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Abstract. A 12-degree-of-freedom (DOF) spur gear dynamic model is constructed, which is 
coupled by the mesh gear pair and the gearbox. The construction method of spur gear coupling 
dynamic model, based on lumped mass method, is better than finite element method, due to higher 
modeling efficiency. The work would be benefit to spur gear coupling dynamic modeling and 
analyses. 
Keywords: spur gear, coupling dynamic model, 12 DOFs. 

1. Introduction 

Gear dynamic models are focused by many scholars. There is an extensive body of literatures 
on it [1-9]. Jin et al. established gear dynamic models coupled with bending-torsion-axis-swing of 
mesh pairs based on lumped mass method [10]. Zhu et al. constructed finite element models of 
the gear transmission, and evaluated dynamic behavior of the system [11, 12]. Ren et al. proposed 
a construction method of gear dynamic models based on substructure method [13-15]. However, 
the gear coupling dynamic models associated with mesh pairs and gearbox supports are few 
studied. Thus, in the paper, a 12 DOFs spur gear coupling dynamic model, based on lumped mass 
method, is proposed. The work would be helpful to the spur gear coupling dynamic analyses. 

2. Construction of 12DOFs dynamic model 

The gear transmission system is mainly composed of two spur gears, bearings and gearbox 
supports. When modeling with the finite element method, it is inefficient because of the 
complexity of the gearbox supports. Therefore, a 12 DOFs coupling dynamic model based on 
lumped mass method is established, as shown in Fig. 1. 

 
Fig. 1. The coupling dynamic model 
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As illustrated in Fig. 1, subscript 𝑝 and 𝑔 express driving gear and driven gear, respectively, 𝑘 is a bending stiffness, 𝑐 is a bending damping, 𝑘  is a mesh stiffness, 𝑐  is a mesh damping, 𝑒 
is a static transmission errors (STE), 𝑇  is the input torsion, 𝑇  is the output torsion, 𝑘  is the 
support stiffness, 𝑐  is the support damping. Moreover, 𝑚 , 𝑚 , 𝑚  and 𝑚  are the 
equivalent masses of the gearbox supports.  

As given in Fig. 1, the mathematical equations of the meshing pair could be derived by:  

⎩⎪⎪
⎨⎪
⎪⎧𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 − 𝐹 = 0,𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 𝐹 = 0,𝐼 𝜃 𝑐 𝜃 − 𝜃 𝑘 𝜃 − 𝜃 = 𝑇 ,𝐼 𝜃 − 𝑐 𝜃 − 𝜃 − 𝑘 𝜃 − 𝜃 − 𝑟 ⋅ 𝐹 = 0,𝐼 𝜃 𝑐 𝜃 − 𝜃 𝑘 𝜃 − 𝜃 𝑟 ⋅ 𝐹 = 0,𝐼 𝜃 − 𝑐 𝜃 − 𝜃 − 𝑘 𝜃 − 𝜃 = −𝑇 ,

 (1)

where subscript 𝑖 and 𝑜 express motor and load, respectively, 𝜃 is a torsion degree, 𝑙 is a bending 
degree, 𝑚 is a mass, 𝑟 is a base circle radius, 𝐼 is a moment of inertia, 𝑘  and 𝑘  are torsional 
stiffness of the shaft, 𝑐  and 𝑐  are torsional damping of the shaft, and 𝐹  could be deduced as: 𝐹 = 𝑘 ⋅ 𝑟 𝜃 − 𝑟 𝜃 𝑒 𝑙 − 𝑙 𝑐 ⋅ 𝑟 𝜃 − 𝑟 𝜃 𝑒 𝑙 − 𝑙 . (2)

The gearbox supports dynamic equivalent model is proposed, as shown in Fig. 2. 

 
a) Equivalent model of the driving gear 

 
b) Equivalent model of the driven gear 

Fig. 2. The gearbox supports dynamic equivalent model 

As illustrated in Fig. 2, the equivalent mass of the gears at the bearing fulcrum could be 
deduced as: 

⎩⎪⎪
⎨⎪
⎪⎧𝑚 = 𝑚 ⋅ 𝑏𝑎 𝑏 ,𝑚 = 𝑚 ⋅ 𝑎𝑎 𝑏 ,𝑚 = 𝑚 ⋅ 𝑏𝑎 𝑏 ,𝑚 = 𝑚 ⋅ 𝑎𝑎 𝑏 ,

 (3)

where 𝑎 and 𝑏 are the distance from the gear to the bearing fulcrum. 
As given in Fig. 2, the mathematical equations of the support structure could be derived by: 
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⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧𝑚 𝑙 𝑐 𝑙 − 𝑙 𝑘 𝑙 − 𝑙 − 𝐹 = 0,𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 − 𝑐 𝑙 − 𝑙 − 𝑘 𝑙 − 𝑙 = 0,𝑚 𝑙 𝑐 𝑙 − 𝑙 𝑘 𝑙 − 𝑙 − 𝐹 = 0,𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 − 𝑐 𝑙 − 𝑙 − 𝑘 𝑙 − 𝑙 = 0,𝑚 𝑙 𝑐 𝑙 − 𝑙 𝑘 𝑙 − 𝑙 − 𝐹 = 0,𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 − 𝑐 𝑙 − 𝑙 − 𝑘 𝑙 − 𝑙 = 0,𝑚 𝑙 𝑐 𝑙 − 𝑙 𝑘 𝑙 − 𝑙 − 𝐹 = 0,𝑚 𝑙 𝑐 𝑙 𝑘 𝑙 − 𝑐 𝑙 − 𝑙 − 𝑘 𝑙 − 𝑙 = 0.

 (4)

According to the deformation coordination relationship, as shown in Fig. 3, the deformation 
coordination equations could be derived by: 

𝑙 = 𝑏𝑙 𝑎𝑙𝑎 𝑏 ,𝑙 = 𝑏𝑙 𝑎𝑙𝑎 𝑏 . (5)

 
Fig. 3. The coordination relationship 

According to the deformation coordination Eq. (5), Eq. (1) and Eq. (4), a 12 DOFs coupling 
dynamic model, based on lumped mass method, is established. 

3. Simulations 

In order to verify the accuracy of the proposed method, the parameters of an example case are 
listed in Table 1. 

Table 1. Parameters of system 
Symbol name Value Unit 
Modulus / 𝑚 4 mm 

Pressure angle / 𝛼 20 ° 
Tooth number of driving gear / 𝑧  23 – 
Tooth number of driven gear / 𝑧  69 – 

Addendum coefficient / ℎ∗  1 – 
Clearance coefficient / 𝑐∗ 0.25 – 

According to the 12 DOFs coupling dynamic model and the parameters listed in Table 1, the 
natural frequencies of the example case are simulated. Part of the results are shown in Fig. 4. 

In the case of Fig. 4, the natural vibration mode vector of the first-order non-zero natural 
frequency (second frequency: 1403 Hz) is: 
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𝜙 = 0.3211, −0.0149,0.0050, −0.9469, −0.0004, −0.0002,     −0.0004, −0.0002, −0.0004, −0.0002, −0.0004, −0.0002  (6)

 

 
a) First frequency: 0 Hz 

 
b) Second frequency: 1403 Hz 

Fig. 4. Natural frequency simulations 

According to the simulation result based on finite element model, as shown in Fig. 5, the 
natural vibration mode vector could be expressed as: 𝜙 = −0.2524, 0, 0, 0.7573, 0, 0, 0, 0, 0, 0, 0, 0 . (7)

 
Fig. 5. Natural vibration mode based on FEM (natural frequency: 1282.9 Hz) 

According to the modal assurance criterion (MAC), Eq. (6) and Eq. (7), the natural vibration 
mode vector correlation can be derived by: 

𝑀𝐴𝐶 = 𝜙𝑇𝜙𝜙𝑇𝜙 𝜙𝑇𝜙 . (8)

According to Eq. (8), the MAC value of the example case is 0.9997, namely, the natural 
vibration mode shown in Fig. 4(b) and the natural vibration mode shown in Fig. 5 are the 
same-order physical mode. The relative error of the natural frequencies between two methods is 
calculated, as shown in Table 2.  

Table 2. The relative error of the natural frequencies between two methods 
 Value Unit 

The natural frequency based on lumped mass method 1403 Hz The natural frequency based on FEM 1282.9 
The relative error 9.36 % 

In the case of Table 2, the relative error of the natural frequencies between two methods is 
9.36 %, namely, the proposed method is accurate and feasible. 
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4. Conclusions 

In the issue, a 12 DOFs spur gear coupling dynamic model, based on lumped mass method, is 
proposed. The construction method of spur gear coupling dynamic model is better than finite 
element method, because it enables rapid modeling of complex gearbox and makes dynamic 
modeling more efficient. This contribution would be helpful to the spur gear coupling dynamic 
modeling and analyses. 
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