another is to use 

exactly the same word as the stimulus for all trials in a given experiment; this, 

however, is not possible in the current work since asking participants to make a 

lexical judgement on the same word for every trial invalidates the task somewhat. I 

therefore attempt to find a compromise in these experiments by holding the 

stimulus constant across different levels of bigram frequency and diversity whilst 

still allowing them to vary within levels.   
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Experiment 3 is a conceptual replication of the first experiment with an identical 

procedure but with the target stimuli repeated with a high- , low-, and zero-

frequency prime so that each stimulus is seen three times during the experiment, 

with a different prime each time.   

Experiment 2 suffered from an additional complication in that there may have been 

some confusion over the more abstruse stimuli (e.g., canorous, zoolatry, 

jumentous) which may have led to a reduction in performance. It was therefore 

decided that a replication of the experiment should be completed using more 

familiar words for the zero-diversity items to improve the reliability of the data 

(Diependale et al., 2012).  

 EXPERIMENT 3  

Experiment three is a conceptual replication of Experiment 1 in which each target 

appears three times with different primes over the course of the experiment.  

    

4.3.1 Participants  

Fifty participants (6 Male) aged between 18 and 60 years (M= 21.49, SD= 7.96) 

were recruited from within Nottingham, UK; all participants reported English as 

their first language and reported having no language difficulties. All participants 

responded correctly to at least 80% of lexical decision trials; research participation 

credits were offered for participation where applicable.   
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4.3.2 Materials  

The experimental stimuli consisted of ninety bigrams and ninety non-word stimuli 

between three and eight letters long. Non-word stimuli were created using entries 

from the ARC Nonword Database (Rastle, Harrington, & Coltheart, 2002) selected 

so that only non-words with legal orthographic structures (in English) were used 

(e.g., THRIFF, DRANNS, SNARFED). Non-words were then paired with a real word 

prime chosen pseudo-randomly from the BNC - primes could not be chosen 

completely randomly since they were constrained so as not to appear more than 

once across the two experiments.   

For each item, descriptive metrics comprising frequency (Leech et al., 2001), 

concreteness (Brysbaert et al., 2014), and number of letters for the target words in 

each bigram; bigram diversity was also calculated but was free to vary across 

stimuli and not used in the initial analysis. The bigrams used in the experiment 

were selected to include an equal number of high, low, and zero frequency items; 

group descriptive statistics are detailed in table 4.1 and examples from each are 

given in Table 4.2. Note that although the individual words in the zero frequency 

bigrams do not appear together in the British National Corpus the first word of the 

bigram still occurs with other items in the corpus. Although these bigrams have a 

frequency of zero, the bigram diversity is derived solely from the initial word of the 

bigram and is therefore included in the table of group descriptive statistics.  
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Table 4.1: Group descriptive statistics for Experiment 3, values are given on a natural logarithmic scale 

where such was used in the analysis 
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Table 4.2: Example stimuli for Experiment 3 including descriptive statistics  

 

  

4.3.3 Procedure  

The procedure was identical to that of Experiment 1, participants were presented 

with letter strings and were asked to indicate whether the string constituted a real 

English word by pressing either ‘z’ or ‘m’ on a standard QWERTY keyboard. Key 

mapping was systematically varied so that half of all participants used ‘z’ to 

indicate a word and ‘m’ to indicate a non-word whilst half responded with ‘m’ for 

words and ‘z’ for non-words. Strings were presented for a maximum of 3000ms 



 

98  

  

and were preceded by a 250ms prime. All prime-target pairs mapped exactly onto 

bigrams from the stimuli lists whereby the first word of the bigram acted as a 

prime for the second word. A fixation point was displayed in the centre of the 

screen prior to both the prime and target words. Prime-Target pairs were 

presented in two counterbalanced blocks and the order of presentation for trials 

was randomised for each participant.  

 RESULTS  

Data was trimmed to exclude incorrect responses as well as those made faster than 

200ms, slower than 1500ms (Perea et al., 2016), or more extreme than three 

standard deviations from the participant’s mean (Madan et al., 2016), following this 

procedure 2.29% of correct trials were removed across participants. Individual trial 

data (N=1828) was then analysed with Bayesian multi-level modelling using the 

brms package in R4.   

In addition to Bigram frequency and transitional probability, target-word 

frequency, concreteness, number of letters and participant age were included as 

covariates.   

  

 
4 MCMC sampling was achieved using the No-U-Turn Sampler (NUTS, Hoffman & Gelman, 2014) 

implemented in Stan (Carpenter et al., 2017) using the RStan package (Stan Development Team, 

2017); each model had four chains of 2000 iterations with a burn-in of 1000 iterations; all models 

used half Student-t priors with three degrees of freedom. Where specified priors are expressed using 

the notation N(µ, σ) where µ is the mean and σ is the standard deviation of a normal distribution.  
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The models were compared using Leave-One-Out Cross-Validation (LOO-CV). 

Where this does not provide enough discrimination between the models Bayes 

Factors were also computed using the bayes_factor function. The analyses resulted 

in some extreme Bayes factor values; since the aim is to show the likelihood of one 

model over another it was judged enough to express these values as being > 999 or 

< .001 as applicable.  

4.4.1 Data preparation  

Data was read into R and assessed for normality; bigram frequency, transitional 

probability, and response time were log-transformed prior to the analysis to 

achieve an approximation of a normal distribution; a small constant was added to 

all the values to avoid errors resulting from trying to calculate log(0). Figure 4.1 

shows that there are no strong correlations between the predictors.  

df3 <- read_csv("Exp3_data.csv")  

ggpairs(data = df3, columns = c(1:3, 5, 14)) + theme(panel.grid = 

 element_blank())   

df3$log_word_freq <- log(df3$word_freq + 1e-06)  

df3$log_bigram_freq <- log(df3$bigram_freq + 1e-06)  

df3$log_trans_prob <- log(df3$bigram_freq + 1e-06)  

df3$log_response_time <- log(df3$response_time + 1e-06)  

  

Descriptive statistics were also calculated for each of the variables in Experiment 3 

and are shown in table 4.3. Included are the means, standard deviations , upper and 

lower values, range and inter-quartile range.  
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Table 4.3: Means, standard deviations (SD), range and inter-quartile range (IQR) for each of the variables 

in Experiment 3  

  

  

  



 

 

 

 Figure 4.1: Matrix showing correlations between predictors in Experiment  3 
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4.4.2 Specifying the models  

A total of five Bayesian multi-level models were used to analyse the data from 

Experiment 3. As in the previous chapter, baseline and covariate only models were 

included for comparison purposes whereas Models A and B look at the individual 

contribution of bigram frequency and transitional probability, respectively. Model C 

combines both transitional probability and bigram frequency in order to examine their 

relationship with response time in the lexical decision task.    

base_model_3 <- brm(log_response_time ~ 1, data = df3,  save_all_pars = 

 TRUE, silent = TRUE, refresh = 0)  

cov_model_3 <- brm(log_response_time ~ age + concreteness + letters  + 

log_word_freq, data = df3, save_all_pars = TRUE, silent = TRUE, 

refresh = 0)  

model_3a <- brm(log_response_time ~ bigram_freq + age + concreteness  + 

letters + log_word_freq + (1 | subject) + (1 | item), data = df3,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)  

model_3b <- brm(log_response_time ~ trans_prob + age + concreteness  + 

letters + log_word_freq + (1 | subject) + (1 | item), data = df3, 

save_all_pars = TRUE, silent = TRUE, refresh = 0)  

model_3c <- brm(log_response_time ~ log_bigram_freq + log_trans_prob + 

  age + concreteness + letters + log_word_freq + (1 | subject) +   

(1 | item), data = df3, save_all_pars = TRUE, silent = TRUE,   

refresh = 0)  
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4.4.3 Cross-validation  

Leave-one-out cross-validation was used to compare the models in the first instance.  

This resulted in a LOOIC statistic for each model; these are set out in Table 4.4.  

cv_base3 <- loo(base_model_3)  

cv_cov3 <- loo(cov_model_3)  

cv_m3a <- loo(model_3a)  

cv_m3b <- loo(model_3b)  

cv_m3c <- loo(model_3c)  

  

Table 4.4: Leave-one-out statistics for the base, covariate, and experimental models for Experiment 3  

  

As we saw in Experiment 1, Model A (Bigram Frequency) once again provides the best 

description of task performance based on the data collected in the current Experiment. 

However, we also see a large amount of deviation around the mean LOOIC for all 

models which makes it impossible to discriminate between them using LOOIC alone. It 

is once again necessary to use an alternative mode of comparison in order to clarify 

these findings. As such, models were compared using Bayes factors which will allow us 

to gain ascertain the strength of evidence for one model over another.   
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At this point, it occurs that some justification is needed as to why Bayes factors were 

not chosen as the initial analysis when cross-validation was unable to provide 

definitive conclusions in the previous chapter – thereby requiring the use of Bayes 

factors to disambiguate. Raftery (1998) argues that Bayes factors should constitute 

“the final criterion for model comparison” (p. 412) – by which he means the ultimate 

criterion by which models should be assessed. However, as Liu and Aitkin (2008) 

point out, Bayes factors are somewhat sensitive to the chosen priors and, as such, 

should be interpreted with caution. This is little problem if the prior distribution 

accurately represents that of the estimated parameters in the models (Bernardo & 

Smith, 1994; Raftery & Zheng, 2003) but can result in wildly different estimates if 

poorly chosen. However, given enough data, the posterior distribution in any given 

model is less susceptible to influence from the prior. This is because the information 

within the observed data effectively overwhelms the prior and leads to the same 

conclusions regardless of our prior beliefs about the ‘real’ distribution. As mentioned 

above, the experiments in this and the previous chapter made use of uninformative 

prior distributions which, by definition, do not accurately mirror those found in the 

data and should therefore be treated with caution. Therefore, I am reticent to rely on 

Bayes factors alone – even ignoring the philosophical implications of using Bayes 

factors as a substitute for p-values – when using cross-validation will allow more 

robust interpretations of the data in those cases where we have clear differences in 

information criteria. Bayes factors then, in this case, are used as a contingency to assist 

with model selection if cross-validation fails to provide compelling evidence.  
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4.4.4 Bayes factors  

Bayes factors were also computed using the bayes_factor() function and allow for 

direct comparison of the models in terms of a likelihood ratio.  

bf_covbase3 <- bayes_factor(cov_model_3, base_model_3, silent = TRUE)  

bf_3abase <- bayes_factor(model_3a, base_model_3, silent = TRUE)  

bf_3bbase <- bayes_factor(model_3b, base_model_3, silent = TRUE)  

bf_3cbase <- bayes_factor(model_3c, base_model_3, silent = TRUE)  

bf_acov <- bayes_factor(model_3a, cov_model_3, silent = TRUE)  

bf_bcov <- bayes_factor(model_3b, cov_model_3, silent = TRUE)  

bf_ccov <- bayes_factor(model_3c, cov_model_3, silent = TRUE)  

bf_3ba <- bayes_factor(model_3b, model_3a, silent = TRUE)  

bf_3ca <- bayes_factor(model_3c, model_3a, silent = TRUE)  

bf_3cb <- bayes_factor(model_3c, model_3b, silent = TRUE)  

 

Table 4.5 shows the Bayes factor comparisons for the base, covariate, bigram frequency 

(A), transitional probability (B), and combined models (C). Values are expressed as a 

likelihood ratio indicating the strength of evidence for one model over another.  

Table 4.5: Bayes factors for statistical model comparisons for Experiment 3    
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Looking at the comparative Bayes factors (Table 4.5), Model B, which includes 

transitional probability, as well as the known covariates, item, and participant-level 

effects, is the most likely given the observed data. With a Bayes factor of > 999 it 

clearly exceeds Raftery’s threshold of BF > 150 representing very strong evidence for 

this model over the others. This is contrary to the results from Experiment 1, which 

showed bigram frequency to be the best predictor of task performance by a similar 

degree. It is also worth noting that, once again, the combined model (Model C) is 

worse than either the transitional probability or bigram frequency models.  

4.4.5 Model summary  

A summary of Model B (transitional probability) can be seen in Table 4.6. Although the 

analysis shows that transitional probability is a better predictor of task performance 

than bigram frequency (which does not feature in the most likely model) it 

demonstrates a positive relationship with response time. This suggests that higher 

transitional probabilities may be detrimental to participant performance.  

summary(model_3b)  

  

  



 

107  

  

Table 4.6: Summary statistics for Model B, the transitional probability model, values are shown on a 

logarithmic scale where such was used in the analysis  

  

Once again, we see positive relationships for number of letters and participant age as 

well as negative associations for word frequency and concreteness as would be 

expected in a lexical decision task. Although the Bayes factor analysis favours the 

transitional probability model, transitional probability is not acting as a facilitatory 

factor in word recognition; in fact, higher transitional probabilities seemingly result in 

increased response latency. The fact that transitional probability seems to be 

inhibiting participant responses is particularly surprising given that the overwhelming 

body of evidence from statistical learning paradigms suggests that greater 

predictability stemming from transitional probabilities is a robust indicator of learning 

and should result in faster recognition of words in this task.  



 

108  

  

 DISCUSSION  

Experiment 3 was designed to replicate the findings of Experiment 1 whilst reducing 

the impact of inter-item variability. Once again, we see an overwhelming strength of 

evidence for the experimental models over both the baseline and covariate only 

models. This is heartening since it suggests that participants are sensitive to the 

underlying statistical regularities in the stimulus-set. However, unlike in the 

Experiment 1 the data does not support the bigram frequency model over the 

transitional probability model.  

Additionally, in Experiment 1, large (relative to the other variables) effects of both 

item and participant were found. An attempt was made to reduce this by holding the 

target word constant across three levels of bigram frequency (zero, low, and high); 

table 4.6 shows that this was successful in reducing the inter-item variance from .06 

(table 3.6) to .04.    

 EXPERIMENT 4  

In a conceptual replication of Experiment 2, Experiment 4 utilises a lexical decision 

task with a revised stimulus list to examine its effect, if any, on response time in a 

lexical decision task. Unlike Experiment 3, the same targets were not used across 

levels, but the stimulus-list was updated relative to Experiment 2 to remove the more 

obscure items from the zero-diversity condition and replace them with more 

recognisable items.  
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4.6.1 Participants  

Fifty participants (6 Male) aged between 18 and 60 years (M= 21.49, SD= 7.96) were 

recruited from Nottingham, UK; all participants reported English as their first 

language and having no language difficulties. Research participation credits were 

offered for participation where applicable. These were the same participants that took 

part in Experiment 3.   

4.6.2 Materials  

The stimulus-list for experiment two comprised of ninety bigrams and ninety 

nonword pairs (non-words paired with a real-word prime) which were identical to 

those in Experiment 2 apart from the zero diversity items which were changed to be 

more recognisable to the participants. These were once again organised into three lists 

of thirty high (>100), low (<50), and zero diversity items (defined as words with no 

followers in the BNC), descriptive statistics for which can be seen in table 4.7. Both 

word and non-word targets were between three and eight letters long. Bigrams were 

selected to include an equal number of high, low, and zero diversity items examples of 

which can be seen in Table 4.8. Bigram frequency was not controlled across stimuli 

since attempting to do so resulted in fewer than ten items in each category, as such 

bigram frequency was free to vary across items. None of the bigrams were repeated 

across the experiments.  
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Table 4.7: Group descriptive statistics for high, low, and zero diversity items in Experiment 4  

  

Table 4.8: Example stimuli for Experiment 4  
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4.6.3 Procedure  

The procedure was identical to that of Experiment 2. Participants were once again 

asked to view letter strings as part of a primed lexical decision task and to indicate 

whether the string constituted a real English word or not by pressing either ‘m’ or ‘z’ 

on a standard QWERTY keyboard; response key allocation was varied systematically 

so that even numbered participants used ‘m’ to indicate a word and odd numbered 

participants were instructed to respond with ‘z’ if the target was a word. Stimuli were 

randomly presented and organised into two counterbalanced blocks containing fifteen 

each of high, low, and zero diversity items plus forty-five non-words. Targets remained 

on the screen for 3000ms, or until a response was given; each target was preceded by 

a 250ms prime. A fixation point was displayed at the centre of the screen before both 

the prime and target.  

4.6.4 Results  

All participants completed the lexical decision task with at least 80% accuracy. The 

data was trimmed using the same criteria as the previous experiments. Incorrect 

responses, responses faster than 200ms or slower than 1500ms, and outliers which 

fell more than three standard deviations from the participants’ mean were removed. 

This resulted in the omission of 3.32% of the data but did not change the pattern of 

results. Individual trial data (N = 1981) was then used to create five random intercept 

multi-level Bayesian models (see below for details). Following convergence, model 

comparison was conducted using leave-one-out cross-validation and Bayes factors.  
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4.6.5 Data preparation  

Data was read into R and analysed in the same manner as previous experiments. The 

Bigram frequency, transitional probability, and response time variables were log 

transformed prior to the analysis; a small constant was added to all the values to avoid 

errors resulting from trying to calculate log(0). In addition, descriptive statistics were 

calculated and are displayed in table 4.9.  

df4 <- read_csv("Exp4_data.csv")  

ggpairs(data = df4, columns = c(2:3, :7, 14)) +  theme(panel.grid = 

element_blank)   

df4$log_word_freq <- log(df4$word_freq + 1e-06)  

df4$log_bigram_freq <- log(df4$bigram_freq + 1e-06) 

df4$log_trans_prob <- log(df4$bigram_freq + 1e-06) 

df4$log_response_time <- log(df4$response_time + 1e-06)  

  

Table 4.9: Descriptive statistics for variables in Experiment 4  

  



 

 

 

Figure 4.2: Correlation matrix for Experiment 4 
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4.6.6 Specifying the models  

As with the previous experiments, models were specified and run using the default 

priors and settings from the brms package in R. Once again, comparisons are drawn 

between a baseline model, covariate only model, and three experimental models. The 

experimental models are parameterised with either bigram diversity (Model A), 

transitional probability (Model B), or both variables (Model C) alongside several 

widely recognised covariates. Item- and participant-level effects were also included in 

the experimental models but not in the baseline or covariate models.  

base_model_4 <- brm(log_response_time ~ 1, data = df4,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)   

cov_model_4 <- brm(log_response_time ~ age + concreteness + letters 

+ log_word_freq, data = df4, save_all_pars = TRUE, silent = 

TRUE,  refresh = 0)  

model_4a <- brm(log_response_time ~ log_diversity + age + 

concreteness  + letters + log_word_freq + (1|subject) + 

(1|item), data = df4,  save_all_pars = TRUE, silent = TRUE, 

refresh = 0)   

model_4b <- brm(log_response_time ~ log_trans_prob + age + concreteness  

+ letters + log_word_freq + (1|subject) + (1|item), data = df4,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)  

model_4c <- brm(log_response_time ~ log_diversity + log_trans_prob + age  

+ concreteness + letters + log_word_freq + (1|subject) + (1|item),  

data = df4, save_all_pars = TRUE, silent = TRUE, refresh = 0)  
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Model A, the bigram diversity model failed to converge with four chains of 2000 

iterations (the default for brms); as such, the model was rerun with four chains of 3000 

iterations resulting in full convergence.  

model_4a <- brm(response_time ~ diversity + age + concreteness + 

letters + log_word_freq + (1|subject) + (1|item), data = df4,  

save_all_pars = TRUE, silent = TRUE, refresh = 0, iter = 3000)  

  

4.6.7 Cross-validation  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in Table 4.10.  

cv_base4 <- loo(base_model_4)  

cv_cov4 <- loo(cov_model_4)  

cv_m4a <- loo(model_4a)  

cv_m4b <- loo(model_4b)  

cv_m4c <- loo(model_4c)  

  

Table 4.10: LOOIC for the Bayesian multi-level models from Experiment 4  

  

Table 4.10 shows that the bigram diversity model (Model A) is a better predictor of 

task performance than either the transitional probability or combined models since it 
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has the lowest leave-one-out information criterion. Unfortunately, it is not possible to 

accurately discriminate between the models based on LOOIC alone due to the large 

standard deviation around the criteria. To illustrate this point, if we consider a 

distribution centred on the LOOIC and distributed according to the standard 

distribution then we can infer that in 95% of cases the true value of the LOOIC for 

Model A – the bigram diversity model - would lie somewhere between -181.16 and 

117.16 whereas the LOOIC value for Models B and C lie in the ranges of  -133.68 to 

113.28 and -131.38 to 115.18 respectively. Given the large amount of overlap between 

these ranges it would be inappropriate to base any conclusions as to which model best 

fits the data on LOOIC. Bayes factor comparisons were therefore chosen as an 

alternate method of identifying the most likely model.  

4.6.8 Bayes factors  

Bayes factors were calculated using the bayes_factor() function built into brms and 

used for model comparison, these can be seen in table 4.11.  

bf_covbase4 <- bayes_factor(cov_model_4, base_model_4, silent = TRUE)  

bf_4abase <- bayes_factor(model_4a, base_model_4, silent = TRUE)  

bf_4bbase <- bayes_factor(model_4b, base_model_4, silent = TRUE)  

bf_4cbase <- bayes_factor(model_4c, base_model_4, silent = TRUE)  

bf_acov4 <- bayes_factor(model_4a, cov_model_4, silent = TRUE)  

bf_bcov4 <- bayes_factor(model_4b, cov_model_4, silent = TRUE)  

bf_ccov4 <- bayes_factor(model_4c, cov_model_4, silent = TRUE)  

bf_4ba <- bayes_factor(model_4b, model_4a, silent = TRUE)  

bf_4ca <- bayes_factor(model_4c, model_4a, silent = TRUE)  

bf_4cb <- bayes_factor(model_4c, model_4b, silent = TRUE)  

    



 

117  

  

Table 4.11: Bayes factors for model comparison in Experiment 4  

 

Examination of the Bayes factors in table 4.11 shows that, given the observed data, 

there is convincing evidence that Model B, the transitional probability model, is better 

than both the other experimental models and the baseline/covariate models. A Bayes 

factor of more than 999 can be considered as very strong evidence for the transitional 

probability model over both bigram frequency and the combined model.   

4.6.9 Model summary  

Bayes factor comparisons indicate the greatest strength of evidence for Model B 

which includes transitional probability as a predictor as well as the concreteness, 

number of letters, and frequency of the target-word and participant age as covariates. 

Item and participant effects are also included at the group level, the full model is 

displayed in table 4.12.  

summary(model_4b)  
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Table 4.12: Summary of the transitional probability model for Experiment 4.  

  

 DISCUSSION  

Experiment 4 addressed a potential issue with some of the more uncommon zero 

diversity stimuli used in Experiment 2.  The recondite nature of these stimuli may 

have had the effect of distorting participants’ responses, resulting in there being no 

evidence of an effect for either bigram diversity or – more surprisingly – transitional 

probability. The new stimuli were therefore selected to be more recognisable to the 

average participant whilst still being absent from bigrams within the BNC. Since the 

data from Experiment 4 now better supports one of the experimental models over the 

covariate model – in this case the transitional probability model, as would be 
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predicted from most of the published evidence - it is not unreasonable to assume that 

this change resolved the issue.   

I posited in Chapter 2 that the influence of bigram diversity could take one of two 

forms. In the first instance, one could assume that lower diversity items would result 

in more predictable transitions and therefore would improve response times due to 

greater lexical activation – a hypothesis which would be supported by the work of  

Conway et al. (2010) amongst others (e.g., Bates & MacWhinney, 1987; Glenberg & 

Gallese, 2012; Goldberg et al., 2005; Pickering & Garrod, 2004; 2007; van Berkum et 

al., 2005). This interpretation is akin to the explanations provided for transitional 

probability and, in fact, the latter better captures this facet of statistical regularity 

albeit at a potentially higher computational cost. Alternatively, bigram diversity could 

be likened to contextual diversity (Adelman et al., 2006, Adelman & Brown, 2008) 

where encountering items in a wider range of contexts has been shown to improve 

lexical decision performance. Under this hypothesis it follows that higher bigram 

diversity would result in improved performance.   

The data from the current experiment are most effectively explained by the 

transitional probability model and demonstrate that higher transitional probability 

leads to faster response times. These findings are a direct contrast to those we would 

expect given a diversity hypothesis since more diverse items are necessarily less 

predictive than their less diverse counterparts. For example, a highly diverse item like 

that is followed by 2074 unique words in the BNC making it practically useless for 

predicting what comes next. Conversely, croquet has only one follower in the BNC and 

is therefore much more useful as a predictive cue.   
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However, the model also shows a wide credible interval for the effect of transitional 

probability, ranging from -.09 to .01, meaning that we cannot be acceptably confident 

that the true value for the effect of transitional probability is not zero (or, in fact, a 

positive value) and should therefore treat the findings with caution.   

 GENERAL DISCUSSION  

The studies presented in this chapter build on those of Chapter 3 in demonstrating a 

statistical priming effect. However, the results are inconsistent with those of the 

previous experiments. Experiment 1 showed that bigram frequency was a better 

predictor than transitional probability whereas data from Experiment 3 suggests that 

the bigram frequency model is a poorer descriptor of the observed data than the 

transitional probability model and that higher transitional probabilities impair lexical 

decision performance based on Bayes factor comparisons – a surprising outcome 

given the overwhelming theoretical support for the metric. It should be noted, once 

again, that the outcome of the LOOIC and the Bayes factor comparisons are 

inconsistent. In this case, although Bayes factors based on non-informative priors 

should be interpreted with caution, cross-validation cannot provide a reasonable 

measure of difference in model fit. Therefore, it is necessary to base any conclusions 

solely on the Bayes factors with the understanding that they do not represent an ideal 

method of comparison. Though this leaves us with a somewhat inconclusive view of 

both bigram frequency and transitional probability it reinforces the need to consider 

the efficacy of different distributional statistics rather than accepting their pedigree at 

face value.  
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In the previous chapter I also highlighted a several potential methodological flaws 

with the aim of addressing them over the course of the two experiments presented 

here. In Experiment 1 it was noted that there was a large amount of inter-item 

variability. To reduce this Experiment 3 introduced target consistency across each 

level of bigram frequency. That is, the same target was paired with three different 

primes in order to form a high, low, and zero frequency trial. Examination of the final 

model from Experiment 3 shows that inter-item variability was reduced from .06 

to .04. Although it is impossible to definitively trace this reduction to the introduction 

of target consistency – the experiment was conducted using different participants who 

may have demonstrated less bias towards particular items – it is not implausible to 

suggest that this is the case given that all other aspects of the design were identical.  

Another issue that was addressed in the current chapter was the potential confusion 

arising from the zero-diversity stimuli primes in Experiment 2. In order to find primes 

that did not appear within the BNC it was necessary to utilise items which may not 

have been recognisable to the participants. It was suggested that some of the more 

obscure primes might have been confusing or misleading to participants and could 

have resulted in unreliable data. Experiment 4 was conceived as a replication of this 

experiment with a slightly modified stimulus-list whereby the more abstruse items 

were replaced by more common items which still do not appear as part of the BNC. 

Following this change, Experiment 4 shows a non-meaningful effect of transitional 

probability which tentatively supports a statistical learning strategy consistent with 

the predictability hypothesis discussed earlier in this work.  

In summary, the methodological changes made to the experiments in this chapter 

were somewhat successful in addressing the aforementioned limitations. Experiment 
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3 demonstrated a reduction in inter-item variability whereas Experiment 4 showed a 

noticeable statistical priming effect with the modified stimulus-list.   

However, the experiments detailed in this work so far were intended as a proof of 

concept study and, as such, were designed to give participants the best possible 

opportunity to benefit from the statistical priming effect. To this end, the experimental 

timings in each of the experiments were deliberately extended. Since the associations 

between words in a naturalistic stimulus-set are relatively weak (at least in 

comparison to those seen in artificial grammars) it was felt that longer presentation 

times may be required to ensure that the prime was consciously observed and that 

participants had the best possible opportunity to benefit from the statistical priming 

effect. This resulted in a longer display time for primes and an increased prime-target 

interval compared to those seen in traditional primed lexical decision tasks. However, 

since a statistical priming effect was successfully observed in most of the experiments, 

I made the decision to re-run all four experiments using more typical timings.   

Ferre, Guasch, Garcia-Chico, and Sanchez-Casas (2015) used a semantic priming 

paradigm not dissimilar to the statistical priming paradigm used here. Participants 

were shown a fixation point in the middle of the screen which was replaced after 

500ms by the prime-word which was displayed for 150ms rather than the 250ms 

used in the current experiments. Furthermore, in the four experiments covered so far, 

I interposed a fixation point between the prime and target words to allow participants 

time to fully process the prime before being exposed to the target; this is incongruent 

with Ferre et al.’s paradigm where the target immediately followed the prime. In 

retrospect, this is unrepresentative of the way in which language is encountered and 

may have resulted in the decay of lexical activation over time.  
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Similarly, in two slightly different but comparable tasks Kusonose, Hino, and Lupker 

(2016) and Ortells, Keifer, Castillo, Megias, and Morillas (2016) presented primes for 

33 and 33.5ms, respectively. Finally, Yap, Balota, and Tan (2013) used a 150ms prime 

but also included a 650ms delay between prime and target. These timings 

demonstrate that a priming effect can be observed with a significantly lower display 

time than was used in the current experiment. However, 33ms was still judged to be 

an insufficient duration given the relatively small effect sizes in my experiments. 

Moreover, Adelman (2011) showed that although participants reach asymptotic 

lexical decision accuracy after 30ms for some prime types, comparable accuracy was 

not achieved for all primes until around 40ms. As such, I decided to reduce the 

amount of time the prime was displayed for to 75ms, this is above the threshold 

demonstrated by Adelman (2011) for asymptotic accuracy whilst also allowing for the 

relatedly small effect sizes observed thus far. Additionally, apart from Yap et al., none 

of the studies introduced a delay between the prime and target words. Considering 

this the experimental sequence was also altered so that the prime was immediately 

followed by the target word rather than being delayed by 500ms.  These new timings 

should be sufficient to allow participants to consciously process the prime whilst 

avoiding any potential decaying of lexical activation resulting from the prime-target 

delay.  

The experiments in this and the previous chapter have acted as proof of concept for 

using a statistical priming paradigm with lexical decision to investigate whether 

participants can use the existing statistical properties of natural language to improve 

task performance. Based on the data presented we can tentatively conclude that 

transitional probability may not be an accurate predictor of statistical learning 
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performance. Experiment 1 shows no effect of transitional probability whereas 

Experiment 3 shows an extremely surprising positive relationship between 

transitional probability and response time when bigram frequency is manipulated. It 

can also be concluded – again, rather tentatively – that transitional probability 

performs better than bigram diversity in predicting task performance, thus 

supporting a predictability hypothesis of statistical learning.   

However, given that the current experiments were designed with the explicit aim of 

increasing the likelihood of detecting a statistical priming effect, it would be 

irresponsible to draw any definitive conclusions from the data collected thus far. 

Furthermore, the discrepancy between the current methodology and that of previous 

studies raises questions about the validity of the findings presented herein. Over the 

next two chapters I will therefore be presenting further replications of the four 

previously detailed experiments in order to improve the validity of my findings.   
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CHAPTER OVERVIEW  

Over the course of this chapter I:  

• Addressed the methodological limitations highlighted in the previous 

chapter  

• Failed to exactly replicate the effects shown in the previous experiments 

using Bayesian multi-level modelling  

• Questioned the efficacy of transitional probability as a predictor of statistical 

learning performance  

• Provided tentative support for a predictive hypothesis of statistical learning  
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5 ADJUSTED TIMINGS 1  

CHAPTER OVERVIEW  

The aim of this chapter is to:  

• Repeat Experiments 1 & 2 using timings more typically seen in primed 

lexical decision paradigms  

• Support the findings of Experiments 1 & 2 by replicating the results using a 

new participant-set  

• Expand the theoretical explanations of statistical regularities in lexical 

decision performance  

 

 PREPARATION  

The following code excerpt initialises the packages necessary to run the analyses in 

this chapter and introduces some global settings in the interest of reproducibility.  

library(formatR) 

library(readr)  

library(brms) 

library(rstanarm) 

library(GGally) 

set.seed(100)  
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  EXPERIMENTS  

Over the past two chapters I have attempted to demonstrate that repurposing existing 

language tasks, specifically lexical decision tasks, is a valid approach to investigating 

statistical learning phenomena in large scale naturalistic corpora; an endeavour I feel 

has been mostly successful. Results from the previous experiments suggest that 

participants are sensitive to the statistical regularities within the British National 

Corpus and that they can implicitly access these to more efficiently perform an explicit 

discrimination task. Nonetheless, there is some discrepancy between the 

methodologies implemented and those more commonly used in lexical decision. Many 

studies use shorter display times for primes and a smaller interval between prime and 

target (e.g., Ferre et al., 2015; Kusonose et al., 2016; Ortells et al., 2016; Yap et al., 

2013). Despite this, the evidence for an existing statistical priming effect is sufficient 

to highlight the suitability of the task. However, in the interest of scientific rigour, it 

was decided to treat the previous experiments as a proof of concept and to replicate 

them using more typical timings. Data from Experiments 1-8 will then be aggregated 

and used in a meta-analysis in Chapter 7.  

 EXPERIMENT 5  

5.3.1 Participants  

Thirty-one participants (25 females) aged between 18 and 41 years (M= 20.77, SD= 

4.17) were recruited from Nottingham, UK. All participants reported English as their 

first language and were screened for language difficulties. Participants took part in 
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both Experiment 5 and 6 and received research credits in exchange for their 

participation where applicable.  

5.3.2 Materials  

The experimental stimuli consisted of ninety bigrams and ninety non-word stimuli 

between three and eight letters long. Non-word stimuli were created using entries 

from the ARC Nonword Database (Rastle, Harrington, & Coltheart, 2002) and only 

non-words between with legal orthographic structures (in English) were used. Each 

non-word was paired with a unique real word prime chosen pseudo-randomly from 

the BNC - primes were constrained to not appear more than once across the two 

experiments. As described in Chapter 3, a list of 12,293,349 unique bigrams were 

extracted from the BNC and filtered to exclude items with a frequency of less than .1 

per million. Any bigrams containing acronyms, initialisations, contractions, 

hyphenations, non-standard or non-English words, names, numbers expressed as 

digits, or words with fewer than three letters were also excluded from the stimulus 

list. Measures of frequency (http://ucrel.lancs.ac.uk/bncfreq/flists.html), 

concreteness (Brysbaert et al., 2014), and number of letters for the target word were 

obtained for each bigram. Bigram diversity and transitional probability were also 

calculated but were not constrained during stimuli selection. The bigrams used in the 

experiment were identical to those used in Experiment 1 and were selected to include 

an equal number of high, low, and zero frequency items; group descriptive statistics 

can be seen in table 5.1 and example stimuli are displayed in table 5.2.  

  

  

http://ucrel.lancs.ac.uk/bncfreq/flists.html
http://ucrel.lancs.ac.uk/bncfreq/flists.html
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Table 5.1: Descriptive statistics for high, low, and zero frequency bigrams used as stimuli in Experiment 

5  

 

 Table 5.2: Examples of stimuli used in Experiment 5, including descriptive statistics  
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5.3.3 Procedure  

Participants were presented with a real-word prime drawn from the initial position of 

a bigram (with half of the bigrams being word pairs with the bigram being zero, low, 

or high frequency; and half being a word-nonword pair). The prime (first word of the 

bigram) remained on the screen for 75ms before being immediately replaced with the 

target (second word of the bigram); the target was presented for a maximum of 

1500ms during which time participants were required to press either ‘z’ or ‘m’ on a 

standard QWERTY keyboard; key mapping was systematically varied so that half of  

all participants used ‘z’ to indicate a word and ‘m’ to indicate a non-word whilst half 

responded with ‘m’ for words and ‘z’ for non-words. A fixation point was presented in 

the centre of the screen for 500ms prior to each trial. Prime-Target pairs were 

presented in two blocks each containing forty-five bigram trials – comprised of equal 

numbers of high, low and zero frequency items - and forty-five non-word trials. The 

order in which the blocks were presented was counterbalanced and individual trials 

were randomised for each participant.  

 RESULTS  

5.4.1 Data preparation  

Data was read into R and assessed for normality; bigram frequency, transitional 

probability, and response time were log-transformed prior to the analysis to achieve 

an approximation of a normal distribution; a small constant was added to all the 



 

131  

  

values to avoid errors resulting from trying to calculate log(0). Correlations were also 

run between each of the predictors to highlight any potential problems with  

multicollinearity (figure 5.1).    

df5 <- read_csv("Exp5_data.csv")  

ggpairs(data = df5, columns = c(4:5, 8, 10, 13)  

df5$log_word_freq <- log(df5$word_freq + 1e-06)  

df5$log_bigram_freq <- log(df5$bigram_freq + 1e-06)  

df5$log_trans_prob <- log(df5$bigram_freq + 1e-06)  

df5$log_response_time <- log(df5$response_time + 1e-06)  

  

Means, standard deviations and inter-quartile range were also calculated for each of 

the variables and are shown in  table 5.3.  

Table 5.3: Descriptive statistics for Experiment 5  

 

  



 

 

 

Figure 5.1: Correlation matrix for Experiment 5.  
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Response accuracy for all participants was greater than eighty percent and was 

comparable for both word and non-word trials. All non-word trials were removed 

prior to analysis and data was trimmed to exclude incorrect responses as well as those 

made faster than 200ms or more extreme than three standard deviations from the 

participant mean (as in Madan, Shafer, Chan, & Singhal, 2016), following this 

procedure 2.29% of the remaining correct trials were removed; this did not change the 

pattern of results.  

5.4.2 Specifying the models  

As in all previous experiments, baseline and covariate only models were used for 

comparative purposes. In addition, three random-intercept models were run using 

individual trial data (N = 7957) to predict log-transformed response times in a lexical-

decision task. Individual participants and items were included as group-level effects. 

Bigram frequency and transitional probability were included as population level 

effects, both individually and together. Target-word frequency, concreteness, target-

word length, and participant age were also included as covariates.   

base_model_5 <- brm(log_response_time ~ 1, data = df5,  save_all_pars 

= TRUE, silent = TRUE, refresh = 0) 

cov_model_5 <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq, data = df5, save_all_pars = TRUE, silent = TRUE,  

refresh = 0)  

model_5a <- brm(log_response_time ~ bigram_freq + age + concreteness 

+  letters + word_freq + (1 | subject) + (1 | item), data = df5,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)  
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model_5b <- brm(log_response_time ~ trans_prob + age + concreteness +  

letters + word_freq + (1 | subject) + (1 | item), data = df5,  

save_all_pars = TRUE, silent = TRUE, refresh = 0) 

model_5c <- brm(log_response_time ~ bigram_freq + trans_prob + age +  

concreteness + letters + word_freq + (1 | subject) + (1 | item),  

data = df5, save_all_pars = TRUE, silent = TRUE, refresh = 0)  

  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in Table 5.4.  

cv_base5 <- loo(base_model_5)  

cv_cov5 <- loo(cov_model_5)  

cv_m5a <- loo(model_5a)  

cv_m5b <- loo(model_5b)  

cv_m5c <- loo(model_5c)  

  

Table 5.4: Leave-one-out information criteria (LOOIC) for the models from Experiment 5  

  

Cross-validation shows that the transitional probability model (B) is the best model 

but is only marginally better than Model C – the combination model - based on the 

information criteria. The large standard deviation for the LOOIC also makes it 
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impossible to differentiate between the three experimental models with any degree of 

confidence.  

5.4.3 Bayes factors  

Since we were unable to adequately discriminate between the models through cross 

validation it was decided that Bayes factors would be used to weigh the evidence in 

favour of each model against each other model. These model comparisons were 

performed using the built-in Bayes factor calculator in brms and can be seen in Table  

5.5.  

bf_covbase5 <- bayes_factor(cov_model_5, base_model_5, silent = TRUE) 

bf_5abase <- bayes_factor(model_5a, base_model_5, silent = TRUE) 

bf_5bbase <- bayes_factor(model_5b, base_model_5, silent = TRUE) 

bf_5cbase <- bayes_factor(model_5c, base_model_5, silent = TRUE) 

bf_acov5 <- bayes_factor(model_5a, cov_model_5, silent = TRUE) 

bf_bcov5 <- bayes_factor(model_5b, cov_model_5, silent = TRUE) 

bf_ccov5 <- bayes_factor(model_5c, cov_model_5, silent = TRUE)  

bf_5ba <- bayes_factor(model_5b, model_5a, silent = TRUE)  

bf_5ca <- bayes_factor(model_5c, model_5a, silent = TRUE)  

bf_5cb <- bayes_factor(model_5c, model_5b, silent = TRUE)  
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Table 5.5: Bayes factors comparing the statistical models based on data from Experiment 5  

 

  

The Bayes factor comparisons shown in table 5.5 indicate that each of the 

experimental models performs better than both the base and covariate only models. It 

is also clear that both Model B and Model C – the transitional probability and 

combined models, respectively – are more likely than the bigram frequency model 

(Model A). However, there is insufficient evidence to differentiate between the 

transitional probability and combined models, just as there was with cross-validation 

(above). The Bayes factor of 1.07 suggests that there is slightly more evidence in 

favour of the combined model over the transitional probability model but, based on 

Raftery’s (1995) guidelines this could be considered as weak, at best. As such, it must 

be concluded that both models are equally likely given the data and are thus set out in 

more detail below.  

5.4.4 Model summaries  

A summary of the model can be obtained using the summary() command.  

summary(model_5b)  
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Table 5.6 shows that, in the transitional probability model (B) there is no meaningful 

effect of transitional probability on response time. This is not entirely consistent with 

Experiments 1 and 3 which favoured the bigram frequency model and showed a 

positive effect of transitional probability, respectively.  Although this combination of 

results fails to provide conclusive evidence against transitional probability being a 

reasonable predictor of statistical learning, it does support the narrative that 

statistical learning paradigms should be giving more consideration to explanations 

and metrics outside of the traditional transitional probability hypothesis.   

However, the accuracy of this model is questionable given that we do not see any of 

the expected covariate effects. In fact, opposite effects to those that would be predicted 

are evident for age and word length; this, in addition to the null effect of word 

frequency is surprising and might be considered cause for a more cautious 

interpretation of the data presented here.  
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Table 5.6: Summary of Model B, a variable intercept model based on the data from Experiment 5 which 

includes transitional probability as a fixed effect 

 

summary(model_5c)  

A summary of Model C (transitional probability) is shown in Table 5.7 This model 

combined the effects of transitional probability and bigram frequency and shows 

comparatively large effects of both. We also see the expected effects for number of 

letters and concreteness but unusual effects of age and target word frequency. It is 

also worth mentioning that the effective sample sizes in this model are consistently 

higher than those in the transitional probability model (B, above). Since effective 

sample size represents an estimate of the effective number of samples drawn from the 

Monte Carlo simulation after adjusting for autocorrelation – a value of 4000 indicates 

no correlation whereas a value of zero would indicate 100% correlation between the 

data points - higher values can be considered a more accurate representation of the 
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data. In Model B, the transitional probability model, the effective sample size is 

particularly low – although not necessarily problematic - for transitional probability; 

the same is not true of the combined model presented below (Model C). Given this 

discrepancy in effective sample size, I would be more inclined to favour the combined 

model over the transitional probability model.  

Looking at the combined model, the effects of transitional probability and bigram 

frequency mirror those found in previous experiments. Experiment 1 highlighted a 

negative effect of bigram frequency which is repeated in the current model.  

Moreover, Experiment 3 showed a positive effect of transitional probability which can 

also be seen in the combination model. The effects of the two variables are more 

pronounced in the current data than in previous experiments, however.   

Table 5.7: Model C: A variable intercept model incorporating transitional probability and bigram 

frequency 

 



 

140  

  

  DISCUSSION  

Experiment 5 was intended to replicate the findings of Experiments 1 and 3 using 

timings more typically seen in lexical decision. Model comparison using both leave-

one-out cross-validation and Bayes factors showed no meaningful difference between 

the transitional probability and combination models. Further examination of the two 

most likely models highlights a discrepancy in the observed effects of transitional 

probability and bigram frequency. In the transitional probability only model, 

transitional probability is shown to be a slight negative predictor of response time; 

these findings should be interpreted with caution however, since the 95% credibility 

intervals include zero and the model shows quite low effective sample sizes for a 

number of predictors. Conversely, the combination model shows a strong positive 

association between transitional probability and response time and a strong negative 

effect of bigram frequency.   

Given the null effect of transitional probability in Model B (The transitional probability 

model) and the opposing effects of bigram frequency and transitional probability in 

the combined model (C), it is suggested that the tenuous contribution of transitional 

probability in Model B may actually be masking the effect of bigram frequency - since 

transitional probability necessarily encapsulates the frequency of the bigram as well 

as the individual word frequency – and that, when separating the two, we see the true 

effects. At this point, this is a purely speculative position but one that is somewhat 

supported by the proof-of-concept experiments in previous chapters.  



 

141  

  

 EXPERIMENT 6  

The design and procedure were identical to the first experiment with the exception 

that bigram diversity was manipulated rather than bigram frequency. The nature of 

bigram diversity is such that the manipulation in this experiment focuses on the prime 

rather than the target word of the bigram.  

5.6.1 Participants  

Thirty-one participants (25 females) aged between 18 and 41 years (M= 20.77, SD= 

4.17) were recruited from Nottingham, UK. All participants reported English as their 

first language and were screened for language difficulties. Participants took part in 

both Experiment 5 and 6 and received research credits in exchange for their 

participation where applicable.  

5.6.2 Materials  

Measuring bigram diversity required examining the number of words that follow a 

prime word (‘followers’) in the BNC. For example, armed is followed by forty unique 

words in the BNC and therefore has forty followers. The stimulus-list for experiment 

six comprised of forty-five bigrams and forty-five non-word pairs (non-words paired 

with a real-word prime) which were identical to those used in Experiment 4. These 

were selected from a list of unique bigrams between three and eight letters long 

extracted from the BNC and filtered to remove names, acronyms, initialisations, 

hyphenations, and numbers expressed as digits. Non-word stimuli were created using 

entries from the ARC Nonword Database and only non-words between with acceptable 

English orthographic structures were used; for example, since the letter combination 



 

142  

  

qa does not occur in English it did not appear in any of the non-words for this 

experiment. Each non-word was paired with a real word prime which was constrained 

to not appear more than once across the two experiments but was otherwise 

randomly selected from the BNC. Bigrams were selected to include an equal number of 

high, low, and zero diversity items, examples of which can be seen in Table 5.9. Bigram 

frequency was not controlled across stimuli since attempting to do so resulted in a 

prohibitively small stimulus-pool, as such bigram frequency was free to vary across 

items. Group descriptive statistics can be seen in table 5. 8.  

    

Table 5.8: Group descriptive statistics for high, low, and zero diversity items in Experiment 6  
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Table 5.9: Example high, low, and zero diversity items used in Experiment 6  

  

5.6.3 Procedure  

Participants were presented with a real-word prime drawn from the initial position of 

a bigram (with half of the bigrams being word pairs with the bigram being zero, low, 

or high frequency; and half being a word-nonword pair). The ‘prime’ (first word of 

the bigram) remained on the screen for 75ms before being immediately replaced with 

the ‘target’ (second word of the bigram); the target was presented for a maximum of 

1500ms during which time participants were required to press either ‘z’ or ‘m’ on a 

standard QWERTY keyboard; key mapping was systematically varied so that half of all 
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participants used ‘z’ to indicate a word and ‘m’ to indicate a non-word whilst half 

responded with ‘m’ for words and ‘z’ for non-words. A fixation point was presented in 

the centre of the screen for 500ms prior to each trial. Prime-Target pairs were 

presented in two blocks each containing forty-five bigram trials and forty-five non-

word trials. The order in which the blocks were presented was counterbalanced and 

individual trials were randomised for each participant.  

 RESULTS  

Accuracy was comparable for both word and non-word trials. Data from experiment 

two was trimmed and analysed using the same procedure as the first experiment, a 

total of 2.04% of correct trials were removed (this did not change the pattern of 

results). All response time data were log-transformed; mean RTs for each participant 

were then analysed using a Bayesian multi-level regression. Individual trial data (N = 

2170) was used to predict log-transformed response times in a lexical-decision task 

using three random-intercept models. Individual participants and items were included 

as group-level effects. Bigram diversity and transitional probability were included as 

population-level effects, both singly and individually. Target-word frequency, 

concreteness, target-word length, and participant age were also included as 

covariates. Leave-one-out cross-validation statistics were used to compare model fit, 

with smaller values considered indicators of goodness-of-fit. Log-transformed values 

were used for bigram diversity, word frequency, transitional probability and response 

time; a constant of .000001 was added to all values to avoid errors resulting from 

items with values equal to zero.   
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5.7.1 Data preparation  

Data was read into R and analysed in the same manner as Experiment 1, correlation 

between predictors was examined and the results displayed in figure 5.2. The Bigram 

frequency, transitional probability, and response time variables were log transformed 

prior to the analysis; a small constant was added to all the values to avoid errors 

resulting from trying to calculate log(0).   

df6 <- read_csv("Exp6_data.csv") ggpairs(data = df6, columns =  

c(5, 7:8, 10, 13)) +  theme(panel.grid = element_blank())   

df6$word_freq <- log(df6$word_freq + 1e-06) 

df6$bigram_freq <- log(df6$bigram_freq + 1e-06) 

df6$trans_prob <- log(df6$bigram_freq + 1e-06) 

df6$response_time <- log(df6$response_time + 1e-06)  

  

Table 5.10: Descriptive statistics for Experiment 6  
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The descriptive statistics for each of the variables used in the analyses in Experiment 6 

are displayed in table 5.10.  Shown in the  table are the means, standard deviations, 

minimum  and maximum values of each variable along with the range and 

interquartile range. 



 

 

 

Figure 5.2: Correlation matrix for Experiment 6  
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5.7.2 Specifying the models  

Models were run in the same way as previous experiments and consist of a baseline 

model, covariate model, and three experimental models. Models A, B, and C examined 

bigram diversity, transitional probability, and both variables respectively; all models 

included participant age, target word frequency, concreteness, and number of letters 

as population-level effects and participant and item as group-level effects.  

base_model_6 <- brm(response_time ~ 1, data = df6, save_all_pars = 

TRUE, silent = TRUE, refresh = 0)   

cov_model_6 <- brm(response_time ~ age + concreteness + letters 

+  word_freq, data = df6, save_all_pars = TRUE, silent = 

TRUE,  refresh = 0)  

 model_6a <- brm(response_time ~ diversity + age + concreteness 

+ letters + word_freq + (1|subject) + (1|item), data = df6,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)  

 model_6b <- brm(response_time ~ trans_prob + age + 

concreteness + letters + word_freq + (1|subject) + 

(1|item), data = df6,  save_all_pars = TRUE, refresh = 0)   

model_6c <- brm(response_time ~ diversity + trans_prob + age +  

concreteness + letters + word_freq + (1|subject) + 

(1|item),  data = df6, save_all_pars = TRUE, silent = TRUE, 

refresh = 0)  
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5.7.3 Cross-validation  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in Table 5.11.  

cv_base6 <- loo(base_model_6)  

cv_cov6 <- loo(cov_model_6)  

cv_m6a <- loo(model_6a)  

cv_m6b <- loo(model_6b)  

cv_m6c <- loo(model_6c)  

  

Table 5.11 shows that the bigram diversity model is slightly better at predicting the 

data than the remaining models. However, we once again encounter the problem of 

high standard deviation in the leave-one-out information criteria which makes it 

impossible to meaningfully discriminate between the models. Although this has been 

a recurring theme throughout this thesis the decision was made to continue using 

LOOIC as the initial metric of model comparison since it is the most comprehensive 

measure of model fit available and despite being unable to discriminate between the 

three experimental models has proven effective at demonstrating the improvement of 

these models over the baseline and covariate only models. Additionally, the large 

standard deviation around the information criteria forces a more conservative 

interpretation of the model comparisons and allows the selection of one model over 

another only if there is a clear and substantial improvement in LOOIC. As such, I will 

continue to run and report cross-validation statistics in the remaining chapters of this 

work.  
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Table 5.11: Cross-validation information criteria for statistical models based on data from Experiment 

6  

  

5.7.4 Bayes factors  

Due to the lack of discrimination between the models based on cross-validation, 

Bayes factors were used for model comparison and can be seen in Table 5.12.  

bf_covbase6 <- bayes_factor(cov_model_6, base_model_6, silent = TRUE) 

bf_6abase <- bayes_factor(model_6a, base_model_6, silent = TRUE) 

bf_6bbase <- bayes_factor(model_6b, base_model_6, silent = TRUE) 

bf_6cbase <- bayes_factor(model_6c, base_model_6, silent = TRUE) 

bf_acov6 <- bayes_factor(model_6a, cov_model_6, silent = TRUE) 

bf_bcov6 <- bayes_factor(model_6b, cov_model_6, silent = TRUE) 

bf_ccov6 <- bayes_factor(model_6c, cov_model_6, silent = TRUE)  

bf_6ba <- bayes_factor(model_6b, model_6a, silent = TRUE)  

bf_6ca <- bayes_factor(model_6c, model_6a, silent = TRUE)  

bf_6cb <- bayes_factor(model_6c, model_6b, silent = TRUE)  
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Table 5.12: Bayes factor comparisons for statistical models based on data from Experiment 6  

  

Based on the Bayes factors set out in table 5.12, we can see that each of the 

experimental models is more likely, given the evidence, than both the baseline and 

covariate models. We also see that the transitional probability model (B) is better 

than both the bigram diversity (A) and  combined (C) models by a margin of greater 

than 999 (since the comparison shows the strength of evidence for C over B as less 

than .001, we can obtain the inverse Bayes factor by doing 1/.001). This means that, 

as in Experiment 4, there is a greater strength of evidence for the transitional 

probability model than any of the other models presented here, based on the 

observed data.  

5.7.5 Model summary  

 summary(model_6b)  

A summary of the transitional probability model is set out in table 5.13, this model 

was judged as most likely based on Bayes factor analysis (above).  
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Table 5.13: Summary of Model B, the transitional probability model 

  

Table 5.11 shows a minor negative association between transitional probability and 

response time. However, the wide credibility interval (which also includes zero) 

indicates that this result should be interpreted with caution.  

 DISCUSSION  

Experiment 6 examined the effects of bigram diversity and transitional probability on 

response time in a lexical decision task. Model comparison suggests that the 

transitional probability model is the most likely model given the observed data. 

Further examination of the model shows that transitional probability has a weak 

negative relationship with response time, albeit not one that could be described as 

‘significant’ as it is commonly understood. This is congruent with Experiment 4, in the 

previous chapter, which suggested a non-meaningful effect of transitional probability 

but of a greater magnitude than the effect seen in the current data.   
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 GENERAL DISCUSSION  

In Experiments 5 and 6, I attempted to replicate the findings highlighted by the 

Experiments (1-4) shown in previous chapters using experimental timings more 

typical of the primed lexical decision paradigm. The original experiments were 

designed in such a way as to afford participants what I believed to be the greatest 

possible opportunity to encode, and therefore benefit from, the statistical primes 

without significant deviation from the experimental architecture usually seen in such 

tasks. This resulted in longer prime exposure times than are typical in published 

research as well as delay between prime and target which, on reflection, could have 

allowed lexical activation to decay prior to the target onset. Since these were 

originally intended as proof of concept for statistical priming it was unclear as to 

whether participants would pick up on what are relatively weak statistical 

associations drawn from a large naturalistic language corpus. With these prototype 

timings, the original experiments were somewhat successful in demonstrating 

sensitivity to the priming effect provided by the distributional statistics inherent to 

the British National Corpus; as such, the studies were repeated using a shorter 

exposure time for the prime and no delayed onset for the target.   

The experiments presented in this chapter suggest that the distributional statistics of 

a language still influence task performance in a primed lexical decision task when the 

prime is presented for a much shorter period. Furthermore, the most likely models 

for Experiments 5 and 6 (above) are congruent with the interpretations of the 

previous four experiments. In Experiment 5, which contrasted the effects of bigram 

frequency and transitional probability on word recognition speed, I showed that a 

combined model including both metrics was the best model at describing the data. 
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This highlighted a negative association between bigram frequency and response time 

as well as a positive relationship between transitional probability and response time. 

This is an interesting development since it suggests that there is more to be gained by 

increased exposure to a bigram than by stronger predictivity, at least in the current 

task.   

Conventional thinking in statistical learning theory is that learners are using 

transitional probability to extract patterns from any given input and use these to 

inform beliefs about the nature of the stimulus. This is most prominent in studies of 

word segmentation (e.g., Saffran, Aslin, & Newport, 1996) where infants are 

presumed to use differences in conditional probability as a way of discriminating 

between within- and across- item transitions (hence the term transitional 

probability) in order to accurately parse words from speech streams in the absence of 

alternative cues (e.g., syllable stress or utterance boundaries). However, earlier in 

this work I argued that transitional probability constitutes a complex mental 

calculation that is unlikely to scale to naturalistic language-sets. Furthermore, 

transitional probabilities demonstrated in artificial grammars provide unrealistic 

predictive cues which do not adequately represent the way in which humans interact 

with languages. It was, and still is, my assertion that bigram frequency represents a 

better tool for understanding language patterns due to its less complex nature and is 

a more intuitive representation of how language is used.   

To clarify, bigram frequency represents the number of times a bigram is encountered 

in a given subset of language. In this way, it represents a snapshot of bigram usage at 

any given time. This is arguably more useful than transitional probability which 

represents the likelihood of one item appearing after another – at least for the current 
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paradigm in which we are interested in previously learnt associations, this may be 

different for newly acquired information where predictability could be more 

beneficial. This is more in line with the way in which humans understand and 

describe their environment (e.g., McDowell et al., 2018; Tversky and Kahneman, 

1973). Moreover, the intuitive way in which we interact with language can be at odds 

with the actual distributional properties as represented by transitional probability.   

Consider the bigrams Premier League and insights into, both have a transitional 

probability within the British National Corpus of .35 which suggests that when 

presented with either Premier or insights learners should be able to predict the 

second part of the bigram with equal accuracy. However, it would be difficult to argue 

that insights into is as recognisable a bigram as Premier League and we might intuit 

that one is more likely to occur in a given subset of language than the other. In this 

example, Premier League occurs over three times more frequently (879 compared to 

270 occurrences) than insights into demonstrating that although transitional 

probabilities incorporate a frequency component, in some cases they serve to 

obfuscate this information.  

If we accept the combined model, then Experiment 5 supports a bigram frequency 

hypothesis since the data suggests that higher frequency bigrams lead to faster 

recognition of words, but it also suggests that transitional probability might be 

interfering with the recognition of words. But what about the transitional probability 

only model (Model B)? This model was shown to be indistinguishable from the 

combined model on both LOOIC and Bayes factor comparison and shows transitional 

probability as having a non-meaningful, negative relationship with response time. As 

I mentioned above, there is some question as to the reliability of this model compared 
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to Model C (Combined model) which leads me to favour the latter model overall; but 

if we consider them together, we see something interesting. In the absence of bigram 

frequency as a predictor, transitional probability appears to account for a small 

increase in task performance. However, when bigram frequency is introduced to the 

model, we see reversal of the transitional probability effect and a new effect of bigram 

frequency improving response time. This may suggest that transitional probability is 

masking a frequency effect which is better accounted for by bigram frequency.  

Once again, we see that transitional probability does not perform as expected given 

the strength of published evidence behind it. Although the studies presented here are 

far from conclusive, they should prompt us to ask whether transitional probability is, 

realistically, the best metric of statistical distribution given that there appears to be 

little benefit beyond that provided by a raw frequency metric.  

Experiment 6 was equally successful at replicating the effects shown in the proof of 

concept chapters in that there was, once again, no meaningful effect of either 

transitional probability or bigram diversity. This is somewhat disheartening given the 

documented effects of predictability and contextual diversity in language tasks but, 

considering the results from the bigram frequency experiments is not particularly 

surprising. In those experiments, as discussed above, we see no real benefit of the 

predictability component of transitional probability and so to see the same null 

effects in Experiment 6 is also somewhat encouraging since it goes some way towards 

supporting that hypothesis. That said, it is becoming clear that bigram diversity is 

unlikely to constitute a meaningful metric in describing the statistical regularities of a 

stimulus-set. However, in the interest of completeness – and for the sake of the 

planned meta-analysis – I shall still be conducting the planned final experiment 
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comparing transitional probability and bigram diversity. These experiments, 

presented in the next chapter, attempt to build on the findings from Experiments 5 

and 6 with the target stimuli held constant across each level of bigram frequency and 

diversity, respectively.   
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CHAPTER SUMMARY  

In this chapter I:  

• Repeated Experiments 1 & 2 using timings more typically seen in primed 

lexical decision paradigms  

• Showed that bigram frequency may be a better metric of statistical 

distribution than transitional probability in predicting word recognition 

performance  

• Suggested that transitional probability may be masking an effect of frequency  

• Questioned the value of the predictive component of transitional probability  

• Concluded that bigram diversity is unlikely to constitute a meaningful 

descriptor of statistical regularity  
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6 ADJUSTED TIMINGS 2  

CHAPTER OVERVIEW  

In Chapter 6, I:  

• Repeat Experiments 5 & 6 whilst holding target words constant at each level 

of bigram frequency and bigram diversity  

• Will expand on the theoretical interpretations set out in the previous 

chapter based on the data from Experiments 7 & 8  

  

 PREPARATION  

The following code excerpt initialises the packages necessary to run the analyses in 

this chapter and introduces some global settings in the interest of reproducibility.  

library(formatR) 

library(readr) 

library(brms) 

library(rstanarm) 

library(GGally) 

set.seed(100)  
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 EXPERIMENTS  

In Chapter 4, I discussed how a large amount of variation in response times could be 

attributed to differences in individual items. To recap, although efforts were made to 

balance the stimuli across the three levels of bigram frequency and diversity in their 

respective experiments, individual items may differ both qualitatively and 

experientially for each participant. Two separate items cannot therefore be treated as 

equivalent even when perfectly balanced on every dimension and treating them as 

such is known as the language-as-fixed-effects fallacy (Clark, 1973).  

In order to overcome this issue and effectively reduce variation between items the 

stimuli for Experiment 3 were adjusted in such a way that the target word was held 

constant at the high, low, and zero frequency levels. This was deemed successful at 

reducing the inter-item variability but has the potential to introduce practise effects 

since participants were exposed to each target on multiple trials. Conducting a 

replication of Experiment 3 will allow me to contrast the results of the two paradigms 

and identify whether there is any improvement in task performance when the target 

word is held constant across the different levels of bigram frequency.   

Experiment 7 is therefore a replication of Experiment 5 but with the targets held 

constant across the different levels of bigram frequency. Similarly, Experiment 8 

seeks to replicate the findings of Experiment 6 by once again holding the targets 

constant across levels. Thus, these experiments replicate those presented in Chapter 

4 using the newly modified timings. Interpretations as to the role of bigram 

frequency, bigram diversity, and transitional probability will then be based upon the 

findings of each set of experiments.  
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 EXPERIMENT 7  

A primed lexical decision task in which the target words were held constant across 

different levels of bigram frequency was used to assess the relative impacts of bigram 

frequency and transitional probability response times. Data from the experiment was 

used to inform a number of variable-intercept models, the best of which was selected 

using leave-one-out cross-validation and Bayes factor comparisons.  

6.3.1 Participants  

Fifty participants (44 females) aged between 18 and 53 years (M= 22.29, SD= 9.44) 

were recruited from Nottingham, UK. All participants reported English as their first 

language and were screened for language difficulties. Participants received research 

credits in exchange for their participation where applicable.  

6.3.2 Materials  

The experimental stimuli consisted of one-hundred and eighty bigrams and one 

hundred and eighty non-words. These were drawn from the same pool of 12,293,349 

unique bigrams extracted from the British National Corpus and used in each of the 

previous experiments. Non-word stimuli were drawn from the ARC nonword 

Database (Rastle et al, 2002) and constrained to be between three and eight letters 

long and contain only legal orthographic structures in English. Each non-word was 

paired with a unique real word prime to form a non-word bigram. Measures of 

frequency, concreteness, and number of letters were also obtained for use as 

covariates. Since the targets were identical across levels, the main constraint was 

identifying targets that occurred as part of both low and high frequency bigrams – 
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zero frequency bigrams, by definition, did not occur in the British National Corpus 

and were created by pairing a real word with the targets from the other levels and 

using a lookup function to ensure the bigram was not present in the stimulus pool. 

This resulted in a stimulus-set comprising sixty sets of three targets, each with a high, 

low, and zero frequency bigram, examples of which can be seen in Table 6.2, with 

group descriptive statistics shown in table 6.1.  

  

Table 6.1: Group descriptive statistics for high, low, and zero bigram frequency  
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Table 6.2: Example stimuli for Experiment 7  

  

6.3.3 Procedure  

Participants were presented with series of trials in which a real-word prime drawn 

from the initial position of a bigram appeared on the screen for 75ms before being 

immediately replaced with the target, which consisted of the second word of the same 

bigram. The target was presented for a maximum of 1500ms during which time 

participants were required to press either ‘z’ or ‘m’ on a standard QWERTY keyboard; 

key mapping was systematically varied based on participant number so that odd 
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numbered participants used ‘z’ to indicate a word and ‘m’ to indicate a non-word 

whilst even-numbered participants responded with ‘m’ for words and ‘z’ for 

nonwords. A central fixation point was presented for 500ms prior to each trial. These 

timings replace the longer, less typical 150ms prime-exposure time and remove the 

delay between the display of prime and target words. As noted previously, these new 

timings are representative of those more widely seen in lexical decision experiments 

(e.g., Ferre et al., 2015; Kusonose et al., 2016). Prime-Target pairs were presented in 

four blocks each containing forty-five bigram trials. Each block contained fifteen high, 

low and zero frequency items and forty-five non-word trials, for a total of ninety 

items per block. The blocks were presented in a counterbalanced order and 

individual trials were randomised for each participant.  

 RESULTS  

6.4.1 Data preparation  

Data was trimmed to exclude incorrect responses as well as those made faster than  

200ms or more extreme than three standard deviations from the participant mean  

(as in Madan, Shafer, Chan, & Singhal, 2016), a total of 1.96% of correct trials were 

removed (this did not change the pattern of results). Once again, participants showed 

high levels of accuracy for both word and non-word trials (>80%). All response time 

data were log-transformed; response times for each participant were then analysed 

using a Bayesian multi-level regression.   
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df7 <- read_csv("Exp7_data.csv") ggpairs(data = df7, columns =  

c(2:3, 5, 7, 13)) +  theme(panel.grid = element_blank())  

df7$log_word_freq <- log(df7$word_freq + 1e-06)  

df7$log_bigram_freq <- log(df7$bigram_freq + 1e-06)  

df7$log_trans_prob <- log(df7$bigram_freq + 1e-06)  

df7$log_response_time <- log(df7$response_time + 1e-06)  

 

Correlations between predictors were examined and no evidence of multicollinearity was 

found. Figure 6.1 shows the distributions for each predictor as well as the correlation 

coefficients.  Also calculated were descriptive statistics for each variable, these are shown 

in table 6.3.  

 Table 6.3: Descriptive statistics for Experiment 7  

 



 

 

 

Figure 6.1: Correlation matrix for Experiment 7  
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6.4.2 Specifying the models  

Log-transformed response times were modelled using Individual trial data (N = 

11,083) in five random-intercept models. Individual participants and items were 

included as group-level effects. Bigram frequency and transitional probability were 

included as population-level effects, both singly and individually. Target-word 

frequency, concreteness, target-word length, and participant age were also included 

as covariates. Baseline and covariate models were used for comparative purposes 

alongside three experimental models: Model A, the bigram frequency model; Model B, 

the transitional probability model; and Model C, the combined model.  

In Chapter 4 I highlighted some of the problems associated with using Bayes factors 

for model comparison; particularly, that they can vary wildly based on the chosen 

priors. This becomes problematic if there is insufficient new data from which to draw 

conclusions since the prior distributions will have a more pronounced effect on the 

posterior distribution in small datasets than large ones. Although I don’t believe this 

to be an issue in the current datasets due to the large number of observations, the 

accuracy of the analyses can still be improved by the application of conjugate priors.  

That is, priors that more accurately represent the expected distribution of the data. 

Unfortunately, I was unable to specify more accurate priors in earlier experiments 

owing to the novel use of the lexical decision paradigm to investigate statistical 

priming effects – statistical learning research is focused primarily on the acquisition of 

new information and the manipulation of distributional statistics to facilitate learning. 

This meant that there was insufficient data available to predict the likely effect sizes, 

particularly for bigram frequency and bigram diversity which have not previously 

been studied. As such, the decision was made to use the non-informative default 



 

168  

  

priors built-in to the brms package for all predictors. However, the experiments 

presented in previous chapters allow for a more accurate specification of the prior 

distribution based on the effect sizes observed in those analyses.   

The following conjugate priors were therefore placed on each of the predictors:  

Bigram frequency = N(-.01, .01), transitional probability = N(0, .01), age = 

N(.01, .01), word frequency = N(0, .01), concreteness = N(0, .01), and number of 

letters in the target word = N(.01, .01). Prior distributions were selected based on the 

mean of the observed posterior distributions of all models in the previous 

experiments with slightly wider standard deviations. No priors were placed on the 

baseline model since it does not include any predictor variables.  

6.4.3 Define priors  

priors_cov7 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq),  prior("normal(0, .01)", class = "b", coef 

= concreteness), prior("normal(.01, .01)", class = "b", 

coef = letters), prior("normal(.01, .01)", class = "b", 

coef = age)) 

priors_model_a7 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq),  prior("normal(0, .01)", class = "b", coef = 

concreteness), prior("normal(.01, .01)", class = "b", coef = 

letters),  prior("normal(.01, .01)", class = "b", coef = age), 

prior("normal(-.01, .01)", class = "b", coef = log_bigram_freq))  
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priors_model_b7 <- c(prior("normal(0, .01)", class = "b",  coef 

= log_word_freq),  prior("normal(0, .01)", class = "b", coef 

= concreteness), prior("normal(.01, .01)", class = "b", coef 

= letters),  prior("normal(.01, .01)", class = "b", coef = 

age), prior("normal(0, .01)", class = "b", coef = 

log_trans_prob))  

priors_model_c7 <- c(prior("normal(0, .01)", class = "b",  coef 

= log_word_freq), prior("normal(0, .01)", class = "b", coef 

= concreteness), prior("normal(.01, .01)", class = "b", coef 

= letters),  prior("normal(.01, .01)", class = "b", coef = 

age), prior("normal(-.01,.01)", class = "b", coef = 

log_bigram_freq), prior("normal(0, .01)", class = "b", coef 

= log_trans_prob))  

  

6.4.4 Run Models  

base_model_7 <- brm(log_response_time ~ 1, data = df7,  

save_all_pars = TRUE, silent = TRUE, refresh = 0)   

cov_model_7 <- brm(log_response_time ~ age + concreteness + 

letters + log_word_freq, data = df7, save_all_pars = TRUE, 

prior = priors_cov7, silent = TRUE, refresh = 0)   

model_7a <- brm(log_response_time ~ log_bigram_freq + age + 

concreteness + letters + log_word_freq + (1 | subject) + (1 

| item), data = df7,  save_all_pars = TRUE, prior = 

priors_model_a7, silent = TRUE, refresh = 0) 
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model_7b <- brm(log_response_time ~ log_trans_prob + age + 

concreteness + letters + log_word_freq + (1 | subject) +  

(1 | item), data = df7,  save_all_pars = TRUE, prior = 

priors_model_b7, silent = TRUE, refresh = 0)  

model_7c <- brm(response_time ~ bigram_freq + trans_prob + age + 

concreteness + letters + word_freq + (1 | subject) + (1 | 

item),  data = df7, prior = priors_model_c7, save_all_pars = 

TRUE,  silent = TRUE, refresh = 0)  

  

6.4.4.1 Cross-validation  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in Table 6.3.  

cv_base7 <- loo(base_model_7) 

cv_cov7 <- loo(cov_model_7) 

cv_m7a <- loo(model_7a) 

cv_m7b <- loo(model_7b) 

cv_m7c <- loo(model_7c)  

  

Cross-validation statistics show that the baseline model is by far the poorest at 

predicting the data and that the bigram frequency model (A) has a much lower LOOIC 

than the covariate and the other experimental models, making this the best model at 

predicting new data – assuming that data was drawn from an identical distribution. 

Closer examination of the standard deviation for each model shows that there is no 

meaningful difference between the covariate model, the transitional probability 
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model, and the combined model. Considering these differences, it is appropriate to 

select the bigram frequency model as the best fit for the observed data without the 

need for Bayes factor comparisons. In the interest of consistency, and to further 

confirm these results, Bayes factors were still calculated for model comparison.   

Table 6.4: Leave-one-out Cross-validation Information Criteria for models based on data from 

Experiment 7  

   

6.4.5 Bayes factors  

Bayes factors were calculated as a confirmatory measure and used to compare models 

from Experiment 7, these can be seen in Table 6.5.  

bf_covbase7 <- bayes_factor(cov_model_7, base_model_7, silent = TRUE) 

bf_7abase <- bayes_factor(model_7a, base_model_7, silent = TRUE) 

bf_7bbase <- bayes_factor(model_7b, base_model_7, silent = TRUE) 

bf_7cbase <- bayes_factor(model_7c, base_model_7, silent = TRUE) 

bf_acov7 <- bayes_factor(model_7a, cov_model_7, silent = TRUE) 

bf_bcov7 <- bayes_factor(model_7b, cov_model_7, silent = TRUE) 

bf_ccov7 <- bayes_factor(model_7c, cov_model_7, silent = TRUE)  

bf_7ba <- bayes_factor(model_7b, model_7a, silent = TRUE)  

bf_7ca <- bayes_factor(model_7c, model_7a, silent = TRUE)  

bf_7cb <- bayes_factor(model_7c, model_7b, silent = TRUE)  
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Table 6.5: Bayes factors comparing statistical models based on data from Experiment 7  

 

As can be seen in table 6.5, there is strong evidence for the bigram frequency model 

over the baseline (>999), covariate (>999), transitional probability (1/.001 =  

1000) models, and reasonable evidence versus the combined model (1/.001 = 1000). 

This confirms the conclusions from cross-validation and allows for a more confident 

interpretation of the results.  

6.4.6 Model summary  

Based on leave-one-out cross-validation and confirmatory Bayes factor comparisons, 

the bigram frequency model is the most likely given the observed data; this model is 

set out in more detail in table 6.6.  

summary(model_7a)  
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Table 6.6: Summary of Model A, the bigram frequency model. All values are presented on a logarithmic 

scale where such was used in the analysis.  

  

 DISCUSSION  

Experiment 7 builds on the findings of Experiment 5 by once again showing bigram 

frequency to be a negative predictor of response times in a primed lexical decision 

task, although not of the same magnitude seen in the previous experiment. This once 

again demonstrates that transitional probability is not as certain a metric of statistical 

learning as published literature would suggest. This may be related to the specific 

paradigm in use here or could represent a deeper issue for Statistical Learning Theory 

more generally. For example, this could be an example of publication bias in the 

experiments being reported or of transitional probability masking a simpler 

frequency-based effect. Since the current studies do not assess the role of transitional 
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probability in the acquisition of new information it is not possible to be clearer as to 

the nature of the discrepancy between these findings and those reported in statistical 

learning paradigms more widely.  

However, In Chapter 2, I postulated that individuals develop stronger lexical 

representations for items that are encountered in a wider range of contexts. This is 

congruent with work by Hurtado et al. (2008; also, Jones & Rowland, 2017; Rowe, 

2008) which shows that diversity in care-giver speech improves children’s vocabulary 

acquisition. Furthermore, I suggested that having multiple contextual references for a 

linguistic item could lead to the development of context-independent lexical 

representations. This is incongruent with the transitional probability hypothesis 

assumed by statistical learning theory since higher transitional probabilities are 

associated with greater predictability which, as previously discussed, may result in 

the development of more context-dependent lexical representations. This would 

explain the lack of effect in the current paradigm since such representations would be 

more difficult to apply to novel situations. It becomes necessary to investigate 

whether the effect of transitional probability is absent when participants are required 

to learn new information.  

With respect to bigram frequency, the results herein are congruent with an 

experiential model of learning such as those discussed by Bybee (1998) and 

Tomasello (2000), amongst others. Higher bigram frequencies can be said to 

represent greater linguistic experience – since participants are likely to have 

encountered the bigram numerous times in everyday interactions – and therefore we 

can presume that they constitute stronger lexical representations than those 

encountered less frequently.  
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 EXPERIMENT 8  

The design and procedure were identical to the Experiment 7 with the exception that 

bigram diversity was manipulated rather than bigram frequency. The nature of 

bigram diversity is such that the manipulation in this experiment focuses on the prime 

rather than the target word of the bigram.  

6.6.1 Participants  

Thirty-two participants (22 females) aged between 19 and 22 years (M= 20.31, SD= 

1.03) were recruited from Nottingham, UK. All participants reported English as their 

first language and were screened for language difficulties. Participants received 

research credits in exchange for their participation where applicable.  

6.6.2 Materials  

The experimental stimuli consisted of ninety bigrams and ninety non-word stimuli. 

Stimuli were selected in the same way as previous experiments with the exception 

that the target words were held constant across the high, low, and zero diversity items 

to reduce the potential variance stemming from individual targets. This resulted in a 

stimulus-set comprising thirty sets of three targets, each with a high, low, and zero 

diversity bigram, examples of which can be seen in Table 6.7. Bigram selection was 

limited by the requirement that the target-words remain constant across the three 

levels, which resulted in a much smaller stimulus-pool from which to select the 

bigrams. Moreover, only four of the target words in the reduced stimulus pool did not 

begin with the letter A; these were therefore removed to avoid a potential 

distinctiveness effect. Descriptive statistics for each level of bigram diversity can be 
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seen in table 6.6. It should be noted that although the manipulation in this experiment 

is related to the prime, it was not possible to hold the prime constant across levels of 

bigram frequency. This is because changing the target word does not alter the number 

of followers the prime has; for example, the word modern has 102 followers in the 

British National Corpus, this does not change whether the bigram is modern language, 

modern age, or even modern potato since the bigram diversity is inherent to the 

prime and is unaffected by the target word. However, this does mean that it is possible 

to hold the target word constant without compromising the range of bigram diversity 

in the experiment.  

Table 6.7: Group descriptive statistics for levels of bigram diversity in Experiment 8  
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Table 6.8: Example stimuli for Experiment 8  

  

6.6.3 Procedure  

The procedure was identical to Experiment 7 except that Prime-Target pairs were 

presented in four blocks, two of which contained twenty-three bigram trials and 

twenty-two non-word trials and two of which contained twenty-two bigram trials and 

twenty-three non-word trials.  
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6.6.4 Results  

Data from Experiment 8 was trimmed and analysed using the same procedure as the 

previous experiments, a total of 2.04% of correct trials were removed (this did not 

change the pattern of results); accuracy was comparable for both words and 

nonwords. All response time data were log-transformed; mean response times for 

each participant were then analysed using a Bayesian multi-level regression.  

6.6.5 Data preparation  

Data was read into R and analysed in the same manner as previous experiments. Log 

transformed values were used for bigram diversity, word frequency, transitional 

probability, and response time; a constant of .000001 was added to all values to avoid 

errors resulting from items with values equal to zero. Correlations between predictors 

were examined using the ggpairs function from the GGally (Schloerke et al., 2018) 

package in R and are shown in figure 6.2; descriptive statistics are shown in table 6.9.  

df8 <- read_csv(“Exp8_data.csv”) ggpairs(data = df8, columns =  

c(3, 5:6, 8, 13)) + theme(panel.grid = element_blank())   

df8$log_word_freq <- log(df8$word_freq + 1e-06) 

df8$log_diversity <- log(df8$diversity + 1e-06) 

df8$log_trans_prob <- log(df8$trans_prob + 1e-06) 

df8$log_response_time <- log(df8$response_time + 1e-06)  
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Table 6.9: Experiment 8 descriptive statistics  

 

  



 

 

 

Figure 6.2: Correlation matrix for Experiment 8   
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6.6.6 Specifying the models  

Log-transformed response times were modelled using Individual trial data (N = 

4,169) in five random-intercept models. Individual participants and items were 

included as group-level effects. Bigram diversity and transitional probability were 

included as population-level effects, both individually and together. Target-word 

frequency, concreteness, target-word length, and participant age were also included as 

covariates. Models were run in the same way as Experiment 1 and consist of a baseline 

model, covariate only model, and three experimental models. Models A, B, and C 

examined bigram diversity, transitional probability, and both variables respectively; 

all models included participant age, target word frequency, concreteness, and number 

of letters as population-level effects and participant and item as group-level effects. 

Conjugate priors based on previous data were applied to each of the variables and 

covariates to improve the efficiency of the Monte Carlo simulation as follows: Bigram 

frequency = N(-.01, .01), transitional probability = N(0, .01), age = N(.01, .01), word 

frequency = N(0, .01), concreteness = N(0, .01), and number of letters in the target 

word = N(.01, .01). These priors are identical to those used in Experiment 7.  

6.6.7 Define priors  

priors_cov8 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq),  prior("normal(0, .01)", class = "b", coef 

= concreteness), prior("normal(.01, .01)", class = "b", 

coef = letters), prior("normal(.01, .01)", class = "b", 

coef = age))  
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priors_model_a8 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq),  prior("normal(0, .01)", class = "b", coef = 

concreteness), prior("normal(.01, .01)", class = "b", coef = 

letters),  prior("normal(.01, .01)", class = "b", coef = 

age), prior("normal(-.01, .01)", class = "b", coef = 

log_diversity))  

priors_model_b8 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq), prior("normal(0, .01)", class = "b", coef = 

concreteness), prior("normal(.01, .01)", class = "b", coef = 

letters),  prior("normal(.01, .01)", class = "b", coef = 

age), prior("normal(0, .01)", class = "b", coef = 

log_trans_prob))  

priors_model_c8 <- c(prior("normal(0, .01)", class = "b",  coef = 

log_word_freq), prior("normal(0, .01)", class = "b", coef = 

concreteness), prior("normal(.01, .01)", class = "b", coef = 

letters),  prior("normal(.01, .01)", class = "b", coef = 

age), prior("normal(-.01, .01)", class = "b", coef = 

log_diversity), prior("normal(0, .01)", class = "b", coef = 

log_trans_prob))  

  

6.6.8 Run Models  

base_model_8 <- brm(log_response_time ~ 1, data = df8,  save_all_pars 

= TRUE, silent = TRUE, refresh = 0)  
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cov_model_8 <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq, data = df8, save_all_pars = TRUE, prior = priors_cov8,   

silent = TRUE, refresh = 0)   

model_8a <- brm(log_response_time ~ log_diversity + age + concreteness +  

letters + log_word_freq + (1|subject) + (1|item), data = df8,  

save_all_pars = TRUE, prior = priors_model_a8, silent = TRUE,   

refresh = 0)   

model_8b <- brm(log_response_time ~ log_trans_prob + age + concreteness +  

letters + log_word_freq + (1|subject) + (1|item), data = df8,  

save_all_pars = TRUE, prior = priors_model_b8, silent = TRUE,   

refresh = 0)   

model_8c <- brm(log_response_time ~ log_diversity + log_trans_prob + age + 

concreteness + letters + log_word_freq + (1|subject) + (1|item),  data 

= df8, save_all_pars = TRUE, prior = priors_model_c8,  silent = TRUE, 

refresh = 0)  

  

6.6.9 Cross-validation  

Model comparison was performed using leave-one-out cross-validation with the loo() 

function in R. Information criteria for all the models are displayed in table 6.10.   

cv_base8 <- loo(base_model_8)  

cv_cov8 <- loo(cov_model_8)  

cv_m8a <- loo(model_8a)  

cv_m8b <- loo(model_8b)  

cv_m8c <- loo(model_8c)  
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Table 6.10: Leave-one-out cross-validation information criteria for statistical models based on the data from 

Experiment 8  

  

 Cross validation shows that the baseline model, which includes no predictors, is 

better than all the other models and that there is very little difference between the 

information criteria for the covariate, bigram diversity, transitional probability, and 

combined models. The difference in LOOIC is large enough that Bayes factor 

comparison is unnecessary but will be used to confirm what is an entirely unexpected 

result.  

6.6.10 Bayes factors  

Bayes factors were used for model comparison and can be seen in table 6.11.  

bf_covbase8 <- bayes_factor(cov_model_8, base_model_8, silent = TRUE) 

bf_8abase <- bayes_factor(model_8a, base_model_8, silent = TRUE) 

bf_8bbase <- bayes_factor(model_8b, base_model_8, silent = TRUE) 

bf_8cbase <- bayes_factor(model_8c, base_model_8, silent = TRUE) 

bf_acov8 <- bayes_factor(model_8a, cov_model_8, silent = TRUE) 

bf_bcov8 <- bayes_factor(model_8b, cov_model_8, silent = TRUE) 

bf_ccov8 <- bayes_factor(model_8c, cov_model_8, silent = TRUE)  

bf_8ba <- bayes_factor(model_8b, model_8a, silent = TRUE)  
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bf_8ca <- bayes_factor(model_8c, model_8a, silent = TRUE)  

bf_8cb <- bayes_factor(model_8c, model_8b, silent = TRUE)  

  

 Table 6.11: Bayes factors comparing statistical models A, B, and C as well as the Base and Covariate only 

models  

 

Surprisingly, the baseline model is more likely than all the experimental models and 

the covariate models. This suggests that neither bigram diversity nor transitional 

probability influence response times in a lexical decision task. This is contrary to what 

would be expected given the wealth of evidence in favour of transitional probability 

and confirms my earlier assertion that bigram diversity does not constitute a 

meaningful distributional statistic upon which learning can be scaffolded.   

6.6.11 Model summary  

The baseline model outperformed all other models when compared using cross 

validation and Bayes factors. This model treats response time as a constant value and 

assumes no effects for any of the predictors. The intercept term for the model is 6.39 

on the logarithmic scale with an estimated error of less than .01.  
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It could be argued that the results seen in this and the previous bigram diversity 

experiments (4 & 6) may be an artefact of the stimuli used. Since the same stimuli 

were used in all three experiments, we might expect to see consistent effects for each 

of the predictors. This is not the case for transitional probability where we see 

inconsistent effects across the experiments, with some showing a negative effect and 

others showing no effect. However, if we consider that the transitional probability 

coefficient in each model is drawn from a distribution in which 95% of possible values 

fall between the upper and lower credible intervals then we can see that the null 

result shown in this experiment is plausible given the distribution of possible results 

in Experiments 4 and 6.  

 DISCUSSION  

The data from Experiment 8 revealed that none of the models were able to 

outperform the baseline model when compared using cross-validation or Bayes 

factors. Given the pattern of the results seen so far in this series of experiments, this is 

not a particularly surprising result for bigram diversity which has performed poorly 

throughout. That said, I was mildly surprised to find that the covariate only model was 

also outperformed by the baseline since each of the covariates have a well-

documented record of influencing response times in word recognition paradigms such 

as the one participants completed here, though it is less clear whether their effects 

would hold true when the targets remain constant across conditions since, in this case, 

the covariates are also held constant. Most surprisingly – though still somewhat 

consistent with the developing narrative – is the recurrent null effect of transitional 

probability across the set of experiments (6 & 8) – Experiments 2 and 4 also show this 
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effect but were conducted with different stimuli and/or timings. Throughout this work 

I have highlighted the strength of published evidence supporting transitional 

probabilities as the driving force in statistical learning and asserted the need to 

consider alternative metrics, but to see them consistently underperform in these 

experiments was somewhat unexpected.  

Theoretically speaking, the consistent lack of effect from both transitional probability 

and bigram diversity implies that there is little to be gained from increased 

predictivity or contextual diversity, at least as it applies to accessing previously learnt 

information in a lexical decision task.  

 GENERAL DISCUSSION  

In this chapter I set out to extend and support the findings set out in Chapter 5. 

Experiments 7 & 8 replicate those experiments (5 & 6) whilst holding the target items 

constant across each of the levels of bigram frequency and bigram diversity in order to 

reduce inter-item variability.   

In Experiment 7, bigram frequency was shown to be a negative predictor of response 

times in a statistically primed lexical decision task. This is congruent with the data 

from Experiment 5 and supports a frequency-based account of statistical learning in 

which higher bigram frequencies represent greater linguistic experience. Moreover, 

Experiment 8 strengthens the interpretation that bigram diversity does not represent 

a meaningful predictor of task performance in the current paradigm.   

Taken together, it becomes apparent that transitional probability is not as certain a 

driver of statistical learning as it would seem based on the published literature. This 
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has been a recurrent theme throughout this thesis and reinforces my initial argument 

that there needs to be a reconsideration of whether transitional probabilities should 

be considered the default measure of statistical regularity. Furthermore, the 

encouraging performance of bigram frequency in predicting task performance lends 

credence to the argument that perhaps a simpler, frequency-based mechanism 

provides a better explanation of how individuals used statistical regularities in 

language to scaffold their learning. There is also some suggestion – though too little to 

challenge the accepted narrative, at this time – that transitional probability may be 

masking such a frequency effect.  

It must be considered however, that these results are a product of a specific, novel 

paradigm which has hitherto not been applied to statistical learning. As such, it is 

plausible that these findings are an artefact of the unconventional nature of the task 

rather than representative of more generalised statistical learning mechanisms. Since 

the task evaluates the effect of naturally occurring statistical relationships between 

previously learnt information any application to the acquisition of new information 

can only be speculative and must be applied cautiously.   

In the next chapter I perform a meta-analysis using the data from Experiments 1-8 to 

get a more complete picture of the effects of bigram frequency, bigram diversity, and 

transitional probability.   
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CHAPTER SUMMARY  

Over the course of this chapter, I:  

• Conducted Experiments 7 & 8 using similar paradigms to Experiments 5 & 6 

but with the target words held constant across the different levels of bigram 

diversity and bigram frequency  

• Strengthened the argument that a frequency-based mechanism of statistical 

learning might be more plausible that one based on transitional probability  

• Reaffirmed the conclusion that bigram diversity is unlikely to constitute a 

meaningful descriptor of statistical regularity  
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7 META-ANALYSIS  

CHAPTER OVERVIEW  

In this chapter I:  

• Perform a meta-analysis using aggregated data from Experiments 1-8  

• Use leave-one-out cross-validation and Bayes factors to select the best 

statistical model of the data  

• Interpret the effects of bigram frequency, bigram diversity, and transitional 

probability in light of the meta-analysis  
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 PREPARATION  

The following libraries need to be loaded in order to complete the analyses in this 

chapter. set.seed() is set to 100 to ensure reproducibility.  

library(brms)  

library(readr)  

library(hexbin)  

set.seed(100)  

  

 META-ANALYSIS  

The experiments presented in last two chapters examined the plausibility of bigram 

frequency, bigram diversity, and transitional probability as predictors of task 

performance in a suite of lexical decision tasks. In Experiments 5 and 7, which 

examined bigram frequency, the data show a small but meaningful negative 

contribution of bigram frequency to response time. This suggests that participants 

may be drawing on the existing statistical associations within bigrams in order to 

improve their word recognition performance. These findings are congruent with a 

frequency-based mechanism of statistical learning as set out in earlier chapters. The 

impact of bigram diversity is less clear, however, as Experiment 6 shows a positive 

relationship between bigram diversity and response time, but this is not supported by 

data from Experiment 8. This echoes the findings of the proof-of-concept studies in 

Chapters 3 and 4 and, at this point, it seems unlikely that learners are utilising bigram 

diversity to facilitate word recognition in any meaningful way. Unlike the other two 

metrics, transitional probability is included as a predictor in all four of the 
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experiments (5-8) but only shows an effect when compared with bigram diversity in 

Experiment 6. This lack of consistent performance lends further support to the 

argument that transitional probability may not be the best measure of statistical 

regularity in statistical learning paradigms. The coefficients for each of the 

Experiments (5-8) are shown in table 7.1.  

Table 7.1: Coefficient estimates for all variables from Experiments 5-8.  

  

It is recognised however that these studies use relatively small sample sizes (n < 50) 

so, to allow for a more robust estimation of the effect sizes a meta-analysis of the 

existing data was conducted. Experiments 1 to 4 – which were presented as proof of 

concept studies – are similar enough to the later experiments in their design that the 

data from those experiments will also be used in this analysis. The data from  

Experiments 1-8 were therefore aggregated for use in the following meta-analysis. 

Since only the predictor of interest - bigram frequency in Experiments 1, 3, 5, and 7 or 

bigram diversity in Experiments 2, 4, 6, and 8 - was manipulated in each experiment it 

was possible to include both bigram frequency and bigram diversity for all individual 

trials, even if they were not analysed in the original experiments.   
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7.2.1 Participants  

Data was aggregated for the 129 participants who participated in Experiments 1-8. 

There were ninety-nine female and thirty male participants aged between 18 and 41 

years (M = 21.22, SD = 3.77). Since Experiments 1-6 were conducted in pairs (i.e., 1 & 

2, 3 & 4, 5 & 6) some participants took part in more than one experiment. In these 

cases, only a single participant number was allocated. There were therefore 129 

unique participants whose data was included in the meta-analysis.  

 RESULTS   

The pre-trimmed data from Experiments 1-8 were used in the meta-analysis (N = 

16,864). All response time data were log-transformed; mean RTs for each participant 

were then analysed using a Bayesian multi-level regression. Log-transformed values 

were also used for bigram diversity, word frequency, and transitional probability. 

Once again, a constant of .000001 was added to avoid errors resulting from values 

equal to zero.  

dfm <- read_csv("Meta_raw.csv") ggpairs(data = dfm, columns =  

c(3:4, 8, 12:14)) +  theme(panel.grid = element_blank())  

dfm$log_bigram_freq <- log(dfm$bigram_freq + .000001) 

dfm$log_diversity <- log(dfm$diversity + .000001)  

dfm$log_trans_prob <- log(dfm$trans_prob + .000001) 

dfm$log_word_freq <- log(dfm$word_freq + .000001) 

dfm$log_response_time <- log(dfm$response_time + .000001)  
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Correlations between predictors were examined using ggpairs() and are displayed in 

figure 7.1; no evidence of multicollinearity was observed between the predictors.  



 

 

 

Figure 7.1: Correlation matrix for the meta-analysis of the data from Experiments 1-8.   
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Eight random-intercept models used individual participants and items as group-level 

effects and bigram frequency, bigram diversity and transitional probability as 

population-level effects, both individually and together. Target-word frequency, 

concreteness, target-word length, and participant age were also included as 

covariates in every model except the baseline. Normally distributed priors chosen 

based on the effect sizes of Experiments 1 to 8 (table 7.2) were defined for each 

model: Age N(0, .01), concreteness N(-.01, .02), letters N(.01,  .02), word frequency 

N(-.01, .02), bigram frequency N(-.03, .04), bigram diversity N(0, .01), and transitional 

probability N(.05, .20). Note that the means and standard deviations of the effect sizes 

were used as a guide rather than being directly ‘plugged-in’ to the analysis. Given the 

large number of datapoints in the current analysis this is unlikely to be a problem 

since the prior distributions will be overwhelmed by the data when forming the 

posterior distribution, but we can still take steps to minimise any potential issues by 

increasing the variance in the priors to include a wider range of potential values. As 

such, the values for the priors shown above do not exactly match those seen in the 

table below. The priors for the variables were the same in each model with the 

exception of the baseline model which contains no predictors, and therefore has no 

prior distributions.  
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Table 7.2: Coefficients from Experiments 1-8 plus means and standard deviations  

 

  

Priors were specified using the build in prior() function in brms and can be seen below 

for each model individually; priors were only defined for variables included in the 

model.   

7.3.1 Define priors  

priors_cov <- c(prior("normal(-.01, .02)", class = "b",  coef = 

log_word_freq),  prior("normal(-.01, .02)", class = "b", coef 

= concreteness),  prior("normal(.01,  .02)", class = "b", 

coef = letters),  prior("normal(0, .01)", class = "b", coef = 

age))  
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priors_model_a <- c(prior("normal(-.01, .02)", class = "b",  coef = 

log_word_freq), prior("normal(-.01, .02)", class = "b", coef = 

concreteness), prior("normal(.01, .02)", class = "b", coef = 

letters), prior("normal(0, .01)", class = "b", coef = age), 

prior("normal(-.03, .04)", class = "b", coef = 

log_bigram_freq), prior("normal(0, .01)", class = "b", coef = 

log_diversity), prior("normal(.05, .20)", class = "b", coef = 

log_trans_prob))  

  

priors_model_b <- c(prior("normal(-.01, .02)", class = "b",  coef = 

log_word_freq),  prior("normal(-.01, .02)", class = "b", coef = 

concreteness), prior("normal(.01, .02)", class = "b", coef = 

letters), prior("normal(0, .01)", class = "b", coef = age), 

prior("normal(-.03, .04)", class = "b", coef = log_bigram_freq),  

prior("normal(0, .01)", class = "b", coef = log_diversity))  

  

priors_model_c <- c(prior("normal(-.01, .02)", class = "b",  coef = 

log_word_freq),  prior("normal(-.01, .02)", class = "b", coef = 

concreteness), prior("normal(.01, .02)", class = "b", coef = 

letters),  prior("normal(0, .01)", class = "b", coef = age), 

prior("normal(-.03, .04)", class = "b", coef = 

log_bigram_freq), prior("normal(.05, .20)", class = "b", coef = 

log_trans_prob))  
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priors_model_d <- c(prior("normal(-.01, .02)", class = "b",  coef 

= log_word_freq), prior("normal(-.01, .02)", class = "b",  

coef = concreteness), prior("normal(.01, .02)", class = "b", 

coef = letters), prior("normal(0, .01)", class = "b", coef = 

age), prior("normal(0, .01)", class = "b", coef = 

log_diversity), prior("normal(-.05, .20)", class = "b", coef = 

log_trans_prob))  

  

priors_model_e <- c(prior("normal(-.01, .02)", class = "b",  coef 

= log_word_freq), prior("normal(-.01, .02)", class = "b",  

coef = concreteness), prior("normal(.01, .02)", class = "b", 

coef = letters),  prior("normal(0, .01)", class = "b", coef = 

age), prior("normal(-.03, .04)", class = "b", coef = 

log_bigram_freq))  

  

priors_model_f <- c(prior("normal(-.01, .02)”, class = "b",  coef 

= log_word_freq), prior("normal(-.01, .02)", class = "b",  

coef = concreteness), prior("normal(.01, .02)", class = "b", 

coef = letters),  prior("normal(0, .01)", class = "b", coef = 

age), prior("normal(0, .01)", class = "b", coef = 

log_diversity))  

  

priors_model_g <- c(prior("normal(-.01, .02)", class = "b",  coef 

= log_word_freq),  prior("normal(-.01, .02)", class = "b", coef 

= concreteness), prior("normal(.01, .02)", class = "b", coef = 

letters), prior("normal(0, .01)", class = "b", coef = age), 

prior("normal(-.05, .20)", class = "b", coef = log_trans_prob))  
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Once the priors had been defined, the models were run using brms in the same manner 

as in previous chapters.  

  

7.3.2 Run models  

base_model_meta <- brm(log_response_time ~ 1, data = dfm,  save_all_pars 

= TRUE)   

covariate <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq + (1|subject) + (1|item), data = dfm,   

prior = priors_cov, save_all_pars = TRUE)   

model_a <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq + log_trans_prob + log_bigram_freq + log_diversity +  

(1|subject) + (1|item), data = dfm, prior = priors_model_a,   

save_all_pars = TRUE)   

model_b <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq + log_bigram_freq + log_diversity + (1|subject) +   

(1|item), data = dfm, prior = priors_model_b, save_all_pars = TRUE)   

model_c <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq + log_trans_prob + log_bigram_freq + (1|subject) +   

(1|item), data = dfm, prior = priors_model_c, save_all_pars = TRUE)   

model_d <- brm(log_response_time ~ age + concreteness + letters +  

log_word_freq + log_trans_prob + log_diversity + (1|subject) +   

(1|item), data = dfm, prior = priors_model_d, save_all_pars = TRUE)  
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model_e <- brm(log_response_time ~ age + concreteness + letters +     

log_word_freq + log_bigram_freq + (1|subject) + (1|item),   

   data = dfm, prior = priors_model_e, save_all_pars = TRUE)   

model_f <- brm(log_response_time ~ age + concreteness + letters +   

log_word_freq + log_diversity + (1|subject) + (1|item), data = dfm,  

prior = priors_model_f, save_all_pars = TRUE)   

model_g <- brm(log_response_time ~ age + concreteness + letters +   

log_word_freq + log_trans_prob + (1|subject) + (1|item), data = dfm, 

prior = priors_model_g, save_all_pars = TRUE)  

  

7.3.3 Cross-validation and Bayes factors  

As with the previous experiments, leave-one-out cross-validation and Bayes factors 

were used to compare model fit.   

cv_base <- loo(base_model_meta)  

cv_cov <- loo(covariate)  

cv_a <- loo(model_a)  

cv_b <- loo(model_b)  

cv_c <- loo(model_c)  

cv_d <- loo(model_d)  

cv_e <- loo(model_e)  

cv_f <- loo(model_f)  

cv_g <- loo(model_g)  
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Table 7.3 shows the cross-validation information criteria for each of the models. We 

once again see large standard error values across all the models, which limits the 

extent to which we can reasonably select the best model using this metric alone. 

However, there are some clear differences between some of the models. The inclusion 

of any predictors drastically improves the performance of the models compared to the 

baseline. Additionally, there is a clear improvement in model performance for the 

covariate, combined transitional probability and bigram frequency model (C), the 

bigram frequency model (E), and the transitional probability model (G); this lends 

further credence to the conclusion that bigram diversity is a poor predictor of task 

performance in this paradigm since it does not appear in any of the better performing 

models, and any models containing bigram diversity perform far worse than the 

covariate model at predicting the data. However, it is impossible to select between 

these four models based on cross-validation criteria alone, although there is a slight 

preference for Model C (transitional probability and bigram frequency) over the other 

three models.  

  

Table 7.3: Leave-one-out cross-validation information criteria for the base, covariate, and experimental 

(AG) models based on data from the meta-analysis.  
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Bayes factors were then used to compare each model with each other model and can 

be seen in table 7.4, below. Although cross-validation ruled out several of the models, I 

have included the Bayes factor comparisons between all models for completeness and 

to confirm that the four models selected based on the leave-one-out information 

criteria are, in fact, performing better than the remaining models.  

b1 <- bayes_factor(model_g, base_model_meta)  

b2 <- bayes_factor(model_g, covariate)  

b3 <- bayes_factor(model_g, model_a)  

b4 <- bayes_factor(model_g, model_b)  

b5 <- bayes_factor(model_g, model_c)  

b6 <- bayes_factor(model_g, model_d)  

b7 <- bayes_factor(model_g, model_e)  

b8 <- bayes_factor(model_g, model_f)  

b9 <- bayes_factor(model_f, base_model_meta)  

b10 <- bayes_factor(model_f, covariate)  

b11 <- bayes_factor(model_f, model_a)  

b12 <- bayes_factor(model_f, model_b)  

b13 <- bayes_factor(model_f, model_c)  

b14 <- bayes_factor(model_f, model_d)  

b15 <- bayes_factor(model_f, model_e)  

b16 <- bayes_factor(model_e, base_model_meta)  

b17 <- bayes_factor(model_e, covariate)  

b18 <- bayes_factor(model_e, model_a)  

b19 <- bayes_factor(model_e, model_b)  

b20 <- bayes_factor(model_e, model_c)  

b21 <- bayes_factor(model_e, model_d)  

b22 <- bayes_factor(model_d, base_model_meta)  

b23 <- bayes_factor(model_d, covariate)  
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b24 <- bayes_factor(model_d, model_a)  

b25 <- bayes_factor(model_d, model_b)  

b26 <- bayes_factor(model_d, model_c)  

b27 <- bayes_factor(model_c, base_model_meta)  

b28 <- bayes_factor(model_c, covariate)  

b29 <- bayes_factor(model_c, model_a)  

b30 <- bayes_factor(model_c, model_b)  

b31 <- bayes_factor(model_b, base_model_meta)  

b32 <- bayes_factor(model_b, covariate)  

b33 <- bayes_factor(model_b, model_a)  

b34 <- bayes_factor(model_a, base_model_meta)  

b35 <- bayes_factor(model_a, covariate)  

b36 <- bayes_factor(covariate, base_model_meta)  

 

Table 7.4: Comparative Bayes factors for models in the meta-analysis of Experiments 1-8 

 

  

Looking at table 7.4, it is possible to see that the Bayes factor comparisons support the 

conclusions drawn from cross-validation since Models C, G, and E, as well as the 

covariate model all show extremely large Bayes factors when compared to the other 

models. Most interesting however, are the comparisons between these four models. 
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We can see that Model G – the transitional probability model – performs well versus 

the covariate model but poorly against the bigram frequency (E) and combined 

bigram frequency and transitional probability (C) models; it is also apparent that 

Model C compares favourably to Model E. This is congruent with the tentative 

conclusions we were able to draw from cross-validation.  

7.3.4 Model Summary  

Based on both cross-validation and Bayes factor comparison, the combined bigram 

frequency and transitional probability model appears to be the best model at 

predicting the aggregated data from the eight experiments presented thus far and is 

set out in full in table 7.5. As we have come to expect, the effect sizes are relatively 

small for each of the predictors with most of the variation coming from differences 

between participants as well as differences between target-words. This is to be 

expected given the nature of the task, as are the effects of the covariates – participants 

are slower at recognising longer and less concrete items and faster at responding to 

higher frequency targets. We also see a similar pattern of effects as in the majority of 

previous experiments – though these were not universally consistent – in that 

participants are faster when responding to higher frequency bigrams and slower 

when responding to bigrams with a higher transitional probability.  
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Table 7.5: Summary of Model C, the bigram frequency and transitional probability model  

 

 DISCUSSION  

The meta-analysis presented in this chapter supports the conclusions I have drawn 

more broadly throughout this work. In a primed lexical decision task, bigram frequency 

and transitional probability appear to be equally good predictors of task performance. 

Additionally, bigram diversity – which was included to account for the predictive 

component of transitional probability not included in bigram frequency – has been 

revealed as a non-useful metric in predicting task performance. The main point of 

interest from the meta-analysis however, is the opposing effects of bigram frequency 

and transitional probability. Data from eight experiments shows that bigram frequency 

has a facilitatory effect of word recognition speed whereas transitional probability 

appears to negatively impact lexical decision performance.   



 

207  

  

These results go some way towards supporting a frequency-based mechanism of 

statistical learning since we see improved performance for bigrams which occur more 

frequently in the British National Corpus than we do for those encountered more 

rarely. However, the arguments set out in Chapter 2 regarding the benefits of a 

frequency-based mechanism – that is, lower computational difficulty and therefore 

reduced cognitive load compared to transitional probability – made no predictions 

regarding the negative impact of transitional probability. It is possible that the effects 

of transitional probability shown in this model are still reflecting a frequency effect, 

since words with a higher transitional probability tend to appear less frequently. We 

can examine this by visualising the data. However, we first need to remove the zero 

value items for both bigram frequency and transitional probability – these stem from 

the use of zero-value items for bigram frequency which necessarily have a transitional 

probability of zero due to their non-occurrence in the British National Corpus – since 

including them is likely to distort the final figure.   

dfmsub <- subset(dfm, bigram_freq != 0)  

dfmsub <- subset(dfmsub, trans_prob != 0)  

x <- dfmsub$bigram_freq  

y <- dfmsub$trans_prob  

    

In order to visualise the relationship between bigram frequency and transitional 

probability we can display the values using a hexbin plot from the hexbin package in R 

(Carr, Lewin-Koh, Maechler, & Sarkar, 2019). A hexbin plot is like a scatterplot but it 

‘bins’ similar values and displays them as graded hexagons; this results in a less messy 

plot and makes it easier to see where multiple values overlap by giving an indication 

of how densely the points are clustered.  
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bin <- hexbin(x, y, xbins = 20)  

plot(bin, xlab = “Log(Bigram frequency)”,  

ylab = “Log(Transitional probability)”)  

  

  

Figure 7.1: Hexbin plot showing the distribution of transitional probability and bigram frequency 

scores in data from Experiments 1-8 as used in the above meta-analysis; darker hexagons represent 

more densely clustered points. You can see that higher transitional probabilities are clustered towards 

to lower end of the bigram frequency scale.  

  

As we can see in figure 7.1, there are very few high frequency, high probability items. In 

fact, once bigram frequency reaches around 2000 there are no bigrams with a 

transitional probability of greater than .5. Based on this observation, it could be 

suggested that transitional probability may still be drawing on a frequency effect in 

which higher transitional probabilities are representing lower bigram frequencies. This 
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is not implausible given that cross-validation shows similar information criteria for the 

transitional probability model (Model G), the bigram frequency model (Model E), and 

the combined transitional probability and bigram frequency model (Model C) but is not 

something that can be tested using the current data and, as such, is entirely speculative 

at this point. Nevertheless, the fact that bigram diversity has shown little value in 

predicting task performance does provide some support to this hypothesis. As 

transitional probability represents the probability of one item following another in 

natural language so too does bigram frequency, though the presumed effects of the two 

are necessarily inverted. Where high transitional probability represents the probability 

of being able to predict the target given the prime, high bigram diversity represents 

greater variability in the potential targets. This being the case, where we see a positive 

effect of transitional probability, we would expect to see a negative effect of bigram 

diversity; given that we do not see this inverse effect, it could be inferred that any effect 

of transitional probability must be frequency-based rather than related to predictability. 

This makes some sense since transitional probability only has a negative effect on 

response time in Experiment 4, where the experimental timings were specifically chosen 

to give participants the best possible opportunity of responding to the statistical 

priming, and bigram frequency was not included in the model. In all other cases, 

transitional probability is shown as having either a positive or null effect on response 

time. We cannot, however, rule out the suggestion that we do not see an effect of bigram 

diversity because transitional probability is simply doing a better job at capturing the 

predictability of the stimuli.   

As I intimated in Chapter 2, it is impossible to elucidate the exact mechanism by which 

participants are utilising the distributional statistics within a given stimulus set – at 
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least with behavioural research – nor do more than speculate as to why transitional 

probability shows an effect in opposition to that reported in many statistical learning 

studies. We can, however, conclude that there is more that needs to be done if we are 

to uncover the mechanisms underlying statistical learning and that more attention 

should be paid to determining the appropriate metrics for measuring statistical 

learning performance. Given the novelty of examining statistical learning through 

previously learnt associations and in using a lexical decision task – a paradigm not 

usually associated with statistical learning research – to assess the strength of these 

associations behaviourally, I am reticent to draw clear conclusions about the effects of 

bigram frequency and transitional probability at this time. I am nevertheless 

confident in the assertion that transitional probability should not be accepted as the 

default measure of statistical regularity without first considering a) alternative 

metrics, and b) whether a more parsimonious mechanism can better explain 

statistical learning performance.  

Throughout this thesis, I have highlighted that the current work aims to assess 

previously learnt associations. One of the major strengths of this approach is that it 

allows for the examination of naturalistic language in a way that would not be possible 

using a more traditional statistical learning paradigm. This begins to address one of 

the most fundamental criticisms of statistical learning theories – that they may not 

scale-up to natural language - but should be interpreted with caution. Although the 

British National Corpus is widely considered to be a good approximation of 

contemporary British English, it may not be representative of the evolving language 

experience; as such, it is possible that these findings may be artefactual of the corpus 

and any conclusions should remain tentative until such results can be independently 
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replicated and tested with alternative stimulus-sets. Nevertheless, the individual word 

frequencies within the BNC correlate highly with those in the SUBTLEX-US  

(r(55863) = 0.78, p < 0.001) (Brysbaert & New, 2009) and SUBTLEX-UK (r(63220) 

= 0.91, p < 0.001) corpora (Van Heuven, Mandera, Keuleers, & Brysbaert, 2014) 

which goes some way towards vindicating the BNC as an appropriate corpus choice 

and suggests that comparative effects could be expected with alternative corpora. 

Despite the strength of this approach, it still deviates significantly from more common 

statistical learning paradigms and cannot reasonably be used to draw conclusions 

about how learners acquire new information. The next chapter presents two 

experiments that examine the effects of bigram frequency and transitional probability 

in a more traditional manner; from this point on, I will no longer be considering 

bigram diversity as an alternate measure of statistical regularity due to consistent null 

results demonstrated throughout the experiments.  
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CHAPTER SUMMARY  

In this chapter I:  

• Performed a meta-analysis using aggregated data from Experiments 1-8  

• Selected the bigram frequency and transitional probability model as the best at 

predicting the observed data  

• Speculated as to the effects of bigram frequency and transitional probability  

• Dropped bigram diversity as a metric of statistical regularity  
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8 SEQUENCE LEARNING  

CHAPTER OVERVIEW  

In this chapter I will:  

• Detail two sequence learning tasks which examine participants’ ability to utilise 

underlying statistical patterns to acquire new information.  

• Define and select the most efficient model at predicting participant 

performance in these tasks using cross-validation and Bayes factor 

comparisons.  

• Directly compare specific trials within each experiment to identify whether 

transitional (bigram) frequency or transitional probability result in better 

sequence learning.  

• Draw conclusions about the ability of participants to utilise different 

distributional statistics to acquire patterns within a stimulus-set.  

• Build upon the theoretical assertions made in previous chapters  
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 PREPARATION  

The following libraries and settings are required to run the code in this chapter:  

library(brms)  

library(BEST)  

library(readr)  

library(moments)  

library(ggplot2)  

set.seed(100)  

  

 SEQUENCE LEARNING  

Over the course of this work, I have asserted that bigram frequency and bigram 

diversity may represent  better predictors of statistical learning performance than 

transitional probability. My rationale for this assertion has been that the computational 

cost of calculating and continually updating probabilistic representations of any given 

stimulus-set, particularly in natural language, is not commensurate to the benefits of 

maintaining such a representation. In Chapter 2, I made a case for a simpler, less 

cognitively effortful mechanism of statistical learning based on frequency of co-

occurrence. Furthermore, since bigram diversity was shown to have no effect in any of 

the lexical decision experiments, there would appear to be little benefit in learners 

tracking this information. Over the past five chapters, I have presented evidence that 

suggests this to be the case.   
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Over the course of Experiments 1, 3, 5, and 7 bigram frequency was shown to have a 

small but meaningful negative relationship with task performance – as measured by 

response latency – in a statistically primed lexical decision task in 75% of the 

experiments (see table 8.1). In addition, transitional probability showed no  facilitatory 

effect  in 100% of the same experiments. In fact, in Experiments 3 and 5, transitional 

probability produced an effect in opposition of that which would be expected given the 

wealth of literature espousing transitional probability as the primary metric in statistical 

learning.   

It is telling that the only experiments in which transitional probability appears to 

facilitate word recognition are those in which bigram frequency is not included. This 

suggests that, in these analyses, transitional probability is likely capturing the effect of 

bigram frequency – a concept supported by the lack of a predictability benefit shown 

by bigram diversity. Moreover, when this data is incorporated into the meta-analysis 

the benefits of transitional probability disappear and an overall effect of bigram 

frequency becomes apparent.  

Although the effects of bigram frequency and transitional probability in table 8.1 appear 

to be quite small, it should be noted that these are presented on a logarithmic scale 

where a value of -.01 equates to a one millisecond decrease in reaction time for each 

one-point change in bigram frequency; so, increasing bigram frequency by one hundred 

would result in a significant decrease in word recognition speeds.  
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Table 8.1: Summary of coefficients for the lexical decision experiments and meta-analysis  

 

  

On this data alone, bigram frequency – though not a perfect predictor of task 

performance – represents a more reliable predictor of performance than the more 

traditionally used transitional probability; the same is not true of bigram diversity, 

however. In Experiments 2, 4, 6, and 8 bigram diversity produced consistent null results 

whereas transitional probability produced effects in 50% of the experiments.  

Interestingly, in Experiment 4, transitional probability displays a small negative effect – 

as would be expected based on previous evidence - but in Experiment 6 it shows a 

much larger positive effect in congruence with the bigram frequency experiments. 

Taken together, this leads to the conclusion that bigram diversity is unlikely to be 

driving statistical learning in this task and that, once again, transitional probability 
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cannot consistently predict task performance. The null effects observed for bigram 

frequency may also have implications for transitional probability. Since transitional 

probability arises from the interplay of bigram frequency and bigram diversity, if one 

of these metrics has no value in predicting task performance then it follows that 

transitional probability may also have little value beyond the contribution of the 

remaining metric. In this case, since bigram diversity – and therefore, assumedly, 

predictability – has no predictive value in these tasks it is unsurprising that transitional 

probability provides little benefit that cannot already be explained by bigram 

frequency.   

Given the inconsistent effects of the three main predictors, a meta-analysis was 

conducted by aggregating data from across all the experiments. The results of this 

analysis support the conclusions drawn for bigram frequency throughout the earlier 

chapters in showing a small negative relationship with response time. The meta-

analysis also showed that transitional probability represented a small positive 

predictor – equal in size to that of bigram frequency – of response time. This once again 

supports the assertion that a probabilistic representation of the stimulus-set is not as 

beneficial as is currently believed and that a frequency-based mechanism may form 

stronger lexical representations which can be more reliably accessed at a later date.  

However, these conclusions are based on a novel approach to statistical learning in 

which I examine participants’ ability to utilise pre-learnt lexical associations rather 

than whether these metrics can be used to scaffold the acquisition of new information. 

This departure from traditional statistical learning paradigms, coupled with the 

inconsistency demonstrated throughout, allows for only tentative conclusions 

regarding the viability of either a frequency-based or probabilistic account of 
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statistical learning behaviour. For more generalisable conclusions, the two metrics 

must be directly contrasted using a more conventional methodology – one in which 

participants are required to learn new information. To this end, the current chapter 

presents two sequence learning experiments in which participants’ ability to learn an 

underlying pattern without conscious awareness is examined. Firstly, Experiment 9 

tests the premise that participants can benefit from the statistical regularities within 

the pattern with no conscious awareness of its existence and in the absence of any 

overt cues. The pattern in Experiment 9 contains eight potential target locations 

whereas Experiment 10 increases the difficulty of the task by increasing the number 

of locations to sixteen.  

In order to differentiate the effects of transitional probability and transitional 

frequency in these tasks, key transitions within the sequences of each experiment 

were identified. These transitions vary on either transitional frequency or transitional 

probability whilst holding the other metric constant. This will allow us to see whether 

there is any effect of high versus low transitional probability when transitional 

frequency is held constant, by repeating the process for transitional frequency, we can 

infer the effects of each metric independently. It is my expectation, based on the 

experiments presented thus far, that learning will be more greatly influenced by 

transitional frequency than by transitional probability. 

 BIGRAM FREQUENCY AND TRANSITIONAL FREQUENCY  

In Chapter 2 I introduced the term bigram frequency and have referred to this metric 

throughout this work. Since bigram refers to any pair of written linguistic units, it is 

not entirely applicable in the current experiments; as such, from this point onwards, I 
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will be using the terminology transitional frequency. This change in terminology 

represents the fact that the current experiments, and many other statistical learning 

paradigms, do not use linguistic stimuli; transitional frequency is therefore functionally 

identical to bigram frequency – as I have used it in this work - but is more generalisable 

to non-linguistic stimuli.  

 EXPERIMENT 9: EIGHT TARGETS  

8.4.1 Participants   

An opportunity sample was recruited from Nottingham, UK (N = 50); participants were 

all aged between 18 and 56 (M = 25.78, SD = 10.47) and reported no visual or motor 

problems that might interfere with their ability to complete the task.  

8.4.2 Design  

A repeated-measures design was used to determine whether participants can 

implicitly learn a sequence using the distributional statistics, when no other cues are 

present. The independent variable was the type of statistical information (frequency, 

transitional probability) and the dependent variable was the time taken to transition 

from one target to another, in milliseconds. Key transitions were pre-selected for 

comparison to directly examine the effects of high and low transitional probability and 

transitional frequency.  
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8.4.3 Materials  

The experiment was run in OpenSesame 3.1.7 using the ‘droid’ Backend and displayed 

on an ASUS T303UA running Windows 10 in tablet mode. The experiment comprised 

one 16-item practice block, five 37-item sequence blocks, and one 37-item non-

sequence block. The transitional probabilities – ranging from zero to one - and 

transitional frequencies – from one to three - of the items within the sequence were 

varied systematically throughout each block and can be seen in table 8.2 along with 

the distance (in pixels) between transitional elements. Apart from the practice block, 

all items were presented sequentially with no breaks. Eight target areas were 

presented on a 12.6" screen (resolution 1280px X 800px). Each target measured 200 X 

200px and was displayed in one of eight distinct colours (Yellow, cyan, green, red, 

orange, lilac, blue, and pink) with a vertical/horizontal separation of 96 pixels and a 

diagonal separation of 135.76 pixels; a black and white star was used to indicate the 

target square. An example of the display can be seen in figure 8.1. Transitions are 

hereafter expressed using the notation X -> Y, where X is the first location and Y is the 

second location; for example, a notation of 1 -> 5 would indicate participants 

transitioning from location one to location five on the touchscreen.   
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Table 8.2: Transitional statistics and separation distance for trials in Experiment 9  

  

Looking at the transitional probabilities in table 8.2, we can see that some of the 

transitions have high probabilities. This is typical of artificial grammar tasks and, as 

previously noted, represents a problem for statistical learning more generally. The 

high transitional probabilities within the current experiment, although highly inflated 

compared to those found in natural language, serve two important functions. Firstly, 

they allow for the comparison of key transitions to directly compare meaningfully 

different transitional probabilities; and, secondly, they should – if transitional 
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probabilities are driving learning, as suggested by the bulk of previous evidence – give 

participants the best chance of learning the pattern – allowing this experiment to act 

as a proof-of-concept for a more complex experiment with a more comprehensive 

range of transitional probabilities, including those approaching more naturalistic  

levels.    

  

Figure 8.1: Example screenshot of the task participants undertook in Experiment 9. The black 

and white star indicates the target location. Locations were numbered from top left (1) to 

bottom right (8).  

8.4.4 Procedure  

Participants were directed to watch for a black and white star to appear in one of the 

target locations and to tap the star with their RIGHT index finger as soon as it appeared; 

participants were instructed to do this as quickly as possible. After a short practice, 

participants completed 222 trials comprising five repetitions of a 37-item sequence and 
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a final 37-items where the sequence was not present. Participants were not informed of 

the underlying sequence nor given any feedback throughout the experiment.  

 RESULTS  

Mean response time by block was plotted to assess whether learning had taken place 

across the course of the experiment. As can be seen in figure 8.2, participants’ overall 

performance increases over time but is adversely affected during the sixth block, 

when the underlying sequence is removed. This suggests that participants have 

become attuned to the transitional relationships between the pairs and that these 

associations persist even once the sequence has been removed leading to interference 

between the expected and actual target transitions.  

 

  

Figure 8.2: Mean response times arranged by block. Performance improves over the course of the 

learning blocks (1-5) but degrades in the final block (6) once the underlying pattern is removed.  
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8.5.1 Data Preparation  

Data was first read into R and the distribution of response times was examined.  

df9 <- read_csv("exp_9_block_5.csv")  

den9 <- density(df9$response_time)  

plot(den9, main = "", xlab = "Response time")   

skewness(df9$response_time)    

  

 

Figure 8.3: Density plot showing the distribution of transition times for Experiment 9; the 

distribution displays moderate positive skewness (2.30)  

 

Since the transition time data display moderate positive skewness (figure 8.3), a log 

transformation was applied to the data prior to the analyses (see figure 8.4).  

df9$log_response_time <- log(df9$response_time) 

den9l <- density(df9$log_response_time)  
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plot(den9l, main = "", xlab = "Log(Response time)") 

skewness(df9$log_response_time)  

 

Figure 8.4: Density plot for log-transformed response times in Experiment 10. We can see that the 

transformation has reduced the skewness (.84) of the distribution to within acceptable parameters.  

  

Data was modelled in R using the brms package. Data was modelled using varying 

combinations of fixed effects as shown in table 8.3. Model A constitutes a baseline 

model including participant age and inter-target distance but takes no account of 

either transitional frequency or transitional probability; Model B includes both age 

and distance but also includes transitional frequency; similarly, Model C includes the 

baseline predictors with the addition of transitional probability; finally, Model D 

includes all four of the predictors. Inter-target distance is defined as the Euclidean 

distance measured between the closest points of each target. Participant-level 

differences were also included as a group-level effect in each model. Only correct trials 

from block five were included in the analyses.  
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Table 8.3: Population- and group-level parameters for the statistical models used to analyse transition data 

from Experiment 9  

 

  

  

model_9a <- brm(log_response_time ~ age + distance + (1|subject_nr),  

data = df9, save_all_pars = TRUE, silent = TRUE)  

model_9b <- brm(log_response_time ~ age + freq + distance  + 

(1|subject_nr), data = df9, save_all_pars = TRUE, silent = TRUE)   

model_9c <- brm(log_response_time ~ age + tp + distance + 

(1|subject_nr), data = df9, save_all_pars = TRUE, silent = TRUE)  

 model_9d <- brm(log_response_time ~ age + freq + tp + distance +  

(1|subject_nr), data = df9, save_all_pars = TRUE, silent = TRUE)  

  

8.5.2 Cross-validation  

As in previous chapters, leave-one-out cross-validation was used to identify which 

model has the best fit to the data, the results of which can be seen in table 8.4.  

cv_9a <- loo(model_9a) cv_9b 

<- loo(model_9b) cv_9c <- 

loo(model_9c) cv_9d <- 

loo(model_9d)  
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Table 8.4: Summary of brms model Leave-one out cross-validation statistics 

 

  

Cross-validation shows that the transitional frequency model is marginally better than 

the combined transitional probability and transitional frequency model, as 

represented by a lower LOOIC, and that these two models are better than both the 

transitional probability and  baseline models. However, large standard deviations 

mean that we cannot confidently declare any of the models as being better at 

describing the data from Experiment 9; therefore, comparisons between each model 

were performed using Bayes factors, as in previous chapters.  

8.5.3 Bayes Factors  

Bayes factors were calculated using the bayes_factor() function from the brms package 

in R. Models were compared with each other model to show which is most likely under 

the current data. Table 8.5 shows the comparisons and the associated Bayes factors.  

bf9.1 <- bayes_factor(model_9b, model_9a)  

bf9.2 <- bayes_factor(model_9c, model_9a)  

bf9.3 <- bayes_factor(model_9c, model_9b)  

bf9.4 <- bayes_factor(model_9d, model_9a)  

bf9.5 <- bayes_factor(model_9d, model_9b)  

bf9.6 <- bayes_factor(model_9d, model_9c)  
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 Table 8.5: Bayes factor comparisons for Experiment 9 

 

8.5.4 Model Summary  

Summary(model_9b)  

A summary of Model B – the transitional frequency model – is shown in table 8.6. As in 

the previous lexical decision experiments, it is apparent that transitional frequency 

seems to be scaffolding participants’ learning.  Also evident is a small effect of 

participant age and a non-trivial difference in transition time between participants. 

There also seems to be no difference in transition time based on the distance between 

the targets, this is likely due to there being only eight targets, all within easy reach of 

the participants.  
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Table 8.6: Model summary for the transitional frequency model  

   

 KEY COMPARISONS  

Comparisons were drawn between pre-selected target-transitions to further elucidate 

the relative contributions of frequency and transitional probability. The purpose of 

these tests was to examine the way in which high or low transitional probabilities or 

frequencies affect response times when the alternate statistic is held constant. 

Bayesian Equivalence testing was conducted using the BEST package (Kruschke & 

Meredith, 2018); this is functionally like conducting paired-samples t-tests and has a 

comparable interpretation. Mean scores for each transitional pair are shown in table 

8.7. This notation will be used to represent the transition between locations but also 

the time taken for that transition. Transitions were chosen to vary on either 
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transitional frequency or transitional probability and to have a transitional distance 

of 96px; figure 8.5 depicts the numbered locations as well as the actual transitions.  

 

Table 8.7: Mean transition times, transitional frequency, and transitional probability for each 

transitional pair in Experiment 9  

 

  

 

Figure 8.5: Diagram depicting the numbered locations and transitions for the key comparisons in 

Experiment 9  
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BEST uses a Monte Carlo Markov Chain to draw samples from each of the distributions 

to be compared and uses these values to generate a distribution of mean differences. It 

then calculates the percentages of the resultant distribution that are greater or 

smaller than zero. This distribution can then be displayed as a density plot and 

interpreted in relation to the mean difference of means (hereafter referred to as 

simply difference of means); in this case, a positive value for the difference of means 

indicates slower responses for the first group in the comparison. For example, the first 

plot shows a comparison of 1 -> 5 and 4 -> 3, so a positive value for the difference of 

means would indicate that participants transitioned between locations four and three 

more quickly than between locations one and five. Also calculated is the percentage of 

the distribution that falls above or below zero; for the purposes of interpretation, I 

will be interpreting any percentage value that falls outside of the 95% Highest Density 

Interval (HDI) as representing a meaningful difference between transition times.   

The following code is used to separate the dataset into subsets containing only trials for 

each of the key comparisons before extracting the response times for use in the 

equivalence tests.  

t15 <- subset(df9, key == 15)  

t43 <- subset(df9, key == 43)  

t62 <- subset(df9, key == 62)  

t87 <- subset(df9, key == 87)  

t15 <- t15$log_response_time  

t43 <- t43$log_response_time  

t62 <- t62$log_response_time  

t87 <- t87$log_response_time  
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The first test compares transition 1 -> 5 with transition 4 -> 3; both transitions in this 

comparison have a transitional frequency of three (per block) but differ on 

transitional probability. This allows us to examine the effects of transitional 

probability whilst holding transitional frequency constant at the highest level 

available. Figure 8.6 shows the distribution of differences in means along with the 

proportion of the distribution that falls above or below zero.  

t15_43 <- BESTmcmc(t15, t43) 

plot(t15_43)  

summary(t15_43)  

  

It is apparent that, when transitional frequency is held constant at three occurrences 

per block and transitional probability is compared at the 1.0 and .33 level, there is no 

meaningful difference between the times taken to transition the first target to the 

second. Based on this comparison, it can be inferred that when transitional frequency 

is high, increasing the transitional probability confers no additional benefit in learning 

the underlying sequence.  
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Figure 8.6: Density plot showing the mean difference between transitional pairs 1-5 and 43. The 

difference of means is almost equally distributed around zero indicating that there is no meaningful 

difference between the two datasets.  

The second comparison of interest is between transitions 1 -> 5 and 6 -> 2. Here we 

hold transitional probability constant at 1.0 whilst contrasting trials with transitional 

frequencies of three and one, allowing for the effect of transitional frequency to 

examined in the same way as transitional probability, above.  

t15_62 <- BESTmcmc(t15, t62)  

plot(t15_62)  

summary(t15_62)    
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Figure 8.7: Density plot showing the difference in means between transitions 1 -> 5 and 6 > 2. There is 

a 100% chance that the difference in means is less than zero, indicating that transitions between 

targets one and five are completed more quickly than those between targets six and two.   

  

In figure 8.7, we see a mean difference of means of -.13; this demonstrates a higher 

mean transition time between targets six and two than targets one and five. Since 

these transitions have the same transitional probability and inter-target distance, we 

can conclude that any differences must be a result of variations in transitional 

frequency and that higher transitional frequencies – as exemplified by this comparison 

– result in faster transition times.   
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Next, a comparison is made between two transitions (6 -> 2 & 8 -> 7) where the 

transitional frequency is held constant at one and the transitional probability once again 

takes a value of either .33 or 1.0.   

t62_87 <- BESTmcmc(t62, t87)  

plot(t62_87)  

summary(t62_87)  

 

Figure 8.8: Density plot depicting the difference in group means for transitional times between items 

six and two and eight and seven. The mean difference of means suggests that the transitions between 

targets six and two are performed the quickest and that the difference between transitions has a 99.8% 

chance of being greeter than zero.  
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As can be seen in figure 8.8, there is a high percentage chance that the difference of 

means between transitions 6 -> 2 and 8 -> 7 is greater than zero. This indicates that the 

higher transitional probability results in slower transition times when frequency is held 

constant at one. This would be surprising given the strength of previous evidence but is 

congruent with the findings of the meta-analysis presented in the previous chapter.   

The final comparison between transitions 4 -> 3 and 8 -> 7 examines the effect of 

transitional frequency when transitional probability is held constant at .33. Figure 8.  

9 shows that there is an 89.2% chance that the difference of means is less than zero. This 

suggests that the higher transitional frequency results in participants completing the 

transition marginally quicker than in the lower transitional frequency pair. However, the 

results shown here fall inside the highest density interval and are therefore rejected in 

accordance with the pre-defined cut-off set out above. Table 8.8 shows a summary of the 

equivalence tests.  

t43_87 <- BESTmcmc(t43, t87)  

plot(t43_87) 

summary(t43_87) 
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Figure 8.9: Density plot showing the difference in group means between transition 4 -> 3 and 8 -> 7. 

There is a non-meaningful difference between the two transitions.  

  

Table 8.8: Summary of Bayesian equivalence tests for key comparisons from Experiment 9  
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  DISCUSSION   

The current experiment aimed to investigate the relative contributions of both 

transitional probability and transitional frequency to performance on a simple 

sequence learning task. Data shows that the task was effective in eliciting learning 

from participants and that this learning is driven, in part, by the transitional frequency 

between target-pairs. Furthermore, results suggest that transitional probability 

represents a poorer metric of learning performance.  

Direct comparisons between high and low transitional frequency and probability trials 

show that when transitional frequency is high there is no additional benefit in 

increased transitional probabilities suggesting that participants are more likely to be 

tracking the frequency of co-occurrence than building a probabilistic representation of 

the stimulus-set. This is reinforced by the fact that, when transitional probability is 

held constant at 1.0, higher frequency transitions are performed faster than those with 

a lower frequency. However, this is not true in cases where transitional probability is 

held constant at .33 – where the first target transitions to the second target in the 

transition only a third of the time. In these trials, higher frequency transitions were 

demonstrably faster albeit not meaningfully so. Finally, in trials where transitional 

frequency is low, transitional probability has an adverse effect on transition times. 

This is congruent with the results of the meta-analysis presented in Chapter 7 but is 

still somewhat surprising given that transitional probability represents the 

predictability of a transition, so a value of 1.0 is akin to absolute predictability of the 

next target.   
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These findings build upon the tentative conclusions discussed in previous chapters that 

a frequency-based mechanism of statistical learning may be preferable to a 

probabilistic one. The replication of results across two separate paradigms strengthens 

the argument that transitional probability may not be the best measure of statistical 

distribution for understanding statistical learning. Mathematically speaking, 

transitional probability represents the best descriptor of a given dataset since it 

captures the frequency of co-occurrence but tempers it with the number of contexts an 

item can appear in; it also has the advantage of providing a standardised metric that 

can be applied to any stimulus-set regardless of size.   

That said, transitional probability is also a more complex metric to compute and 

maintain across larger datasets and tends to be unreasonably inflated in small-scale 

artificial grammar paradigms – though this is an issue of design rather than a problem 

with transitional probability. These issues are the basis of my argument that 

transitional (or bigram) frequency may be a better metric for understanding 

statistical learning performance. This is because it is likely less cognitively effortful to 

calculate and maintain frequencies than probabilities (see Chapter 2 for a more 

thorough discussion) and that the extra cognitive load associated with transitional 

probability is not commensurate to the added benefit of having a fuller, more accurate 

representation of the stimulus-set.  

In the second part of this chapter I present a larger example of the sequence learning 

experiment with a greater number of targets. The larger range of potential transitions 

allows for a wider range of transitional probabilities weighted towards the lower end 

of the scale. This distribution is more akin to that seen in natural language where many 
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transitions display extremely small transitional probabilities, with only a few, rare 

transitions having probabilities approaching 1.0 (See figures 8.10 to 8.12).  

 

  

Figure 8.10: Distribution of transitional probabilities in the British National Corpus, note that the 

bulk of transitions are concentrated below .05 with very few exceeding .25. Repeated from Chapter 

2.  

 

  

Figure 8.11: Distribution of transitional probabilities in Experiment 9. Note the much heavier tail 

than that seen in the density plot of transitional probabilities in the British National Corpus.  
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Figure 8.12: Density plot showing the probability of transitions in Experiment 10. Note the smaller 

tail and lower mean than that seen in Experiment 9, bringing the distribution closer to that seen in 

the British National Corpus.  

In addition, having a more representative sample of transitional probabilities will 

allow for the direct comparison of values other than .33 and 1.0. This has the advantage 

of showing that the findings presented above are not a special case related to 

transitions with specific probabilities. This is particularly important for transitions 

with a probability of 1.0 which could be considered a special case given that the first 

target in such a transition is always followed by the second target allowing for perfect 

prediction. In fact, it is plausible to suggest that such transitions may be encoded as a 

single item in any representation of the stimulus-set given that they only ever occur in 

that specific configuration.  

In summary, the greater number of targets allows for a longer sequence with smaller 

and more varied transitional probabilities than in Experiment 9 and enables the 

comparison of more realistic transitional probabilities than previously available.  
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 EXPERIMENT 10: SIXTEEN TARGETS  

Experiment 10 takes the methodology from Experiment 9 and increases the difficulty 

of learning the pattern by increasing the number of potential targets to sixteen. In 

addition, the maximum transitional frequency is raised to four and a more varied range 

of transitional probabilities introduced.  

8.8.1 Participants  

An opportunity sample of 50  participants aged between eighteen and forty-eight (M  

= 24.73, SD = 6.97) was recruited from Nottingham, UK. The sample was made up of 

37 female and 13 male participants all of whom reported no visual or motor difficulties 

that may interfere with their ability to complete the task.  

8.8.2 Design  

A repeated-measures design was used to determine whether participants can 

implicitly learn a sequence and identify the mechanism driving that learning. The 

independent variable was the statistical information (frequency, transitional 

probability) and the dependent variable was the time taken to transition from one 

target to the next, in milliseconds. Key transitions were pre-selected for comparison to 

directly examine the effects of high and low transitional probability and transitional 

frequency.  
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8.8.3 Materials  

The experiment was run in OpenSesame 3.1.7 using the ‘droid’ Backend and displayed 

on an ASUS T303UA running Windows 10 in tablet mode. The experiment comprised 

one 16 item practice block, five 113-item sequence blocks, and one 112item non-

sequence block (See table 8.9). The transitional probabilities and paired frequencies of 

the items within the sequence were varied systematically throughout each block. 

Apart from the practice block, all items were presented sequentially with no breaks. 

Sixteen potential target areas were presented on a 12.6" screen (resolution 1280px X 

800px). Each area measured 150 X 150px and was displayed as an empty white box on 

a black background. Adjacent boxes had a vertical/horizontal separation of 200 pixels 

and a diagonal separation of 282.84 pixels. Boxes changed colour from black to white 

to indicate the current target (see Figure 8.13).  
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Figure 8.13: Example screenshot of the task participants undertook in Experiment 

10. Blocks were labelled from A to P starting at the top left-hand corner and 

progressing horizontally to the bottom right of the screen; participants were 

unaware of this labelling.   

Table 8.9: Transition table for Experiment 10  
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246  

  

 

  

  



 

247  

  

 

8.8.4 Procedure  

Participants were informed that one of the squares would turn white and that they 

should with their RIGHT index finger as soon as it appeared; participants were 

instructed to do this as quickly as possible. After a short practice, participants completed 

677 trials comprising five repetitions of a 113-item sequence and a final 112-items 

where the sequence was not present. Participants were not informed of the underlying 

sequence nor given any feedback throughout the experiment.   

 RESULTS  

Mean response time by block was plotted to assess whether learning had taken place 

across the course of the experiment. As can be seen in figure 8.14, participants’ overall 

performance increases over time but is adversely affected during the sixth block, 

when the underlying sequence is removed. This suggests that participants have 

become attuned to the transitional relationships between the pairs and that these 

associations persist even once the relationships have been adjusted.  
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Figure 8.14: Mean response times arranged by block. Performance improves over 

the course of the learning blocks (1-5) but degrades in the final block (6) once the 

underlying pattern is removed. The bump in transition times in Block 4 may be due 

to a fatigue effect which is mitigated in Block 5 once participants realise, they are 

slowing down.  

Data from Experiment 10 was read into R using the readr package and response time 

data – which signifies the time taken to transition from one target to another – was 

assessed for normality (see figure 8.15).  

df10 <- read_csv("exp_10_block_5.csv")  

den10 <- density(df10$response_time)  

plot(den10, main = "", xlab = "Response time")  

skewness(df10$response_time)  
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Figure 8.15: Distribution of response times for all trials in Block 5 of Experiment 10; the distribution 

shows a skewness of 1.42 and was therefore log-transformed to correct to normal.   

Response time data was then log-transformed, and skewness reduced from 1.42 to .71 

which is within acceptable parameters for the planned analyses.  

df10$log_response_time <- log(df10$response_time) 

skewness(df10$log_response_time)  

  

 

Figure 8.16: Distribution of log-transformed response times for all trials in Block 5 of Experiment 

10; the distribution now shows a skewness of .71.  
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8.9.1 Multi-level Model  

Only data from block five was included in the analyses. Data was modelled in R using the 

brms package. Data was modelled using varying combinations of fixed effects as shown 

in table 8.10. Participant age and inter-target distance were also included as co-variates 

in the models. Inter-target distance is defined as the Euclidean distance measured 

between the centre points of each target. Participant-level differences were also 

included as a random-effect in each model. Leave-one-out cross-validation was then 

used to identify which model provided the best fit to the data. In addition, Bayes factors 

were calculated to compare the weight of evidence for each of the models.  

  

Table 8.10: Overview of the varying intercept models designated for Experiment 10  
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model_10a <- brm(log_response_time ~ age + distance + (1|subject_nr),  data 

= df10, save_all_pars = TRUE, silent = TRUE)  

 model_10b <- brm(log_response_time ~ age + distance + freq  + 

(1|subject_nr), data = df10, save_all_pars = TRUE, silent = TRUE)  

model_10c <- brm(log_response_time ~ age + distance + tp + (1|subject_nr),  

data = df10, save_all_pars = TRUE, silent = TRUE)  

model_10d <- brm(log_response_time ~ age + distance + freq + tp + 

(1|subject_nr), data = df10, save_all_pars = TRUE, silent = TRUE)   

  

8.9.2 Cross-validation  

cv_10a <- loo(model_10a)  

cv_10b <- loo(model_10b)  

cv_10c <- loo(model_10c) 

cv_10d <- loo(model_10d)  

  

Table 8.11 shows that model D has the smallest information criterion and therefore 

the best fit to the observed data; conversely model A has the largest and represents 

the worst fit of all the models. However, due to the large standard deviations around 

the leave-one-out information criteria it is impossible to accurately declare any one 

model better than the others. In order to discriminate effectively between the four 

models Bayes factors were used as a comparative tool to identify which model was 

most likely given the observed data.  
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Table 8.11: Summary of brms model leave-one out cross-validation statistics for Experiment 10  

 

  

8.9.3 Bayes Factors  

bf10.1 <- bayes_factor(model_10b, model_10a)  

bf10.2 <- bayes_factor(model_10c, model_10a)  

bf10.3 <- bayes_factor(model_10c, model_10b)  

bf10.4 <- bayes_factor(model_10d, model_10a)  

bf10.5 <- bayes_factor(model_10d, model_10b)  

bf10.6 <- bayes_factor(model_10d, model_10c)  

  

Bayes factors were used to compare each model with each other model and can be 

seen in table 8.12. There is a strong indication that Model D is most likely given the 

observed data from Experiment 10 and is shown in more detail in table 8.13.  

Table 8.12: Bayes factor comparisons for statistical models from Experiment 10  
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8.9.4 Model Summary  

Summary(model_10d)  

Table 8.13: Summary of Model D, the combined model, based on data from Experiment 10  

 

 Model D, the combined transitional frequency and probability model shows a very 

different pattern of results to those seen in Experiment 9. In this, more complex, 

experiment there appears to be a reversal of the roles of transitional probability and 

transitional frequency. Participants appear to be performing better under high 

transitional probability, low transitional frequency conditions. This is unusual given the 
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findings from previous chapters but is entirely in line with the evidence presented by the 

wider statistical learning literature.   

 KEY COMPARISONS  

Comparisons were drawn between pre-selected target-transitions to further elucidate 

the relative contributions of frequency and transitional probability. The purpose of 

these tests was to examine the way in which high or low transitional probabilities or 

frequencies affect response times when the alternate statistic is held constant. 

Bayesian Equivalence testing was conducted using the BEST package. Mean scores for 

each transitional pair are shown in table 8.14. Due to the longer, more complex 

sequence used in the current experiment, selecting comparisons with the same 

transitional frequency, transitional probability, and inter-target distance was more 

difficult; therefore, transitions were selected to be approximately, rather than exactly, 

equal on these characteristics. Note that, due to the increased number of targets, 

letters are used to identify the locations rather than numbers as in  

Experiment 9; figure 8.17 shows the target locations with their associated letters.  

  

Table 8.14: Mean values for each transitional pair used for comparison in Experiment 10  
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Figure 8.17: Screenshot, including labelled target locations, showing the experimental task. Note 

that participants were not made aware of the labels and they did not appear during the experiment.   

  

tnh <- subset(df10, key == "nh")  

toa <- subset(df10, key == "oa")  

ted <- subset(df10, key == "ed")  

tlm <- subset(df10, key == "lm")  

tnh <- tnh$log_response_time  

toa <- toa$log_response_time  

ted <- ted$log_response_time  

tlm <- tlm$log_response_time  
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Comparisons were conducted using the BEST package in R. The first comparison 

contrasted transitions N -> H and O -> A, both of which have a transitional frequency of 

four but transitional probabilities of .80 and .25, respectively.    

tnh_oa <- BESTmcmc(tnh, toa) 

plot(tnh_oa)  

 

Figure 8.18: Density plot showing the mean difference between transitional pairs N -> H and O -> A. There 

is a 100% chance that the difference of means between the two transitions is less than zero, indicating that 

transition N -> H was performed more quickly.  

  

Figure 8.18 shows that participants were quicker transitioning between targets N and 

H than between targets O and A. This could be attributed to the differences in distance 
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between the two targets, but this seems unlikely given that, in Model D above, 

distance is shown to have no meaningful effect on transition times. It is more likely 

that the difference shown here is, in fact, related to the increased transitional 

probability for transition N -> H compared to O -> A. It is interesting to see an effect 

of transitional probability in this comparison since the associated comparison in 

Experiment 9 showed no impact of transitional probability for high frequency 

transitions.  

The second comparison from Experiment 10 was made between a transitions E -> D and 

N -> H which have transitional probabilities of .80 and .83 but transitional frequencies 

of four and one; the results of the comparison can be seen in figure 8.19.  

tnh_ed <- BESTmcmc(tnh, ted)  

plot(tnh_ed)  
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Figure 8.19: Density plot showing the difference in means between transitional pairs N -> H and E 

-> D. There is a 99.8% chance that the difference between group means is less than zero. This 

suggests that participants transition between items N and H more quickly than between items E and 

D .  

As in Experiment 9, it is apparent that participants are responding more quickly to 

higher frequency transitions when transitional probability is held (almost) constant.  

This is a somewhat surprising result given the results of the multi-level model, which 

shows participants as being slower as transitional frequency increases.  

The next pair of transitions to be compared are E -> D and L -> M. These were chosen 

since they both have a transitional frequency of one and transitional probabilities of .80 

and .25, respectively.   
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ted_lm <- BESTmcmc(ted, tlm)  

plot(ted_lm)  

 

Figure 8.20 shows that, when transitional frequency is held constant at the lower end of 

the scale, there is no meaningful difference in the time taken to transition between 

targets regardless of whether transitional probability is high or low. This is a departure 

from the findings of Experiment 9, in which higher transitional probabilities were 

demonstrated to be detrimental to participant performance when frequency was low.  

 

Figure 8.20: Density plot depicting the difference in group means for transitional times between 

targets E and D and targets L and M. There is no meaningful difference in the time taken to complete 

the two transitions.  
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The final comparison to be completed was between O -> A and L -> M. Both transitions 

have a probability of .25 but vary on their transitional frequency. Figure 8.21 shows that 

participants were 100% more likely to complete transitions from target O to target A 

more slowly than transitions between targets L and M. This is a highly unusual finding 

given the outcome of the other comparisons presented in this chapter in that, at low 

transitional probabilities, higher frequency transitions seem to be performed more 

slowly. This does, however, support the results of the multi-level model where 

transitional frequency is shown to be a positive predictor of response time.   

toa_lm <- BESTmcmc(toa, tlm)  

plot(toa_lm)  

 

Figure 8.21: Density plot showing the difference of means between transition O -> A and transition 

L -> M. Transitions between the higher frequency pair are slower than those for the lower 

frequency transition.  
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Table 8.15: Summary of Bayesian equivalence tests for key comparisons from Experiment 10  

 

After examining the comparisons from Experiment 10, when transitional probability is 

high, transitions with a higher frequency are completed more quickly. Additionally, 

higher transitional probabilities seem to be more effective when encountered with a 

higher frequency. At lower frequencies, however, the effect of transitional probability 

appears to be negated, with the direct comparison showing no difference between 

transitional probabilities of .83 and .25. Perhaps more surprising is the fact that, when 

transitional probability is held at .25, higher frequency transitions are shown as being 

slower. This combination of results points towards a potential interaction between 

transitional probability and transitional frequency in the current experiment (see figure 

8.21).  
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Figure 8.21: Transition times for the key comparisons in Experiment 10 plotted according to 

transitional probability (x-axis) and transitional frequency (blue/broken and orange/solid lines).  

Note that the intersection of the slopes suggests a potential interaction between the two metrics.  

 

Based on this, a final multi-level model was compiled using the same variables as above 

with the addition of an interaction term. This model was then assessed using leave-one-

out cross-validation and compared to the previous models for goodness of fit.   

Model_i <- brm(log_response_time ~ age + distance + freq * tp + (1|subject_nr),  

data = df10, save_all_pars = TRUE, control = list(max_treedepth = 15))  

loo(Model_i)  

bayes_factor(Model_i, model_a)  

bayes_factor(Model_i, model_b)  

bayes_factor(Model_i, model_c)  

bayes_factor(Model_i, model_d)  
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Table 8.16: Leave-one-out information criteria for Experiment 10, including the new interaction model (I)  

 

Table 8.16 shows the leave-one-out information criteria for all the models, including the 

interaction model and table 8.17 shows Bayes factor comparisons for the interaction 

model versus each of the other models.   

Table 8.17: Comparative Bayes factors for the interaction model  

 

 The new model, which includes an interaction between transitional frequency and 

transitional probability shows the lowest information criterion and favourable Bayes 

factors compared to the other models. If we interpret the data based on this new 

model rather than the combined model (above) then we see that both the interaction 

between transitional frequency and transitional probability results in improved 

transition times as both factors increase. That is, participants perform better when 

transitions are both high frequency and high probability; moreover, at lower 

frequencies, there is no benefit to increasing transitional probabilities since there is 

too little exposure for participants to differentiate between them. There also appears 

to be detrimental effect of repeatedly exposing participants to low probability 
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transitions, though the reason for this is unclear. Table 8.18 provides a summary of the 

interaction model.  

Table 8.18: Summary of the interaction model  

  

Since both transitional probability and transitional frequency are continuous 

variables it is impractical to plot the marginal effects of the interaction in full since we 

would need to plot separate lines for every possible value. However, figure 8.22 shows 

how the effect of transitional probability varies as a function of transitional frequency; 

as the transitional frequency increases the effect of transitional probability becomes 

more pronounced. This is discussed below.  

Conditions <- data.frame(tp = c(.25, .5, .75, 1))  

Plot(marginal_effects(Model_i, effects = “freq”, conditions =  

Conditions))  
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Figure 8.22: Lattice plot showing the effect of transitional probability on transition time; each plot depicts 

a separate level of transitional frequency.  

 DISCUSSION   

The current experiment aimed to investigate the relative contributions of both 

transitional probability and transitional frequency to performance on a more complex 

sequence learning task. Data shows that the task was effective in eliciting learning 

from participants and that this learning was, in part, driven by both transitional 

probability and transitional frequency. Multi-level modelling using brms showed that 

transition time is primarily driven by an interaction between both transitional 

frequency and probability, with higher values on both variables required for better 

task performance.   
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This in no way invalidates the existing evidence for transitional probability as a robust 

predictor of statistical learning performance but does introduce a cautionary note: 

high transitional probability may only be effective with sufficient levels of exposure. 

Conversely, there seems to be no benefit of repeatedly exposing participants to low 

probability transitions, suggesting that there is a discrete point at which transitional 

probability becomes a useful marker of statistical regularity. This would explain why 

transitional probability has been shown to be a good predictor of performance in 

statistical learning paradigms that make use of smaller stimulus-sets - since the 

transitional probabilities are necessarily inflated – but not in the lexical decision 

experiments presented earlier in this work which use more naturalistic examples.  

  CHAPTER 7: REVISITED  

The observation of an interaction between transitional frequency and transitional 

probability in this experiment led to my revisiting the meta-analysis presented in the 

previous chapter. Until now, there was no theoretical consideration that such an 

interaction could exist given that both transitional probability and transitional 

frequency are measuring similar things, in different ways. However, given that an 

interaction was observed in the sequence learning task it is possible that one may also 

be present in the lexical decision data. As such, I reanalysed the data from Chapter 7 

with the inclusion of an interaction term.  

dfm <- read_csv(“Meta_data_all.csv”)  

dfm$log_bigram_freq <- log(dfm$bigram_freq + .000001)  

dfm$log_trans_prob <- log(dfm$trans_prob + .000001)  

dfm$log_diversity <- log(dfm$diversity + .000001)  

dfm$log_response_time <- log(dfm$response_time + .000001)  
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Meta_interaction_model_1 <- brm(log_response_time ~ age + concreteness + 

letters + word_freq + trans_prob * bigram_freq + (1|subject) + 

  (1|item), data = dfm, save_all_pars = TRUE)   

Meta_interaction_model_2 <- brm(log_response_time ~ age + concreteness +  

Letters + word_freq + trans_prob * bigram_freq + (1|subject) +  

(1|item), data = dfm, save_all_pars = TRUE, chains = 3, iter = 5000)  

Meta_interaction_model_3 <- brm(log_response_time ~ age + concreteness + 

letters + word_freq + trans_prob * bigram_freq + (1|subject) +  

(1|item), data = dfm, save_all_pars = TRUE, chains = 3, iter = 10000,  

warmup = 1000)  

  

However, the interaction model failed to converge after 2000 iterations (model_1) and 

again after 5000 iterations (model_2). A final attempt at model convergence was made 

with 10,000 iterations (model_3); for this model, max_treedepth and adapt_delta were 

set as 15 and .9, respectively (defaults are set as 10 and .8 in brms). This has the effect 

of increasing the efficiency of the of the Monte Carlo process and reducing the size of 

each ‘step’ in the sampling chain to reduce the number of divergent transitions. 

However, even with these adjustments, the model still failed to converge forcing me to 

conclude that the interaction model is a poor fit for the meta-analysis data.  

    

 GENERAL DISCUSSION  

The two experiments presented in this chapter attempted to replicate the pattern of 

findings reported in the earlier lexical decision tasks. Experiment 9 tasked 

participants with tapping on a target as it appeared in one of eight locations on a 

screen. Participants were then assessed on their ability to learn an underlying 
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sequence that they had not been made aware of. Their efficiency at learning this 

sequence was operationalised as the time taken to transition from one target to the 

next, with faster times demonstrating better learning of the transition. In Experiment 

10, participants were given the same task but with sixteen rather than eight targets 

and a longer underlying sequence to learn. Transition times were then examined using 

multi-level modelling and key comparisons were made between pre-selected target 

pairs.  

The data from Experiment 9 mirror the findings of the lexical decision experiments in 

suggesting that transitional frequency is the main predictor of participants’ 

performance. Comparisons of pre-selected transitions support this conclusion and 

show that high frequency transitions elicit faster transition times. This implies that, 

when transitional frequency is high, increased transitional probability has little effect 

on the ability to learn the underlying sequence in the experiment. Furthermore, higher 

transitional probabilities seem to be having an adverse effect on performance when 

transitional frequency is low.   

I then expanded the scope of the sequence learning task in Experiment 10 by increasing 

the number of potential targets as well as the length and complexity of the sequence. 

This resulted in a wider range of frequencies and a more comprehensive spread of 

transitional probabilities than in Experiment 9 and allowed me to examine whether the 

effects generalised to a more complex stimulus-set. The findings from Experiment 10 

support those seen in Experiment 9 in showing that higher transitional frequencies are 

conducive to faster transition times among participants. However, the data also show 

an interaction between the two metrics where the effects of transitional probability are 

mediated by transitional frequency. When transitional frequency is low, transitional 
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probability is of little benefit in helping participants learn the underlying sequence; but, 

as transitional frequency increases the impact of transitional probability becomes more 

pronounced, having the most effect when frequency is at its highest.  

This suggests that, contrary to my previous assertions, transitional frequency may not 

be a replacement metric for transitional probability but a complementary statistical 

measure and that participants may be attuned to both. This is evinced by the fact that, 

in both experiments, high transitional frequencies were only effective in reducing 

transition times in cases where transitional probability was also high – either 1 or .8, 

respectively. When transitional probability is low – at .33 in Experiment 9 and .25 in 

Experiment 10 – increasing the number of presentations has no benefit for 

participants. Additionally, increasing transitional probability only showed a 

meaningful effect when transitional frequency was high – held constant at four in 

Experiment 10 – and had no effect when help constant at either three (Experiment 9) 

or one (both experiments). This is shown most prominently in figure 8.22, which gives 

a clear summary of the interaction between the two metrics.  

These findings are congruent with those of Evans et al. (2009) in which participants 

were presented with either twenty-one or forty-two minutes of an artificial grammar. In 

their study, participants who received the longer exposure were able to learn the 

statistical structure of the grammar where those who received less exposure were not. 

It was previously my assertion that, since the transitional probability remained 

constant across the two conditions, the increase in performance must be due to the 

increase in frequency. The current results support this assertion with the caveat that 

increased transitional frequency is only effective in conjunction with high transitional 

probability. This further suggests that participants may not be calculating the 
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probability of all transitions and are focused on learning the most predictable examples 

and using these to scaffold the parsing/acquisition of the grammar. After all, once you 

identify the inter-item transitions by their high probability, you can disregard the lower 

probability transitions when building a representation of the stimulus.  

However, these results must once again be interpreted with caution. The experiments 

presented in this chapter utilise a relatively small stimulus-set which invariably leads 

to inflated transitional probabilities – the lowest possible being .125 in Experiment 9 

and .006 in Experiment 10. Those these are lower than many of those reported in 

other statistical learning paradigms they are still much higher than those seen in more 

naturalistic datasets. In the next chapter, I will consider the results of all ten 

experiments in relation to one another and to the arguments presented in Chapter 2.  
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CHAPTER SUMMARY  

In this chapter I:  

• Conducted two sequence learning experiments to examine participants’ ability 

to utilise statistical patterns to ascertain an unfamiliar sequence.  

• Used cross-validation and Bayes factor comparisons to determine the most 

effective models at predicting the observed data.  

• Directly compared pre-selected trials within each experiment to identify 

whether transitional frequency or transitional probability result in better 

sequence learning.  

• Identified a potential interaction between transitional frequency and 

transitional probability.  
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9 DISCUSSION  

CHAPTER OVERVIEW  

In this chapter I will:  

• Review the arguments for transitional probability, transitional (bigram) 

frequency, and (bigram) diversity.  

• Provide a summary of the findings presented in each of the experimental 

chapters.  

• Integrate the findings into a general discussion of the effects of distributional 

statistics on task performance.  

• Discuss the implications of this work to statistical learning theory and, more 

specifically, statistical learning paradigms.  

  

  



 

273  

  

   

 METRICS OF STATISTICAL LEARNING: OVERVIEW  

9.1.1 Transitional probability  

There is a wealth of evidence suggesting that transitional probabilities are the driving 

metric in statistical learning. Saffran, Aslin, and Newport (1996) showed that eight-

month-old infants were capable of parsing streams of sound into nonsense words in 

the absence of explicit cues. Several studies have since used transitional probabilities 

as the measure by which they predict learning in a number of experimental paradigms. 

These have included both linguistic and non-linguistic stimuli with both adults and 

children (e.g. Aslin et al., 1998; Conway & Christianson, 2005; Daikoku et al., 2014; 

Frank et al., 2010; Goodman et al., 2008; Hay et al., 2011; Johnson & Tyler, 2010; 

Kirkham et al., 2002; Koelsh et al., 2016; Liu & Kager, 2011; Newport & Aslin,  

2004; Reeder et al., 2017; Saffran, Johnson et al., 1999; Saffran, Newport, & Aslin, 1996; 

Saffran, Newport, Aslin, Tunick, et al., 1997; Theakston et al., 2004; Thiessen & Erickson, 

2013; Thompson & Newport, 2007; Toro et al., 2005; Vouloumanos, 2008). This suggests 

that transitional probability is a robust indicator of statistical learning performance and 

has led to its acceptance as the primary metric of interest in statistical theory. In part, 

this is since transitional probabilities are claimed to protect the learner against the 

possibility of under-segmentation. They do this by adjusting the raw frequency of co-

occurrence to account for the entire range of possible cooccurrence items. As such, raw 

co-occurrence frequency has been largely dismissed as a measure of statistical regularity 

in favour of transitional probability.    
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However, not every finding can be attributed exclusively to transitional probability. 

For example, in Saffran, Newport, and Aslin (1997) participants were exposed to either 

twenty-one or forty-two minutes of an artificial language and tested on their ability to 

discriminate between items from that language and novel items comprising the same 

phonological information arranged according to a different statistical pattern. It was 

found that the longer exposure time resulted in better discrimination performance, a 

fact that was attributed to participants having more time to encode the transitional 

probabilities. This effect could also be an artefact of increased frequency since only the 

number of presentations, not the transitional probabilities themselves, differ across 

the two conditions. This begs the questions as to whether more of the findings 

attributed to transitional probability can be explained by transitional frequency.   

9.1.2 Transitional (Bigram) frequency   

Erickson and Thiessen (2015) argue that a frequency-based mechanism is more 

plausible than transitional probability. In fact, computational modelling using PARSER 

(Perruchet & Vinter, 1998) and MOSAIC (Freudenthal et al., 2015) has demonstrated 

that a frequency-based system can accurately model children’s speech errors.   

More recently however, there have been calls to re-evaluate the prominence placed on 

transitional probability and consider alternative measures of statistical distribution 

(Slone & Johnson, 2018). Given that frequency effects are ubiquitous in studies of 

language acquisition (Ambridge et al., 2014) it is surprising that more has not been 

done to investigate raw co-occurrence frequency in statistical learning. In Chapter 2, I 

proposed bigram frequency as one such alternative metric. The primary argument for 

this is one of simplicity, which I will not repeat here except to say that a frequency-



 

275  

  

based mechanism requires fewer cognitive resources to maintain than a probabilistic 

one.   

It is recognised that frequency has a well-recorded effect across a number of domains 

including memory (Balota & Neely, 1980; MacLeod & Kampe, 1996; Hulme et al.,  

1997; Stretch & Wixted, 1998), reading (Dahan et al., 2001; Gerhand, & Barry, 1998; 

Inhoff & Rayner, 1986; Raynor & Duffy, 1986), sentence comprehension and production 

(Arnon & Snider, 2010; Diessel, 2007), and lexical decision performance (Grainger, 

1990; Perea & Carreiras, 1998; Schilling, Rayner, & Chumbley, 1998).   

There are also several experiential models of learning (Bybee, 1998; Rumelhart et al., 

1986; Tomasello, 2000) which would predict stronger representations for more 

frequent associations. Indeed, if we consider the neural architecture required to 

facilitate such learning then it is not implausible to imagine discrete lexical 

representations with differentially weighted connections developed through their 

frequency of co-occurrence. The same cannot be said for a purely probabilistic 

representation which would require the entire experiential history to be maintained to 

enable online calculations of transitional probability.  

9.1.3 Bigram Diversity  

There is strong evidence to suggest that predictability is an important facet of 

language processing (Bates & MacWhinney, 1987; Conway et al., 2010; Glenberg & 

Gallese, 2012; Goldberg et al., 2005; Pickering & Garrod, 2004; 2007; Van Berkum et 

al., 2005). Transitional probability incorporates this predictability in a way not 

captured by raw co-occurrence frequency. Therefore, bigram diversity was suggested 

as a way of retaining the benefit of predictability without the need for the complex 
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online calculations associated with transitional probability. Bigram diversity is similar 

in concept to contextual diversity as proposed by Adelman et al. (2006).   

However, the nature of bigram diversity is compatible with either a predictability effect 

– with lower diversity items being more predictable – and a diversity effect as 

predicted by Adelman et al.’s contextual diversity which would suggest that more 

diverse items confer a benefit on task performance. As such, the exact nature of any 

diversity effect was left open to exploration.  

 SUMMARY OF EXPERIMENTAL FINDINGS  

Over the course of six experimental chapters, I presented ten experiments and a meta-

analysis aimed at understanding the contributions of each of the three metrics to task 

performance. For each experiment, the data was analysed using Bayesian multi-level 

modelling and a model comparison approach was adopted using both cross-validation 

and Bayes factors as comparative measures. In addition, Chapter 8 also included direct 

comparisons of pre-selected items using Bayesian equivalence testing. The findings 

from each of the experimental chapters are summarised below and discussed in more 

detail later in this chapter.  

9.2.1 Chapter 3  

In Chapter 3, I presented two experiments designed to ascertain whether a lexical 

decision task could be used to assess whether participants were sensitive to the 

underlying statistical distributions present in a naturalistic stimulus-set. Faced with the 

prohibitive familiarisation times necessary to train participants on an artificial 

grammar of sufficient complexity to simulate natural language use it was decided that 
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an alternative approach was needed. The experimental stimuli were therefore 

extracted from the British National Corpus and the statistical associations between 

stimuli calculated. This allowed me to see if participants’ task performance could be 

better predicted by transitional probability, frequency, or diversity. It follows that, if 

participants performed better for high frequency bigrams then this may be down to 

stronger lexical representations for those items; suggesting better encoding during the 

learning process.  

The two experiments contrasted the effects of transitional probability with bigram 

frequency and bigram diversity, respectively, and were designed to provide 

participants with the maximal opportunity to benefit from the inherent associations 

between words. This was done in order to test the sensitivity of the task to the effect 

of the aforementioned metrics given that the paradigm has been hitherto unexplored 

in the context of statistical learning. The experiments were somewhat effective at 

detecting the effects of transitional probability and bigram frequency but showed no 

effect of bigram diversity; this may have been an artefact of stimuli selection which led 

to the inclusion of some unfamiliar items in Experiment 2.  

The findings from these experiments demonstrate that learners may be sensitive to the 

statistical association between items in naturalistic stimulus-sets despite these being 

several magnitudes smaller than those traditionally seen in statistical learning 

research. They also show that bigram frequency has a beneficial effect on task 

performance in these tasks and that this supersedes any benefit of transitional 

probability. Furthermore, in the bigram diversity experiment, neither this nor 

transitional probability had any effect on task performance, suggesting no role of 

predictability in determining task performance.  
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9.2.2 Chapter 4  

In Chapter 4, I attempted to address some methodological issues that arose in the first 

two experiments; the large amount of group-level variance in both experiments and 

the use of unusual stimuli in Experiment 2. Both experiments were therefore redone 

using slightly modified stimuli.  

To reduce the group-level variance attributed to differences in the target items, I 

conducted a replication of Experiment 1 in which the target words were repeated at 

each level of bigram frequency (high, low, and zero). This was successful in reducing, 

but not eliminating, the inter-item variance and provided an unexpected result. The 

data showed that rather than the predicted benefit, increased transitional probability 

proved to be detrimental to participants’ task performance. However, bigram frequency 

was not included in the model with the best fit to the data.  

Experiment 4 was a direct replication of Experiment 2 with a slightly modified stimulus-

list. The data from the repeated experiment suggest that transitional probability, when 

contrasted with bigram diversity, has the expected benefit of improving task 

performance.   

The experiments presented in this and the previous chapter demonstrated to my 

satisfaction that the primed lexical decision task was sensitive enough to the statistical 

associations in the British National Corpus that conclusions could be reasonably 

drawn as to the effects of the different distributional statistics. However, given that 

these experiments were specifically designed to maximise participants’ likelihood of 

responding to the statistical priming effect, I decided that it would be necessary to 
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replicate the effects using timings more typical of those found in word recognition 

research.    

9.2.3 Chapter 5  

Using timings more typical of previous lexical decision research, I attempted to replicate 

the findings presented in Chapter 3. Through these replications I showed that bigram 

frequency may represent a better metric of statistical learning than transitional 

probability, in the context of a primed lexical decision task. Furthermore, I suggested 

that the effects of transitional probability reported in previous research may be masking 

a frequency effect since, in this research, there appears to be little value in the 

predictability component that sets transitional probability apart from bigram frequency. 

Moreover, the consistent lack of effect for bigram diversity led to the conclusion that it 

may not be a useful metric of statistical distribution.  

9.2.4 Chapter 6  

Continuing the replications started in Chapter 5, I conducted two primed lexical decision 

tasks in which the target words were held constant across different levels of bigram 

frequency and bigram diversity (Experiments 7 & 8, respectively).   

The data once again suggest that bigram frequency is a better predictor of task 

performance than transitional probability in these tasks. Furthermore, the data from 

Experiment 8 suggest that neither transitional probability nor bigram diversity 

influence task performance.  
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Taken together, these results provide more evidence that transitional probability may 

not be the best measure of statistical regularity as suggested by the majority of previous 

research.  

9.2.5 Chapter 7  

In this chapter, I performed a meta-analysis on the data from the previous eight 

experiments. This allowed me to draw conclusions from a larger dataset than would 

otherwise be possible and to incorporate bigram diversity into the models with 

transitional probability and bigram frequency, which was not done in previous chapters.  

Following model selection using cross-validation and Bayes factors, I determined that 

the combined bigram frequency and transitional probability model provided the best fit 

to the data. This model supported the conclusions from previous chapters that bigram 

frequency has a beneficial influence on word recognition time in these tasks and that 

transitional probability has a negative effect. Bigram diversity once again showed no 

effect and so was dropped from remaining experiments.  

However, these conclusions are based on a paradigm not previously seen in statistical 

learning research. As such, I decided that a more traditional approach was necessary to 

test these predictions.  

9.2.6 Chapter 8  

In Chapter 8, I set out to test whether the effects of transitional (bigram) frequency 

and transitional probability identified in the lexical decision tasks were maintained in a 

more traditional paradigm. I therefore used a sequence learning task to assess whether 

participants could become attuned to the statistical regularities of a simple pattern. 
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Model comparison revealed that the transitional frequency model provided the best 

description of the observed data and that as transitions become more frequent 

participants complete them more quickly. Moreover, comparisons between pre-

selected transitional pairs confirmed that high frequency transitions were completed 

faster than those of a lower frequency. However, this increase in task performance was 

only meaningful in transitions that had a high transitional probability.   

I then conducted a further sequence learning experiment in which I doubled the number 

of targets and increased the length – and therefore the complexity – of the sequence 

from thirty-seven to one-hundred-and-thirteen items. This resulted in a distribution of 

transitional probabilities similar to those seen in the British National Corpus and 

allowed me to test whether participants could become attuned to a more complex 

sequence when the only cues available were the statistical distribution of the transitions.  

After selecting for the best model and conducting the pre-planned comparisons it 

became apparent that participant performance was being driven by an interaction 

between transitional frequency and transitional probability in such a way that, as 

transitional frequency increases the effects of transitional probability become more 

pronounced. Considering the interaction in the sequence learning task, I then revisited 

the meta-analysis data but failed to find an interaction between the two metrics in 

predicting lexical decision performance.  

 DISCUSSION  

In this section I will draw conclusions as to the efficacy of each of the distributional 

statistics investigated in this work in relation to their ability to predict task 

performance in both the lexical decision and sequence learning tasks before discussing 
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some of the implications for statistical learning research in natural language. In the 

interest of generalisability, the term transitional frequency will be used to include 

bigram frequency from this point onwards; furthermore, I will be using response time 

to refer to both the time to complete a trial in both the lexical decision and sequence 

learning tasks.  

Over the course of this work transitional frequency was shown to be an effective 

predictor of task performance in seven of the eight analyses – four lexical decision tasks, 

two sequence learning tasks, and the meta-analysis. In each of these cases a small but 

meaningful negative relationship was observed between transitional frequency and 

response time. This shows that transitional frequency is a reliable measure of statistical 

distribution in predicting both the acquisition of new information and the ability to draw 

on existing statistical associations to aid in a novel language task.  

These findings are congruent with the claims that a frequency-based mechanism of 

statistical learning may be more psychologically plausible than a probabilistic one 

since it is more flexible in switching between linguistic units (Erickson & Thiessen, 

2015) or, as demonstrated in Chapter 8, different domains. It is unsurprising that we 

see the benefits of frequency in these tasks given the prevalence of frequency-based 

effects in language tasks more generally (Ambridge et al., 2014) and these findings add 

to the small but important body of research investigating these effects in statistical 

learning specifically (e.g., Oganian et al., 2015; Schuler et al., 2017).  

The overwhelming evidence (in this work) in favour of transitional frequency can be 

attributed to the relative simplicity involved in calculating and maintaining a frequency-

based representation of the stimulus-set compared with the difficulty in maintaining and 
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updating a complete probabilistic representation – something that becomes more 

important as the set approaches naturalistic levels of complexity.  

Given these findings we can attempt to answer the questions set out in Chapter 2: (1) If 

a simpler mechanism can facilitate effective learning, what benefit arises from the use 

of a more complex one? and (2) do learners require an accurate probabilistic 

representation of the stimulus-set to learn its inherent properties?  

In relation to (1), the meta-analysis of all eight datasets shows transitional probability 

to have a small but meaningful detrimental effect on response time. This suggests that 

there is little benefit in tracking the transitional probabilities of bigrams and that 

doing so may introduce interference when attempting to access the associations at a 

later date. Which leads me to conclude, in response to (2) that learners do not require 

an accurate probabilistic representation of the stimuli-set in order to acquire new 

information. In fact, data from the sequence learning experiments presented herein 

suggest that transitional probability alone is insufficient to promote effective learning. 

This is compatible with research from domains outside of statistical learning that 

suggests better problem-solving performance when participants are given 

information in the form of frequencies rather than probabilities (Kahneman et al., 

1982; Hertwig & Gigenrenzer, 1999; McDowell et al., 2018; Tversky & Kahneman, 

1973).   

In addition, there are numerous experiential models of learning from areas including 

memory (Balota & Neely, 1980; Hulme et al., 1997; MacLeod & Kampe, 1996; Stretch & 

Wixted, 1998), reading (Dahan et al., 2001; Gerhand & Barry, 1998; Inhoff &  

Rayner, 1986; Raynor & Duffy, 1986), and sentence comprehension and production 

(Arnon & Snider, 2010; Diessel, 2007) that suggest better performance for higher 
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frequency items. The same pattern of effects can also be seen in word recognition and 

naming studies (Grainger, 1990; Perea & Carreiras, 1998; Schilling et al., 1998) where 

individual word frequency is considered to be a major predictor of task performance.  

It has also been demonstrated that children with atypical language development require 

more exposure – and therefore higher frequency – in order to learn the statistical 

properties of the stimulus-set and that typically developing learners also perform better 

under these conditions (Evans et al., 2009). Since transitional probability is constant 

across different levels of exposure, it follows that frequency is the driving force behind 

these improvements. Otherwise we would not expect to see any effect for typically 

developing participants who were able to acquire the regularities at the shorter 

exposure times given that, once you know that A precedes B in 100% of cases, there is 

little benefit in repeated presentations. The issue becomes less clear when considering 

the observed interaction between transitional frequency and transitional probability in 

Experiment 10; this implies that there is at least some benefit of transitional probability 

beyond that provided by transitional frequency – though only for higher frequency items 

– in the acquisition of new information. I am reticent, however, to draw more than 

tentative conclusions from this finding given that the interaction is not apparent in the 

lexical decision data nor in the other sequence learning task.  

In fact, the overall lack of a consistent effect for transitional probability is perhaps the 

most surprising outcome of the data presented herein. I have repeatedly highlighted 

the prevalence of transitional probability as the preferred metric in the statistical 

learning literature and multitudinous studies have demonstrated its relationship with 

performance on a variety of different tasks. Why then do we see no effect in the current 

studies?   
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Could it be that transitional probability is masking a frequency-based effect in many of 

these tasks? I have already detailed studies from Saffran, Aslin, and Newport (1997) 

and Evans et al. (2009) where improvements in learning performance after greater 

periods of exposure have been attributed to increased opportunity to become attuned 

to the transitional probabilities of the stimulus-set. It is not too difficult to imagine 

that the effect may have more to do with increased frequency than better attunement. 

Similarly, Koelsh et al. (2016) describe exposing participants to low, intermediate, and 

high probability events in which the third item of a triplet varied as the first two 

remained constant. The rate of occurrence in each trial was ten percent for the low 

probability trials, thirty percent for the intermediate, and sixty percent for the high 

probability trials. On examination, we can see that this arrangement of stimuli means 

that the high probability trials occur six times more frequently than the low 

probability ones meaning that any effect of probability could also be attributed to 

frequency.  

Simply put, in tasks where transitional probability is the chosen metric of statistical 

distribution, it is necessary to disambiguate any effect of frequency if reliable 

conclusions are to be drawn. The current work accounts for the effects of both 

transitional probability and frequency and finds that, when transitional frequency is 

included in statistical models of task performance, transitional probability no longer 

elicits the predicted effects. This lends further credence to the suggestion that 

transitional probability may be masking a frequency-based mechanism of learning. If 

this is the case, then we must consider whether the predictability component of 

transitional probability is providing any benefit beyond that obtained from raw 

cooccurrence frequency.  
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In the current work, the predictability of a stimulus-set was also captured by bigram 

diversity. However, in a suite of lexical decision tasks and a meta-analysis bigram 

diversity was shown to be a poor predictor of task performance – returning null results 

on each occasion. We also see that the only experiments where transitional probability 

is shown to have a beneficial effect on response time are those where it is contrasted 

with bigram diversity and not transitional frequency. This suggests that, when 

frequency is not accounted for in the model, transitional probability is reflecting the 

frequency effect rather than one of predictability. If transitional probability were truly 

capturing predictability, then we would expect to see a benefit alongside (or instead 

of) that of frequency in the lexical decision experiments. In the absence of any evident 

effect, we must conclude that the predictability component of transitional probability 

does nothing to aid task performance beyond that which can be explained by a 

frequency-based mechanism.  

The current study used an innovative approach to investigate a commonly accepted 

phenomenon - that humans are capable of tracking distributional information within 

the environment. A lexical decision task was used to assess previously learnt 

associations. This allowed for an examination of naturalistic distributions without 

engaging in a lengthy familiarisation process with participants. This procedure 

highlighted several things. Firstly, individuals are capable of accessing previously 

learnt statistical relationships and making predictions based on these prior 

associations. Furthermore, this demonstrates the persistent nature of these 

associations, some of which may not have been encountered for extended periods 

prior to testing or may only be encountered extremely infrequently. Crucially, the 

current study also demonstrates the applicability of statistical learning theories to 
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large, complex stimulus-sets. The associations presented herein were extracted from 

the BNC and constitute a far richer example of language than would have been 

possible with artificial grammars.   

The current work demonstrates that individuals can use transitional frequency to 

respond to statistical primes in a lexical decision task and that this constitutes a better 

predictor of task performance than transitional probability - at least when accessing 

previously learnt associations. It is suggested that, although transitional probabilities 

provide a more complete distributional representation of the stimulus-set, the benefit 

gained from such a representation does not justify the additional computational costs. 

This provides a measure of support for the psychological plausibility of a frequency-

based mechanism of learning, as suggested by Erikson and Thiessen (2015).   
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Conclusions  

• Transitional frequency represents a better metric of statistical distribution for 

predicting task performance in a primed lexical decision task  

• Bigram diversity does not constitute an effective measure of statistical 

distribution  

• Transitional probability may not be as effective a predictor of task performance 

as previously suggested but may have some value in the acquisition of new 

information  

• Future studies should attempt to disambiguate the effects of transitional 

probability and frequency  

• Statistical learning can be applied to naturalistic datasets, but caution is 

advised when attempting to generalise from artificial grammars, particularly 

when referencing the effects of transitional probability  
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Additional package citations  

A number of R packages were integral to the production of this thesis but were uncited 

in the main text due to stylistic or ease-of-reading concerns; the following packages 

were used but not cited: readr (Wickham, Hester, & Francois, 2017); formatR (Xie, 

2017); Rcpp (Eddelbuettel & Francois, 2011; 2013; 2017); ggplot2 (Wickham, 2016); 

flextable (Gohel, 2019a); officer (2019b).  
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Appendix 1: Word list (Bigram frequency; Experiments 1, 3, 5, & 7) 

Bigram 
frequency Prime Target 

Target 
concreteness 

Prime 
diversity 

Target  
Letters 

Transitional 
probability 

Target 
frequency 

0 berate involved 2.03 0 8 0 19964 

0 ski aircraft 4.4 17 8 0 6203 

0 chilli call 4 5 4 0 19484 

0 oval hipster 2.5 9 7 0 19060 

0 lifer  hugs 4.14 0 4 0 103 

0 tides mauve 4 4 5 0 222 

0 reaches timers 4.69 16 6 0 51 

0 way agree 2.31 263 5 0 8181 

0 fart course 3.82 0 6 0 19694 

0 year hundred 3.2 343 7 0 19109 

0 recede socks 4.91 0 5 0 991 

0 gimlet coding 3.03 0 6 0 494 

0 snuffles model 4.53 0 5 0 13335 

0 meet gone 2.04 112 4 0 19548 

0 drubs nudge 4.47 0 5 0 153 

0 stippled  trade 3.08 0 5 0 19981 

0 have sihgt 0 0 5 0 0 

0 faith rink 4.56 49 4 0 141 

0 trillion droop 3.68 0 5 0 77 

0 briskly allow 2.41 8 5 0 11469 

0 cycle language 2.35 44 8 0 18778 

0 rethinks scaly 4.22 0 5 0 75 

0 geese wits 1.76 4 4 0 400 

0 oaken whose 1.68 0 5 0 19834 

0 abase number 3.3 0 6 0 49385 

0 vexes street 4.75 0 6 0 19614 

0 systems short 3.61 154 5 0 18652 

0 gunboat found 2.53 0 5 0 48923 

0 building food 4.8 177 4 0 18992 

0 winds agreed 1.93 27 6 0 14692 

0 snuffles moedl 0 0 5 0 0 

0 bile ptah 0 0 4 0 0 

0 secret whsoe 0 0 5 0 0 

0 their fodo 0 0 4 0 0 

0 chilli acll 0 0 4 0 0 

0 eighth atcion 0 0 6 0 0 

0 recent adrdess 0 0 7 0 0 

0 gimlet coidng 0 0 6 0 0 

0 acid adedd 0 0 5 0 0 

0 chow trdae 0 0 5 0 0 

0 rugby stgae 0 0 5 0 0 

0 lifer  hgus 0 0 4 0 0 
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0 barbed folor 0 0 5 0 0 

0 quickly allwo 0 0 5 0 0 

0 darn agered 0 0 6 0 0 

0 fleet adivce 0 0 6 0 0 

0 way agere 0 0 5 0 0 

0 year hunderd 0 0 7 0 0 

0 ski aicrraft 0 0 8 0 0 

0 fart ocurse 0 0 6 0 0 

0 funny adlut 0 0 5 0 0 

10 time across 3.07 569 6 6.45E-05 25203 

10 people achieve 2.29 679 7 8.05E-05 6768 

10 many active 3.32 975 6 0.000112 7290 

10 before actual 2.22 517 6 0.000113 6851 

10 want advice 2.73 139 6 0.000174 10437 

10 really able 2.38 505 4 0.000208 30410 

10 local access 2.71 568 6 0.000216 10940 

10 always accept 3.03 567 6 0.000216 9807 

10 case above 3.33 237 5 0.000231 25748 

11 give advance 2.57 248 7 0.000244 5040 

10 less afraid 2.7 479 6 0.00028 5967 

10 large adult 4.4 468 5 0.000296 5078 

10 interest account 3.08 149 7 0.000362 15891 

10 quickly added 2.74 129 5 0.000807 15375 

10 secret address 3.89 69 7 0.001735 7036 

461 good practice 2.52 850 8 0.005706 17114 

10 hostile action 2.86 19 6 0.006068 22099 

2083 their children 4.89 3442 8 0.007983 46608 

4525 have done 2 1900 4 0.009553 35473 

10 enforced absence 2.31 11 7 0.010091 5780 

311 recent times 2.07 203 5 0.019612 29910 

5568 other hand 4.72 1749 4 0.039173 35352 

10 rustic style 2.67 1 5 0.041152 10725 

1769 second half 3.27 498 4 0.042674 29782 

198 funny thing 3.17 62 5 0.044098 35211 

381 fifty five 3.87 78 4 0.044395 40739 

4530 make sure 1.73 376 4 0.056995 24595 

13 glide path 4.41 1 4 0.059091 6251 

14 canned food 4.8 3 4 0.065116 18992 

573 cash flow 3.72 134 4 0.066721 5244 

13 coiled spring 3.89 1 6 0.06701 5983 

512 daily post 4.3 74 4 0.067112 9339 

551 shot dead 4.07 74 4 0.06722 12494 

243 rapid growth 2.89 53 6 0.067406 12982 

13 pelvic floor 4.8 4 5 0.068421 11556 

508 credit card 4.9 109 4 0.068881 5739 

535 bloody hell 2.41 75 4 0.073977 5315 
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12 hoax call 4 2 4 0.075472 19484 

10 craggy face 4.87 1 4 0.082645 34978 

437 acid rain 4.97 70 4 0.087963 6517 

466 index closed 3.37 52 6 0.100172 9877 

17 larval stage 4.64 3 5 0.116438 16565 

8465 last night 4.52 473 5 0.117273 36529 

1815 award title 3.32 50 5 0.120087 9790 

10 slush fund 3.18 1 4 0.121951 6407 

428 rugby union 3.38 39 5 0.124238 17607 

599 inner city 4.79 65 4 0.133408 23247 

305 fleet street 4.75 25 6 0.135737 19614 

187 eighth army 4.7 21 4 0.146322 11441 

12 darn sight 3.21 1 5 0.153846 6712 

11 puck fair 2.39 1 4 0.183333 9210 

234 bile acid 4.25 17 4 0.197802 4968 

14 chow test 3.93 1 4 0.208955 13701 

255 toxic waste 3.24 20 5 0.209016 6762 

3624 date award 4.14 92 5 0.222947 15114 

2745 wide range 3.22 115 5 0.22628 20427 

452 ozone layer 3.52 14 5 0.351751 2543 

1872 armed forces 2.69 40 6 0.390163 11775 

10 markup language 2.35 1 8 0.454545 18778 

207 barbed wire 4.72 1 4 0.713793 2269 

0 berate ivnolved 0 0 8 0 0 

0 large wtis 0 0 4 0 0 

0 give langugae 0 0 8 0 0 

0 larval ofod 0 0 4 0 0 

0 reaches timesr 0 0 6 0 0 

0 fifty afarid 0 0 6 0 0 

0 tides muave 0 0 5 0 0 

0 want scayl 0 0 5 0 0 

0 canned aggs 0 0 4 0 0 

0 ozone acheive 0 0 7 0 0 

0 recede scoks 0 0 5 0 0 

0 pelvic strete 0 0 6 0 0 

0 toxic tset 0 0 4 0 0 

0 rapid sprnig 0 0 6 0 0 

0 hostile rnik 0 0 4 0 0 

0 people numebr 0 0 6 0 0 

0 drubs nugde 0 0 5 0 0 

0 glide dorop 0 0 5 0 0 

0 meet ogne 0 0 4 0 0 

0 good adavnce 0 0 7 0 0 

0 less fuond 0 0 5 0 0 

0 coiled shrot 0 0 5 0 0 

0 oval hispter 0 0 7 0 0 
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0 glabrous eeys 0 0 4 0 0 

0 panics gruop 0 0 5 0 0 

0 loony numebr 0 0 6 0 0 

0 hodiernal  aronud 0 0 6 0 0 

0 beady insdie 0 0 6 0 0 

0 sweeper gian 0 0 4 0 0 

0 plate cgae 0 0 4 0 0 

0 cell swtich 0 0 6 0 0 

0 shady depe 0 0 4 0 0 

0 research alnog 0 0 5 0 0 

0 abaya pian 0 0 4 0 0 

0 they baet 0 0 4 0 0 

0 polyp egiht 0 0 5 0 0 

0 inunct rdue 0 0 4 0 0 

0 should baer 0 0 4 0 0 

0 blotter sesne 0 0 5 0 0 

0 benthos letf 0 0 4 0 0 

0 your anwser 0 0 6 0 0 

0 fipple ssytem 0 0 6 0 0 

0 will appael 0 0 6 0 0 

0 cadged takn 0 0 4 0 0 

0 little bbay 0 0 4 0 0 

0 this anicent 0 0 7 0 0 

0 gilded objetc 0 0 6 0 0 

0 even aomng 0 0 5 0 0 

0 downright nealry 0 0 6 0 0 

0 volt deifned 0 0 7 0 0 

0 behave  suop 0 0 4 0 0 

0 that palce 0 0 5 0 0 

0 deedy meetr 0 0 5 0 0 

0 canorous corenr 0 0 6 0 0 

0 first anunal 0 0 6 0 0 

0 revolve lakc 0 0 4 0 0 

0 lentil alnoe 0 0 5 0 0 

0 septic ekep 0 0 4 0 0 

0 snare ahppen 0 0 6 0 0 

0 strict campiagn 0 0 8 0 0 

0 with nubmer 0 0 6 0 0 

0 certain amuont 0 0 6 0 0 

0 shitty durm 0 0 4 0 0 

0 would appaer 0 0 6 0 0 

0 miaow semll 0 0 5 0 0 

0 musty mahcine 0 0 7 0 0 

0 effable chesee 0 0 6 0 0 

0 curd failrue 0 0 7 0 0 

0 crotch sewnig 0 0 6 0 0 
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0 omophagy sihg 0 0 4 0 0 

0 total figrue 0 0 6 0 0 

0 research swtich 0 0 6 0 0 

0 sickle sttae 0 0 5 0 0 

0 clearly graet 0 0 5 0 0 

0 will pltae 0 0 5 0 0 

0 just deisgn 0 0 6 0 0 

0 could culb 0 0 4 0 0 

0 common gruond 0 0 6 0 0 

0 whacking pnoy 0 0 4 0 0 

0 worldly piont 0 0 5 0 0 

0 marbled tcuk 0 0 4 0 0 

0 dimmer digets 0 0 6 0 0 

0 uniped dsah 0 0 4 0 0 

0 support frie 0 0 4 0 0 

0 runny scorll 0 0 6 0 0 

0 ghostly lmip 0 0 4 0 0 

0 logomachy soto 0 0 4 0 0 

0 very braed 0 0 5 0 0 

0 nacarat salst 0 0 5 0 0 

0 from godl 0 0 4 0 0 

0 musket leis 0 0 4 0 0 

0 crusty haed 0 0 4 0 0 

0 zoolatry buisness 0 0 8 0 0 

0 carat gruop 0 0 5 0 0 

0 labarum arae 0 0 4 0 0 

0 thurifer blie 0 0 4 0 0 

0 martlet perss 0 0 5 0 0 

0 ratite cirsp 0 0 5 0 0 

0 heart behnid 0 0 6 0 0 

0 lagging yrads 0 0 5 0 0 

0 must efefct 0 0 6 0 0 

0 cadence nihgt 0 0 5 0 0 

0 croquet pbu 0 0 3 0 0 

0 living clel 0 0 4 0 0 

0 sinker haet 0 0 4 0 0 

0 panurgic satb 0 0 4 0 0 

0 jumentous tiol 0 0 4 0 0 

0 wanker aawy 0 0 4 0 0 

0 hallowed agll 0 0 4 0 0 

0 screwy kist 0 0 4 0 0 

0 solander darw 0 0 4 0 0 

0 about nsoe 0 0 4 0 0 

0 spent godos 0 0 5 0 0 

0 slug gags 0 3 4 0 89 

0 bloody hlel 0 0 4 0 0 
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0 before grwoth 0 0 6 0 0 

0 vexes lanugage 0 0 8 0 0 

0 markup wrie 0 0 4 0 0 

0 geese stlye 0 0 5 0 0 

0 last nihgt 0 0 5 0 0 

0 second hlaf 0 0 4 0 0 

0 cycle fnud 0 0 4 0 0 

0 really rian 0 0 4 0 0 

0 date awrad 0 0 5 0 0 

0 inner ctiy 0 0 4 0 0 

0 hoax laeyr 0 0 5 0 0 

0 trillion accuont 0 0 7 0 0 

0 oaken fiar 0 0 4 0 0 

0 rethinks acecpt 0 0 6 0 0 

0 building abvoe 0 0 5 0 0 

0 rustic thnig 0 0 5 0 0 

0 make srue 0 0 4 0 0 

0 award tilte 0 0 5 0 0 

0 enforced fvie 0 0 4 0 0 

0 other hnad 0 0 4 0 0 

0 puck tiems 0 0 5 0 0 

0 always steret 0 0 6 0 0 

0 armed focres 0 0 6 0 0 

0 daily psot 0 0 4 0 0 

0 interest aicd 0 0 4 0 0 

0 slug acecss 0 0 6 0 0 

0 credit crad 0 0 4 0 0 

0 stippled  fcae 0 0 4 0 0 

0 shot daed 0 0 4 0 0 

0 slush pratcice 0 0 8 0 0 

0 winds acitve 0 0 6 0 0 

0 wide ragne 0 0 5 0 0 

0 time amry 0 0 4 0 0 

0 gunboat absnece 0 0 7 0 0 

0 systems acutal 0 0 6 0 0 

0 craggy watse 0 0 5 0 0 

0 local chidlren 0 0 8 0 0 

0 faith acorss 0 0 6 0 0 

0 index clsoed 0 0 6 0 0 

0 case unoin 0 0 5 0 0 

0 cash folw 0 0 4 0 0 

0 many dnoe 0 0 4 0 0 

0 briskly albe 0 0 4 0 0 

0 abase clal 0 0 4 0 0 
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Appendix 2: Word list (Experiment 2) 

Bigram 
frequency Prime Target 

Target 
concreteness 

Target 
frequency diversity 

Target 
letters 

Transitional 
probability 

0 have sihgt 0 0 0 0 0 

0 snuffles moedl 0 0 0 0 0 

0 bile ptah 0 0 0 0 0 

0 secret whsoe 0 0 0 0 0 

0 their fodo 0 0 0 0 0 

0 chilli acll 0 0 0 0 0 

0 eighth atcion 0 0 0 0 0 

0 recent adrdess 0 0 0 0 0 

0 gimlet coidng 0 0 0 0 0 

0 acid adedd 0 0 0 0 0 

0 chow trdae 0 0 0 0 0 

0 rugby stgae 0 0 0 0 0 

0 lifer  hgus 0 0 0 0 0 

0 barbed folor 0 0 0 0 0 

0 quickly allwo 0 0 0 0 0 

0 darn agered 0 0 0 0 0 

0 fleet adivce 0 0 0 0 0 

0 way agere 0 0 0 0 0 

0 year hunderd 0 0 0 0 0 

0 ski aicrraft 0 0 0 0 0 

0 fart ocurse 0 0 0 0 0 

0 funny adlut 0 0 0 0 0 

0 berate ivnolved 0 0 0 0 0 

0 large wtis 0 0 0 0 0 

0 give langugae 0 0 0 0 0 

0 larval ofod 0 0 0 0 0 

0 reaches timesr 0 0 0 0 0 

0 fifty afarid 0 0 0 0 0 

0 tides muave 0 0 0 0 0 

0 want scayl 0 0 0 0 0 

0 canned aggs 0 0 0 0 0 

0 ozone acheive 0 0 0 0 0 

0 recede scoks 0 0 0 0 0 

0 pelvic strete 0 0 0 0 0 

0 toxic tset 0 0 0 0 0 

0 rapid sprnig 0 0 0 0 0 

0 hostile rnik 0 0 0 0 0 

0 people numebr 0 0 0 0 0 

0 drubs nugde 0 0 0 0 0 

0 glide dorop 0 0 0 0 0 

0 meet ogne 0 0 0 0 0 

0 good adavnce 0 0 0 0 0 

0 less fuond 0 0 0 0 0 
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0 coiled shrot 0 0 0 0 0 

0 oval hispter 0 0 0 0 0 

11 volt meter 4.7 487 1 5 0.085938 

0 glabrous eeys 0 0 0 0 0 

0 panics gruop 0 0 0 0 0 

0 behave  pub 4.71 3821 0 3 0 

21 beady eyes 4.85 29706 2 4 0.375 

0 loony numebr 0 0 0 0 0 

0 hodiernal  aronud 0 0 0 0 0 

0 beady insdie 0 0 0 0 0 

0 abaya digest 3.07 475 0 6 0 

0 sweeper gian 0 0 0 0 0 

12 gilded cage 5 1021 2 4 0.041522 

1071 would appear 3.13 10914 1036 6 0.004197 

0 plate cgae 0 0 0 0 0 

0 miaow point 3.39 40274 0 5 0 

0 cell swtich 0 0 0 0 0 

35 with number 3.3 49385 4777 6 5.37E-05 

0 shady depe 0 0 0 0 0 

0 research alnog 0 0 0 0 0 

19 septic tank 4.8 3324 2 4 0.208791 

768 certain amount 2.74 15429 300 6 0.035505 

10 curd cheese 4.7 2589 1 6 0.097087 

375 came along 2.14 19335 171 5 0.00795 

72 revolve around 1.96 45286 1 6 0.566929 

0 abaya pian 0 0 0 0 0 

0 they baet 0 0 0 0 0 

0 polyp egiht 0 0 0 0 0 

12 downright rude 2.52 985 2 4 0.043011 

0 inunct rdue 0 0 0 0 0 

0 should baer 0 0 0 0 0 

10 snare drum 4.96 985 1 4 0.104167 

0 glabrous tuck 3.86 468 0 4 0 

0 canorous pony 4.9 710 0 4 0 

600 were almost 1.66 31588 2752 6 0.001859 

12 sweeper system 2.94 44674 1 6 0.078947 

367 that place 3.48 48651 5217 5 0.000329 

0 blotter sesne 0 0 0 0 0 

0 benthos letf 0 0 0 0 0 

0 your anwser 0 0 0 0 0 

0 fipple ssytem 0 0 0 0 0 

0 will appael 0 0 0 0 0 

0 cadged takn 0 0 0 0 0 

0 hodiernal  lies 3.11 5268 0 4 0 

0 little bbay 0 0 0 0 0 

0 this anicent 0 0 0 0 0 
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0 gilded objetc 0 0 0 0 0 

0 even aomng 0 0 0 0 0 

0 downright nealry 0 0 0 0 0 

117 will appeal 1.73 11002 1128 6 0.00046 

0 fipple state 3.52 39112 0 5 0 

0 volt deifned 0 0 0 0 0 

0 behave  suop 0 0 0 0 0 

0 that palce 0 0 0 0 0 

0 inunct gall 2.6 1150 0 4 0 

0 deedy meetr 0 0 0 0 0 

34 loony left 3.7 47089 1 4 0.225166 

186 even among 2.38 22864 541 5 0.002581 

0 canorous corenr 0 0 0 0 0 

0 first anunal 0 0 0 0 0 

0 revolve lakc 0 0 0 0 0 

0 lentil alnoe 0 0 0 0 0 

0 septic ekep 0 0 0 0 0 

16 musty smell 3.7 3755 2 5 0.113475 

0 benthos head 4.75 37906 0 4 0 

73 little baby 5 9070 828 4 0.001518 

47 common object 3.66 6325 269 6 0.002575 

0 snare ahppen 0 0 0 0 0 

0 blotter group 4.12 41547 0 5 0 

0 panics yards 4.82 3678 0 5 0 

0 strict campiagn 0 0 0 0 0 

0 with nubmer 0 0 0 0 0 

0 certain amuont 0 0 0 0 0 

0 cadged limp 4.15 516 0 4 0 

0 shitty durm 0 0 0 0 0 

0 would appaer 0 0 0 0 0 

10 polyp group 4.12 41547 1 5 0.113636 

84 this ancient 2.04 5083 2909 7 0.000181 

0 miaow semll 0 0 0 0 0 

0 deedy scroll 4.11 214 0 6 0 

67 first annual 1.78 8154 1261 6 0.000564 

0 musty mahcine 0 0 0 0 0 

0 effable heat 3.79 5957 0 4 0 

0 effable chesee 0 0 0 0 0 

64 strict sense 2.61 21935 38 5 0.030933 

226 they beat 3.97 5675 1616 4 0.000521 

0 shitty night 4.52 36529 0 5 0 

12 shady corner 4.61 7500 1 6 0.043478 

125 should bear 4.88 5799 564 4 0.001124 

10 lentil soup 4.72 1353 1 4 0.3125 

0 curd failrue 0 0 0 0 0 

256 your answer 2.89 14421 1871 6 0.001851 
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0 crotch sewnig 0 0 0 0 0 

0 omophagy sihg 0 0 0 0 0 

0 total figrue 0 0 0 0 0 

11 hallowed ground 4.77 16200 1 6 0.083333 

48 support machine 4.25 8938 208 7 0.001609 

80 total lack 2.04 10068 261 4 0.004554 

0 research swtich 0 0 0 0 0 

0 sickle sttae 0 0 0 0 0 

49 lagging behind 3.48 23698 1 6 0.494949 

0 clearly graet 0 0 0 0 0 

0 zoolatry business 3.28 35758 0 8 0 

0 panurgic stab 4.07 428 0 4 0 

0 will pltae 0 0 0 0 0 

0 just deisgn 0 0 0 0 0 

0 could culb 0 0 0 0 0 

0 common gruond 0 0 0 0 0 

11 ghostly figure 3.63 17613 1 6 0.042308 

0 whacking pnoy 0 0 0 0 0 

0 ratite crisp 3.69 798 0 5 0 

0 worldly piont 0 0 0 0 0 

0 marbled tcuk 0 0 0 0 0 

0 labarum area 3.72 35144 0 4 0 

11 dimmer switch 4.07 3316 2 6 0.150685 

19 worldly goods 4.26 10142 1 5 0.076305 

0 dimmer digets 0 0 0 0 0 

12 whacking great 1.81 45217 1 5 0.27907 

11 croquet club 3.78 16465 1 4 0.076923 

0 uniped dash 3.39 758 0 4 0 

0 uniped dsah 0 0 0 0 0 

363 clearly defined 2.07 5898 215 7 0.02365 

0 jumentous toil 2.67 182 0 4 0 

239 living alone 2.86 13265 154 5 0.01493 

0 support frie 0 0 0 0 0 

0 runny scorll 0 0 0 0 0 

230 must keep 2.37 27813 448 4 0.003169 

0 ghostly lmip 0 0 0 0 0 

0 logomachy soto 0 0 0 0 0 

0 very braed 0 0 0 0 0 

0 solander draw 3.97 7398 0 4 0 

0 logomachy soot 4.61 196 0 4 0 

0 nacarat salst 0 0 0 0 0 

22 from number 3.3 49385 3081 6 5.32E-05 

0 thurifer bile 4.46 1183 0 4 0 

383 about eight 4.04 17309 1217 5 0.001943 

71 carat gold 4.81 7792 1 4 0.496503 

0 from godl 0 0 0 0 0 
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0 musket leis 0 0 0 0 0 

0 crusty haed 0 0 0 0 0 

107 heart failure 2.08 7763 120 7 0.007792 

0 zoolatry buisness 0 0 0 0 0 

0 martlet press 3.9 13115 0 5 0 

0 omophagy sigh 3.89 1171 0 4 0 

0 carat gruop 0 0 0 0 0 

0 labarum arae 0 0 0 0 0 

0 thurifer blie 0 0 0 0 0 

33 runny nose 4.89 4337 1 4 0.358696 

0 crotch sewing 4.4 606 0 6 0 

0 martlet perss 0 0 0 0 0 

37 crusty bread 4.92 3770 1 5 0.253425 

0 ratite cirsp 0 0 0 0 0 

350 could happen 1.78 8760 790 6 0.002078 

0 heart behnid 0 0 0 0 0 

146 very deep 3.38 10700 987 4 0.001186 

190 just inside 3.67 14309 895 6 0.001467 

10 cadence design 3.27 12939 1 6 0.192308 

0 lagging yrads 0 0 0 0 0 

0 must efefct 0 0 0 0 0 

32 sinker plate 4.77 4096 1 5 0.470588 

0 cadence nihgt 0 0 0 0 0 

84 sickle cell 4.44 5518 1 4 0.509091 

0 croquet pbu 0 0 0 0 0 

0 living clel 0 0 0 0 0 

0 sinker haet 0 0 0 0 0 

0 panurgic satb 0 0 0 0 0 

0 jumentous tiol 0 0 0 0 0 

0 wanker aawy 0 0 0 0 0 

0 hallowed agll 0 0 0 0 0 

0 screwy kist 0 0 0 0 0 

10 marbled effect 1.8 23361 1 6 0.091743 

11 musket fire 4.68 14104 1 4 0.183333 

0 nacarat salts 4.89 406 0 5 0 

50 spent nearly 1.89 11494 100 6 0.004243 

0 wanker away 2.23 38747 0 4 0 

37 research campaign 3 9518 284 8 0.001371 

0 screwy kits 4.47 431 0 4 0 

0 solander darw 0 0 0 0 0 

0 about nsoe 0 0 0 0 0 

151 will gain 2.24 5218 1128 4 0.000593 

0 spent godos 0 0 0 0 0 

0 stippled  fcae 0 0 0 0 0 

0 inner ctiy 0 0 0 0 0 

0 building abvoe 0 0 0 0 0 
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0 rethinks acecpt 0 0 0 0 0 

0 credit crad 0 0 0 0 0 

0 date awrad 0 0 0 0 0 

0 bloody hlel 0 0 0 0 0 

0 gunboat absnece 0 0 0 0 0 

0 local chidlren 0 0 0 0 0 

0 vexes lanugage 0 0 0 0 0 

0 daily psot 0 0 0 0 0 

0 award tilte 0 0 0 0 0 

0 slug acecss 0 0 0 0 0 

0 wide ragne 0 0 0 0 0 

0 cycle fnud 0 0 0 0 0 

0 winds acitve 0 0 0 0 0 

0 briskly albe 0 0 0 0 0 

0 abase clal 0 0 0 0 0 

0 other hnad 0 0 0 0 0 

0 slush pratcice 0 0 0 0 0 

0 faith acorss 0 0 0 0 0 

0 cash folw 0 0 0 0 0 

0 oaken fiar 0 0 0 0 0 

0 systems acutal 0 0 0 0 0 

0 interest aicd 0 0 0 0 0 

0 enforced fvie 0 0 0 0 0 

0 many dnoe 0 0 0 0 0 

0 armed focres 0 0 0 0 0 

0 markup wrie 0 0 0 0 0 

0 really rian 0 0 0 0 0 

0 trillion accuont 0 0 0 0 0 

0 case unoin 0 0 0 0 0 

0 hoax laeyr 0 0 0 0 0 

0 before grwoth 0 0 0 0 0 

0 rustic thnig 0 0 0 0 0 

0 puck tiems 0 0 0 0 0 

0 last nihgt 0 0 0 0 0 

0 always steret 0 0 0 0 0 

0 index clsoed 0 0 0 0 0 

0 shot daed 0 0 0 0 0 

0 make srue 0 0 0 0 0 

0 craggy watse 0 0 0 0 0 

0 geese stlye 0 0 0 0 0 

0 time amry 0 0 0 0 0 

0 second hlaf 0 0 0 0 0 
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Appendix 3: Word lists (Experiments 4, 6, & 8) 

Bigram 
frequency Prime Target 

Target 
concreteness 

Target 
frequency diversity 

Target 
letters 

Transitional 
probability 

383 about eight 4.04 17309 493 5 0.001943 

0 above sturse 0 0 116 0 0.000466 

0 abyss cuzzed 0 0 2 0 0.08 

0 account musts 0 0 76 0 0.001573 

0 acronym easy 2.07 14774 3 4 0.159664 

0 addict gouls 0 0 2 0 0.068966 

0 almost grefs 0 0 182 0 0.00114 

0 assemblage please 1.64 14351 1412 6 4.64E-05 

0 backlog swinds 0 0 1 0 0.574257 

85 back pain 3.5 7338 259 4 0.000831 

21 beady eyes 4.85 29706 2 4 0.375 

0 binge libes 0 0 2 0 0.090278 

0 blip sunes 0 0 1 0 0.185185 

0 bottom theep 0 0 63 0 0.00861 

0 bounty blull 0 0 2 0 0.06701 

0 breeder yerp 0 0 1 0 0.106061 

10 cadence design 3.27 12939 1 6 0.192308 

375 came along 2.14 19335 143 5 0.00795 

71 carat gold 4.81 7792 1 4 0.496503 

0 carnage snerf 0 0 3 0 0.055249 

768 certain amount 2.74 15429 117 6 0.035505 

0 chapter swach 0 0 56 0 0.001074 

0 cheese clett 0 0 25 0 0.00618 

0 chevron sound 3.7 14542 36 5 0.003159 

363 clearly defined 2.07 5898 128 7 0.02365 

0 clink chims 0 0 17 0 0.013541 

0 column brounced 0 0 25 0 0.006683 

0 come greeds 0 0 12 0 0.038314 

0 comely answer 2.89 14421 12 6 0.038314 

47 common object 3.66 6325 155 6 0.002575 

0 conflate art 4.17 15587 22 3 0.014515 

0 consul crynch 0 0 3 0 0.047847 

0 contour kneant 0 0 2 0 0.085 

350 could happen 1.78 8760 617 6 0.002078 

0 course flates 0 0 188 0 0.00066 

11 croquet club 3.78 16465 1 4 0.076923 

37 crusty bread 4.92 3770 1 5 0.253425 

0 culprit spralf 0 0 1 0 0.096447 

10 curd cheese 4.7 2589 1 6 0.097087 

0 days cret 0 0 129 0 0.000786 

0 deal shreths 0 0 73 0 0.0009 

0 design shroft 0 0 86 0 0.00085 

0 detritus works 3.79 14528 1 5 0.908213 
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0 dimmer spalms 0 0 3 0 0.107692 

11 dimmer switch 4.07 3316 1 6 0.150685 

0 dissemble fire 4.68 14104 1 4 0.211538 

0 dope spuits 0 0 340 0 0.000737 

12 downright rude 2.52 985 1 4 0.043011 

0 elixir comes 2.27 15968 12 5 0.012308 

3 entire squad 3.65 1095 1 5 0.120567 

0 equals fenth 0 0 51 0 0.00172 

0 errand jeight 0 0 2 0 0.07483 

186 even among 2.38 22864 372 5 0.002581 

0 exceed dwic 0 0 3 0 0.031175 

0 exclaim forward 2.66 15205 2 7 0.206422 

0 fell biewed 0 0 77 0 0.00327 

0 feud thrieled 0 0 2 0 0.173913 

67 first annual 1.78 8154 753 6 0.000564 

0 fodder bleuth 0 0 2 0 0.082192 

0 force ouse 0 0 117 0 0.000698 

0 form keiled 0 0 125 0 0.000464 

0 fray cloist 0 0 2 0 0.054726 

0 friend slaids 0 0 88 0 0.001779 

0 frill strisped 0 0 1 0 0.129412 

11 ghostly figure 3.63 17613 1 6 0.042308 

12 gilded cage 5 1021 2 4 0.041522 

0 giver freins 0 0 156 0 0.000332 

0 glimmer ghond 0 0 2 0 0.044983 

0 graft phlug 0 0 1 0 0.092593 

0 grimace scrcair 0 0 1 0 0.154839 

0 habitat bed 5 15896 17 3 0.008355 

11 hallowed ground 4.77 16200 1 6 0.083333 

107 heart failure 2.08 7763 86 7 0.007792 

0 helix clearly 2.04 15349 699 7 2.05E-05 

0 hoard thriff 0 0 1 0 0.275132 

0 hoary despite 1.33 14592 5 7 0.041667 

0 holds deeled 0 0 87 0 0.000735 

0 hundred splurb 0 0 72 0 0.001151 

0 imbue force 3 15752 41 5 0.002404 

0 income clerb 0 0 86 0 0.002739 

0 jeering mitched 0 0 2 0 0.1375 

0 jink natural 1.85 14315 1 7 0.092593 

0 jolt zamn 0 0 3 0 0.0625 

0 jumbo truts 0 0 1 0 0.223881 

0 just drothed 0 0 587 0 0.000355 

190 just inside 3.67 14309 587 6 0.001467 

0 kilo toosed 0 0 1 0 0.156863 

0 know gailed 0 0 205 0 0.000341 

49 lagging behind 3.48 23698 1 6 0.494949 
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0 latvia dranns 0 0 70 0 0.002705 

0 leakage orm 0 0 3 0 0.247664 

10 lentil soup 4.72 1353 1 4 0.3125 

0 ley poor 2.7 15125 1 4 0.163934 

73 little baby 5 9070 588 4 0.001518 

239 living alone 2.86 13265 112 5 0.01493 

34 loony left 3.7 47089 1 4 0.225166 

0 lymph throached 0 0 1 0 0.205405 

10 marbled effect 1.8 23361 1 6 0.091743 

0 mark chaph 0 0 18 0 0.006859 

0 marked flince 0 0 45 0 0.002248 

0 median blurled 0 0 10 0 0.033659 

0 meeting jows 0 0 114 0 0.000625 

0 member churke 0 0 46 0 0.002058 

0 morning rhast 0 0 109 0 0.000473 

11 musket fire 4.68 14104 1 4 0.183333 

0 must blult 0 0 362 0 0.000441 

230 must keep 2.37 27813 362 4 0.003169 

16 musty smell 3.7 3755 2 5 0.113475 

0 name scrawks 0 0 126 0 0.001749 

0 nemesis ways 2 14932 56 4 0.002304 

0 news twurk 0 0 818 0 0.000335 

0 number scrobes 0 0 95 0 0.000223 

0 oaf offer 2.23 15873 8 5 0.021614 

0 only frawns 0 0 728 0 0.004146 

0 optic hond 0 0 3 0 0.073733 

0 opulent recent 2.5 15858 46 6 0.005346 

0 orate red 4.24 15136 2048 3 0.008033 

0 outflow qwouse 0 0 2 0 0.440415 

0 part pofts 0 0 94 0 0.000277 

0 party gwanc 0 0 189 0 0.000521 

0 patriot knenched 0 0 2 0 0.078947 

0 period flonned 0 0 107 0 0.000494 

0 pike ghowse 0 0 2 0 0.029268 

0 place thwissed 0 0 179 0 0.000822 

0 plan drurze 0 0 96 0 0.001336 

0 plate dwists 0 0 29 0 0.003174 

0 point thrimbs 0 0 152 0 0.00725 

10 polyp group 4.12 41547 1 5 0.113636 

0 port wofts 0 0 29 0 0.00503 

0 pounds fusk 0 0 61 0 0.001602 

0 present wushed 0 0 185 0 0.001568 

0 probe gwoints 0 0 16 0 0.02771 

0 proton grorgues 0 0 2 0 0.141463 

0 putter zez 0 0 1 0 0.075472 

0 quad account 3.08 15891 1 7 0.235294 
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0 quip phrinks 0 0 1 0 0.2 

0 range cuilts 0 0 55 0 0.000587 

0 rant suill 0 0 70 0 0.008465 

0 rasp phres 0 0 1 0 0.382716 

0 rate flapsed 0 0 97 0 0.001417 

0 reach gwerge 0 0 57 0 0.001477 

0 rebate stoos 0 0 4 0 0.045249 

0 reggae grulps 0 0 2 0 0.103448 

37 research campaign 3 9518 122 8 0.001371 

0 rest shebb 0 0 74 0 0.001543 

72 revolve around 1.96 45286 1 6 0.566929 

0 ribbed final 2.67 15648 7 5 0.063025 

0 rise gwodd 0 0 54 0 0.001891 

0 rubric pruns 0 0 1 0 0.457627 

33 runny nose 4.89 4337 1 4 0.358696 

0 sable field 4.26 15298 7 5 0.021142 

0 saccade girl 4.85 15762 7 4 0.021142 

0 saline thalse 0 0 5 0 0.032 

0 screen blowns 0 0 46 0 0.002802 

0 second swarp 0 0 355 0 0.000651 

0 section veek 0 0 69 0 0.001075 

0 seeker swowd 0 0 1 0 0.126582 

19 septic tank 4.8 3324 1 4 0.208791 

0 shading smurds 0 0 2 0 0.081761 

12 shady corner 4.61 7500 1 6 0.043478 

125 should bear 4.88 5799 436 4 0.001124 

84 sickle cell 4.44 5518 1 4 0.509091 

32 sinker plate 4.77 4096 1 5 0.470588 

0 sinner spriege 0 0 1 0 0.07483 

0 size blorked 0 0 59 0 0.002598 

0 sleeper chault 0 0 1 0 0.068493 

10 snare drum 4.96 985 1 4 0.104167 

50 spent nearly 1.89 11494 80 6 0.004243 

0 story clealed 0 0 85 0 0.002413 

64 strict sense 2.61 21935 18 5 0.030933 

0 stun flugged 0 0 3 0 0.121528 

0 subject keaked 0 0 99 0 0.000934 

0 sunday grourn 0 0 87 0 0.000868 

48 support machine 4.25 8938 144 7 0.001609 

0 sweden croiced  0 0 1 0 0.089286 

12 sweeper system 2.94 44674 1 6 0.078947 

0 talisman project 3.62 15215 20 7 0.014293 

0 tape cleeced 0 0 49 0 0.002665 

0 taxes lead 4.1 14555 9 4 0.026087 

0 tenet sprerfs 0 0 1 0 0.6 

367 that place 3.48 48651 2074 5 0.000329 
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0 then cack 0 0 690 0 0.002475 

0 theses blole 0 0 395 0 0.000112 

226 they beat 3.97 5675 970 4 0.000521 

0 thing prused 0 0 132 0 0.000767 

84 this ancient 2.04 5083 1588 7 0.000181 

0 this foaths 0 0 1588 0 3.02E-05 

0 thud fobed 0 0 2 0 0.235023 

0 timbre rherked 0 0 2 0 0.87931 

0 time frackt 0 0 356 0 0.000116 

0 today plym 0 0 110 0 0.000531 

0 toggle scunged 0 0 3591 0 8.79E-05 

80 total lack 2.04 10068 152 4 0.004554 

0 trade thwogs 0 0 110 0 0.001151 

0 trellis front 3.77 15106 63 5 0.002028 

0 type prench 0 0 60 0 0.001386 

0 typhoid hoursed 0 0 2 0 0.573034 

0 typing drounced 0 0 2 0 0.573034 

0 union spoot 0 0 107 0 0.000966 

0 verse crolt 0 0 20 0 0.006944 

146 very deep 3.38 10700 542 4 0.001186 

0 view ghelved 0 0 109 0 0.015115 

11 volt meter 4.7 487 1 5 0.085938 

0 vortex fute 0 0 1 0 0.121339 

0 warren kept 2.79 14306 144 4 0.000681 

0 weapon franced 0 0 23 0 0.021191 

0 weekday slinked 0 0 135 0 0.00031 

0 week wef 0 0 135 0 0.008535 

600 were almost 1.66 31588 1170 6 0.001859 

0 were gleld 0 0 1170 0 0.00031 

12 whacking great 1.81 45217 1 5 0.27907 

0 which bown 0 0 878 0 7.53E-05 

0 while blypts 0 0 206 0 0.000194 

0 wicket march 4.03 15997 10 5 0.010949 

0 wigan clulched 0 0 94 0 0.000585 

117 will appeal 1.73 11002 870 6 0.00046 

151 will gain 2.24 5218 870 4 0.000593 

35 with number 3.3 49385 1743 6 5.37E-05 

0 wool clarge 0 0 21 0 0.009534 

19 worldly goods 4.26 10142 1 5 0.076305 

1071 would appear 3.13 10914 814 6 0.004197 

0 xylophone green 4.07 14637 6 5 0.266366 

0 year snarfed 0 0 226 0 0.000244 

0 yonder month 4.2 15011 1 5 0.092593 

256 your answer 2.89 14421 1068 6 0.001851 

 


