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Abstract. Multiscale Permutation Entropy (MPE) is a presented nonlinear dynamic technology 
for measuring the randomness and detecting the nonlinear dynamic change of time sequences and 
can be used effectively to extract the nonlinear dynamic wear fault feature of gear tooth surface 
from vibration signals of gear set. To solve the subjectivity drawback of threshold parameter 
selection process in MPE method, a joint calculation method based on the Mutual Information 
(MI) and improved False Nearest Neighbor (FNN) principle for calculating threshold parameters 
for MPE method was presented in this article. Then, the influence of threshold parameters on the 
identification accuracy of fault features with the MPE was studied by analyzing simulation data. 
Through the simulation analysis, the effectiveness of the proposed MPE method is validated. 
Finally, the wear failure test of spur gear was carried out, and the proposed method was applied 
to analyze the experimental data of fault signal. Meanwhile, the vibration characteristics of the 
fault signal are acquired. The analysis results show that the proposed method can effectively 
realize the fault diagnosis of gear box and has higher fault identification accuracy than the existing 
methods. 
Keywords: multiscale permutation entropy, mutual information, improved false nearest neighbor, 
delay time, embedded dimension, scale factor and fault feature. 

1. Introduction 

Gear trains always work under tough circumstance such as varying loading and heavy 
background noise, and the fault vibration signal about the gear wear is originally weak, prone to 
be contaminated by background noise [1, 2]. Recently, due to the computational simplicity, 
anti-noise and calculating robustness, entropy provides a new way to extract fault feature about 
mechanical equipment and has been widely applied in various applications [3, 4]. Due to the 
complexity and variability of practical problems, in order to make the value of entropy method to 
solve these problems efficiently. For illustration, the approximate entropy method, fuzzy entropy 
method, sample entropy method and multiscale permutation entropy (MPE) method [5, 6]. The 
MPE method expands from single scale to multi-scale phase space, so as to ensure the integrity of 
local information and overall information of the vibration characteristic [7, 8]. Additionally, this 
method can not only effectively solve the disturbance of noise to fault characteristics, but also 
competently detect weak fault signals. Simultaneously, the MPE method can solve the multi-scale 
coupling problem between multiple faults and accurately reflect the dynamic mutation capability 
of the fault system [9].  

The calculation of MPE method is closely interconnected to the algorithm parameters, and 
dissimilar embedding dimensions and delay time will have great influence on the calculation 
results of entropy value. In this paper, a new technique for gear fault identification is developed 
using MI and improved FNN techniques for MPE method. Firstly, according to the basic principle 
and advantage of MI method, the minimum parameter of delay time 𝜏 is implemented of fault 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vibroengineering PROCEDIA

https://core.ac.uk/display/304588957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2019.21001&domain=pdf&date_stamp=2019-10-19


FAULT IDENTIFICATION TECHNOLOGY FOR GEAR TOOTH SURFACE WEAR BASED ON MPE METHOD BY MI AND IMPROVED FNN ALGORITHM.  
XINTAO ZHOU, YAHUI CUI, XIAYI LIU, LONGLONG LI, LIHUA WANG 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 25 

vibration signal. Then, the optimal embedding dimension 𝑚 is calculated by the improved FNN 
method of the phase space. Finally, through simulation analysis and gear fault experimental 
research, and a joint calculation method based on the MI and improved PNN principle for 
calculating threshold parameters for MPE method was confirmed in this article. 

2. Review of the theoretical backgrounds 

2.1. Principle of MPE 

(1) Construct the phase space matrix of time sequences is shown in Eq. (1): 

𝑌 =
⎣⎢⎢
⎢⎢⎡
𝑌ଵ𝑌ଶ⋮𝑌௝⋮𝑌௄⎦⎥⎥

⎥⎥⎤ =
⎣⎢⎢
⎢⎢⎡
𝑥(1) 𝑥(1 + 𝜏) ⋯ 𝑥(1 + (𝑚 − 1)𝜏)𝑥(2) 𝑥(2 + 𝜏) ⋯ 𝑥(2 + (𝑚 − 1)𝜏)⋮ ⋮ ⋮ ⋮𝑥(𝑗) 𝑥(𝑗 + 𝜏) ⋯ 𝑥(𝑗 + (𝑚 − 1)𝜏)⋮ ⋮ ⋮ ⋮𝑥(𝐾) 𝑥(𝐾 + 𝜏) ⋯ 𝑥(𝐾 + (𝑚 − 1)𝜏)⎦⎥⎥

⎥⎥⎤, (1)

where, 𝑚 is the embedding dimension; 𝜏 is the delay time; 𝐾  is the number of reconstructed 
components. 

(2) Ascending arrangement of elements in each reconstructed component is shown in Eq. (2): 𝑥൫𝑗 + ൫𝑗(ଵ) − 1൯𝜏൯ ≤ 𝑥൫𝑗 + ൫𝑗(ଶ) − 1൯𝜏൯ ≤ ⋯ ≤ 𝑥൫𝑗 + ൫𝑗(௠) − 1൯𝜏൯. (2)

(3) Calculation the entropy value and normalization is shown in Eq. (3): 

𝐻௉ = − ∑ 𝑃௚ln𝑃௚௄௚ୀଵln(𝑚!) . (3)

(4) Coarse granulation time sequences and calculate the permutation entropy value is shown 
in Eq. (4): 

𝑀𝑃𝐸(𝑋, 𝑠, 𝑚, 𝜏) = 𝑃𝐸 ቆ1𝑠 ෍ 𝑥௜௝௦௜ୀ(௝ିଵ)௦ାଵ , 𝑚, 𝜏ቇ，1 ≤ 𝑗 ≤ 𝑁𝑠 . (4)

2.2. The method of calculation crucial threshold parameters 

2.2.1. Principle of the MI method 

That is, the relationship between MI of time sequences and delay time is shown in Eq. (5): 

𝐼(𝜏) = 𝐼(𝑥௜, 𝑥௜ାఛ) = ෍ 𝑃(𝑥௜, 𝑥௜ାఛ)logଶ ቈ 𝑃(𝑥௜, 𝑥௜ାఛ)𝑃(𝑥௜)𝑃(𝑥௜ାఛ)቉ே௜ୀଵ , (5)

where, 𝑝(𝑥௜) is the probability distribution function of 𝑥௜; 𝑝(𝑥௜ାఛ) is the probability distribution 
function of 𝑥௜ାఛ; 𝑝(𝑥௜, 𝑥௜ାఛ) is the combined probability distribution function of 𝑥௜, 𝑥௜ାఛ. 

2.2.2. Principle of the Improved FNN Method 

The FNN points method is applied to calculate the relationship between 𝐸(𝑚) and 𝑚, as 
shown in Eqs. (6-7): 
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𝐸(𝑚) = 1𝑁 − 𝑚𝜏 ෍ ฮ𝑋௠ାଵ(𝑖) − 𝑋௠ାଵ௙ (𝑖)ฮฮ𝑋௠(𝑖) − 𝑋௠௙ (𝑖)ฮேି௠ఛ௜ୀଵ , (6)𝐸∗(𝑚) = 1𝑁 − 𝑚𝜏 ෍ ฮ𝑋௠ାଵ(𝑖) − 𝑋௠ାଵ௙ (𝑖)ฮேି௠ఛ௜ୀଵ , (7)

where, 𝑚-dimensional time sequences 𝑋௠(𝑖), and the nearest neighbor point 𝑋௠௙ (𝑖); (𝑚 + 1)-
dimensional time sequences 𝑋௠ାଵ(𝑖), and the nearest neighbor point 𝑋௠ାଵ௙ (𝑖); ‖•‖ is the ∞-norm. 

3. Numerical simulation and verification 

In this section, the simulation model is shown in Eq. (8): 𝑓ଵ(𝑡) = 𝑓ୱ୧୬(𝑡) + 𝜉ீି௡௢௜௦௘(𝑡) + 𝜁ீି௣௨௟௦௘(𝑡). (8)

And the parameter settings are shown in Table 1. 

3.1. The analysis of delay time  

This is illustrates in Fig. 1, and shows that: when the length of time sequences is short, the 
correlation between sequences is powerful. Conversely, the correlation of time sequences is faintly. 

3.2. Embedded dimension analysis of time sequences 

According to the basic theory of improved (FNN) point method, and four different lengths of 
the simulation signal are taken to calculate the embedding dimension are shown in Fig. 2. The 
analysis showed that: While the length of the time sequences is short, the correlation between the 
signals is high, but the effective characteristics are difficult to distinguish from the noise signals. 
On the contrary, the correlation between signals is weak, and the fault signal characteristics are 
not obvious. 

Table 1. Input parameters of the simulation signal 
Signal designation Parameter setting 

Initialize signal 𝑓௦௜௡(𝑡) 𝑓௦௜௡(𝑡) = sin(28𝜋𝑡) 
Random signal 𝜉ீି௡௢௜௦௘(𝑡) 

Mean: 0; Variance: 
1 

Pulse signal 𝜉ீି௣௨௟௦௘(𝑡) Frequency of 0.1 Hz 
Sample length 𝑁 800/1200/1600/1800 
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Fig. 1. The relationship between delay time  
and time sequences length 

3.3. Analysis of the relationship between permutation entropy and threshold parameters 

The relationship between the permutation entropy and the length of the time sequences is 
investigated based on the six groups of different lengths in Table 1. And the results are shown in 
Fig. 3. The entropy value decreases of the equivalent time sequences with the increase of 
embedding dimension. While the length of time sequences increases, the corresponding 
permutation entropy of value also increases slightly. 

The fluctuation relationship between the length of time sequences and scale factor is obtained 
in Fig. 5, and the scale factor and the embedded dimension of time sequences is achieved in Fig. 6. 
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It can be obtained that: the permutation entropy value of time sequences is inversely proportional 
to the embedded dimension and scale factor. 

  

  
Fig. 2. The relationship between embedding dimension and length of signal 
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Fig. 3. The relationship between the length and time 

of embedded dimension of time sequences 
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Fig. 4. The relationship between the length and 

delay time sequences 
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Fig. 5. The relationship between scale factor and 

sample length of time sequences 
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Fig. 6. The relationship between scale factor and 

embedded dimension 

4. Experimental verification and analysis 

The layout of the laboratory table is shown in Fig. 7. Then, the four experiment points and 
parameters as follows: test point I, test point II, test point III and test point IV; input speed is 
1500 r/min; the input current of the magnetic powder loader is 0.1 A; Modulus of gear 𝑚 = 2 mm, 
Number of teeth 𝑧 = 55, Tooth width 𝑏 = 20 mm. 1. Motor input shaft, 2. Measured gear box, 
3. Torque transducer, 4. Magnetic powder loader. 
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4.1. Calculate the delay time of the time sequences 

Through simulation analysis, the results are obtained as shown in Fig. 8. As can be seen from 
the figure, the analysis shows that the delay time values of the time sequence at the four measuring 
points on the gearbox are all 2. 

 
Fig. 7. The test bench 
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Fig. 8. The MI curve at each measuring point 

4.2. Calculate the embedding dimension of time sequences 

According to the calculation principle of the improved FNN point method, the results shown 
in Fig. 9 is acquired. It is shows that: while the value of the embedding dimension 𝑚 is 5, it is the 
most reasonable of the time series at the four measuring points on the gearbox. 

  

  
Fig. 9. The improved FNN proportion at each measuring point 
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Fig. 10. The MPE curve of each measuring point  

in normal state 
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Fig. 11. The MPE curve of each measuring point  

in malfunction state 
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4.3. Multiscale permutation entropy method for fault identification 

According to the research results of the above relevant chapters, the analysis parameters were 
set by 𝑚 = 5, 𝜏 = 2, 𝑠 = 12. In the normal state (No fault), calculate the MPE value of the time 
sequences of the four measuring points on the gearbox is shown in Fig. 10, and the fault state is 
shown in Fig. 11. Shows that, according to the vibration variation of the signal, it can be 
adjudicated that the gear has gear tooth wear fault in the gearbox. 

5. Conclusions 

Conclusions are drawn as follows: The joint calculation method based on the MI and improved 
FNN principle for calculating threshold parameters for MPE method was presented. Compared 
with the trial algorithm given in related literature, the joint calculation method can improve the 
recognition of dynamic mutation of fault sequence by MPE method. Then, the fault identification 
simulation model for wear failure of gear tooth surface by MPE method was simulated, and the 
effectiveness of the proposed MPE method was validated. Finally, the wear failure test of spur 
gear was carried out, and the vibration characteristics of the fault signal are obtained by the method 
of MPE. Furthermore, With the experiment, it is efficient to identification the vibration signal for 
gear tooth surface wear fault. 
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